2016届高三一轮第4章《曲线运动、万有引力和航天》(教师版)
- 格式:doc
- 大小:971.00 KB
- 文档页数:8
第4节 万有引力与航天知识点1 开普勒行星运动定律 1.开普勒第一定律所有行星绕太阳运动的轨道都是椭圆,太阳处在椭圆的一个焦点上. 2.开普勒第二定律对任意一个行星来说,它与太阳的连线在相等的时间内扫过相等的面积. 3.开普勒第三定律所有行星的轨道的半长轴的三次方跟它的公转周期的二次方的比值都相等,表达式:a 3T=k .知识点2 万有引力定律 1.内容(1)自然界中任何两个物体都相互吸引. (2)引力的方向在它们的连线上.(3)引力的大小与物体的质量m 1和m 2的乘积成正比、与它们之间距离r 的二次方成反比. 2.表达式F =G m 1m 2r,其中G 为引力常量,G =6.67×10-11 N·m 2/kg 2,由卡文迪许扭秤实验测定.3.适用条件(1)两个质点之间的相互作用.(2)对质量分布均匀的球体,r 为两球心间的距离. 知识点3 地球同步卫星及宇宙速度 1.地球同步卫星的特点(1)轨道平面一定:轨道平面和赤道平面重合.(2)周期一定:与地球自转周期相同,即T =24 h =86 400 s. (3)角速度一定:与地球自转的角速度相同.(4)高度一定:据G Mm r 2=m 4π2T 2r 得r =3GMT 24π2=4.24×104km ,卫星离地面高度h =r -R ≈6R (为恒量).(5)速率一定:运行速度v =2πrT=3.07 km/s(为恒量).(6)绕行方向一定:与地球自转的方向一致.2.三种宇宙速度比较1.经典时空观(1)在经典力学中,物体的质量是不随速度的改变而改变的.(2)在经典力学中,同一物理过程发生的位移和对应时间的测量结果在不同的参考系中是相同的.2.相对论时空观同一过程的位移和时间的测量与参考系有关,在不同的参考系中不同.3.经典力学有它的适用范围只适用于低速运动,不适用于高速运动;只适用于宏观世界,不适用于微观世界.[物理学史链接]1.德国天文学家开普勒提出天体运动的开普勒三大定律.2.牛顿总结了前人的科研成果,在此基础上,经过研究得出了万有引力定律.3.英国物理学家卡文迪许利用扭秤实验装置比较准确地测出了引力常量.1.正误判断(1)只有天体之间才存在万有引力.(×)(2)当两物体间的距离趋近于零时,万有引力趋近于无穷大.(×)(3)第一宇宙速度与地球的质量有关.(√)(4)地球同步卫星的运行速度大于第一宇宙速度.(×)(5)地球同步卫星可以定点于北京正上方.(×)(6)若物体的发射速度大于第二宇宙速度,小于第三宇宙速度,则物体可以绕太阳运行.(√)2.[物理学史](2016·全国丙卷)关于行星运动的规律,下列说法符合史实的是( ) A.开普勒在牛顿定律的基础上,导出了行星运动的规律B .开普勒在天文观测数据的基础上,总结出了行星运动的规律C .开普勒总结出了行星运动的规律,找出了行星按照这些规律运动的原因D .开普勒总结出了行星运动的规律,发现了万有引力定律B [开普勒在前人观测数据的基础上,总结出了行星运动的规律,与牛顿定律无联系,选项A 错误,选项B 正确;开普勒总结出了行星运动的规律,但没有找出行星按照这些规律运动的原因,选项C 错误;牛顿发现了万有引力定律,选项D 错误.]3.[同步卫星的特点]由于通讯和广播等方面的需要,许多国家发射了地球同步轨道卫星,这些卫星的( )A .质量可以不同B .轨道半径可以不同C .轨道平面可以不同D .速率可以不同A [同步卫星轨道只能在赤道平面内,高度一定,轨道半径一定,速率一定,但质量可以不同,A 项正确.]4.[中心天体质量的求解](2015·江苏高考)过去几千年来,人类对行星的认识与研究仅限于太阳系内,行星“51 peg b”的发现拉开了研究太阳系外行星的序幕.“51 peg b”绕其中心恒星做匀速圆周运动,周期约为4天,轨道半径约为地球绕太阳运动半径的120,该中心恒星与太阳的质量比约为( )【导学号:92492186】A.110B .1C .5D .10B [行星绕中心恒星做匀速圆周运动,万有引力提供向心力,由牛顿第二定律得G Mm r2=m4π2T 2r ,则M 1M 2=⎝ ⎛⎭⎪⎫r 1r 23·⎝ ⎛⎭⎪⎫T 2T 12=⎝ ⎛⎭⎪⎫1203×⎝ ⎛⎭⎪⎫36542≈1,选项B 正确.]1利用天体表面的重力加速度g 和天体半径R .(1)由G Mm R 2=mg 得天体质量M =gR 2G .(2)天体密度:ρ=M V =M 43πR 3=3g4πGR.2.卫星环绕法测出卫星绕天体做匀速圆周运动的半径r 和周期T .(1)由G Mm r 2=m 4π2r T 2得天体的质量M =4π2r3GT 2.(2)若已知天体的半径R ,则天体的密度ρ=M V =M 43πR3=3πr3GT 2R 3.(3)若卫星绕天体表面运行时,可认为轨道半径r 等于天体半径R ,则天体密度ρ=3πGT 2,可见,只要测出卫星环绕天体表面运动的周期T ,就可估算出中心天体的密度.[题组通关]1.(2014·全国卷Ⅱ)假设地球可视为质量均匀分布的球体.已知地球表面重力加速度在两极的大小为g 0,在赤道的大小为g ;地球自转的周期为T ,引力常量为G .地球的密度为( )【导学号:92492187】A.3πGT 2·g 0-gg 0 B .3πGT 2·g 0g 0-gC.3πGT2D .3πGT 2·g 0gB [物体在地球的两极时,mg 0=G MmR2,物体在赤道上时,mg +m ⎝⎛⎭⎪⎫2πT 2R =G Mm R 2,ρ=M 43πR3,以上三式联立解得地球的密度ρ=3πg 0GT 2g 0-g,故选项B 正确,选项A 、C 、D 错误.]2.(多选)(2017·上饶二模)2014年11月1日早上6时42分,被誉为“嫦娥5号”的“探路尖兵”载人返回飞行试验返回器在内蒙古四子王旗预定区域顺利着陆,标志着我国已全面突破和掌握航天器以接近第二宇宙速度的高速载人返回关键技术,为“嫦娥5号”任务顺利实施和探月工程持续推进奠定了坚实基础.已知人造航天器在月球表面上空绕月球做匀速圆周运动,经过时间t (t 小于航天器的绕行周期),航天器运动的弧长为s ,航天器与月球的中心连线扫过角度为θ,引力常量为G ,则( )【导学号:92492188】A .航天器的轨道半径为θsB .航天器的环绕周期为2πtθC .月球的质量为s 3Gt 2θD .月球的密度为3θ24Gt2BC [根据几何关系得r =sθ,故A 错误;经过时间t ,航天器与月球的中心连线扫过角度为θ,则t T =θ2π,得T =2πtθ,故B 正确;由万有引力充当向心力而做圆周运动,所以G Mm r =m 4π2T r ,得M =4π2r 3GT =4π2⎝⎛⎭⎪⎫s θ3G ⎝ ⎛⎭⎪⎫2πt θ2=s 3Gt θ,故C 正确;月球的体积V =43πr 3=43π⎝ ⎛⎭⎪⎫s θ3,月球的密度ρ=M V =s 3Gt 2θ43π⎝ ⎛⎭⎪⎫s θ3=3θ24πGt 2,故D 错误.]两点提醒1.估算的只是中心天体的质量,并非环绕天体的质量.2.区别天体半径R 和卫星轨道半径r ,只有在天体表面附近的卫星才有r ≈R.1.(1)同步卫星的周期、轨道平面、高度、线速度、角速度绕行方向均是固定不变的,常用于无线电通信,故又称通信卫星.(2)极地卫星运行时每圈都经过南北两极,由于地球自转,极地卫星可以实现全球覆盖. (3)近地卫星是在地球表面附近环绕地球做匀速圆周运动的卫星,其运行的轨道半径可近似认为等于地球的半径,其运行线速度约为7.9 km/s.2.四个分析“四个分析”是指分析人造卫星的加速度、线速度、角速度和周期与轨道半径的关系.GMmr 2=⎩⎪⎪⎨⎪⎪⎧ma →a =GMr 2→a ∝1r2m v2r →v =GM r →v ∝1r m ω2r →ω=GM r 3→ω∝1r 3m 4π2T 2r →T =4π2r 3GM→T ∝r 33.同步卫星的六个“一定”:[题组通关]1.(2017·天津模拟)中国北斗卫星导航系统(BDS)是中国自行研制的全球卫星导航系统,是继美国全球定位系统(GPS)、俄罗斯格洛纳斯卫星导航系统(GLONASS)之后第三个成熟的卫星导航系统.预计2020年左右,北斗卫星导航系统将形成全球覆盖能力.如图441所示是北斗导航系统中部分卫星的轨道示意图,已知a 、b 、c 三颗卫星均做圆周运动,a 是地球同步卫星,则( )图441A .卫星a 的角速度小于c 的角速度B .卫星a 的加速度大于b 的加速度C .卫星a 的运行速度大于第一宇宙速度D .卫星b 的周期大于24 hA [a 的轨道半径大于c 的轨道半径,因此卫星a 的角速度小于c 的角速度,选项A 正确;a 的轨道半径与b 的轨道半径相等,因此卫星a 的加速度等于b 的加速度,选项B 错误;a 的轨道半径大于地球半径,因此卫星a 的运行速度小于第一宇宙速度,选项C 错误;a 的轨道半径与b 的轨道半径相等,卫星b 的周期等于a 的周期,为24 h ,选项D 错误.]2.(2016·全国乙卷)利用三颗位置适当的地球同步卫星,可使地球赤道上任意两点之间保持无线电通讯.目前,地球同步卫星的轨道半径约为地球半径的6.6倍.假设地球的自转周期变小,若仍仅用三颗同步卫星来实现上述目的,则地球自转周期的最小值约为( )【导学号:92492189】A .1 hB .4 hC .8 hD .16 hB [万有引力提供向心力,对同步卫星有:GMm r 2=mr 4π2T 2,整理得GM =4π2r 3T2 当r =6.6R 地时,T =24 h若地球的自转周期变小,轨道半径最小为2R 地三颗同步卫星A 、B 、C 如图所示分布 则有4π2R 地3T 2=4π2R 地3T ′2解得T ′≈T6=4 h ,选项B 正确.]利用万有引力定律解决卫星运动的技巧1.一个模型天体(包括卫星)的运动可简化为质点的匀速圆周运动模型. 2.两组公式(1)G Mm r 2=m v 2r =m ω2r =m 4π2T2r =ma(2)mg =GMmR (g 为星体表面处的重力加速度) 3.a 、v 、ω、T 均与卫星的质量无关,只由轨道半径和中心 天体质量共同决定,所有参量的比较,最终归结到半径的比较.1.卫星轨道的渐变当卫星由于某种原因速度突然改变时,万有引力不再等于向心力,卫星将做变轨运行.(1)当卫星的速度逐渐增加时,G Mm r <m v 2r,即万有引力不足以提供向心力,卫星将做离心运动,轨道半径变大,当卫星进入新的轨道稳定运行时由v =GMr可知其运行速度比原轨道时减小.(2)当卫星的速度逐渐减小时,G Mm r 2>m v 2r,即万有引力大于所需要的向心力,卫星将做近心运动,轨道半径变小,当卫星进入新的轨道稳定运行时由v =GMr可知其运行速度比原轨道时增大.2.卫星轨道的突变由于技术上的需要,有时要在适当的位置短时间内启动飞行器上的发动机,使飞行器轨道发生突变,使其进入预定的轨道.如图442所示,发射同步卫星时,可以分多过程完成:图442(1)先将卫星发送到近地轨道Ⅰ.(2)使其绕地球做匀速圆周运动,速率为v 1,变轨时在P 点点火加速,短时间内将速率由v 1增加到v 2,使卫星进入椭圆形的转移轨道Ⅱ.(3)卫星运行到远地点Q 时的速率为v 3,此时进行第二次点火加速,在短时间内将速率由v 3增加到v 4,使卫星进入同步轨道Ⅲ,绕地球做匀速圆周运动.[多维探究]●考向1 卫星轨道渐变时各物理量的变化分析1.(多选)2012年6月18日,神舟九号飞船与天宫一号目标飞行器在离地面343 km 的近圆形轨道上成功进行了我国首次载人空间交会对接.对接轨道所处的空间存在极其稀薄的大气.下列说法正确的是( )A .为实现对接,两者运行速度的大小都应介于第一宇宙速度和第二宇宙速度之间B .如不加干预,在运行一段时间后,天宫一号的动能可能会增加C .如不加干预,天宫一号的轨道高度将缓慢降低D .航天员在天宫一号中处于失重状态,说明航天员不受地球引力作用BC [第一宇宙速度和第二宇宙速度为发射速度,天体运动的速度为环绕速度,均小于第一宇宙速度,选项A 错误;天体运动过程中由于大气阻力,速度减小,导致需要的向心力F n =mv 2r减小,做近心运动,近心运动过程中,轨道高度降低,且万有引力做正功,势能减小,动能增加,选项B 、C 正确;航天员在太空中受地球引力,地球引力全部提供航天员做圆周运动的向心力,选项D 错误.]●考向2 卫星轨道突变前后各物理量间的变化分析2.(多选)(2017·唐山模拟)如图443所示,地球卫星a 、b 分别在椭圆轨道、圆形轨道上运行,椭圆轨道在远地点A 处与圆形轨道相切,则( )【导学号:92492190】图443A .卫星a 的运行周期比卫星b 的运行周期短B .两颗卫星分别经过A 点处时,a 的速度大于b 的速度C .两颗卫星分别经过A 点处时,a 的加速度小于b 的加速度D .卫星a 在A 点处通过加速可以到圆轨道上运行AD [由于卫星a 的运行轨道的半长轴比卫星b 的运行轨道半径短,根据开普勒定律,卫星a 的运行周期比卫星b 的运行周期短,选项A 正确;两颗卫星分别经过A 点处时,a 的速度小于b 的速度,选项B 错误;两颗卫星分别经过A 点处,a 的加速度等于b 的加速度,选项C 错误;卫星a 在A 点处通过加速可以到圆轨道上运行,选项D 正确.]3.(多选)如图444所示是飞船进入某星球轨道后的运动情况,飞船沿距星球表面高度为100 km 的圆形轨道Ⅰ运动,到达轨道的A 点时,点火制动变轨进入椭圆轨道Ⅱ,到达轨道Ⅱ的B 点时,飞船离星球表面高度为15 km ,再次点火制动,下降落到星球表面.下列判断正确的是( )【导学号:92492191】图444A .飞船在轨道Ⅱ上的B 点受到的万有引力等于飞船在B 点所需的向心力 B .飞船在轨道Ⅱ上由A 点运动到B 点的过程中,动能增大C .飞船在A 点点火变轨瞬间,速度增大D .飞船在轨道Ⅰ绕星球运动一周所需的时间大于在轨道Ⅱ绕星球运动一周所需的时间 BD [由飞船在轨道Ⅱ上的运动轨迹可知,飞船在B 点做离心运动,B 点的万有引力小于所需的向心力,A 错误;从A 到B 的运动过程中万有引力做正功,由动能定理可知,动能增大,B 正确;由题可知在A 点制动进入椭圆轨道,速度减小,C 错误;由开普勒第三定律可得,D 正确.]卫星变轨问题“四个”物理量的规律总结1.速度:如图所示,设卫星在圆轨道Ⅰ和Ⅲ上运行时的速率分别为v 1、v 3,在轨道Ⅱ上过A 点和B 点时速率分别为v A 、v B .在A 点加速,则v A >v 1,在B 点加速,则v 3>v B ,又因v 1>v 3,故有v A >v 1>v 3>v B .2.加速度:因为在A 点,卫星只受到万有引力作用,故不论从轨道Ⅰ还是轨道Ⅱ上经过A 点,卫星的加速度都相同,同理,经过B 点加速度也相同.3.周期:设卫星在Ⅰ、Ⅱ、Ⅲ轨道上的运行周期分别为T 1、T 2、T 3,轨道半径分别为r 1、r 2(半长轴)、r 3,由开普勒第三定律r 3T2=k 可知T 1<T 2<T 3.4.机械能:在一个确定的圆(椭圆)轨道上机械能守恒.若卫星在Ⅰ、Ⅱ、Ⅲ轨道的机械能分别为E 1、E 2、E 3,则E 1<E 2<E 3.1.第一宇宙速度的推导方法一:由G Mm R 2=m v 21R 得v 1=GM R=7.9×103m/s. 方法二:由mg =m v 21R 得v 1=gR =7.9×103 m/s.第一宇宙速度是发射人造卫星的最小速度,也是人造卫星的最大环绕速度,此时它的运行周期最短,T min =2πRg=5 075 s≈85 min. 2.宇宙速度与运动轨迹的关系(1)v 发=7.9 km/s 时,卫星绕地球做匀速圆周运动.(2)7.9 km/s <v 发<11.2 km/s ,卫星绕地球运动的轨迹为椭圆. (3)11.2 km/s≤v 发<16.7 km/s ,卫星绕太阳做椭圆运动.(4)v 发≥16.7 km/s,卫星将挣脱太阳引力的束缚,飞到太阳系以外的空间. [题组通关]1.(多选)2011年中俄联合实施探测火星计划,由中国负责研制的“萤火一号”火星探测器与俄罗斯研制的“福布斯一土壤”火星探测器一起由俄罗斯“天顶”运载火箭发射前往火星.已知火星的质量约为地球质量的19,火星的半径约为地球半径的12.下列关于火星探测器的说法中正确的是( )A .发射速度只要大于第一宇宙速度即可B .发射速度只有达到第三宇宙速度才可以C .发射速度应大于第二宇宙速度而小于第三宇宙速度D .火星探测器环绕火星运行的最大速度为地球第一宇宙速度的23CD [根据三个宇宙速度的意义,可知选项A 、B 错误,选项C 正确;已知M 火=M 地9,R 火=R 地2,则v mv 地=GM 火R 火∶GM 地R 地=23,选项D 正确.] 2.物体脱离星球引力所需要的最小速度称为第二宇宙速度,第二宇宙速度v 2与第一宇宙速度v 1的关系是v 2=2v 1.已知某星球半径是地球半径R 的13,其表面的重力加速度是地球表面重力加速度g 的16,不计其他星球的影响,则该星球的第二宇宙速度为( )A.gR B .13gR C.16gR D .3gRB [设某星球的质量为M ,半径为r ,绕其飞行的卫星质量为m ,根据万有引力提供向心力,可得G Mm r 2=m v 21r ,解得:v 1=GMr,又因它表面的重力加速度为地球表面重力加速度g 的16,可得G Mm r 2=m g 6,又r =13R 和v 2=2v 1,解得:v 2=13gR ,所以正确选项为B.]宇宙速度问题的分析思路[母题] (多选)如图445所示,A 是地球的同步卫星,B 是位于赤道平面内的近地卫星,C 为地面赤道上的物体,已知地球半径为R ,同步卫星离地面的高度为h ,则( )图445A .A 、B 加速度的大小之比为⎝⎛⎭⎪⎫R +h R 2B .A 、C 加速度的大小之比为1+h RC .A 、B 、C 速度的大小关系为v A >v B >v CD .要将B 卫星转移到A 卫星的轨道上运行至少需要对B 卫星进行两次加速 【自主思考】 (1)A 和C 的运动相同点是什么? 提示:ωA =ωC =ω地自.(2)A 和B 的运动有什么相同点?提示:都是卫星,满足F 万=F 向=ma 向=m v 2r.BD [根据万有引力提供向心力可知G Mmr2=ma ,得a A =GM R +h2,a B =G MR2,故a A a B =⎝⎛⎭⎪⎫R R +h 2,选项A 错误;A 、C 角速度相同,根据a =ω2r 得a A =ω2(R +h ),a C =ω2R ,故a Aa C=1+h R,选项B 正确;根据G Mm r 2=m v 2r 得v =GMr,可知轨道半径越大线速度越小,所以v B >v A ,又A 、C 角速度相同,根据v =ωr 可知v A >v C ,故v B >v A >v C ,选项C 错误;要将B 卫星转移到A 卫星的轨道上,先要加速到椭圆轨道上,再由椭圆轨道加速到A 卫星的轨道上,选项D 正确.][母题迁移]1.(多选)地球同步卫星离地心的距离为r ,运行速率为v 1,加速度为a 1,地球赤道上的物体随地球自转的向心加速度为a 2,地球的第一宇宙速度为v 2,半径为R ,则下列比例关系中正确的是( )【导学号:92492192】A.a 1a 2=rR B .a 1a 2=⎝ ⎛⎭⎪⎫r R 2C.v 1v 2=r RD .v 1v 2=R rAD [设地球质量为M ,同步卫星的质量为m 1,在地球表面做匀速圆周运动的卫星的质量为m 2,根据向心加速度和角速度的关系有a 1=ω21r ,a 2=ω22R ,又ω1=ω2,故a 1a 2=r R,选项A 正确,B 错误;由万有引力定律和牛顿第二定律得G Mm 1r 2=m 1v 21r ,G Mm 2R 2=m 2v 22R ,解得v 1v 2=Rr,选项D 正确,C 错误.]2.(2016·四川高考)国务院批复,自2016年起将4月24日设立为“中国航天日”.1970年4月24日我国首次成功发射的人造卫星东方红一号,目前仍然在椭圆轨道上运行,其轨道近地点高度约为440 km ,远地点高度约为2 060 km ;1984年4月8日成功发射的东方红二号卫星运行在赤道上空35 786 km 的地球同步轨道上.设东方红一号在远地点的加速度为a 1,东方红二号的加速度为a 2,固定在地球赤道上的物体随地球自转的加速度为a 3,则a 1、a 2、a 3的大小关系为( )【导学号:92492193】图446A .a 2>a 1>a 3B .a 3>a 2>a 1C .a 3>a 1>a 2D .a 1>a 2>a 3D [卫星围绕地球运行时,万有引力提供向心力,对于东方红一号,在远地点时有GMm 1R +h 12=m 1a 1,即a 1=GM R +h 12,对于东方红二号,有GMm 2R +h 22=m 2a 2,即a 2=GM,由于h2>h1,故a1>a2,东方红二号卫星与地球自转的角速度相等,由于东方红R +h22二号做圆周运动的轨道半径大于地球赤道上物体做圆周运动的半径,根据a=ω2r,故a2>a3,所以a1>a2>a3,选项D正确,选项A、B、C错误.]赤道表面的物体、近地卫星、同步卫星的对比ω3=ω自=GMR+h3a3=ω23(R+h) =GMR+h2。
曲线运动万有引力与航天点点通(一) 物体做曲线运动的条件与轨迹分析1.曲线运动(1)速度的方向:质点在某一点的速度,沿曲线在这一点的切线方向。
(2)运动的性质:做曲线运动的物体,速度的方向时刻在改变,所以曲线运动是变速运动。
(3)物体做曲线运动的条件:物体所受合力的方向与它的速度方向不在同一直线上。
2.合外力方向与轨迹的关系物体做曲线运动的轨迹一定夹在合外力方向与速度方向之间,速度方向与轨迹相切,合外力方向指向轨迹的“凹”侧。
3.速率变化情况判断(1)当合外力方向与速度方向的夹角为锐角时,物体的速率增大。
(2)当合外力方向与速度方向的夹角为钝角时,物体的速率减小。
(3)当合外力方向与速度方向垂直时,物体的速率不变。
[小题练通]1.一个物体在力F1、F2、F3、…、F n共同作用下做匀速直线运动,若突然撤去F2,而其他力不变,则该物体( )A.可能做曲线运动B.不可能继续做直线运动C.一定沿F2的方向做直线运动D .一定沿F 2的反方向做匀减速直线运动解析:选A 根据题意,物体开始做匀速直线运动,物体所受的合力一定为零,突然撤去F 2后,物体所受其余力的合力与F 2大小相等、方向相反,而物体速度的方向未知,故有多种可能情况:若速度的方向和F 2的方向在同一直线上,物体做匀变速直线运动,若速度的方向和F 2的方向不在同一直线上,物体做曲线运动,A 正确。
2.(2019·金华联考)春节期间人们放飞孔明灯表达对新年的祝福。
如图所示,孔明灯在竖直Oy 方向做匀加速运动,在水平Ox 方向做匀速运动,孔明灯的运动轨迹可能为图中的( )A .直线OAB .曲线OBC .曲线OCD .曲线OD解析:选D 孔明灯在竖直Oy 方向做匀加速运动,在水平Ox 方向做匀速运动,则合外力沿Oy 方向,所以合运动的加速度方向沿Oy 方向,但合速度方向不沿Oy 方向,故孔明灯做曲线运动,结合合力指向轨迹凹侧可知轨迹可能为题图中的曲线OD ,故D 正确。
第4章 曲线运动 万有引力与航天[考纲要求]第1课时 曲线运动 平抛运动考点一 曲线运动(b/b)[基础过关]1.速度的方向:质点在某一点的速度方向,沿曲线在这一点的切线方向。
2.运动的性质:做曲线运动的物体,速度的方向时刻在改变,所以曲线运动一定是变速运动。
3.曲线运动的条件【过关演练】1.(2015·浙江1月学考)如图所示,一小球在光滑水平桌面上做匀速直线运动,若沿桌面对小球施加一个恒定外力,则小球一定做( )A.直线运动B.曲线运动C.匀变速运动D.匀加速直线运动解析因为施加的恒力方向不知,小球可能做直线运动或曲线运动,故A、B、D错;根据牛顿第二定律,小球一定做匀变速运动,故C正确。
答案 C2.(2016·9月台州质量评估)如图所示的陀螺,是汉族民间最早的娱乐工具,也是我们很多人小时候喜欢玩的玩具。
从上往下看(俯视),若陀螺立在某一点顺时针匀速转动,此时滴一滴墨水到陀螺,则被甩出的墨水径迹可能为( )解析做曲线运动的物体,所受陀螺的束缚的力消失后,水平面内(俯视)应沿轨迹的切线飞出,A、B不正确,又因陀螺顺时针匀速转动,故C不正确,D正确。
答案 D[要点突破]要点一曲线运动特点认识1.曲线运动的特点2.物体做曲线运动的轨迹一定夹在合力方向和速度方向之间,速度方向与轨迹相切,合力方向指向曲线的“凹”侧。
【例1】(2016·浙江慈溪中学)关于做曲线运动的物体,下列说法中正确的是( ) A.物体的速度方向一定不断改变B.物体的速度大小一定不断改变C.物体的加速度方向一定不断改变D.物体的加速度大小一定不断改变解析做曲线运动的物体速度方向是该点的切线方向,时刻在变化,故A正确;做曲线运动的物体速度大小可以不变,如匀速圆周运动,故B错误;曲线运动的速度方向时刻改变,故一定具有加速度,但加速度的大小和方向不一定改变,如平抛运动,故C、D错误。
答案 A要点二速率变化情况判断1.当合力方向与速度方向的夹角为锐角时,物体的速率增大;2.当合力方向与速度方向的夹角为钝角时,物体的速率减小;3.当合力方向与速度方向垂直时,物体的速率不变。
第四章 曲线运动 万有引力与航天一、知识网络1.运动的合成和分解 Ⅱ 2.抛体运动 Ⅱ 3.匀速圆周运动、角速度、线速度、向心加速度 Ⅰ 4.匀速圆周运动的向心力 Ⅱ 5.离心现象 Ⅰ 6.万有引力定律及其应用 Ⅱ 7.环绕速度 Ⅱ 8.第二宇宙速度和第三宇宙速度 Ⅰ 9.经典时空观和相对论时空观 Ⅰ 三、复习提要本章知识点,从近几年高考看,主要考查的有以下几点:(1)平抛物体的运动。
(2)匀速圆周运动及其重要公式,如线速度、角速度、向心力等。
(3)万有引力定律及其运用。
(4)运动的合成与分解。
注意圆周运动问题是牛顿运动定律在曲线运动中的具体应用,要加深对牛顿第二定律的理解,提高应用牛顿运动定律分析、解决实际问题的能力。
近几年对人造卫星问题考查频率较高,它是对万有引力的考查。
卫星问题与现代科技结合密切,对理论联系实际的能力要求较高,要引起足够重视。
本章内容常与电场、磁场、机械能等知识综合成难度较大的试题,学习过程中应加强综合能力的培养。
四、命题热点与展望本章内容在高考题中常有出现,考查重点是对概念和规律的理解和运用。
内容主要集中在平抛运动和天体运动、人造卫星的运动规律等方面,且均有一定难度。
本章的圆周运动经常与电磁场、洛仑兹力等内容结合起来考查。
§1 运动的合成与分解 平抛物体的运动一、曲线运动1.曲线运动的条件:质点所受合外力的方向(或加速度方向)跟它的速度方向不在同一直线上。
当物体受到的合力为恒力(大小恒定、方向不变)时,物体作匀变速曲线运动 ,如平抛运动。
当物体受到的合力大小恒定而方向总跟速度的方向垂直,则物体将做匀速率圆周运动。
如果物体受到约束,只能沿圆形轨道运动,而速率不断变化,是变速率圆周运动。
合力的方向并不总跟速曲线运动万有引力与航天度方向垂直。
2.曲线运动的特点:(1)曲线运动中速度的方向沿曲线的切线方向,在曲线运动中速度方向是时刻改变的,所以曲线运动一定是变速运动。
第4节 万有引力与航天知识点1 开普勒行星运动定律 1.开普勒第一定律所有行星绕太阳运动的轨道都是椭圆,太阳处在椭圆的一个焦点上. 2.开普勒第二定律对任意一个行星来说,它与太阳的连线在相等的时间内扫过相等的面积. 3.开普勒第三定律所有行星的轨道的半长轴的三次方跟它的公转周期的二次方的比值都相等,表达式:a 3T2=k .知识点2 万有引力定律 1.内容(1)自然界中任何两个物体都相互吸引. (2)引力的方向在它们的连线上.(3)引力的大小与物体的质量m 1和m 2的乘积成正比、与它们之间距离r 的二次方成反比. 2.表达式F =G m 1m 2r2,其中G 为引力常量,G =6.67×10-11 N·m 2/kg 2,由卡文迪许扭秤实验测定.3.适用条件(1)两个质点之间的相互作用.(2)对质量分布均匀的球体,r 为两球心间的距离. 知识点3 地球同步卫星及宇宙速度 1.地球同步卫星的特点(1)轨道平面一定:轨道平面和赤道平面重合.(2)周期一定:与地球自转周期相同,即T =24 h =86 400 s. (3)角速度一定:与地球自转的角速度相同.(4)高度一定:据G Mm r 2=m 4π2T 2r 得r =3GMT 24π2=4.24×104km ,卫星离地面高度h =r -R ≈6R (为恒量).(5)速率一定:运行速度v =2πrT=3.07 km/s(为恒量).(6)绕行方向一定:与地球自转的方向一致. 2.三种宇宙速度比较(1)只有天体之间才存在万有引力.(×)(2)当两物体间的距离趋近于零时,万有引力趋近于无穷大.(×)(3)第一宇宙速度与地球的质量有关.(√)(4)地球同步卫星的运行速度大于第一宇宙速度.(×)(5)地球同步卫星可以定点于北京正上方.(×)(6)若物体的发射速度大于第二宇宙速度,小于第三宇宙速度,则物体可以绕太阳运行.(√)2.(对开普勒三定律的理解)火星和木星沿各自的椭圆轨道绕太阳运行,根据开普勒行星运动定律可知 ( )【导学号:】A.太阳位于木星运行轨道的中心B.火星和木星绕太阳运行速度的大小始终相等C.火星与木星公转周期之比的平方等于它们轨道半长轴之比的立方D.相同时间内,火星与太阳连线扫过的面积等于木星与太阳连线扫过的面积【答案】 C3.(对万有引力定律的理解)关于万有引力公式F=G m1m2r2,以下说法中正确的是( )A.公式只适用于星球之间的引力计算,不适用于质量较小的物体B.当两物体间的距离趋近于0时,万有引力趋近于无穷大C.两物体间的万有引力也符合牛顿第三定律D.公式中引力常量G的值是牛顿规定的【答案】 C4.(卫星运行及宇宙速度的理解)北斗卫星导航系统是我国自行研制开发的区域性三维卫星定位与通信系统(CNSS),建成后的北斗卫星导航系统包括5颗同步卫星和30颗一般轨道卫星.对于其中的5颗同步卫星,下列说法中正确的是( ) 【导学号:】A .它们运行的线速度一定不小于7.9 km/sB .地球对它们的吸引力一定相同C .一定位于赤道上空同一轨道上D .它们运行的加速度一定相同 【答案】 C5.(同步卫星的特点)由于通讯和广播等方面的需要,许多国家发射了地球同步轨道卫星,这些卫星的( )A .质量可以不同B .轨道半径可以不同C .轨道平面可以不同D .速率可以不同 【答案】 A [核心精讲] 1.重力加速度法利用天体表面的重力加速度g 和天体半径R .(1)由G Mm R 2=mg 得天体质量M =gR 2G .(2)天体密度:ρ=M V =M 43πR 3=3g4πGR.2.卫星环绕法测出卫星绕天体做匀速圆周运动的半径r 和周期T .(1)由G Mm r 2=m 4π2r T 2得天体的质量M =4π2r3GT 2.(2)若已知天体的半径R ,则天体的密度ρ=M V =M 43πR3=3πr3GT 2R 3.(3)若卫星绕天体表面运行时,可认为轨道半径r 等于天体半径R ,则天体密度ρ=3πGT2,可见,只要测出卫星环绕天体表面运动的周期T ,就可估算出中心天体的密度.[题组通关]1.(2015·江苏高考)过去几千年来,人类对行星的认识与研究仅限于太阳系内,行星“51 peg b”的发现拉开了研究太阳系外行星的序幕.“51 peg b”绕其中心恒星做匀速圆周运动,周期约为4天,轨道半径约为地球绕太阳运动半径的120.该中心恒星与太阳的质量比约为( )A.110B .1C .5D .10B 行星绕中心恒星做匀速圆周运动,万有引力提供向心力,由牛顿第二定律得G Mmr2=m 4π2T 2r ,可得:M =4π2r 3GT 2.由此可得:M 1M 2=⎝ ⎛⎭⎪⎫r 1r 23·⎝ ⎛⎭⎪⎫T 2T 12=⎝ ⎛⎭⎪⎫1203×⎝ ⎛⎭⎪⎫36542≈1,选项B 正确. 2.(2014·全国卷Ⅱ)假设地球可视为质量均匀分布的球体.已知地球表面重力加速度在两极的大小为g 0,在赤道的大小为g ;地球自转的周期为T ,引力常量为G .地球的密度为( )A.3πGT 2·g 0-gg 0B.3πGT 2·g 0g 0-g C.3πGT2D.3πGT 2·g 0gB 物体在地球的两极时,mg 0=G Mm R2,物体在赤道上时,mg +m ⎝⎛⎭⎪⎫2πT 2R =G Mm R 2,ρ=M 43πR3,以上三式联立解得地球的密度ρ=3πg 0GT 2g 0-g,故选项B 正确,选项A 、C 、D 错误.[名师微博] 两点提醒:1.估算的只是中心天体的质量,并非环绕天体的质量.2.区别天体半径R 和卫星轨道半径r ,只有在天体表面附近的卫星才有r ≈R . [核心精讲] 1.三类卫星(1)同步卫星的周期、轨道平面、高度、线速度、角速度绕行方向均是固定不变的,常用于无线电通信,故又称通信卫星.(2)极地卫星运行时每圈都经过南北两极,由于地球自转,极地卫星可以实现全球覆盖. (3)近地卫星是在地球表面附近环绕地球做匀速圆周运动的卫星,其运行的轨道半径可近似认为等于地球的半径,其运行线速度约为7.9 km/s.2.四个分析“四个分析”是指分析人造卫星的加速度、线速度、角速度和周期与轨道半径的关系. [师生共研]●考向1 卫星各运行参量的比较(多选)(2016·江苏高考)如图441所示,两质量相等的卫星A 、B 绕地球做匀速圆周运动,用R 、T 、E k 、S 分别表示卫星的轨道半径、周期、动能、与地心连线在单位时间内扫过的面积.下列关系式正确的有( )图441A .T A >TB B .E k A >E k BC .S A =S BD.R 3A T 2A =R 3B T 2BAD 已知不同高度处的卫星绕地球做圆周运动,R A >R B .根据R 3T 2=k 知,T A >T B ,选项A 、D 正确;由GMm R 2=m v 2R知,运动速率v =GMR,由R A >R B ,得v A <v B ,则E k A <E k B ,选项B 错误;根据开普勒第二定律知,同一卫星绕地球做圆周运动,与地心连线在单位时间内扫过的面积相等,对于不同卫星,S A 不一定等于S B ,选项C 错误.●考向2 发射速度及宇宙速度的分析与计算(多选)(2015·广东高考)在星球表面发射探测器,当发射速度为v 时,探测器可绕星球表面做匀速圆周运动;当发射速度达到2v 时,可摆脱星球引力束缚脱离该星球.已知地球、火星两星球的质量比约为10∶1,半径比约为2∶1,下列说法正确的有( )A .探测器的质量越大,脱离星球所需要的发射速度越大B .探测器在地球表面受到的引力比在火星表面的大C .探测器分别脱离两星球所需要的发射速度相等D .探测器脱离星球的过程中,势能逐渐增大BD 探测器在星球表面做匀速圆周运动时,由G Mm R 2=m v 2R,得v =GMR,则摆脱星球引力时的发射速度2v =2GMR,与探测器的质量无关,选项A 错误;设火星的质量为M ,半径为R ,则地球的质量为10M ,半径为2R ,地球对探测器的引力F 1=G10Mm 2R 2=5GMm2R2,比火星对探测器的引力F 2=G Mm R2大,选项B 正确;探测器脱离地球时的发射速度v 1=2G ·10M2R=10GMR ,脱离火星时的发射速度v 2=2GMR,v 2<v 1,选项C 错误;探测器脱离星球的过程中克服引力做功,势能逐渐增大,选项D 正确.1.第一宇宙速度是卫星绕行星做匀速圆周运动的最大速度,也是发射卫星的最小发射速度.2.第二宇宙速度是卫星脱离行星所需的最小发射速度,大小为第一宇宙速度的2倍.[题组通关]3.(2015·山东高考)如图442所示,拉格朗日点L 1位于地球和月球连线上,处在该点的物体在地球和月球引力的共同作用下,可与月球一起以相同的周期绕地球运动.据此,科学家设想在拉格朗日点L 1建立空间站,使其与月球同周期绕地球运动.以a 1、a 2分别表示该空间站和月球向心加速度的大小,a 3表示地球同步卫星向心加速度的大小.以下判断正确的是( ) 【导学号:】图442A .a 2>a 3>a 1B .a 2>a 1>a 3C .a 3>a 1>a 2D .a 3>a 2>a 1D 空间站和月球绕地球运动的周期相同,由a =⎝⎛⎭⎪⎫2πT 2r 知,a 2>a 1;对地球同步卫星和月球,由万有引力定律和牛顿第二定律得G Mmr2=ma ,可知a 3>a 2,故选项D 正确.4.(2014·江苏高考)已知地球的质量约为火星质量的10倍,地球的半径约为火星半径的2倍,则航天器在火星表面附近绕火星做匀速圆周运动的速率约为( )A .3.5 km/sB .5.0 km/sC .17.7 km/sD .35.2 km/sA 由G Mm r 2=m v 2r 得,对于地球表面附近的航天器有:G Mm r 2=mv 21r,对于火星表面附近的航天器有:G M ′m r ′2=mv 22r ′,由题意知M ′=110M 、r ′=r 2,且v 1=7.9 km/s ,联立以上各式得:v 2≈3.5 km/s,选项A 正确.[核心精讲] 1.卫星轨道的渐变当卫星由于某种原因速度突然改变时,万有引力不再等于向心力,卫星将做变轨运行.(1)当卫星的速度逐渐增加时,G Mm r 2<m v 2r,即万有引力不足以提供向心力,卫星将做离心运动,轨道半径变大,当卫星进入新的轨道稳定运行时由v =GMr可知其运行速度比原轨道时减小.(2)当卫星的速度逐渐减小时,G Mm r 2>m v 2r,即万有引力大于所需要的向心力,卫星将做近心运动,轨道半径变小,当卫星进入新的轨道稳定运行时由v =GMr可知其运行速度比原轨道时增大.2.卫星轨道的突变由于技术上的需要,有时要在适当的位置短时间内启动飞行器上的发动机,使飞行器轨道发生突变,使其进入预定的轨道.如图443所示,发射同步卫星时,可以分多过程完成:图443(1)先将卫星发送到近地轨道Ⅰ.(2)使其绕地球做匀速圆周运动,速率为v 1,变轨时在P 点点火加速,短时间内将速率由v 1增加到v 2,使卫星进入椭圆形的转移轨道Ⅱ.(3)卫星运行到远地点Q 时的速率为v 3,此时进行第二次点火加速,在短时间内将速率由v 3增加到v 4,使卫星进入同步轨道Ⅲ,绕地球做匀速圆周运动.[师生共研]●考向1 卫星轨道渐变时各物理量的变化分析(多选)2012年6月18日,神舟九号飞船与天宫一号目标飞行器在离地面343 km的近圆形轨道上成功进行了我国首次载人空间交会对接.对接轨道所处的空间存在极其稀薄的大气.下列说法正确的是( )A .为实现对接,两者运行速度的大小都应介于第一宇宙速度和第二宇宙速度之间B .如不加干预,在运行一段时间后,天宫一号的动能可能会增加C .如不加干预,天宫一号的轨道高度将缓慢降低D .航天员在天宫一号中处于失重状态,说明航天员不受地球引力作用BC 第一宇宙速度和第二宇宙速度为发射速度,天体运动的速度为环绕速度,均小于第一宇宙速度,选项A 错误;天体运动过程中由于大气阻力,速度减小,导致需要的向心力F n =mv 2r减小,做近心运动,近心运动过程中,轨道高度降低,且万有引力做正功,势能减小,动能增加,选项B 、C 正确;航天员在太空中受地球引力,地球引力全部提供航天员做圆周运动的向心力,选项D 错误.●考向2 卫星轨道突变前后各物理量间的变化分析(多选)如图444所示,地球卫星a 、b 分别在椭圆轨道、圆形轨道上运行,椭圆轨道在远地点A 处与圆形轨道相切,则( )图444A .卫星a 的运行周期比卫星b 的运行周期短B .两颗卫星分别经过A 点处时,a 的速度大于b 的速度C .两颗卫星分别经过A 点处时,a 的加速度小于b 的加速度D .卫星a 在A 点处通过加速可以到圆轨道上运行AD 由于卫星a 的运行轨道的半长轴比卫星b 的运行轨道半径短,根据开普勒定律,卫星a 的运行周期比卫星b 的运行周期短,选项A 正确;两颗卫星分别经过A 点处时,a 的速度小于b 的速度,选项B 错误;两颗卫星分别经过A 点处,a 的加速度等于b 的加速度,选项C 错误;卫星a 在A 点处通过加速可以到圆轨道上运行,选项D 正确.航天器变轨问题的两个结论1.航天器在不同轨道上运行时机械能不同,轨道半径越大,机械能越大.2.航天器经过不同轨道相交的同一点时加速度相等,外轨道的速度大于内轨道的速度. [题组通关]5.2013年2月15日中午12时30分左右,俄罗斯车里雅宾斯克州发生天体坠落事件.如图445所示,一块陨石从外太空飞向地球,到A 点刚好进入大气层,由于受地球引力和大气层空气阻力的作用,轨道半径渐渐变小,则下列说法中正确的是( )【导学号:】图445A .陨石正减速飞向A 处B .陨石绕地球运转时角速度渐渐变小C .陨石绕地球运转时速度渐渐变大D .进入大气层陨石的机械能渐渐变大C 陨石进入大气层前,只有万有引力做正功,速度增大,A 错误;进入大气层后,空气阻力做负功,机械能减小,D 错误;由GMm r 2=m v 2r =mω2r 得:v =GMr ,ω=GMr 3,故随r 减小,v 、ω均增大,B 错误,C 正确.6.(多选)如图446所示是飞船进入某星球轨道后的运动情况,飞船沿距星球表面高度为100 km 的圆形轨道Ⅰ运动,到达轨道的A 点时,点火制动变轨进入椭圆轨道Ⅱ,到达轨道Ⅱ的B 点时,飞船离星球表面高度为15 km ,再次点火制动,下降落到星球表面.下列判断正确的是( )图446A .飞船在轨道Ⅱ上的B 点受到的万有引力等于飞船在B 点所需的向心力 B .飞船在轨道Ⅱ上由A 点运动到B 点的过程中,动能增大C .飞船在A 点点火变轨瞬间,速度增大D .飞船在轨道Ⅰ绕星球运动一周所需的时间大于在轨道Ⅱ绕星球运动一周所需的时间 BD 由飞船在轨道Ⅱ上的运动轨迹可知,飞船在B 点做离心运动,B 点的万有引力小于所需的向心力,A 错误;从A 到B 的运动过程中万有引力做正功,由动能定理可知,动能增大,B 正确;由题可知在A 点制动进入椭圆轨道,速度减小,C 错误;由开普勒第三定律可得,D 正确.[典题示例](多选)如图447所示,A 是地球的同步卫星,B 是位于赤道平面内的近地卫星,C 为地面赤道上的物体,已知地球半径为R ,同步卫星离地面的高度为h ,则( )图447A .A 、B 加速度的大小之比为⎝⎛⎭⎪⎫R +h R 2B .A 、C 加速度的大小之比为1+h RC .A 、B 、C 速度的大小关系为v A >v B >v CD .要将B 卫星转移到A 卫星的轨道上运行至少需要对B 卫星进行两次加速 【解题关键】关键信息信息解读A 是地球的同步卫星 A 的角速度等于地球的自转角速度 C 为地面赤道上的物体C 的角速度等于地球自转角速度C 的圆周运动半径为RB 是位于赤道平面内的近地卫星B 的轨道半径为RBD 根据万有引力提供向心力可知G r2=ma ,得a A =GR +h2,a B =G R2,故A a B =⎝⎛⎭⎪⎫R +h 2,选项A 错误;A 、C 角速度相同,根据a =ω2r 得a A =ω2(R +h ),a C =ω2R ,故a Aa C=1+h R,选项B 正确;根据G Mm r 2=m v 2r 得v =GMr,可知轨道半径越大线速度越小,所以v B >v A ,又A 、C 角速度相同,根据v =ωr 可知v A >v C ,故v B >v A >v C ,选项C 错误;要将B 卫星转移到A 卫星的轨道上,先要加速到椭圆轨道上,再由椭圆轨道加速到A 卫星的轨道上,选项D 正确.赤道表面的物体、近地卫星、同步卫星的对比比较内容 赤道表面的物体 近地卫星同步卫星向心力来源 万有引力的分力万有引力向心力方向 指向地心重力与万有引力的关系重力略小于万有引力 重力等于万有引力线速度v 1=ω1Rv 2=GMRv 3=ω3(R +h )=GM R +hv 1<v 3<v 2(v 2为第一宇宙速度)角速度ω1=ω自ω2=GM R 3ω3=ω自=GM R +h3ω1=ω3<ω2向心加速度a1=ω21R a2=ω22R=GMR2a3=ω23(R+h)=GMR+h2a1<a3<a2[题组通关]7.(2016·四川高考)国务院批复,自2016年起将4月24日设立为“中国航天日”.1970年4月24日我国首次成功发射的人造卫星东方红一号,目前仍然在椭圆轨道上运行,其轨道近地点高度约为440 km,远地点高度约为2 060 km;1984年4月8日成功发射的东方红二号卫星运行在赤道上空35 786 km的地球同步轨道上.设东方红一号在远地点的加速度为a1,东方红二号的加速度为a2,固定在地球赤道上的物体随地球自转的加速度为a3,则a1、a2、a3的大小关系为( )图448A.a2>a1>a3B.a3>a2>a1C.a3>a1>a2D.a1>a2>a3D 卫星围绕地球运行时,万有引力提供向心力,对于东方红一号,在远地点时有GMm1R+h12=m1a1,即a1=GMR+h12,对于东方红二号,有GMm2R+h22=m2a2,即a2=GMR+h22,由于h2>h1,故a1>a2,东方红二号卫星与地球自转的角速度相等,由于东方红二号做圆周运动的轨道半径大于地球赤道上物体做圆周运动的半径,根据a=ω2r,故a2>a3,所以a1>a2>a3,选项D正确,选项A、B、C错误.。
襄阳四中2016届高三第一轮复习《曲线运动、万有引力与航天》测试题命题人:文科 考试时间120分钟一、选择题(共12小题,每小题4分,共48分.在每小题给出的四个选项中,至少有一个选项是正确的,全部选对得4分,对而不全得2分)1.如图所示,物体在恒力F 的作用下沿曲线从A 运动到B,这时,突然使它所受的力反向,大小不变,即由F 变为-F,在此力作用下,物体以后的运动情况,下列说法正确的是 ( )A.物体不可能沿曲线Ba 运动B.物体不可能沿直线Bb 运动C.物体不可能沿曲线Bc 运动D.物体不可能沿原曲线由B 返回A【答案】ABD2.(奥赛班)如图为一个做匀变速曲线运动的质点的轨迹示意图,已知在B 点的速度与加速度相互垂直,则下列说法中正确的是( )A .D 点的速率比C 点的速率大B .A 点的加速度与速度的夹角小于90°C .A 点的加速度比D 点的加速度大D .从A 到D 加速度与速度的夹角先增大后减小【解析】质点做匀变速曲线运动,合力的大小方向均不变,加速度不变,故C 错误;由B 点速度与加速度相互垂直可知,合力方向与B 点切线垂直且向下,故质点由C 到D 过程,合力做正功,速率增大,A 正确;A 点的加速度方向与过A 的切线也即速度方向夹角大于90°,故B 错误;从A 到D 加速度与速度的夹角一直变小,D 错误.【答案】A2.(平行班)跳伞表演是人们普遍喜欢的观赏性体育项目,当运动员从直升飞机由静止跳下后,在下落过程中不免会受到水平风力的影响,下列说法中正确的是( )A .风力越大,运动员下落时间越长,运动员可完成更多的动作B .风力越大,运动员着地速度越大,有可能对运动员造成伤害C .运动员下落时间与风力无关D .运动员着地速度与风力无关【解析】运动员下落过程中,下落时间仅与竖直方向的运动有关,与水平方向的运动无关,即A 错,C 正确.着地速度是竖直方向速度与风速的合成.即B 正确.D 错.【答案】BC3.在高空匀速水平飞行的飞机上自由释放一物,若空气阻力不计,飞机上人看物体的运动轨迹是( )A .倾斜的直线B .竖直的直线C .不规则曲线D .抛物线【解析】以飞机为参照物,物体作初速度为0,加速度为22a g 向飞行方向后右下方作匀加速直线运动,故选(A )。
【答案】A4.如图所示,质量为m,带电量为+q 的小球自A 点以速度v 0水平抛出进入匀强电场,从小球刚进入电场开始计时,则小球在电场中的运动轨迹不可能是图中的( )【解析】设小球刚进入电场时的速度为v ,v 与水平方向成一定夹角α,如图甲所示,小球进入电场后的受力情况如图乙所示,由于h 、v 0、E 、q 、m 各量数值未知,因此不能确定α与β的具体关系.若α=β,则小球做直线运动,轨迹如图A ;若α>β,小球做曲线运动,轨迹如图C ;若α<β,小球也做曲线运动,轨迹如图B ;综上所述,选项A 、B 、C 正确,D 错误.【答案】D5.(奥赛班)某人在单向上行的自动扶梯上随其上行的同时,自己还不断匀速上行.从A 层到B 层他共走过N 1阶台阶.当他由B 层返回A 层时,在此梯上又不断下行,共走过N 2阶台阶.则A 与B 之间共有台阶数目是( ) A.N 1+N 22 B.N 1N 2 C.2N 1N 2N 2+N 1D.N 12+N 22 【解析】设每一阶的高度为L ,自动扶梯对地速度为u .当人沿梯上行时,相对地面速度v 1=v +u ,用时为t 1,则NL =(v +u )t 1,t 1=N 1L v .当人沿梯下行时,相对地面速度v 2=v -u ,用时为t 2,则NL =(v -u )t 2,t 2=N 2L v .由以上四式解得N =2N 1N 2N 1+N 2. 【答案】C6.(奥赛班)如图所示,一块橡皮用细线悬挂于O 点,用铅笔靠着线的左侧水平向右匀速移动,运动中始终保持悬线竖直,则橡皮运动的速度 ( )A .大小和方向均不变B .大小不变,方向改变C .大小改变,方向不变D .大小和方向均改变【解析】由于始终保持悬线竖直,所以橡皮水平方向上的运动与铅笔的速度相同,橡皮在竖直方向上运动的速度大小应等于水平速度大小,所以橡皮的合运动仍为匀速直线运动,选项A 正确.选项B 中分析速度改变是错误的;选项C 错误之处是说速度大小改变;选项D 中误分析出速度大小和方向均改变,也是错误的。
【答案】A6.(平行班)若一个物体的运动是两个独立的分运动合成的,则( )A .若其中一个是匀变速直线运动,另一个是匀速直线运动,则物体的运动一定是曲线运动B .若两个分运动都是匀速直线运动,则物体的合运动一定是匀速直线运动C .若其中一个分运动是变速运动,另一个分运动是匀速直线运动,则物体的合运动一定是变速运动D .若其中一个分运动是匀加速直线运动,另一个分运动是匀减速直线运动,则合运动可能是曲线运动【解析】合运动的性质由合初速度与合加速度的大小及夹角决定,据此可知选项CD 说法正确.【答案】CD7.在同一平台上的O 点抛出的3个物体,做平抛运动的轨迹如图所示,则3个物体做平抛运动的初速度v A 、v B 、v C 的关系及落地时间t A 、t B 、t C 的关系分别是( )A .v A >vB >vC ,t A >t B >t C B .v A =v B =v C ,t A =t B =t CC .v A <v B <v C ,t A >t B >t CD .v A <v B <v C ,t A <t B <t C【解析】竖直方向上物体做自由落体运动由图可知h A >h B >h C ,又h =12gt 2,所以t A >t B >t C ;水平方向上做匀速直线运动,由图可知x A <x B <x C 而v =x t,所以v A <v B <v C ,所以选项C 正确.【答案】C8.乒乓球在我国有广泛的群众基础,并有“国球”的美誉,在2009年11月22日结束的第19届亚洲乒乓球锦标赛上,中国队如愿包揽了7个项目的冠军.国乒新锐马龙在比赛中连夺男单、男双、男团、混双四枚金牌,追平了前辈谢赛克在25年前创造的纪录,展现出了超一流选手的实力.现讨论乒乓球发球问题,已知球台长L ,网高h ,若球在球台边缘O 点正上方某高度处,以一定的垂直球网的水平速度发出,如图4所示,球恰好在最高点时刚好越过球网.假设乒乓球反弹前后水平分速度不变,竖直分速度大小不变、方向相反,且不考虑乒乓球的旋转和空气阻力.则根据以上信息可以求出(设重力加速度为g ) ( )A .球的初速度大小B .发球时的高度C .球从发出到第一次落在球台上的时间D .球从发出到被对方运动员接住的时间【解析】根据题意分析可知,乒乓球在球台上的运动轨迹具有重复和对称性,显然发球时的高度等于h ,从发球到运动到P 1点的水平位移等于14L ,所以可以求出球的初速度大小,也可以求出球从发出到第一次落在球台上的时间.由于对方运动员接球的位置未知,所以无法求出球从发出到被对方运动员接住的时间. 【答案】ABC 9.平抛物体的运动规律可以概括为两点:一是水平方向做匀速直线运动;二是竖直方向做自由落体运动.为了研究平抛物体的运动,可做下面的实验:如图3所示,用小锤击打弹性金属片,A 球水平飞出,同时B 球被松开,做自由落体运动.两球同时落到地面.则这个实验( )A .只能说明上述规律中的第一条B .只能说明上述规律中的第二条C .不能说明上述规律中的任何一条D .能同时说明上述两条规律【解析】该题考查对平抛运动及其分运动的理解,同时考查探究问题的思维能力.实验中A 球做平抛运动,B 球做自由落体运动,两球同时落地说明A 球平抛运动的竖直分运动和B 球相同,而不能说明A 球的水平分运动是匀速直线运动,所以B 项正确.A 、C 、D 三项都不对.【答案】B10.(奥赛班)如图是磁带录音机的磁带盒的示意图,A 、B 为缠绕磁带的两个轮子,两轮的半径均为r ,在放音结束时,磁带全部绕到了B 轮上,磁带的外缘半径R =3r ,现在进行倒带,使磁带绕到A 轮上.倒带时A 轮是主动轮,其角速度是恒定的,B 轮是从动轮.经测定,磁带全部绕到A 轮上需要时间为t ,则从开始倒带到A 、B 两轮的角速度相等所需要的时间( )A .等于t 2B .大于t 2C .小于t 2D .等于t 3【解析】A 的角速度是恒定的,但是A 的半径越来越大,根据v =ωr 可得v 在增大,所以一开始需要的时间比较长,B 项正确.【答案】选B.10.(平行班)如图是自行车传动结构的示意图,其中Ⅰ是半径为r 1的大齿轮,Ⅱ是半径为r 2的小齿轮,Ⅲ是半径为r 3的后轮,假设脚踏板的转速为n r/s ,则自行车前进的速度为( )A.πnr 1r 3r 2B.πnr 2r 3r 1C.2πnr 1r 3r 2D.2πnr 2r 3r 1【解析】前进速度即为Ⅲ轮的线速度,由同一个轮上的角速度相等,同一条线上的线速度相等可得:ω1r 1=ω2r 2,ω3=ω2,再有ω1=2πn ,v =ω3r 3,所以v =2πnr 1r 3r 2. 【答案】选C.11.如图所示,放置在水平地面上的支架质量为M ,支架顶端用细线拴着的摆球质量为m ,现将摆球拉至水平位置,而后释放,摆球运动过程中,支架始终不动,以下说法正确的是( )A .在释放前的瞬间,支架对地面的压力为(m +M )gB .在释放前的瞬间,支架对地面的压力为MgC .摆球到达最低点时,支架对地面的压力为(m +M )gD .摆球到达最低点时,支架对地面的压力为(3m +M )g【解析】选BD.在释放前的瞬间绳拉力为零对M :F N1=Mg ;当摆球运动到最低点时,由机械能守恒得mgR =m v 22 ① 由牛顿第二定律得:F T -mg =m v 2R② 由①②得绳对小球的拉力F T =3mg对支架M 由受力平衡,地面支持力F N =Mg +3mg 由牛顿第三定律知,支架对地面的压力F N2=3mg +Mg ,故选项B 、D 正确.【答案】BD12.下图是摩托车比赛转弯时的情形.转弯处路面常是外高内低,摩托车转弯有一个最大安全速度,若超过此速度,摩托车将发生滑动.对于摩托车滑动的问题,下列论述正确的是( )A .摩托车一直受到沿半径方向向外的离心力作用B .摩托车所受外力的合力小于所需的向心力C .摩托车将沿其线速度的方向沿直线滑去D .摩托车将沿其半径方向沿直线滑去【解析】本题考查圆周运动的规律和离心现象.摩托车只受重力、地面支持力和地面的摩擦力作用,没有离心力,A 项错误;摩托车正确转弯时可看做是做匀速圆周运动,所受的合力等于向心力,如果向外滑动,说明提供的向心力即合力小于需要的向心力,B 项正确;摩托车将在沿线速度方向与半径向外的方向之间做离心曲线运动,C 、D 项错误.【答案】B二、填空、实验题(本题共5小题,共16分.把答案填写在题中的横线上,不要求写解答过程)13.如图所示,点光源S 到平面镜M 的距离为d .光屏AB 与平面镜的初始位置平行.当平面镜M 绕垂直于纸面过中心O 的转轴以ω的角速度逆时针匀速转过30°时,垂直射向平面镜的光线SO 在光屏上的光斑P 的即时速度大小为【解析】当平面镜转过30°角时,反射光线转过60°角,反射光线转动的角速度为平面镜转动角速度的2倍,即为2ω.将P 点速度沿OP 方向和垂直于OP 的方向进行分解,可得:v cos60°=2ω·OP =4ωd ,所以v =8ωd .【答案】8ωd14.一辆车通过一根跨过定滑轮的轻绳子提升一个质量为m 的重物,开始车在滑轮的正下方,绳子的端点A 离滑轮的距离是H .车由静止开始向左做匀加速运动,经过时间t 绳子与水平方向的夹角为θ,如图所示,则车向左运动的加速度的大小为 ,重物m 在t 时刻速度的大小为【解析】(1)汽车在时间t 内向左走的位移x =H cot θ又汽车匀加速运动x =12at 2 所以a =2x t 2=2H cot θt 2(2)此时汽车的速度v 汽=at =2H cot θt由运动的分解知识可得,汽车速度v 汽沿绳的分速度与重物m 的速度相等,即v 物=v 汽cos θ得v 物=2H cot θcos θt【答案】(1)2H cot θt 2 (2)2H cot θcos θt15.有一种叫“飞椅”的游乐项目,示意图如图所示,长为L 的钢绳一端系着座椅,另一端固定在半径为r 的水平转盘边缘.转盘可绕穿过其中心的竖直轴转动.当转盘以角速度ω匀速转动时,钢绳与转轴在同一竖直平面内,与竖直方向的夹角为θ.不计钢绳的重力,求转盘转动的角速度ω与夹角θ的关系【解析】由向心力公式 F =m ω2r 得:mg tan θ=m ω2(r+L sin θ),则ω=θθsin tan L r g +【答案】ω=θθsin tan L r g + 16.如右图所示两段长均为L 的轻质线共同系住一个质量为m 的小球,另一端分别固定在等高的A 、B 两点,A 、B 两点间距也为L ,今使小球在竖直平面内做圆周运动,当小球到达最高点时速率为v ,两段线中张力恰好均为零,若小球到达最高点时速率为2v ,则此时每段线中张力大小为【解析】当小球到达最高点速率为v 时,有mg =m v 2r,当小球到达最高点速率为2v 时,应有F +mg =m (2v )2r=4mg ,所以F =3mg ,此时最高点各力如图所示,所以F T =3mg ,A 正确.【答案】3mg17.如图所示为用闪光照相法测当地重力加速度时,用10次/秒的闪光照相机对正在做平抛运动的球拍摄的照片.背景是每格边长为 5 cm 的正方形格子.试分析照片,求出当地的重力加速度g= .【解析】相机拍照时间间隔为:T =0.1 s.由于平抛运动物体在竖直方向上的分运动为匀变速直线运动,所以根据:Δs =aT 2得:5L -3L =gT 2,g =22T L =21.005.02⨯m/s 2=10 m/s 2. 【答案】10 m/s 2三、计算题(本题共7小题,共84分.要求写出必要的文字说明、主要方程式和重要演算步骤,有数值计算的要明确写出数值和单位,只有最终结果的不得分)18.如图所示,某一小球以v 0=10 m/s 的速度水平抛出,在落地之前经过空中A 、B 两点,在A 点小球速度方向与水平方向的夹角为45°,在B 点小球速度方向与水平方向的夹角为60°(空气阻力忽略不计,g 取10 m/s 2),求:(1)小球经过A 、B 两点间的时间;(2)A 、B 两点间的高度差。