《高考调研》衡水重点中学同步精讲精练(数学必修5)课时作业25
- 格式:doc
- 大小:110.00 KB
- 文档页数:6
课时作业(二)1.在△ABC中,a=2b cos C,则这个三角形一定是()A.等腰三角形B.直角三角形C.等腰直角三角形D.等腰或直角三角形答案 A2.已知△ABC中,AB=3,AC=1,且B=30°,则△ABC的面积等于()A.32 B.34C.32或 3 D.34或32答案 D3.在△ABC中,a=15,b=10,A=60°,则cos B=()A.-223 B.223C.-63 D.63答案 D解析依题意得0°<B<60°,asin A=bsin B,sin B=b sin Aa=33,cos B=1-sin2B=63,选D.4.(2013·山东)△ABC的内角A,B,C所对的边分别为a,b,c.若B=2A,a=1,b=3,则c=()A.2 3 B.2C. 2 D.1答案 B解析 由正弦定理a sin A =b sin B ,得1sin A =3sin B . 又∵B =2A ,∴1sin A =3sin2A =32sin A cos A . ∴cos A =32,∴∠A =30°,∴∠B =60°,∠C =90°. ∴c =12+(3)2=2.5.(2013·陕西)设△ABC 的内角A ,B ,C 所对的边分别为a ,b ,c ,若b cos C +c cos B =a sin A ,则△ABC 的形状为( )A .锐角三角形B .直角三角形C .钝角三角形D .不确定答案 B解析 ∵b cos C +c cos B =a sin A ,由正弦定理,得sin B cos C +sin C cos B =sin 2A ,∴sin(B +C )=sin 2A ,即sin A =sin 2A .又∵sin A >0,∴sin A =1,∴A =π2,故△ABC 为直角三角形. 6.在△ABC 中,角A 、B 、C 所对的边分别为a 、b 、c ,已知A =60°,a =3,b =1,则c 等于( )A .1B .2 C.3-1 D. 3答案 B7.已知△ABC 的面积为32,且b =2,c =3,则( ) A .A =30° B .A =60° C .A =30°或150° D .A =60°或120° 答案 D8.已知三角形面积为14,外接圆面积为π,则这个三角形的三边之积为( )A .1B .2 C.12 D .4答案 A9.在△ABC 中,A =60°,a =3,b =2,则B 等于( ) A .45°或135° B .60° C .45° D .135° 答案 C10.若△ABC 的面积为3,BC =2,C =60°,则边AB 的长度为________.答案 211.△ABC 中,若a cos A 2=b cos B 2=c cos C 2,则△ABC 的形状是________.答案 等边三角形12.在△ABC 中,lg(sin A +sin C )=2lgsin B -lg(sin C -sin A ),则该三角形的形状是________.答案 直角三角形 解析 由已知条件lg(sin A +sin C )+lg(sin C -sin A )=lgsin 2B ,∴sin 2C -sin 2A =sin 2B ,由正弦定理,可得c 2=a 2+b 2. 故三角形为直角三角形.13.在△ABC 中,角A 、B 、C 的对边分别为a 、b 、c ,B =π3,cos A =45,b = 3.(1)求sin C 的值; (2)求△ABC 的面积. 答案 (1)3+4310 (2)36+935014.在△ABC 中,若b 2sin 2C +c 2sin 2B =2bc cos B cos C ,试判断三角形的形状.解析 由正弦定理a sin A =b sin B =csin C =2R (R 为△ABC 外接圆半径).将原等式化为8R 2sin 2B sin 2C =8R 2sin B sin C cos B cos C .∵sin B ·sin C ≠0,∴sin B sin C =cos B cos C . 即cos(B +C )=0.∴B +C =90°,即A =90°. 故△ABC 为直角三角形.15.在△ABC 中,求证:cos2A a 2-cos2B b 2=1a 2-1b 2. 证明 ∵左边=1-2sin 2A a 2-1-2sin 2Bb 2 =1a 2-1b 2-2(sin 2A a 2-sin 2B b 2),由正弦定理,得a sin A =b sin B ,∴sin 2A a 2-sin 2Bb 2=0. ∴原式成立. ►重点班·选作题16.在△ABC 中,sin A =34,a =10,边长c 的取值范围是( ) A .(152,+∞) B .(10,+∞) C .(0,10) D .(0,403]答案 D17.(2012·浙江)在△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c .已知cos A =23,sin B =5cos C .(1)求tan C 的值;(2)若a =2,求△ABC 的面积. 解析 (1)因为0<A <π,cos A =23, 得sin A =1-cos 2A =53.又5cos C =sin B =sin(A +C )=sin A cos C +cos A sin C =53cos C +23sin C ,所以tan C = 5. (2)由tan C =5,得sin C =56,cos C =16.于是sin B =5cos C =56. 由a =2及正弦定理a sin A =csin C ,得c = 3. 设△ABC 的面积为S ,则S =12ac sin B =52.1.在△ABC 中,若b =1,c =3,∠C =2π3,则a =________. 答案 1解析 在△ABC 中,由正弦定理,得1sin B =3sin 2π3,解得sin B =12,因为b <c ,故角B 为锐角,所以B =π6,则A =π6.再由正弦定理或等腰三角形性质可得a =1.。
课时作业(二十五)1.若log x 4=2,则x 的值为( )A .±2B .2C .-2 D. 2答案 B2.若b =a 2(a >0且a ≠1),则有( )A .log 2b =aB .log 2a =bC .log b a =2D .log a b =2 答案 D3.在对数式log (x -1)(3-x)中,实数x 的取值范围应该是( )A .1<x <3B .x >1且x ≠2C .x >3D .1<x <3且x ≠2 答案 D解析 ⎩⎪⎨⎪⎧3-x>0,x -1>0,x -1≠1,解得1<x<3且x ≠2.4.若log x 3y =4,则x ,y 之间的关系正确的是( ) A .x 4=3y B .y =64xC .y =3x 4D .x =3y 2答案 A解析 log x 3y =4=log x x 4,则x 4=3y.5.下列指数式与对数式互化不正确的一组是( )A .100=1与lg1=0B .27-13=13与log 2713=-3 C .log 39=2与32=9D .log 55=1与51=5答案 B6.已知log 2x =4,则x -12=( ) A.13 B.123C.33D.14 答案 D7.与函数y =10lg(x-1)的图象相同的函数是( ) A .y =x -1B .y =|x -1|C .y =x 2-1x +1D .y =(x -1x -1)2 答案 D解析 y =10lg(x -1)=x -1(x>1).8.若log x (5-2)=-1,则x 的值为( ) A.5-2 B.5+2C.5-2或5+2 D .2- 5答案 B9.若f(10x )=x ,则f(3)等于( )A .log 310B .lg3C .103D .310 答案 B10.21+12·log 25的值等于( ) A .2+ 5B .2 5C .2+52D .1+52 答案 B 11.log333=________.答案 312.求下列各式的值.(1)log 1515; (2)log 0.41; (3)log 981;(4)log 2.56.25; (5)log 7343; (6)log 3243. 答案 (1)1 (2)0 (3)2 (4)2 (5)3 (6)513.求x 的值.(1)x =log 124; (2)x =log 93; (3)x =71-log 75;(4)log x 8=-3; (5)log 12x =4. 答案 (1)-2 (2)14 (3)75 (4)12 (5)11614.求值:(1)log 84; (2)2log 23-2. 解析 (1)设log 84=x ,则8x =4,即23x =22,∴3x =2,x =23,故log 84=23. (2)∵alog a N =N ,∴2log 23=3.∴2log 23-2=2log 23÷22=3÷4=34. 15.若log 2[log 0.5(log 2x)]=0,求x 的值. 解析 由条件知log 0.5(log 2x)=1=log 0.50.5,得log 2x =12=log 22,从而x = 2. ►重点班·选做题16.求2log 412-3log 927+5log 2513的值 . 解析 原式=4log 412-9log 927+25log 2513 =12-27+13 =23-33+13=-233.1.若5lgx =25,则x 的值为________. 答案 1002.设集合A ={5,log 2(a +3)},集合B ={a ,b},若A ∩B ={2},则A ∪B =________. 答案 {1,2,5}解析 由A ∩B ={2},知log 2(a +3)=2, 得a =1,由此知b =2.故A ∪B ={1,2,5}.3.设x =log 23,求23x -2-3x2x -2-x 的值. 解析 23x -2-3x 2x -2-x =(2x -2-x )(22x +1+2-2x )2x -2-x =22x +1+2-2x =919.4.已知6a =8,试用a 表示下列各式:(1)log 68; (2)log 62; (3)log 26. 解析 (1)log 68=a.(2)由6a =8,得6a =23,即6a 3=2,所以log 62=a 3. (3)由6a 3=2,得23a =6,所以log 26=3a. 5.已知log a b =log b a(a>0且a ≠1;b>0且b ≠1),求证:a =b 或a =1b. 证明 令log a b =log b a =t ,则a t =b ,b t =a. ∴(a t )t =a ,则at 2=a ,∴t 2=1,t =±1.当t =1时,a =b ;当t =-1时,a =1b. 所以a =b 或a =1b.。
1.下列关于流程图和结构图的说法中不正确的是()
A.流程图用来描述一个动态过程
B.结构图是用来刻画系统结构的
C.流程图只能用带箭头的流程线表示各单元的先后关系
D.结构图只能用带箭头的连线表示各要素之间的从属关系或逻辑上的先后关系
答案 D
解析A、B、C均符合流程图与结构图的特征,对于D,当从属关系或逻辑先后关系明确时,可不用带箭头的线连接.
2.下列关于结构图的说法不正确的是()
A.结构图中各要素之间通常表示概念上的从属关系或逻辑上的先后关系
B.结构图都是“树”形结构的
C.简洁的结构图能更好地反映主体要素之间的关系和系统的整体特点
D.复杂的结构图能更详细地反映系统中各细节要素及其关系
答案 B
解析A、C、D是结构图的特征,正确,B中结构图有“树”形结构图和“环”形结构图之分.。
课时作业(二十四)1.(2013·沧州七校联考)将函数y =f (x )·sin x 的图像向右平移π4个单位后,再作关于x 轴的对称变换,得到函数y =1-2sin 2x 的图像,则f (x )可以是( )A .cos xB .2cos xC .sin xD .2sin x答案 B2.(2013·济宁模拟)为了得到函数y =sin(2x -π6)的图像,可将函数y =cos2x 的图像( )A .向右平移π6个单位长度B .向右平移π3个单位长度C .向左平移π6个单位长度D .向左平移π3个单位长度答案 B3.与图中曲线对应的函数是( )A .y =sin xB .y =sin|x |C .y =-sin|x |D .y =-|sin x | 答案 C4.(2012·安徽)要得到函数y =cos(2x +1)的图像,只要将函数y =cos2x 的图像 A .向左平移1个单位 B .向右平移1个单位 C .向左平移12个单位D .向右平移12个单位答案 C解析 将y =cos2x 的图像向左平移12个单位后即变成y =cos2(x +12)=cos(2x +1)的图像.5.电流强度I (安)随时间t (秒)变化的函数I =A sin(ωt +φ)(A >0,ω>0,0<φ<π2)的图像如右图所示,则当t =1100秒时,电流强度是 ( )A .-5 AB .5 AC .53AD .10 A答案 A解析 由图像知A =10,T 2=4300-1300=1100.∴ω=2πT=100π.∴T =10sin(100πt +φ).(1300,10)为五点中的第二个点,∴100π×1300+φ=π2. ∴φ=π6.∴I =10sin(100πt +π6),当t =1100秒时,I =-5 A ,故选A.6.如果两个函数的图像平移后能够重合,那么称这两个函数为“互为生成”函数.给出下列四个函数:①f (x )=sin x +cos x ;②f (x )=2(sin x +cos x );③f (x )=sin x ;④f (x )=2sin x + 2.其中为“互为生成”函数的是 ( )A .①②B .②③C .③④D .①④答案 D解析 首先化简所给四个函数解析式:①f (x )=2sin(x +π4),②f (x )=2sin(x +π4),③f (x )=sin x ,④f (x )=2sin x + 2.可知,③f (x )=sin x 不能单纯经过平移与其他三个函数图像重合,必须经过伸缩变换才能实现,故③不能与其他函数构成“互为生成”函数,同理,①与②的图像也不能仅靠图像平移达到重合,因此①④可仅靠平移能使其图像重合,所以①④为“互为生成”函数,故选D.7.(2013·衡水调研卷)周期函数f (x )的图像大致如下当0≤x <π时,f (x )=5cos x2,则f (x )的解析式为:(其中k ∈Z )( )A .f (x )=5cos x2,k π≤x <(k +1)πB .f (x )=5cos(x2+k π),k π≤x <(k +1)πC .f (x )=5cos x +k π2,k π≤x <(k +1)π D .f (x )=5cos x -k π2,k π≤x <(k +1)π答案 D8.(2012·新课标全国)已知ω>0,0<φ<π,直线x =π4和x =5π4是函数f (x )=sin(ωx+φ)图像的两条相邻的对称轴,则φ=( )A.π4 B.π3 C.π2D.3π4答案 A解析 由于直线x =π4和x =5π4是函数f (x )=sin(ωx +φ)图像的两条相邻的对称轴,所以函数f (x )的最小正周期T =2π,所以ω=1,所以π4+φ=k π+π2(k ∈Z ),又0<φ<π,所以φ=π4.9.(2012·东北三校一模)要得到函数f (x )=sin(2x +π3)的导函数f ′(x )的图像,只需将f (x )的图像( )A .向左平移π2个单位,再把各点的纵坐标伸长到原来的2倍B .向左平移π2个单位,再把各点的纵坐标缩短到原来的12C .向左平移π4个单位,再把各点的纵坐标伸长到原来的2倍D .向左平移π4个单位,再把各点的纵坐标缩短到原来的12倍答案 C解析 依题意得f ′(x )=2cos(2x +π3),先将f (x )的图像向左平移π4个单位得到的是y =sin[2(x +π4)+π3]=cos(2x +π3)的图像;再把各点的纵坐标伸长到原来的2倍(横坐标不变)得到的是y =2cos(2x +π3)的图像,因此选C.10.(2011·全国大纲文)设函数f (x )=cos ωx (ω>0),将y =f (x )的图像向右平移π3个单位长度后,所得的图像与原图像重合,则ω的最小值等于( )A.13 B .3 C .6 D .9答案 C解析 依题意得,将y =f (x )的图像向右平移π3个单位长度后得到的是f (x -π3)=cos ω(x -π3)=cos(ωx -ωπ3)的图像,故有cos ωx =cos(ωx -ωπ3),而cos ωx =cos(2k π+ωx -ωπ3),故ωx -(ωx -ωπ3)=2k π,即ω=6k (k ∈N *),因此ω的最小值是6,故选C.11.函数y =A sin(ωx +φ)(A ,ω,φ为常数,A >0,ω>0)在闭区间[-π,0]上的图像如图所示,则ω=______.答案 3解析 由题图可知,T =2π3,∴ω=2πT =3.12.将函数y =sin(-2x )的图像向右平移π3个单位,所得函数图像的解析式为________.答案 y =sin(23π-2x )13.已知f (x )=cos(ωx +π3)的图像与y =1的图像的两相邻交点间的距离为π,要得到y =f (x )的图像,只需把y =sin ωx 的图像向左平移________个单位.答案5π12解析 依题意,y =f (x )的最小正周期为π,故ω=2,因为y =cos(2x +π3)=sin(2x+π3+π2)=sin(2x +5π6)=sin[2(x +5π12)],所以把y =sin2x 的图像向左平移5π12个单位即可得到y =cos(2x +π3)的图像.14.已知将函数f (x )=2sin π3x 的图像向左平移1个单位,然后向上平移2个单位后得到的图像与函数y =g (x )的图像关于直线x =1对称,则函数g (x )=________.答案 2sin π3x +2解析 将f (x )=2sin π3x 的图像向左平移1个单位后得到y =2sin[π3(x +1)]的图像,向上平移2个单位后得到y =2sin[π3(x +1)]+2的图像,又因为其与函数y =g (x )的图像关于直线x =1对称,所以y =g (x )=2sin[π3(2-x +1)]+2=2sin[π3(3-x )]+2=2sin(π-π3x )+2=2sin π3x +2. 15.函数y =sin2x 的图像向右平移φ(φ>0)个单位,得到的图像恰好关于直线x =π6对称,则φ的最小值是________.答案5π12解析 y =sin2x 的图像向右平移φ(φ>0)个单位,得y =sin2(x -φ)=sin(2x -2φ).因其中一条对称轴方程为x =π6,则2·π6-2φ=k π+π2(k ∈Z ).因为φ>0,所以φ的最小值为5π1216.已知函数f (x )=2sin x cos(π2-x )-3sin(π+x )cos x +sin(π2+x )cos x .(1)求函数y =f (x )的最小正周期和最值;(2)指出y =f (x )的图像经过怎样的平移变换后得到的图像关于坐标原点对称. 答案 (1)T =π,最大值52,最小值12(2)左移π12,下移32个单位解析 (1)f (x )=2sin x sin x +3sin x cos x +cos x cos x =sin 2x +1+3sin x cos x =32+32sin2x -12cos2x =32+sin(2x -π6), ∴y =f (x )的最小正周期T =π,y =f (x )的最大值为32+1=52,最小值为32-1=12.(2)将函数f (x )=32+sin(2x -π6)的图像左移π12个单位,下移32个单位得到y =sin2x 关于坐标原点对称.(附注:平移(-k π2-π12,-32),k ∈Z 均可) 17.(2012·福建)已知函数f (x )=ax sin x -32(a ∈R ),且在[0,π2]上的最大值为π-32.(1)求函数f (x )的解析式;(2)判断函数f (x )在(0,π)内的零点个数,并加以证明. 解析 (1)由已知得f ′(x )=a (sin x +x cos x ), 对于任意x ∈(0,π2),有sin x +x cos x >0.当a =0时,f (x )=-32,不合题意;当a <0时,x ∈(0,π2)时,f ′(x )<0,从而f (x )在(0,π2)内单调递减,又f (x )在[0,π2]上的图像是连续不断的,故f (x )在[0,π2]上的最大值为f (0)=-32,不合题意; 当a >0,x ∈(0,π2)时,f ′(x )>0,从而f (x )在(0,π2)内单调递增,又f (x )在[0,π2]上的图像是连续不断的,故f (x )在[0,π2]上的最大值为f (π2),即π2a -32=π-32,解得a=1.综上所述,得f (x )=x sin x -32.(2)f (x )在(0,π)内有且只有两个零点.证明如下:由(1)知,f (x )=x sin x -32,从而有f (0)=-32<0,f (π2)=π-32>0.又f (x )在[0,π2]上的图像是连续不断的,所以f (x )在(0,π2)内至少存在一个零点.又由(1)知f (x )在[0,π2]上单调递增,故f (x )在(0,π2)内有且只有一个零点.当x ∈[π2,π]时,令g (x )=f ′(x )=sin x +x cos x .由g (π2)=1>0,g (π)=-π<0,且g (x )在[π2,π]上的图像是连续不断的,故存在m∈(π2,π),使得g (m )=0.由g ′(x )=2cos x -x sin x ,知x ∈(π2,π)时,有g ′(x )<0.从而g (x )在(π2,π)内单调递减.当x ∈(π2,m )时,g (x )>g (m )=0,即f ′(x )>0,从而f (x )在(π2,m )内单调递增,故当x ∈[π2,m ]时,f (x )≥f (π2)=π-32>0,故f (x )在[π2,m ]上无零点;当x ∈(m ,π)时,有g (x )<g (m )=0,即f ′(x )<0,从而f (x )在(m ,π)内单调递减. 又f (m )>0,f (π)<0,且f (x )在[m ,π]上的图像是连续不断的,从而f (x )在(m ,π)内有且仅有一个零点.综上所述,f (x )在(0,π)内有且只有两个零点.18.(2012·湖南)已知函数f (x )=A sin(ωx +φ)(x ∈R ,ω>0,0<φ<π2)的部分图像如图所示.(1)求函数f (x )的解析式;(2)求函数g (x )=f (x -π12)-f (x +π12)的单调递增区间.解析 (1)由题设图像知,最小正周期T =2×(11π12-5π12)=π,所以ω=2πT =2.因为点(5π12,0)在函数图像上,所以A sin(2×5π12+φ)=0.即sin(5π6+φ)=0.又因为0<φ<π2,所以5π6<5π6+φ<4π3.从而5π6+φ=π,即φ=π6.又点(0,1)在函数图像上,所以A sin π6=1,得A =2.故f (x )=2sin(2x +π6).(2)g (x )=2sin[2(x -π12)+π6]-2sin[2(x +π12)+π6]=2sin2x -2sin(2x +π3)=2sin2x -2(12sin2x +32cos2x )=sin2x -3cos2x =2sin(2x -π3).由2k π-π2≤2x -π3≤2k π+π2,k ∈Z ,得k π-π12≤x ≤k π+5π12,k ∈Z .所以函数g (x )的单调递增区间是[k π-π12,k π+5π12],k ∈Z .1.已知函数y =f (x ),将f (x )的图像上各点纵坐标乘以3,横坐标乘以2,再将图像向右平移π3,得y =sin x 的图像,则原函数解析式为( )A .y =13sin(2x +π3)B .y =13sin(2x +π6)C .y =13sin(x 2+π3)D .y =13sin(x 2+π6)答案 C2.已知简谐运动f (x )=2sin(π3x +φ)(|φ|<π2)的图像经过点(0,1),则该简谐运动的最小正周期T 和初相φ分别为( )A .T =6,φ=π6B .T =6,φ=π3C .T =6π,φ=π6D .T =6π,φ=π3答案 A解析 ∵图像过点(0,1),∴2sin φ=1,∴sin φ=12.∵|φ|<π2,∴φ=π6,T =2ππ3=6.3.(2012·天津)将函数f (x )=sin ωx (其中ω>0)的图像向右平移π4个单位长度,所得图像经过点(3π4,0),则ω的最小值是( ) A.13 B .1 C.53 D .2答案 D解析 将函数f (x )=sin ωx 的图像向右平移π4个单位长度,得到的图像对应的函数解析式为y =sin ω(x -π4)=sin(ωx -ωπ4).又因为所得图像经过点(3π4,0),所以sin(3ωπ4-ωπ4)=sin ωπ2=0,所以ωπ2=k π(k ∈Z ),即ω=2k (k ∈Z ),因为ω>0,所以ω的最小值为2.4.(2013·唐山模拟)函数y =sin3x 的图像可以由函数y =cos3x 的图像( ) A .向左平移π3个单位得到B .向右平移π3个单位得到C .向左平移π6个单位得到D .向右平移π6个单位得到答案 D解析 ∵sin3x =cos(π2-3x )=cos(3x -π2)=cos[3(x -π6)]∴函数y =cos3x 图像向右平移π6个单位即可得到y =sin3x 图像.5.要得到函数y =2sin(3x -π3)的图像,只需要将函数y =2sin(3x +π6)的图像( )A .向右平移π6B .向右平移π2C .向右平移π12D .向左平移π2答案 A6.函数f (x )=A sin(ωx +φ)(A >0,ω>0,|φ|<π2)的部分图像如图所示,则ω,φ的值分别为( )A .2,0B .2,π4C .2,-π3D .2,π6答案 D解析 由图可知A =1,34T =1112π-π6=34π,所以T =π.又T =2πω,所以ω=2.又f (π6)=sin(π3+φ)=1,π3+φ=φ2+2k π(k ∈Z ),又|φ|<π2,∴φ=π6,故选D.7.函数y =tan(12x -13π)在同一周期内的图像是( )答案 A8.(2013·海淀区期末)函数f (x )=A sin(2x +φ)(A ,φ∈R )的部分图像如图所示,那么f (0)=( )A .-12B .-32C .-1D .- 3答案 C解析 由图可知,A =2,f (π3)=2,∴2sin(2π3+φ)=2. ∴sin(2π3+φ)=1,∴2π3+φ=π2+2k π(k ∈Z ). ∴φ=-π6+2k π(k ∈Z ). ∴f (0)=2sin φ=2sin(-π6+2k π)=2×(-12)=-1. 9.已知函数f (x )=2sin(ωx +φ)(ω>0)的图像关于直线x =π3对称,且f (π12)=0,则ω的最小值为( )A .2B .4C .6D .8 答案 A解析 由题意得π3ω+φ=k 1π+π2(k 1∈Z ),π12ω+φ=k 2π(k 2∈Z ). ∴π4ω=(k 1-k 2)π+π2(k 1,k 2∈Z ). ∴ω=4(k 1-k 2)+2(k 1,k 2∈Z ).∵ω>0,∴ω的最小值为2.故选A.10.(2011·江苏)函数f (x )=A sin(ωx +φ)(A ,ω,φ为常数,A >0,ω>0)的部分图像如图所示,则f (0)的值是________.答案 62解析 由图可知:A =2,T 4=7π12-π3=π4,所以T =π,ω=2πT=2,又函数图像经过点(π3,0),所以2×π3+φ=π,则φ=π3,故函数的解析式为f (x )=2sin(2x +π3),所以f (0)=2sin π3=62. 11.若将函数y =sin(ωx +5π6)(ω>0)的图像向右平移π3个单位长度后,与函数y =sin(ωx +π4)的图像重合,则ω的最小值为________. 答案 74解析 依题意,将函数y =sin(ωx +5π6)(ω>0)的图像向右平移π3个单位长度后,所对应的函数是y =sin(ωx +5π6-π3ω)(ω>0),它的图像与函数y =sin(ωx +π4)的图像重合,所以5π6-π3ω=π4+2k π(k ∈Z ),解得ω=74-6k (k ∈Z ).因为ω>0,所以ωmin =74.。
新人教版高中数学必修5全册同步课时作业(含解析答案)目录课时作业1 正弦定理第1课时课时作业2 正弦定理第2课时课时作业3 余弦定理课时作业4 正、余弦定理习题课课时作业5 应用举例第1课时课时作业6 应用举例第2课时)正、余弦定理的综合应用课时作业7 数列的概念与简单表示法课时作业8 数列的性质和递推公式课时作业9 等差数列第1课时课时作业10 等差数列第2课时课时作业11 等差数列第3课时课时作业12 等差数列的前n项和第1课时课时作业13 等差数列的前n项和第2课时课时作业14 等差数列的前n项和第3课时课时作业15 等比数列第1课时课时作业16 等比数列第2课时课时作业17 等比数列的前n项和第1课时课时作业18 等比数列的前n项和第2课时课时作业19 专题研究一数列通项的求法课时作业20 专题研究二特殊数列求和方法课时作业21 专题研究三数列的实际应用课时作业22 不等关系与不等式课时作业23 一元二次不等式及其解法第1课时课时作业24 一元二次不等式及其解法第2课时课时作业25 二元一次不等式组)表示的平面区域课时作业26 简单的线性规划问题第1课时课时作业27 简单的线性规划问题第2课时课时作业28 简单的线性规划问题课时作业29 基本不等式 ab≤a+b2 第1课时课时作业30 基本不等式 ab≤a+b2 第2课时课时作业31 基本不等式1课时作业32 基本不等式2课时作业1 正弦定理(第1课时)1.在△ABC 中,下列等式中总能成立的是( ) A .a sin A =b sin B B .b sin C =c sin A C .ab sin C =bc sin B D .ab sin C =bc sin A答案 D2.在△ABC 中,a =4,A =45°,B =60°,则边b 的值为( ) A.3+1 B .23+1 C .2 6 D .2+2 3答案 C3.在△ABC 中,sin 2A =sin 2B +sin 2C ,则△ABC 为( ) A .直角三角形 B .等腰直角三角形 C .等边三角形D .等腰三角形答案 A4.在△ABC 中,若sin A a =cos Bb,则∠B 的值为( )A .30°B .45°C .60°D .90°答案 B解析 ∵sin A a =sin B b ,∴cos B b =sin B b,∴cos B =sin B ,从而tan B =1,又0°<B <180°,∴B =45°.5.(2013·湖南)在△ABC 中,若3a =2b sin A ,则B 为( ) A.π3B.π6C.π3或23π D.π6或56π 答案 C解析 由3a =2b sin A ,得3sin A =2sin B ·sin A . ∴sin B =32.∴B =π3或2π3. 6.在△ABC 中,A ∶B ∶C =4∶1∶1,则a ∶b ∶c 为( ) A .3∶1∶1 B .2∶1∶1 C.2∶1∶1 D.3∶1∶1答案 D解析 由已知得A =120°,B =C =30°,根据正弦定理的变形形式,得a ∶b ∶c =sin A ∶sin B ∶sin C =3∶1∶1. 7.以下关于正弦定理的叙述或变形中错误..的是( ) A .在△ABC 中,a ∶b ∶c =sin A ∶sin B ∶sin C B .在△ABC 中,a =b ⇔sin2A =sin2BC .在△ABC 中,a sin A =b +c sin B +sin CD .在△ABC 中,正弦值较大的角所对的边也较大 答案 B解析 对于B 项,当a =b 时,sin A =sin B 且cos A =cos B ,∴sin2A =sin2B ,但是反过来若sin2A =sin2B .2A =2B 或2A =π-2B ,即A =B 或A +B =π2.不一定a =b ,∴B 选项错误.8.在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,如果c =3a ,B =30°,那么角C 等于( )A .120°B .105°C .90°D .75°答案 A9.在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c .若a =2,b =2,sin B +cos B =2,则角A 的大小为________.答案π6解析 由sin B +cos B =2sin(B +π4)=2,得sin(B +π4)=1,所以B =π4.由正弦定理a sin A =b sin B ,得sin A =a sin B b =2·si nπ42=12,所以A =π6或5π6(舍去). 10.已知a ,b ,c 分别是△ABC 的三个内角A ,B ,C 所对的边,若a =1,b =3,A +C =2B ,则sin A =________.答案 12解析 由A +C =2B ,且A +B +C =180°,得B =60°,由正弦定理,得3sin60°=1sin A ,∴sin A =12.11.(2012·福建)在△ABC 中,已知∠BAC =60°,∠ABC =45°,BC =3,则AC =________.答案 2解析如图所示,由正弦定理,得AC sin B =BC sin A ,即AC sin45°=3sin60°,即AC22=332,故AC = 2. 12.(2012·北京)在△ABC 中,若a =3,b =3,∠A =π3,则∠C 的大小为________.答案π2解析 由正弦定理,得a sin ∠A =bsin ∠B .从而332=3sin ∠B,即sin ∠B =12.∴∠B =30°或∠B =150°.由a >b 可知∠B =150°不合题意,∴∠B =30°. ∴∠C =180°-60°-30°=90°.13.已知三角形的两角分别是45°、60°,它们夹边的长是1,则最小边长为________. 答案3-114.在△ABC 中,若tan A =13,C =150°,BC =1,则AB =________.答案10215.△ABC 中,a 、b 、c 分别是角A 、B 、C 的对边,则a (sin C -sin B )+b (sin A -sin C )+c (sin B -sin A )=________.答案 0解析 ∵a sin A =bsin B ,∴a sin B =b sin A .同理可得a sin C =c sin A 且b sin C =c sin B .∴原式=0.16.已知在△ABC 中,c =10,A =45°,C =30°,求a 、b 和B . 答案 a =10 2 b =5(6+2) B =105°17.△ABC 的内角A ,B ,C 的对边分别为a ,b ,c .若c =2,b =6,B =120°,求a 的值.答案2解析 由正弦定理,得6sin120°=2sin C ,∴sin C =12.又∵C 为锐角,则C =30°,∴A =30°. ∴△ABC 为等腰三角形,a =c = 2.18.已知在△ABC 中,∠A =45°,a =2,c =6,解此三角形. 解析 由正弦定理a sin A =csin C ,得 sin C =62sin45°=62×22=32. 因为∠A =45°,c >a ,所以∠C =60°或120°. 所以∠B =180°-60°-45°=75° 或∠B =180°-120°-45°=15°. 又因为b =a sin Bsin A,所以b =3+1或3-1. 综上,∠C =60°,∠B =75°,b =3+1 或∠C =120°,∠B =15°,b =3-1. ►重点班·选作题19.下列判断中正确的是( )A .当a =4,b =5,A =30°时,三角形有一解B .当a =5,b =4,A =60°时,三角形有两解C .当a =3,b =2,B =120°时,三角形有一解D .当a =322,b =6,A =60°时,三角形有一解答案 D20.△ABC 的外接圆半径为R ,C =60°,则a +bR的取值范围是( ) A .[3,23] B .[3,23) C .(3,23] D .(3,23)答案 C课时作业2 正弦定理(第2课时)1.在△ABC 中,a =2b cos C ,则这个三角形一定是( ) A .等腰三角形 B .直角三角形 C .等腰直角三角形 D .等腰或直角三角形答案 A2.已知△ABC 中,AB =3,AC =1,且B =30°,则△ABC 的面积等于( ) A.32B.34C.32或 3 D.34或32 答案 D3.在△ABC 中,a =15,b =10,A =60°,则cos B =( ) A .-223B.223 C .-63D.63答案 D解析 依题意得0°<B <60°,a sin A =b sin B ,sin B =b sin A a =33,cos B =1-sin 2B =63,选D.4.(2013·山东)△ABC 的内角A ,B ,C 所对的边分别为a ,b ,c .若B =2A ,a =1,b =3,则c =( ) A .2 3 B .2 C. 2 D .1答案 B解析 由正弦定理a sin A =b sin B ,得1sin A =3sin B.又∵B =2A ,∴1sin A =3sin2A =32sin A cos A .∴cos A =32,∴∠A =30°,∴∠B =60°,∠C =90°. ∴c =12+32=2.5.(2013·陕西)设△ABC 的内角A ,B ,C 所对的边分别为a ,b ,c ,若b cos C +c cos B =a sin A ,则△ABC 的形状为( )A .锐角三角形B .直角三角形C .钝角三角形D .不确定答案 B解析 ∵b cos C +c cos B =a sin A ,由正弦定理,得sin B cos C +sin C cos B =sin 2A ,∴sin(B +C )=sin 2A ,即sin A =sin 2A .又∵sin A >0,∴sin A =1,∴A =π2,故△ABC 为直角三角形.6.在△ABC 中,角A 、B 、C 所对的边分别为a 、b 、c ,已知A =60°,a =3,b =1,则c 等于( )A .1B .2 C.3-1 D. 3答案 B7.已知△ABC 的面积为32,且b =2,c =3,则( )A .A =30°B .A =60°C .A =30°或150°D .A =60°或120° 答案 D8.已知三角形面积为14,外接圆面积为π,则这个三角形的三边之积为( )A .1B .2 C.12 D .4 答案 A9.在△ABC 中,A =60°,a =3,b =2,则B 等于( ) A .45°或135° B .60° C .45° D .135° 答案 C10.若△ABC 的面积为3,BC =2,C =60°,则边AB 的长度为________. 答案 211.△ABC 中,若a cos A 2=b cos B 2=ccos C 2,则△ABC 的形状是________.答案 等边三角形12.在△ABC 中,lg(sin A +sin C )=2lgsin B -lg(sin C -sin A ),则该三角形的形状是________.答案 直角三角形 解析 由已知条件lg(sin A +sin C )+lg(sin C -sin A )=lgsin 2B , ∴sin 2C -sin 2A =sin 2B ,由正弦定理,可得c 2=a 2+b 2. 故三角形为直角三角形.13.在△ABC 中,角A 、B 、C 的对边分别为a 、b 、c ,B =π3,cos A =45,b = 3.(1)求sin C 的值; (2)求△ABC 的面积.答案 (1)3+4310 (2)36+935014.在△ABC 中,若b 2sin 2C +c 2sin 2B =2bc cos B cosC ,试判断三角形的形状. 解析 由正弦定理asin A=bsin B=csin C=2R (R 为△ABC 外接圆半径).将原等式化为8R 2sin 2B sin 2C =8R 2sin B sin C cos B cos C .∵sin B ·sin C ≠0,∴sin B sin C =cos B cos C . 即cos(B +C )=0.∴B +C =90°,即A =90°. 故△ABC 为直角三角形.15.在△ABC 中,求证:cos2A a 2-cos2B b 2=1a 2-1b2.证明 ∵左边=1-2sin 2A a 2-1-2sin 2Bb2=1a 2-1b 2-2(sin 2A a 2-sin 2B b2), 由正弦定理,得a sin A =bsin B ,∴sin 2A a 2-sin 2Bb2=0.∴原式成立. ►重点班·选作题16.在△ABC 中,sin A =34,a =10,边长c 的取值范围是( )A .(152,+∞)B .(10,+∞)C .(0,10)D .(0,403]答案 D17.(2012·浙江)在△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c .已知cos A =23,sin B=5cos C .(1)求tan C 的值;(2)若a =2,求△ABC 的面积. 解析 (1)因为0<A <π,cos A =23,得sin A =1-cos 2A =53. 又5cos C =sin B =sin(A +C )=sin A cos C +cos A sin C =53cos C +23sin C ,所以tan C = 5. (2)由tan C =5,得sin C =56,cos C =16.于是sin B =5cos C =56.由a =2及正弦定理a sin A =csin C ,得c = 3.设△ABC 的面积为S ,则S =12ac sin B =52.1.在△ABC 中,若b =1,c =3,∠C =2π3,则a =________.答案 1解析 在△ABC 中,由正弦定理,得1sin B=3sin2π3,解得sin B =12,因为b <c ,故角B 为锐角,所以B =π6,则A =π6.再由正弦定理或等腰三角形性质可得a =1.课时作业3 余弦定理1.在△ABC 中,sin 2A =sin 2B +sin B sinC +sin 2C ,则A 等于( ) A .30° B .60° C .120°D .150°答案 C解析 由正弦定理,得a 2=b 2+bc +c 2,由余弦定理,得cos A =b 2+c 2-a 22bc =-bc 2bc =-12.∴A =120°.2.若a ,b ,c 是△ABC 的三边,且c a 2+b2>1,则△ABC 一定是( ) A .直角三角形 B .等边三角形 C .锐角三角形 D .钝角三角形答案 D 解析 ∵c a 2+b2>1,即a 2+b 2<c 2,a 2+b 2-c 2<0,于是cos C =a 2+b 2-c 22ab<0.∴∠C 为钝角,即得△ABC 为钝角三角形.3.边长5、7、8的三角形的最大角与最小角的和是( ) A .90° B .120° C .135° D .150°答案 B解析 设中间的角大小为B ,由余弦定理,求得cos B =a 2+c 2-b 22ac =52+82-722×5×8=12.而0<B <π,∴B =π3.∴最大角与最小角的和是π-π3=2π3=120°.4.△ABC 的内角A 、B 、C 的对边分别为a 、b 、c .若c =2,b =6,B =120°,则a 等于( )A. 6 B .2 C. 3 D. 2答案 D5.在△ABC 中,内角A ,B ,C 的对边分别是a ,b ,c .若a 2-b 2=3bc ,sin C =23sin B ,则A =( )A .30°B .60°C .120°D .150°答案 A解析 由sin C =23sin B ,可得c =23b ,由余弦定理,得cos A =b 2+c 2-a 22bc=-3bc +c 22bc =32,于是A =30°,故选A.6.在△ABC 中,已知a ∶b ∶c =3∶5∶7,则这个三角形最大角的外角是( ) A .30° B .60° C .90° D .120°答案 B解析 ∵a ∶b ∶c =3∶5∶7,∴可令a =3x ,b =5x ,c =7x (x >0),显然c 边最大.∴cos C =a 2+b 2-c 22ab =9x 2+25x 2-49x 22·3x ·5x =-12.∴C =120°,∴其外角为60°.7.在△ABC 中,角A 、B 、C 的对边分别为a 、b 、c .若(a 2+c 2-b 2)tan B =3ac ,则角B 的值为( )A.π6B.π3 C.π6或5π6D.π3或2π3答案 D解析 本题考查边角关系中余弦定理的应用.解斜三角形问题的关键是充分挖掘题中边角特征,选择合理的定理求解.因此(a 2+c 2-b 2)tan B =3ac ,所以由余弦定理cos B =a 2+c 2-b 22ac ,得sin B =32,选D. 8.在△ABC 中,已知a cos A +b cos B =c cos C ,则△ABC 是( ) A .等腰三角形 B .直角三角形 C .等腰直角三角形 D .等边三角形答案 B解析 由a cos A +b cos B =c cos C ,得a ·b 2+c 2-a 22bc +b ·a 2+c 2-b 22ac =c ·b 2+a 2-c 22ab,化简得a 4+2a 2b 2+b 4=c 4,即(a 2+b 2)2=c 4.∴a 2+b 2=c 2或a 2+b 2=-c 2(舍去). 故△ABC 是直角三角形.9.若将直角三角形的三边增加同样的长度,则新三角形的形状是( ) A .锐角三角形 B .直角三角形 C .钝角三角形 D .由增加的长度确定答案 A10.在△ABC 中,已知a =2,b =4,C =60°,则A =________. 答案 30°11.(2012·湖北)设△ABC 的内角A ,B ,C 所对的边分别为a ,b ,c .若(a +b -c )(a +b +c )=ab ,则角C =________.答案2π3解析 ∵由(a +b -c )(a +b +c )=ab ,整理可得,a 2+b 2-c 2=-ab ,∴cos C =a 2+b 2-c 22ab=-ab 2ab =-12,∴C =2π3. 12.已知△ABC 的三个内角A ,B ,C ,B =π3且AB =1,BC =4,则边BC 上的中线AD 的长为________.答案3解析 在△ABD 中,B =π3,BD =2,AB =1,则AD 2=AB 2+BD 2-2AB ·BD cos π3=3.所以AD = 3.13.在△ABC 中,三个角A ,B ,C 的对边边长分别为a =3,b =4,c =6,则bc cos A +ca cos B +ab cos C 的值为________.答案612解析 由余弦定理可得bc cos A +ca cos B +ab cos C =b 2+c 2-a 22+c 2+a 2-b 22+a 2+b 2-c 22=a 2+b 2+c 22=32+42+622=612.14.在△ABC 中,a 、b 、c 分别是角A 、B 、C 的对边,已知b 2=ac ,且a 2-c 2=ac -bc ,求∠A 的大小及b sin Bc的值. 解析 ∵b 2=ac ,又a 2-c 2=ac -bc ,∴b 2+c 2-a 2=bc .在△ABC 中,由余弦定理,得cos A =b 2+c 2-a 22bc =bc 2bc =12,∴∠A =60°.在△ABC 中,由正弦定理,得sin B =b sin Aa. ∵b 2=ac ,∠A =60°,∴b sin B c =b 2sin60°ca =sin60°=32.故∠A =60°,b sin Bc 的值为32. 15.已知锐角三角形ABC 中,边a 、b 是方程x 2-23x +2=0的两根,角A 、B 满足2sin(A +B )-3=0,求角C 的度数,边c 的长度及△ABC 的面积.解析 由2sin(A +B )-3=0,得sin(A +B )=32. ∵△ABC 为锐角三角形,∴A +B =120°,∴C =60°. ∵a 、b 是方程x 2-23x +2=0的两个根, ∴a +b =23,ab =2.∴c 2=a 2+b 2-2ab cos C =(a +b )2-3ab =12-6=6. ∴c =6,S △ABC =12ab sin C =12·2·32=32.►重点班·选作题16.设△ABC 三边长分别为15,19,23,现将三边长各减去x 后,得一钝角三角形,则x 的范围为________.答案 (3,11)解析 由两边之和大于第三边,得 15-x +19-x >23-x ,∴x <11. ① 又因得到的三角形为钝角三角形, ∴(15-x )2+(19-x )2<(23-x )2.即x 2-22x +57<0,(x -3)(x -19)<0,3<x <19.② 由①、②可得3<x <11.17.在△ABC 中,已知c 4-2(a 2+b 2)c 2+a 4+a 2b 2+b 4=0,求角C . 解析 ∵c 4-2(a 2+b 2)c 2+a 4+a 2b 2+b 4=0, ∴[c 2-(a 2+b 2)]2-a 2b 2=0,∴c 2-(a 2+b 2)=±ab .∴cos C =a 2+b 2-c 22ab =±12,∴C =120°或C =60°.1.已知△ABC 的三个内角为A 、B 、C ,所对的三边分别为a 、b 、c ,若三角形ABC 的面积为S =a 2-(b -c )2,则tan A2等于________.答案 14解析 本题考查余弦定理和解三角形等.由S =12bc sin A ,又S =a 2-b 2-c 2+2bc ,由余弦定理知a 2-b 2-c 2=-2bc ·cos A ⇒12bc sin A =-2bc cos A +2bc ⇒sin A =4(1-cos A )⇒2sin A 2cos A 2=4×2sin 2A 2⇒tan A 2=14. 2.在△ABC 中,A 、B 、C 满足A +C =2B ,且最大角与最小角的对边之比为(3+1)∶2,求A 、B 、C 的度数.解析 ∵⎩⎪⎨⎪⎧A +C =2B ,A +B +C =180°,∴B =60°.不妨设最大角为A ,则最小角为C . 由b 2=a 2+c 2-2ac cos B ,得 (b c)2=(a c)2+1-2·a c·cos B . 将a c =3+12及cos B =12代入,得b c =62. ∴sin B sin C =62,∴sin C =22.∵c <b ,∴C =45°,∴A =75°. 3.在△ABC 中,a 、b 、c 分别为角A 、B 、C 的对边,设f (x )=a 2x 2-(a 2-b 2)x -4c 2. (1)若f (1)=0且B -C =π3,求角C 的大小;(2)若f (2)=0,求角C 的取值范围.解析 (1)∵f (1)=0,∴a 2-(a 2-b 2)-4c 2=0. ∴b 2=4c 2,∴b =2c .∴sin B =2sin C . 又B -C =π3,∴sin(C +π3)=2sin C .∴sin C ·cos π3+cos C ·sin π3=2sin C .∴32sin C -32cos C =0,∴sin(C -π6)=0. 又-π6<C -π6<5π6,∴C =π6.(2)若f (2)=0,则4a 2-2(a 2-b 2)-4c 2=0.∴a 2+b 2=2c 2,∴cos C =a 2+b 2-c 22ab =c 22ab.又a 2+b 2-2ab =(a -b )2≥0,∴a 2+b 2≥2ab . 即2c 2=a 2+b 2≥2ab ,∴ab ≤c 2. ∴cos C ≥12,∴0<C ≤π3.课时作业4 正、余弦定理习题课1.在△ABC 中,若a =18,b =24,A =44°,则此三角形的情况为( ) A .无解 B .两解C .一解D .解的个数不确定答案 B2.若△ABC 的内角A 、B 、C 满足6sin A =4sin B =3sin C ,则cos B 等于( ) A.154 B.34 C.31516D.1116 答案 D3.在△ABC 中,若2cos B sin A =sin C ,则△ABC 的形状一定是( ) A .等腰直角三角形 B .直角三角形 C .等腰三角形 D .等边三角形答案 C解析 方法一 在△ABC 中,A +B +C =180°. ∴C =180°-(A +B ),∴sin C =sin(A +B ). ∴已知条件可化为2sin A cos B =sin C =sin(A +B ). ∴sin(A -B )=0.又-π<A -B <π,∴A -B =0,∴A =B .∴△ABC 为等腰三角形.方法二 运用正、余弦定理将角的三角函数式化为边的等式.2·a 2+c 2-b 22ac ·a 2R =c 2R.整理,得a 2-b 2=0,∴a =b .∴△ABC 为等腰三角形.4.在三角形ABC 中,角A 、B 、C 的对边分别是a 、b 、c ,且a >b >c ,若a 2<b 2+c 2,则∠A 的取值范围是( )A .(π2,π)B .(π4,π2)C .(π3,π2)D .(0,π2)答案 C解析 ∵a 2<b 2+c 2,∴b 2+c 2-a 2>0.∴cos A =b 2+c 2-a 22bc>0.∴A <90°.又∵a 边最大,∴A 角最大.∵A +B +C =180°,∴3A >180°. ∴A >60°,∴60°<A <90°.5.在△ABC 中,已知(b +c )∶(c +a )∶(a +b )=4∶5∶6,则sin A ∶sin B ∶sin C 等于( )A .6∶5∶4B .7∶5∶3C .3∶5∶7D .4∶5∶6答案 B解析 设b +c =4k ,c +a =5k ,a +b =6k (k >0),从而解出a =72k ,b =52k ,c =32k ,∴a ∶b ∶c =7∶5∶3.由正弦定理,得sin A ∶sin B ∶sin C =a ∶b ∶c =7∶5∶3.6.在△ABC 中,A ∶B =1∶2,C 的平分线CD 把三角形面积分为3∶2两部分,则cos A =( )A.13 B.12 C.34 D .0答案 C 解析∵CD 是∠C 的平分线,∴S △ACD S △BCD =12AC ·CD sinC 212BC ·CD sin C 2=AC BC =sin B sin A =32. ∵B =2A ,∴sin B sin A =sin2A sin A =2cos A =32.∴cos A =34.7.在钝角△ABC 中,a =1,b =2,则最大边c 的取值范围是( ) A .1<c <3B .2<c<3C.5<c <3 D .22<c <3答案 C8.三角形三边长为a ,b ,a 2+ab +b 2(a >0,b >0),则最大角为________. 答案 120°9.在△ABC 中,AB =2,AC =6,BC =1+3,AD 为边BC 上的高,则AD 的长是________. 答案310.已知△ABC 的面积为23,BC =5,A =60°,则△ABC 的周长是________. 答案 1211.已知等腰三角形的底边长为6,一腰长为12,则它的外接圆半径为________. 答案8155解析 cos A =b 2+c 2-a 22bc =122+122-622×12×12=78,∴sin A =1-cos 2A =158. ∴2R =asin A ,R =a 2sin A =8155. 12.已知△ABC 中,∠A =60°,最大边和最小边的长是方程3x 2-27x +32=0的两实根,那么BC 边长等于________.答案 7解析 ∵A =60°,所求为BC 边的长,而BC 即为角A 的对边,∴BC 边既非最大边也非最小边.不妨设最大边长为x 1,最小边长为x 2, 由题意得:x 1+x 2=9,x 1x 2=323. 由余弦定理,得BC 2=x 21+x 22-2x 1x 2cos A =(x 1+x 2)2-2x 1x 2-2x 1x 2cos A =92-2×323-2×323×cos60°=49.∴BC =7.13.在△ABC 中,已知BC =8,AC =5,三角形面积为12,则cos2C =________. 答案725解析 由题意得S △ABC =12·AC ·BC ·sin C =12,即12×8×5×sin C =12,则sin C =35. cos2C =1-2sin 2C =1-2×(35)2=725.14.在△ABC 中,角A ,B ,C 所对的边为a ,b ,c ,若b =a cos C 且△ABC 的最大边长为12,最小角的正弦值为13.(1)判断△ABC 的形状; (2)求△ABC 的面积. 解析 (1)∵b =a cos C ,由正弦定理,得sin B =sin A cos C . 由A +B +C =π,得sin B =sin[π-(A +C )]=sin(A +C ). ∴sin(A +C )=sin A cos C .∴sin A cos C +cos A sin C =sin A cos C . ∴cos A sin C =0.∵0<A <π,0<C <π,∴sin C >0. ∴cos A =0,∴A =π2.∴△ABC 为直角三角形. (2)∵△ABC 的最大边长为12, 由第(1)问知,斜边a =12. 又∵△ABC 的最小角的正弦值为13,∴Rt △ABC 中最短直角边长为12×13=4.另一直角边长为122-42=8 2. ∴S △ABC =12×4×82=16 2.15.(2013·天津)在△ABC 中,内角A ,B ,C 所对的边分别是a ,b ,c .已知b sin A =3c sin B ,a =3,cos B =23.(1)求b 的值;(2)求sin(2B -π3)的值.解析 (1)在△ABC 中,由a sin A =bsin B,可得b sin A =a sin B .又由b sin A =3c sin B ,可得a =3c ,又a =3,故c =1. 由b 2=a 2+c 2-2ac cos B ,cos B =23,可得b = 6.(2)由cos B =23,得sin B =53,进而得cos2B =2cos 2B -1=-19,sin2B =2sin B cos B =459.所以sin(2B -π3)=sin2B cos π3-cos2B sin π3=45+318.课时作业5 应用举例(第1课时)1.若P在Q的北偏东44°50′,则Q在P的( )A.东偏北45°10′B.东偏北45°50′C.南偏西44°50′ D.西偏南45°50′答案 C2.在某次测量中,在A处测得同一方向的B点的仰角为60°,C点的俯角为70°,则∠BAC等于( )A.10° B.50°C.120° D.130°答案 D3.一只船速为2 3 米/秒的小船在水流速度为2米/秒的河水中行驶,假设两岸平行,要想使过河时间最短,则实际行驶方向与水流方向的夹角为( )A.120° B.90°C.60° D.30°答案 B4.江岸边有一炮台高30 m,江中有两条船,由炮台顶部测得俯角分别为45°和30°,而且两条船与炮台底部连线成30°角,则两条船相距( )A.10 3 m B.100 3 mC.2030 m D.30 m答案 D解析设炮台顶部为A,两条船分别为B、C,炮台底部为D,可知∠BAD=45°,∠CAD =60°,∠BDC=30°,AD=30.分别在Rt△ADB,Rt△ADC中,求得DB=30,DC=30 3.在△DBC中,由余弦定理,得BC2=DB2+DC2-2DB·DC cos30°,解得BC=30.5.某人向正东方向走x km后,他向右转150°,然后朝新方向走3 km,结果他离出发点恰好 3 km,那么x的值为( )A. 3 B.2 3C.23或 3 D.3答案 C6.两座灯塔A和B与海洋观察站C的距离都等于a km,灯塔A在观察站C的北偏东20°,灯塔B在观察站C的南偏东40°,则灯塔A与灯塔B的距离为( )A.a km B.3a kmC.2a km D.2a km答案 B7.海上有A、B、C三个小岛,已知A、B相距10海里,从A岛望C岛和B岛成60°的视角,从B岛望C岛和A岛成75°的视角,则B、C的距离是( )A.10 3 海里 B.1063海里C.5 2 海里D.5 6 海里答案 D8.如图所示,设A、B两点在河的两岸,一测量者在A所在的河岸边选定一点C,测出AC 的距离为50 m,∠ACB=45°,∠CAB=105°后,就可以计算A、B两点的距离为( ) A.50 2 m B.50 3 mC.25 2 m D.2522m答案 A9.一船向正北航行,看见正西方向有相距10海里的两个灯塔恰好与它在一条直线上,继续航行半小时后,看见一灯塔在船的南偏西60°方向上,另一灯塔在船的南偏西75°方向上,则这艘船的速度是每小时( )A.5 海里B.5 3 海里C.10 海里D.10 3 海里答案 D10.已知船A在灯塔C北偏东85°且到C的距离为2 km,船B在灯塔C西偏北25°且到C的距离为 3 km,则A,B两船的距离为( )A.2 3 km B.3 2 kmC.15 kmD.13 km答案 D11.一船以24 km/h的速度向正北方向航行,在点A处望见灯塔S在船的北偏东30°方向上,15 min 后到点B 处望见灯塔在船的北偏东65°方向上,则船在点B 时与灯塔S 的距离是________km.(精确到0.1 km)答案 5.212.如图,为了测量河的宽度,在一岸边选定两点A ,B ,望对岸的标记物C ,测得∠CAB =30°,∠CBA =75°,AB =120 m ,则河的宽度是________m.答案 6013.已知船在A 处测得它的南偏东30°的海面上有一灯塔C ,船以每小时30海里的速度向东南方向航行半小时后到达B 点,在B 处看到灯塔在船的正西方向,问这时船和灯塔相距________海里.答案563-1214.A 、B 是海平面上的两个点,相距800 m ,在A 点测得山顶C 的仰角为45°,∠BAD =120°,又在B 点测得∠ABD =45°,其中D 是点C 到水平面的垂足,求山高CD .解析如图,由于CD ⊥平面ABD ,∠CAD =45°,所以CD =AD . 因此,只需在△ABD 中求出AD 即可.在△ABD 中,∠BDA =180°-45°-120°=15°. 由AB sin15°=ADsin45°,得AD =AB ·sin45°sin15°=800×226-24=800(3+1)(m).∵CD ⊥平面ABD ,∠CAD =45°, ∴CD =AD =800(3+1)≈2 186(m). 答:山高CD 为2 186 m.15.如图所示,海中小岛A 周围38海里内有暗礁,一船正向南航行,在B 处测得小岛A 在船的南偏东30°,航行30海里后,在C 处测得小岛在船的南偏东45°,如果此船不改变航向,继续向南航行,有无触礁的危险?思路分析 船继续向南航行,有无触礁的危险,取决于A 到直线BC 的距离与38海里的大小,于是我们只要先求出AC 或AB 的大小,再计算出A 到BC 的距离,将它与38海里比较大小即可.解析 在△ABC 中,BC =30,B =30°,∠ACB =135°, ∴∠BAC =15°.由正弦定理BC sin A =AC sin B ,即30sin15°=AC sin30°.∴AC =60cos15°=60cos(45°-30°)=60(cos45°cos30°+sin45°sin30°)=15(6+2). ∴A 到BC 的距离d =AC sin45°=15(3+1)≈40.98海里>38海里,所以继续向南航行,没有触礁危险.1.一船以4 km/h 的速度沿着与水流方向成120°的方向航行,已知河水流速为2 km/h ,则经过 3 h 后,该船实际航行为( )A .215 kmB .6 km C.84 km D .8 km答案 B 2.如图,为了测量正在海面匀速行驶的某航船的速度,在海岸上选取距离1千米的两个观察点C 、D ,在某天10∶00观察到该航船在A 处,此时测得∠ADC =30°,2分钟后该船行驶至B 处,此时测得∠ACB =60°,∠BCD =45°,∠ADB =60°,则船速为________(千米/分钟).答案64解析 在△BCD 中,∠BDC =30°+60°=90°,CD =1,∠BCD =45°, ∴BC = 2.在△ACD 中,∠CAD =180°-(60°+45°+30°)=45°, ∴CDsin45°=AC sin30°,AC =22.在△ABC 中,AB 2=AC 2+BC 2-2AC ×BC ×cos60°=32,∴AB =62,∴船速为622=64 千米/分钟.3.如图,A ,B 是海面上位于东西方向相距5(3+3)海里的两个观测点.现位于A 点北偏东45°,B 点北偏西60°的D 点有一艘轮船发出求救信号,位于B 点南偏西60°且与B 点相距20 3 海里的C 点的救援船立即前往营救,其航行速度为30海里/小时,该救援船到达D 点需要多长时间?答案 救船到达D 点需要1小时.解析 由题意知AB =5(3+3)(海里),∠DBA =90°-60°=30°,∠DAB =90°-45°=45°,∴∠ADB =180°-(45°+30°)=105°. 在△DAB 中,由正弦定理,得DB sin ∠DAB =ABsin ∠ADB.∴DB =AB ·sin∠DAB sin ∠ADB =53+3·sin45°sin105°=53+3·sin45°sin45°cos60°+cos45°sin60°=533+13+12=103(海里).又∠DBC =∠DBA +∠ABC =30°+(90°-60°)=60°,BC =203(海里), 在△DBC 中,由余弦定理,得CD 2=BD 2+BC 2-2BD ·BC ·cos∠DBC=300+1 200-2×103×203×12=900.∴CD =30(海里),则需要的时间t =3030=1(小时).答:救援船到达D 点需要1小时. 4.如图所示,a是海面上一条南北向的海防警戒线,在a上点A处有一个水声监测点,另两个监测点B、C分别在A的正东方20 km处和54 km处.某时刻,监测点B收到发自静止目标P的一个声波,8 s后监测点A、20 s后监测点C相继收到这一信号.在当时的气象条件下,声波在水中的传播速度是1.5 km/s.(1)设A到P的距离为x km,用x表示B,C到P的距离,并求x的值;(2)求静止目标P到海防警戒线a的距离.(结果精确到0.01 km)答案(1)PB=x-12 km,PC=18+x km 132 7(2)17.71 km课时作业6 应用举例(第2课时)正、余弦定理的综合应用1.已知方程x 2sin A +2x sin B +sin C =0有重根,则△ABC 的三边a 、b 、c 满足关系式( ) A .b =ac B .b 2=ac C .a =b =c D .c =ab答案 B解析 由Δ=0,得4sin 2B -4sin A sinC =0,结合正弦定理得b 2=ac . 2.在△ABC 中,已知A =30°,且3a =3b =12,则c 的值为( ) A .4 B .8 C .4或8 D .无解答案 C解析 由3a =3b =12,得a =4,b =43,利用正弦定理可得B 为60°或120°,从而解出c 的值.3.在△ABC 中,A =60°,AB =2,且△ABC 的面积S △ABC =32,则边BC 的长为( ) A. 3 B .3 C.7 D .7答案 A 解析 由S △ABC =32,得12AB ·AC sin A =32. 即12×2AC ×32=32,∴AC =1,由余弦定理,得 BC 2=AB 2+AC 2-2AB ·AC ·cos A =22+12-2×2×1×12=3.∴BC = 3.4.在△ABC 中,2a cos B =c ,则△ABC 是( ) A .等腰三角形 B .直角三角形 C .等腰直角三角形 D .等边三角形答案 A解析 方法一 由余弦定理,得2a a 2+c 2-b 22ac=c .所以a 2+c 2-b 2=c 2.则a =b .则△ABC是等腰三角形.方法二 由正弦定理,得2×2R sin A cos B =2R sin C ,即2sin A cos B =sin C .又sin(A +B )+sin(A -B )=2sin A cos B ,所以sin(A +B )+sin(A -B )=sin C .又A +B +C =π,所以sin(A +B )=sin C .所以sin(A -B )=0.又0<A <π,0<B <π,则-π<A -B <π.所以有A =B ,则△ABC 是等腰三角形.讲评 方法一是转化为三角形的边的关系,利用代数运算获得三角形的关系式;方法二是转化为三角形的角的关系,利用三角函数知识获得了三角形的角的关系.方法二中,如果没有想到等式sin(A +B )+sin(A -B )=2sin A cos B ,那么就会陷入困境.由于受三角函数知识的限制,提倡将已知条件等式转化为边的关系来判断三角形的形状.5.(2013·安徽)设△ABC 的内角A ,B ,C 所对边的长分别为a ,b ,c .若b +c =2a,3sin A =5sin B ,则角C =( )A.π3 B.2π3 C.3π4D.5π6答案 B解析 ∵3sin A =5sin B ,∴3a =5b .① 又b +c =2a ,②∴由①②可得,a =53b ,c =73b .∴cos C =b 2+a 2-c 22ab=b 2+53b 2-73b 22×53b 2=-12.∴C =23π.6.已知锐角三角形的边长分别是3,5,x ,则x 的取值范围是( ) A .1<x < 5 B .4<x <30 C .1<x <4 D .4<x <34答案 D解析 若5最大,则32+x 2-52>0,得x >4. 若x 最大,则32+52-x 2>0,得0<x <34. 又2<x <8,则4<x <34.7.在△ABC 中,已知sin A ∶sin B =2∶1,c 2=b 2+2bc ,则三内角A 、B 、C 的度数依次是________.答案 45°、30°、105°解析 ∵a =2b ,a 2=b 2+c 2-2bc cos A . ∴2b 2=b 2+c 2-2bc cos A ,又∵c 2=b 2+2bc , ∴cos A =22,A =45°,sin B =12,B =30°,∴C =105°.8.在△ABC 中,角A 、B 、C 所对的边分别为a 、b 、c .若(3b -c )cos A =a cos C ,则cos A =______.答案33解析 由正弦定理,得(3sin B -sin C )cos A =sin A cos C . 化简得3sin B cos A =sin(A +C ). ∵0<sin B ≤1,∴cos A =33. 9.设锐角三角形ABC 的内角A 、B 、C 的对边分别为a 、b 、c ,a =2b sin A . (1)求B 的大小;(2)若a =33,c =5,求b .解析 (1)由a =2b sin A ,得sin A =2sin B sin A ,所以sin B =12.由△ABC 为锐角三角形,得B =π6.(2)根据余弦定理,得b 2=a 2+c 2-2a cos B =27+25-45=7,所以b =7.10.在△ABC 中,a ,b ,c 分别为内角A ,B ,C 的对边,且2a sin A =(2b +c )sin B +(2c +b )sin C .(1)求A 的大小;(2)若sin B +sin C =1,试判断△ABC 的形状.解析 (1)由已知,根据正弦定理,得2a 2=(2b +c )b +(2c +b )c ,即a 2=b 2+c 2+bc . 由余弦定理,得a 2=b 2+c 2-2bc cos A . 故cos A =-12,又A ∈(0,π),故A =120°.(2)由(1)得sin 2A =sin 2B +sin 2C +sin B sin C . 又sin B +sin C =1,得sin B =sin C =12.因为0°<B <90°,0°<C <90°,故B =C . 所以△ABC 是等腰的钝角三角形.11.在△ABC 中,已知B =45°,D 是BC 边上的一点,AD =10,AC =14,DC =6,求AB 的长.解析 在△ADC 中,AD =10,AC =14,DC =6,由余弦定理,得cos ∠ADC =AD 2+DC 2-AC 22AD ·DC =100+36-1962×10×6=-12.∴∠ADC =120°,∠ADB =60°.在△ABD 中,AD =10,∠B =45°,∠ADB =60°, 由正弦定理,得AB sin ∠ADB =ADsin B. ∴AB =AD ·sin∠ADB sin B =10sin60°sin45°=10×3222=5 6.12.在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,设S 为△ABC 的面积,满足S =34(a 2+b 2-c 2). (1)求角C 的大小;(2)求sin A +sin B 的最大值.解析 (1)由题意可知12ab sin C =34·2ab cos C ,所以tan C = 3.因为0<C <π,所以C =π3.(2)由已知sin A +sin B =sin A +sin(π-C -A ) =sin A +sin(2π3-A )=sin A +32cos A +12sin A=3sin(A +π6)≤ 3.当△ABC 为正三角形时取等号, 所以sin A +sin B 的最大值是 3.13.在△ABC 中,a ,b ,c 分别为内角A ,B ,C 的对边,且2a sin A =(2b +c )sin B +(2c +b )sin C .(1)求A 的大小;(2)求sin B +sin C 的最大值.解析 (1)由已知,根据正弦定理,得2a 2=(2b +c )b +(2c +b )c ,即a 2=b 2+c 2+bc .由余弦定理,得a 2=b 2+c 2-2bc cos A .故cos A =-12,A =120°.(2)由(1),得sin B +sin C =sin B +sin(60°-B ) =32cos B +12sin B =sin(60°+B ). 故当B =30°时,sin B +sin C 取得最大值1. ►重点班·选作题14.在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,已知cos2C =-14.(1)求sin C 的值;(2)当a =2,2sin A =sin C 时,求b 及c 的长.解析 (1)因为cos2C =1-2sin 2C =-14,及0<C <π,所以sin C =104.(2)当a =2,2sin A =sin C 时, 由正弦定理a sin A =csin C,得c =4.由cos2C =2cos 2C -1=-14,及0<C <π得cos C =±64.由余弦定理c 2=a 2+b 2-2ab cos C ,得b 2±6b -12=0,解得b =6或2 6.所以⎩⎨⎧b =6,c =4.或⎩⎨⎧b =26,c =4.1.(2013·辽宁)在△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c .若a sin B cos C +c sin B cos A =12b ,且a >b ,则∠B =( ) A.π6 B.π3 C.2π3D.5π6答案 A解析 根据正弦定理,得a sin B cos C +c sin B cos A =12b 等价于sin A cos C +sin C cos A =12,即sin(A +C )=12.又a >b ,∴∠A +∠C =5π6,∴∠B =π6.故选A 项.2.(2012·北京)在△ABC 中,若a =2,b +c =7,cos B =-14,则b =________.答案 4解析 由余弦定理,得cos B =a 2+c 2-b 22ac =4+7-b 2-b 22×2×7-b =-14,解得b =4.3.(2011·湖北)设△ABC 的内角,A ,B ,C 所对的边分别为a ,b ,c .若(a +b -c )(a +b +c )=ab ,则角C =________.答案2π3解析 ∵由(a +b -c )(a +b +c )=ab ,整理,可得a 2+b 2-c 2=-ab .∴cos C =a 2+b 2-c 22ab =-ab 2ab =-12,∴C =2π3.4.(2013·北京)在△ABC 中,a =3,b =26,∠B =2∠A . (1)求cos A 的值; (2)若c 的值.解析 (1)因为a =3,b =26,∠B =2∠A , 所以在△ABC 中,由正弦定理,得3sin A =26sin2A. 所以2sin A cos A sin A =263.故cos A =63.(2)由(1)知,cos A =63,所以sin A =1-cos 2A =33. 又因为∠B =2∠A ,所以cos B =2cos 2A -1=13.所以sin B =1-cos 2B =223. 在△ABC 中,sin C =sin(A +B )=sin A cos B +cos A sin B =539.所以c =a sin Csin A=5.5.(2013·江西)在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,已知cos C +(cos A -3sin A )cos B =0.(1)求角B 的大小;(2)若a +c =1,求b 的取值范围.解析 (1)由已知得-cos(A +B )+cos A cos B -3sin A cos B =0,即有sin A sin B -3sin A cos B =0.因为sin A ≠0,所以sin B -3cos B =0.又cos B ≠0,所以tan B =3,又0<B <π,所以B =π3.(2)由余弦定理,有b 2=a 2+c 2-2ac cos B . 因为a +c =1,cos B =12,所以b 2=3(a -12)2+14.又0<a <1,于是有14≤b 2<1,即12≤b <1.6.(2013·四川)在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,且2cos 2A -B2cos B -sin(A -B )sin B +cos(A +C )=-35,(1)求cos A 的值;(2)若a =42,b =5,求向量BA →在BC →方向上的投影. 解析 (1)由2cos2A -B2cos B -sin(A -B )sin B +cos(A +C )=-35,得[cos(A -B )+1]cos B -sin(A -B )sin B -cos B =-35,即cos(A -B )cos B -sin(A -B )sin B =-35.则cos(A -B +B )=-35,即cos A =-35.(2)由cos A =-35,0<A <π,得sin A =45.由正弦定理,有a sin A =b sin B ,所以,sin B =b sin A a =22.由题知a >b ,则A >B ,故B =π4. 根据余弦定理,有(42)2=52+c 2-2×5c ×(-35),解得c =1或c =-7(舍去).。
课时作业(一)一、选择题1.下列两个变量之间的关系是相关关系的是( ) A .正方体的棱长和体积 B .角的弧度数和它的正弦值 C .速度一定时的路程和时间 D .日照时间与水稻的亩产量 答案 D解析 因为相关关系就是两个变量之间的一种非确定性关系,故可由两个变量之间的关系确定答案.A ,B ,C 均确定性关系,即函数关系,而D 中日照时间与亩产量的关系是不确定的.故选D.2.若回归直线方程中的回归系数b ∧=0,则相关系数( ) A .r =1 B .r =-1 C .r =0 D .无法确定答案 C解析 注意两个系数之间的联系.b ∧=∑i =1nx i y 1-n x y∑i =1nx 2i -n x 2,r =∑i =1nx i y 1-n x y(∑i =1nx 2i -nx 2)(∑i =1ny 2i -n y 2),两个式子的分子是一致的,当b ∧=0时,r 一定为0.故选C.3.在两个变量y与x的回归模型中,分别选择了4个不同的模型,它们的相关指数R2如下,其中拟合效果最好的模型是() A.模型1的相关指数R2为0.98B.模型2的相关指数R2为0.80C.模型3的相关指数R2为0.50D.模型4的相关指数R2为0.25答案 A解析相关指数R2的取值范围为[0,1]其中R2=1,即残差平方和为0,此时预测值与观测值相等,y与x是函数关系,也就是说在相关关系中R2越接近于1,说明随机误差的效应越小,y与x相关程度越大,模型的拟合效果越好.R2=0,说明模型中x与y根本无关.故选A.4.在一次试验中,测得(x,y)的四组值分别是A(1,2),B(2,3),C(3,4),D(4,5),则y与x之间的线性回归方程为()A.y∧=x+1B.y∧=x+2C.y∧=2x+1D.y∧=x-1答案 A5.在对两个变量x,y进行线性回归分析时有下列步骤:①对所求出的回归方程作出解释;②收集数据(x i,y i),i=1,2,…,n;③求线性回归方程;④求相关系数;⑤根据所搜集的数据绘制散点图.如果根据可靠性要求能够作出变量x,y具有线性相关结论,则在下列操作顺序中正确的是()A.①②⑤③④B.③②④⑤①C.②④③①⑤D.②⑤④③①答案 D解析根据线性回归分析的思想,可知对两个变量x,y进行线性回归分析时,应先收集数据(x i,y i),然后绘制散点图,再求相关系数和线性回归方程,最后对所求的回归方程作出解释,因此选D.6.若变量y与x之间的相关系数r=-0.936 2,则变量y与x之间()A.不具有线性相关关系B.具有线性相关关系C.它们的线性关系还要进一步确定D.不确定答案 B7.某医学科研所对人体脂肪含量与年龄这两个变量研究得到一组随机样本数据,运用Excel软件计算得y∧=0.577x-0.448(x为人的年龄,y为人体脂肪含量).对年龄为37岁的人来说,下面说法正确的是() A.年龄为37岁的人体内脂肪含量都为20.90%B.年龄为37岁的人体内脂肪含量为21.01%C.年龄为37岁的人群中的大部分人的体内脂肪含量为20.90% D.年龄为37岁的大部分的人体内脂肪含量为31.5%答案 C解析当x=37时,y∧=0.577×37-0.448=20.901≈20.90,由此估计:年龄为37岁的人群中的大部分人的体内脂肪含量为20.90%.8.(09·海南)对变量x,y有观测数据(x i,y i)(i=1,2,…,10),得散点图(1);对变量u,v有观测数据(u i,v i)(i=1,2,…,10),得散点图(2).由这两个散点图可以判断()A.变量x与y正相关,u与v正相关B.变量x与y正相关,u与v负相关C.变量x与y负相关,u与v正相关D.变量x与y负相关,u与v负相关答案 C二、填题空9.已知回归直线的斜率的估计值是1.23.样本点的中心为(4,5),则回归直线方程是________.答案y∧=1.23x+0.08解析由斜率的估计值为1.23,且回归直线一定经过样本点的中心(4,5),可得y∧-5=1.23(x-4),即y∧=1.23x+0.08.10.若一组观测值(x1,y1),(x2,y2),…,(x n,y n)之间满足y i=bx i +a+e i(i=1,2,…,n),且e i恒为0,则R2为________.答案 1解析由e i恒为0知y i=y∧i,即y i-y∧i=0,故R2=1-∑i=1n(y i-y∧i)2∑i=1n(y i-y)2=1-0=1.11.(2010·广东)某市居民2005~2009年家庭平均收入x(单位:万元)与年平均支出Y(单位:万元)的统计资料如下表所示:年平均收入与年平均支出有________线性相关关系.答案13较强的解析由表中所给的数据知所求的中位数为13,画出x与Y的散点图知它们有较强的线性相关关系.12.为了考察两个变量y与x的线性相关性,测得x,y的13对数据,若y与x具有线性相关关系,则相关指数R2的取值范围是________.答案(0,1)解析相关指数R2=1-∑i=1n(y i-y∧i)2∑i=1n(y i-y)2.R2的取值范围是[0,1].当R2=0时,即残差平方和等于总偏差平方和,解释变量效应为0,x与y 没有任何关系;当R2=1时,即残差平方和为0,x与y之间是确定的函数关系.其他情形,即当x与y是不确定的相关关系时,R2∈(0,1).13.若某函模型相对一组数据的残差平方和为89,其相关指数为0.95,则总偏差平方和为________,回归平方和为________.答案 1 780 1 691解析R2=1-残差平方和总偏差平方和,0.95=1-89总偏差平方和,∴总偏差平方和为1 780.回归平方和=总偏差平方和-残差平方和=1 780-89=1 691.14.已知两个变量x与y之间有线性相关性,5次试验的观测数据如下:那么变量y答案y∧=0.575x-14.9解析由线性回归的参数公式可求得b∧=0.575,a∧=-14.9,所以回归方程为y∧=0.575x-14.9.三、解答题15.某产品的广告费用支出x与销集额y(单位:百万元)之间有如下统计数据:请对上述变量解析由题意可以列表如下:r =1 380-5×5×50(145-5×52)(13 500-×5×502)≈0.92, 查表得r 0.05=0.878.因为r >r 0.05,说明广告费用和销售额之间具有显著的线性相关关系.16.一台机器使用时间较长,但还可以使用.它按不同的转速生产出来的某机械零件有一些会有缺点,每小时生产有缺点零件的多少随机器运转的速度而变化,下表为抽样试验结果:(2)如果y 与x 有线性相关关系,求线性回归方程;(3)若实际生产中,允许每小时的产品中有缺点的零件最多为10个,那么,机器的运转速度应控制在什么范围内?解析 (1)x =12.5,y =8.25.∑i =14x i y i =438,4x y=412.5,∑i =14x 2i =660,∑i =14y 2i =291,所以r=∑i=14x i y i-4x y(∑i=14x2i-4x2)(∑i=14y2i-4y2)=438-412.5(660-625)×(291-272.25)=25.5656.25≈25.5025.62≈0.995.因为r>0.75,所以y与x有线性相关关系.(2)y∧=0.728 6x-0.857 1.(3)要使y∧≤10,即0.728 6x-0.857 1≤10,所以x≤14.901 3.所以机器的转速应控制在14.901 3转/秒以下.17.(07·广东高考)下表提供了某厂节能降耗技术改造后生产甲产品过程中记录的产量x(吨标准煤)与相应的生产能耗y(吨标准煤)的几组对照数据.(1)(2)请根据上表提供的数据,用最小二乘法求出y关于x的线性回归方程y∧=b∧x+a∧;(3)已知该厂技改前100吨甲产品的生产能耗为90吨标准煤.试根据(2)求出的线性回归方程,预测生产100吨甲产品的生产能耗比技改前降低多少吨标准煤?(参考数值:3×2.5+4×3+5×4+6×4.5=66.5) 解析 (1)图形如图所示.(2)x =3+4+5+64=4.5; y =2.5+3+4+4.54=3.5; ∑i =14x i y i =3×2.5+4×3+5×4+6×4.5=66.5.∑i =14x 2i =32+42+52+62=86. ∴b ∧=∑i =14x i y i -4x ·y ∑i =14x 2i -4x 2=66.5-4×4.5×3.586-4×4.5=0.7,a ∧=y -b ∧x =3.5-0.7×4.5=0.35. ∴y ∧=0.7x +0.35.(3)现在生产100吨甲产品用煤 y =0.7×100+0.35=70.35,∴降低90-70.35=19.65(吨标准煤).对于x 与y 有如下观测数据:(1)(2)对x 与y 作回归分析; (3)求出y 与x 的回归直线方程;(4)根据回归直线方程,预测y =20时x 的值.解析 解决有关线性回归问题的一般步骤是:散点图→相关系数→回归方程.答案 (1)作出散点图,如图(2)作相关性检验.x =18×(18+25+30+39+41+42+49+52)=2968=37, y =18×(3+5+6+7+8+9+10)=7,∑i =18x 2i =182+252+302+392+412+422+492+522=11920, ∑i =18y 2i =32+52+62+72+82+82+92+102=428,∑i =18x i y i =18×3+25×5+30×6+39×7+41×8+42×8+49×9+52×10=2257,∑i =18x i y i -8x y =2257-8×37×7=185,∑i =18x 2i -8x 2=11920-8×372=968,∑i =18y 2i -8y 2=428-8×72=36,∴r =∑i =18x i y i -8x y(∑i =18x 2i -8x 2)(∑i =18y 2i -8y 2)=185968×36≈0.991. 由于r =0.991>0.75,因此,认为两个变量有很强的相关关系.(3)回归系数b ∧=∑i =18x i y i -8x y∑i =18x 2i -8x2=18511920-8×372≈0.191 a ∧=y -b ∧x =7-0.191×37=-0.067,所以y 对x 的回归直线方程为y ∧=0.191x -0.067.(4)当y =20时,有20=0.191x -0.067,得x ≈105.因此在y 的值为20时,x 的值约为105.。
课时作业(二十八)1.有5辆6吨的汽车,4辆4吨的汽车,要运送最多的货物,完成这项运输任务的线性目标函数为( )A .z =6x +4yB .z =5x +4yC .z =x +yD .z =4x +5y答案 A解析 设需x 辆6吨汽车,y 辆4吨汽车,则运输货物的吨数为z =6x +4y ,即目标函数z =6x +4y .2.某学校用800元购买A 、B 两种教学用品,A 种用品每件100元,B 种用品每件160元,两种用品至少各买一件,要使剩下的钱最少,A 、B 两种用品应各买的件数为( )A .2件,4件B .3件,3件C .4件,2件D .不确定 答案 B解析 设买A 种用品x 件,B 种用品y 件,剩下的钱为z 元,则⎩⎪⎨⎪⎧100x +160y ≤800,x ≥1,y ≥1,x ,y ∈N *,求z =800-100x -160y 取得最小值时的整数解(x ,y ),用图解法求得整数解为(3,3).3.在“家电下乡”活动中,某厂要将100台洗衣机运往邻近的乡镇.现有4辆甲型货车和8辆乙型货车可供使用.每辆甲型货车运输费用400元,可装洗衣机20台;每辆乙型货车运输费用300元,可装洗衣机10台.若每辆车至多只运一次,则该厂所花的最少运输费用为( )A .2 000元B .2 200元C .2 400元D .2 800元答案 B解析 设需使用甲型货车x 辆,乙型货车y 辆,运输费用z 元,根据题意,得线性约束条件⎩⎪⎨⎪⎧20x +10y ≥100,0≤x ≤4,0≤y ≤8,目标函数z =400x+300y ,画图可知,当平移直线400x +300y =0至经过点(4,2)时,z 取最小值2 200.4.某公司招收男职员x 名,女职员y 名,x 和y 需满足约束条件⎩⎪⎨⎪⎧5x -11y ≥-22,2x +3y ≥9,2x ≤11,则x =10x +10y 的最大值是________.答案 90解析 先画出满足约束条件的可行域,如图中阴影部分所示.由⎩⎨⎧5x -11y =-22,2x =11,解得⎩⎨⎧x =5.5,y =4.5.但x ∈N *,y ∈N *,结合图知当x =5,y =4时,z max =90.5.铁矿石A 和B 的含铁率a ,冶炼每万吨铁矿石的CO 2的排放量b 及每万吨铁矿石的价格c 如下表:2的排放量不超过2(万吨),则购买铁矿石的最少费用为________(百万元).答案15解析 设购买铁矿石A 、B 分别为x ,y 万吨,购买铁矿石的费用为z (百万元),则⎩⎪⎨⎪⎧0.5x +0.7y ≥1.9x +0.5y ≤2x ≥0y ≥0.目标函数z =3x +6y .由⎩⎨⎧0.5x +0.7=1.9x +0.5y =2,得⎩⎨⎧x =1y =2.记P (1,2),画出可行域,如图所示,当目标函数z =3x +6y 过点P (1,2)时,z 取最小值,且最小值为z min =3×1+6×2=15.6.某企业拟用集装箱托运甲、乙两种产品,甲种产品每件体积为5 m 3,重量为2吨,运出后,可获利润10万元;乙种产品每件体积为4 m 3,重量为5吨,运出后,可获利润20万元,集装箱的容积为24 m 3,最多载重13吨,装箱可获得最大利润是________.答案 60万元解析 设甲种产品装x 件,乙种产品装y 件(x ,y ∈N ),总利润为z 万元,则⎩⎪⎨⎪⎧5x +4y ≤242x +5≤13x ≥0,y ≥0,且z =10x +20y .作出可行域,如图中的阴影部分所示.作直线l 0:10x +20y =0,即x +2y =0.当l 0向右上方平移时z 的值变大,平移到经过直线5x +4y =24与2x +5y =13的交点(4,1)时,z max =10×4+20×1=60(万元),即甲种产品装4件、乙种产品装1件时总利润最大,最大利润为60万元.7.某工厂用两种不同的原料均可生产同一种产品,若采用甲种原料,每吨成本1 000元,运费500元,可得产品90 kg ,若采用乙种原料,每吨成本1 500元,运费400元,可得产品100 kg.如果每月原料的总成本不超过6 000元,运费不超过2 000元,那么工厂每月最多可生产多少产品?解析 将已知数据列成下表:设此工厂每月甲乙两种原料各用x (t)、y (t),生产z (kg)产品,则⎩⎪⎨⎪⎧ x ≥0y ≥01 000x +1 500y ≤6 000500x +400y ≤2 000.即⎩⎪⎨⎪⎧x ≥0y ≥02x +3y ≤125x +4y ≤20.z =90x +100y .作出以上不等式组表示的平面区域,即可行域.作直线l :90x +100y =0,即9x +10y =0.把l 向右上方移动到位置l 1时,直线经过可行域上的点M ,且与原点距离最大,此时z =90x +100y 取得最大值.∴z max =90×127+100×207=440. 因此工厂最多每天生产440 kg 产品.8.某营养师要为某个儿童预订午餐和晚餐.已知一个单位的午餐含12个单位的碳水化合物6个单位的蛋白质和6个单位的维生素C ;一个单位的晚餐含8个单位的碳水化合物,6个单位的蛋白质和10个单位的维生素C.另外,该儿童这两餐需要的营养中至少含64个单位的碳水化合物,42个单位的蛋白质和54个单位的维生素C.如果一个单位的午餐、晚餐的费用分别是2.5元和4元,那么要满足上述的营养要求,并且花费最少,应当为该儿童分别预订多少个单位的午餐和晚餐?解析 方法一 设需要预订满足要求的午餐和晚餐分别为x 个单位和y 个单位,所花的费用为z 元,则依题意得:z =2.5x +4y ,且x ,y 满足⎩⎪⎨⎪⎧ x ≥0,y ≥012x +8y ≥646x +6y ≥426x +10y ≥54,即⎩⎪⎪⎨⎪⎪⎧x ≥0y ≥03x +2y ≥16x +y ≥73x +5y ≥27.z在可行域的四个顶点A(9,0),B(4,3),C(2,5),D(0,8)处的值分别是z A=2.5×9+4×0=22.5,z B=2.5×4十4×3=22,z C=2.5×2+4×5=25,z D=2.5×0+4×8=32.比较之,z B最小,因此,应当为该儿童预订4个单位的午餐和3个单位的晚餐,就可满足要求.方法二设需要预订满足要求的午餐和晚餐分别为x个单位和y个单位,所花的费用为z元,则依题意得:z=2.5x+4y,且x,y满足⎩⎪⎪⎨⎪⎪⎧ x ≥0y ≥012x +8y ≥646x +6y ≥426x +10y ≥54,即⎩⎪⎪⎨⎪⎪⎧x ≥0y ≥03x +2y ≥16x +y ≥73x +5y ≥27.让目标函数表示的直线2.5x +4y =z 在可行域上平移,由此可知z =2.5x +4y 在B (4,3)处取得最小值.因此,应当为该儿童预订4个单位的午餐和3个单位的晚餐,就可满足要求.1.车间有男工25人,女工20人,要组织甲、乙两种工作小组,甲组有5名男工,3名女工,乙组有4名男工,5名女工,并且要求甲组种数不少于乙组,乙种组数不少于1组,则最多各能组成工作小组为( )A .甲4组、乙2组B .甲2组、乙4组C .甲、乙各3组D .甲3组、乙2组答案 D解析 设甲、乙两种工作分别有x 、y 组,依题意有⎩⎪⎨⎪⎧5x +4y ≤253x +5y ≤20x ≥y y ≥1,作出可行域可知(3,2)符合题意,即甲3组,乙2组.2.某运输公司接受了向抗洪抢险地区每天至少运送180 t 支援物资的任务,该公司有8辆载重为6 t 的A 型卡车和4辆载重为10 t 的B 型卡车,有10名驾驶员,每辆卡车每天往返的次数为A 型卡车4次,B 型卡车3次,每辆卡车每天往返的成本费用为A 型卡车320元,B 型卡车504元,请你给该公司调配车辆,使公司所花的成本费用最低.解析 设每天调出A 型卡车x 辆,B 型卡车y 辆,公司所花的成本为z 元,依题意有⎩⎪⎪⎨⎪⎪⎧x ≤8y ≤4x +y ≤104x ·6+3y ·10≥180x ≥0y ≥0⇒⎩⎪⎨⎪⎧0≤x ≤80≤y ≤4x +y ≤104x +5y ≥30.目标函数z=320x+504y(其中x,y∈N).上述不等式组所确定的平面区域如图所示.由图易知,直线z=320x+504y在可行域内经过的整数中,点(5,2)使z=320x+504y取得最小值,z最小值=320×5+504×2=2608(元).即调A型卡车5辆,B型卡车2辆时,公司所花的成本费用最低.3.医院用甲、乙两种原料为手术后的病人配营养餐,甲种原料每10 g含5单位蛋白质和10单位铁质,售价3元;乙种原料每10 g含7单位蛋白质和4单位铁质,售价2元.若病人每餐至少需要35单位蛋白质和40单位铁质,试问:应如何使用甲、乙原料,才能既满足营养需要、又使费用最省?【解析】 设甲、乙两种原料分别用10x g 和10y g ,需要的费用为z =3x +2y .病人每餐至少需要35单位蛋白质,可表示为5x +7y ≥35;同理,对铁质的要求可以表示为10x +4y ≥40.这样,问题成为在约束条件⎩⎪⎨⎪⎧ 5x +7y ≥3510x +4y ≥40x ≥0,y ≥0下,求目标函数z =3x +2y 的最小值.作出可行域,如图,令z =0,作直线l 0:3x +2y =0.由图形可知,把直线l 0平移至经过顶点A 时,z 取最小值. 由⎩⎨⎧ 5x +7y =3510x +4y =40,得A (145,3).所以用甲种原料145×10=28(g),乙种原料3×10=30(g),费用最省.。
《高考调研》衡水重点中学精讲练选修2-3课时作业1课时作业(一)1.衡水二中高一年级共8个班,高二年级共6个班,从中选一个班级担任学校星期一早晨升旗任务,共有的安排方法种数是() A.8B.6C.14 D.48答案 C解析一共有14个班,从中选1个,∴共有14种.2.教学大楼共有四层,每层都有东西两个楼梯,由一层到四层共有的走法种数是()A.32B.23C.42D.24答案 B解析由一层到二层有2种选择,二层到三层有2种选择,三层到四层有2种选择,∴23=8.3.小冉有3条不同款式的裙子,5双不同款式的靴子,某日她要去参加聚会,若穿裙子和靴子,则不同的穿着搭配方式的种数为() A.7种B.8种C.15种D.125种答案 C解析不同的穿着搭配方式分两步完成,由分步乘法计数原理知共有3×5=15种,故选C.4.有7名女同学和9名男同学,组成班级乒乓球混合双打代表队,共可组成()A.7队B.8队C.15队D.63队答案 D解析第一步选男同学,有9种选法;第二步选女同学有7种选法,根据分步乘法计数原理,可得共有7×9=63(种)组成方式.5.如果把两条异面直线看成“一对”,那么六棱锥的棱所在的12条直线中,异面直线共有()A.12对B.24对C.36对D.48对答案 B解析把六棱锥所有棱分成三类:第1类:底面上的六条棱所在的直线共面,故每两条之间不能构成异面直线.第2类:六条侧棱所在的直线共点,故每两条之间也不能构成异面直线.第3类:结合右图可知,只有底面棱中1条棱所在直线与和它不相交的4条侧棱所在的4条直线中1条才能构成一对异面直线,再由分步计数原理得,可构成异面直线6×4=24(对).6.某运动会组委会派小张、小赵、小李、小罗,四人从事翻译、导游、礼仪、司机四项不同工作,若其中小张只能从事前两项工作,其余3人均能从事这四项工作,则不同的选派方案共有() A.12种B.36种C.18种D.48种答案 A解析分四步.第一步:先安排小张,有选法2种;第二至四步安排剩余三人,分别有不同选法3种,2种,1种,则由分步乘法计数原理得,不同的选派方案有12种.7.从4台甲型和5台乙型电视机中任取3台,其中至少要甲、乙两型号各一台,则不同的取法共有()A.140种B.80种C.70种D.35种答案 C解析分为两类:①选2台甲型电视机,1台乙型电视机,2台甲型电视机有6种选法,1台乙型电视机有5种选法,共有6×5=30(种)选法;②选2台乙型电视机,1台甲型电视机,2台乙型电视机有10种选法,1台甲型电视机有4种选法,共有10×4=40(种)选法.故选C.8.某同学去逛书店,喜欢三本书,决定至少买其中的一本,则购买方案有________种.答案7解析分类:第一类:买其中的一本,方法有3种;第二类:买其中的两本,方法有3种;第三类:三本书全买,方法有1种.由分类加法计数原理知,N=3+3+1=7种购买方案.9.从集合{0,1,2,3,4,5,6}中任取两个互不相等的数a,b组成复数a+b i,其中虚数有________个.答案36解析第一步取b的数,有6种方法,第二步取a的数,也有6种方法,根据乘法计数原理,共有6×6=36种方法.10.已知x∈{2,3,7},y∈{-31,-24,4},则x·y可表示不同的值的个数是________.答案9解析因为按x、y在各自的取值集合中各选一个值去做积这件事,可分两步完成:第一步,x在集合{2,3,7}中任取一个值有3种方法;第二步,y在集合{-31,-24,4}中任取一个值有3种方法.根据分步计数原理得,有3×3=9种不同的值.11.若x、y分别在0,1,2,…,10中取值,则P(x,y)在第一象限的个数是________.答案100解析要完成这件事,需分两步:横坐标x可从1,2,3,…,10个数字中任取一个.共有10种方法;因为数字可重复,所以纵坐标y 也有10种方法,由乘法原理共有10×10=100(个).12.已知a∈{3,4,6},b∈{1,2,7,8},r∈{8,9},则方程(x-a)2+(y -b)2=r2可表示不同的圆的个数有________个.答案24解析圆方程由三个量a、b、r确定,a,b,r分别有3种、4种、2种选法,由分步乘法计数原理,表示不同的圆的个数为3×4×2=24(个).13.在一宝宝“抓周”的仪式上,他面前摆着2件学习用品,2件生活用品,1件娱乐用品,若他可抓其中的两件物品,则他抓的结果有________种.答案10解析设学习用品为a1,a2,生活用品为b1,b2,娱乐用品为c,则结果有:(a1,a2),(a1,b1),(a1,b2),(a1,c),(a2,b1)(a2,b2),(a2,c),(b1,b2),(b1,c),(b2,c),共10种.14.由1到200的自然数中,各数位上都不含8的有________个.答案162个解析一位数8个,两位数8×9=72个.3位数有9×9=81个,另外1个(即200),共有8+72+81+1=162个.15.某工厂的三个车间的工人举行了劳动技能比赛活动,第一车间有2人胜出,第二车间有3人胜出,第三车间有2人胜出,厂长要求每个车间选出一人进入厂技能领导小组,有多少种不同的选法?解析(定义法)本题可分三步完成.第一步,从第一车间中选1人有2种选法;第二步,从第二车间中选1人有3种选法;第三步,从第三车间中选1人有2种选法,根据分步乘法计数原理知一共有N =2×3×2=12种选法.16.某电脑用户计划使用不超过500元的资金购买单价分别为60元的单片软件和70元的盒装磁盘.根据需要,软件至少买3张,磁盘至少买2盒.则不同的选购方式共有多少种?解析可设购买60元的单片软件和70元的盒装磁盘分别为x片、y 盒,依照所用资金不超过500元,来建立数学模型,从而解决问题.设购买单片软件x片,盒装磁盘y盒,则依题意有60x+70y≤500(x,y∈N*,有x≥3,y≥2),按购买x片分类:x=3,则y=2,3,4,共3种方法;x=4,则y=2,3,共2种方法;x=5,则y=2,共1种方法;x=6,则y=2,共1种方法.依分类计数原理不同的选购方式有N=3+2+1+1=7(种).答:不同的选购方式有7种.点评本题主要考查分类计数原理的灵活运用,在解题中要特别注意知识的联想和应用.重点班选做题17.如下图,小圆圈表示网络的结点,结点之间的连线表示它们有网线相连,连线上标注的数字,表示该网线单位时间内可以通过的最大信息量.现从结点A向结点B传递信息,信息可以分开沿不同的网线同时传递,则单位时间内传递的最大信息量为________.答案19解析因信息可以分开沿不同的路线传递,由分类计数原理,完成从A向B传递有四种办法:12→5→3,12→6→4,12→6→7,12→8→6,故单位时间内传递的最大信息量为四条不同网线上信息量的和:3+4+6+6=19.18.圆周上有2n个等分点(n大于2),任取3点可得一个三角形,恰为直角三角形的个数为________.答案2n(n-1)解析这2n个等分点可确定n条直径,每条直径可确定(2n-2)个直角三角形,∴共有n(2n-2)=2n(n-1)个直角三角形.19.电视台在“快乐大本营”节目中拿出两个信箱,其中存放着先后两次竞猜中成绩优秀的观众来信,甲信箱中有30封,乙信箱中有20封,现由主持人抽奖确定幸运观众,若先确定一名幸运之星,再从两信箱中各确定一名幸运伙伴,有多少种不同的结果?解析抽奖过程分三步完成,考虑到幸运之星可分别出现在两个信箱中,故可分两种情形考虑.分两大类:(1)幸运之星在甲箱中抽,先定幸运之星,再在两箱中各定一名幸运伙伴有30×29×20=17 400种结果;(2)幸运之星在乙箱中抽,同理有20×19×30=11 400种结果.因此共有不同结果17 400+11 400=28 800种.。
课时作业(二十五)1.下列对古典概型的说法中正确的是( ) ①试验中所有可能出现的基本事件有有限个 ②每个事件出现的可能性相等 ③每个基本事件出现的可能性相等④基本事件总数为n ,随机事件A 若包含k 个基本事件,则P(A)=knA .②④B .①③④C .①④D .③④答案 B解析 ②中所说的事件不一定是基本事件,所以②不正确;根据古典概型的特点及计算公式可知①③④正确.2.4张卡片上分别写有数字1,2,3,4,从这4张卡片中随机抽取2张,则取出的2张卡片上的数字之和为奇数的所有基本事件数为( ) A .2 B .3 C .4 D .6 答案 C解析 用列举法列举出“数字之和为奇数”的可能结果为(1,2),(1,4),(2,3),(3,4),共4种可能.3.一枚硬币连掷2次,恰好出现1次正面的概率是( ) A.12 B.14 C.34 D .0答案 A解析 列举出所有基本事件,找出“只有1次正面”包含的结果.一枚硬币连掷2次,基本事件有(正,正),(正,反),(反,正),(反,反)共4个,而只有1次出现正面的包括(正,反),(反,正)2个,故其概率为24=12.4.同时掷三枚均匀的硬币,出现一枚正面,二枚反面的概率为( ) A.14 B.13 C.38 D.12 答案 C解析 共有23=8种情况,符合要求的有(正,反,反),(反,正,反),(反,反,正)3种,∴P =38,故选C.5.从{1,2,3,4,5}中随机选取一个数为a ,从{1,2,3}中随机选取一个数为b ,则b>a 的概率是( ) A.45 B.35 C.25 D.15答案 D解析 分别从两个集合中各取一个数,共有15种取法,其中满足b>a 的有3种取法,故所求事件的概率为P =315=15.6.(2015·广东文)已知5件产品中有2件次品,其余为合格品.现从这5件产品中任取2件,恰有一件次品的概率为( ) A .0.4 B .0.6 C .0.8 D .1答案 B解析 设5件产品中合格品分别为A 1,A 2,A 3,2件次品分别为B 1,B 2,则从5件产品中任取2件的所有基本事件为A 1A 2,A 1A 3,A 1B 1,A 1B 2,A 2A 3,A 2B 1,A 2B 2,A 3B 1,A 3B 2,B 1B 2,共10个,其中恰有一件次品的所有基本事件为:A 1B 1,A 1B 2,A 2B 1,A 2B 2,A 3B 1,A 3B 2,共6个.故所求概率为P =610=0.6.7.在一个袋子中装有分别标注1,2,3,4,5的5个小球,这些小球除标注的数字外完全相同,现从中随机取出2个小球,则取出的小球标注的数字之差的绝对值为2或4的概率是( ) A.110 B.310 C.25 D.14答案 C解析 取2个小球的不同取法有(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5),共10种,其中标注的数字绝对值之差为2或4的有(1,3),(2,4),(3,5),(1,5),共4种,故所求的概率为410=25.8.袋中有红、白色球各一个,每次任取一个,有放回地抽取3次,所有的基本事件数是________. 答案 8解析 所有的基本事件有(红红红),(红红白),(红白红),(白红红),(红白白),(白红白),(白白红),(白白白),共8个.9.有5根木棍,它们的长度分别为1,3,5,7,9,从中任取3根,它们能搭成一个三角形的概率为________. 答案310解析 从5根木棍中抽取3根的基本事件有:(1,3,5),(1,3,7),(1,3,9),(1,5,7),(1,5,9),(1,7,9),(3,5,7),(3,5,9),(3,7,9),(5,7,9),共10个.要使所取出的3根木棍能搭成一个三角形,需满足“任意2根木棍长的和大于第3根,任意2根木棍长的差小于第3根”.属于此情况的木棍的长只有3种搭配:(3,5,7),(3,7,9),(5,7,9).因此,所取的3根木棍能搭成三角形的概率P =310.10.(2015·江苏)袋中有形状、大小都相同的4只球,其中1只白球,1只红球,2只黄球.从中一次随机摸出2只球,则这2只球颜色不同的概率为________. 答案 56解析 从4只球中一次随机摸出2只球,有6种结果,其中这2只球颜色不同有5种结果,故所求概率为56.11.将一个各个面上均涂有颜色的正方体锯成27个同样大小的小正方体,从这些小正方体中任取一个,其中恰有一个面涂有颜色的概率是________. 答案 29解析 正方体有六个面,每个面只有中心一个正方体涂一面,共有6面,故所求概率为29.12.从4名男生和2名女生中任选3人参加演讲比赛. (1)求所选3人都是男生的概率; (2)求所选3人恰有1名女生的概率; (3)求所选3人至少有1名女生的概率.解析 从编号为男1,2,3,4和女5,6号的6个人中选3人的方法有(1,2,3),(1,2,4),(1,2,5),(1,2,6),(2,3,4),(2,3,5),(2,3,6),(3,4,5),(3,4,6),(4,5,6),(1,3,4),(1,3,5),(1,3,6),(1,4,5),(1,4,6),(1,5,6),(2,4,5),(2,4,6),(2,5,6),(3,5,6),共有20种方法.(1)所选3人都是男生的情况有(1,2,3),(1,2,4),(2,3,4),(1,3,4),共4种方法. 故所选3人都是男生的概率为420=15.(2)所选3人中恰好有1名女生的情况共有12种:(1,2,5),(1,2,6),(2,3,5),(2,3,6),(3,4,5),(3,4,6),(1,3,5),(1,3,6),(1,4,5),(1,4,6),(2,4,5),(2,4,6).则所选3人恰有1名女生的概率为1220=35.(3)所选的3人中没有女生的情况有4种:(1,2,3),(1,2,4),(2,3,4),(1,3,4). 所以所选的3人中没有女生的概率是420=15.又所选的3人中至少有1名女生和所选的3人中没有女生是对立事件. 所以至少有1名女生的概率为1-15=45.其中直径在区间[1.48,1.52]内的零件为一等品.(1)从上述10个零件中,随机抽取一个,求这个零件为一等品的概率; (2)从一等品零件中,随机抽取2个.①用零件的编号列出所有可能的抽取结果; ②求这2个零件直径相等的概率.解析 (1)由所给数据可知,一等品零件共有6个,设“从10个零件中,随机抽取一个为一等品”为事件A ,则P(A)=610=35. (2)①一等品零件的编号为A 1,A 2,A 3,A 4,A 5,A 6.从这6个一等品零件中随机抽取2个,所有可能的结果有:{A 1,A 2},{A 1,A 3},{A 1,A 4},{A 1,A 5},{A 1,A 6},{A 2,A 3},{A 2,A 4},{A 2,A 5},{A 2,A 6},{A 3,A 4},{A 3,A 5},{A 3,A 6},{A 4,A 5},{A 4,A 6},{A 5,A 6},共有15种.②“从一等品零件中,随机抽取的2个零件直径相等”(记为事件B)的所有可能结果有:{A 1,A 4},{A 1,A 6},{A 4,A 6},{A 2,A 3},{A 2,A 5},{A 3,A 5},共有6种.所以P(B)=615=25.(2012·江苏)有10个数,它们能构成一个以1为首项,-3为公比的等比数列,若从这10个数中随机抽取一个数,则它小于8的概率是________. 答案 35解析 这10个数是1,-3,(-3)2,(-3)3,(-3)4,(-3)5,(-3)6,(-3)7,(-3)8,(-3)9,所以它小于8的概率等于610=35.。
课时作业(二十五)1.f (x )=(1-3tan x )cos x +2的最小正周期为 ( )A .2π B.3π2 C .π D.π2答案 A 解析 f (x )=(1-3sin xcos x)cos x +2 =cos x -3sin x +2=2cos(x +π3)+2, ∴T =2π.2.函数y =2cos 2x 的一个单调增区间是 ( ) A .(-π4,π4)B .(0,π2)C .(π4,3π4)D .(π2,π)答案 D解析 y =2cos 2x =1+cos2x ,∴递增区间为2k π+π≤2x ≤2k π+2π. ∴k π+π2≤x ≤k π+π.∴k =0时,π2≤x ≤π.选D.3.(2013·西城区期末)下列函数中,即为偶函数又在(0,π)上单调递增的是( )A .y =tan|x |B .y =cos(-x )C .y =sin(x -π2)D .y =-cos2x答案 C4.(2013·衡水调研卷)已知f (x )=sin 2(x +π4).若a =f (lg5),b =f (lg 15),则( )A .a +b =0B .a -b =0C .a +b =1D .a -b =1答案 C解析 利用降幂公式化简f (x ),再利用对数的性质计算a +b 或a -b .因为f (x )=sin 2(x+π4)=1-cos 2x +π22=1+sin2x 2,令lg5=t ,则lg 15=-t ,所以a =f (lg5)=1+sin2t2,b =f (lg 15)=1-sin2t2,所以a +b =1,故应选C. 5.已知函数f (x )=A sin(ωx +φ)(A >0,ω>0)在x =π4处取得最小值,则( ) A .f (x +π4)一定是偶函数B .f (x +π4)一定是奇函数C .f (x -π4)一定是偶函数D .f (x -π4)一定是奇函数答案 A解析 f (x +π4)是f (x )向左平移π4个单位得到的,f (x )图像关于x =π4对称,则f (x +π4)图像关于x =0对称,故f (x +π4)为偶函数. 6.定义在R 上的函数f (x )既是奇函数又是周期函数,若f (x )的最小正周期为π,且当x ∈[-π2,0)时,f (x )=sin x ,则f (-5π3)的值为( )A .-12B.12 C .-32D.32答案 D解析 据题意,由函数的周期性及奇偶性知:f (-5π3)=f (-5π3+2π)=f (π3)=-f (-π3)=-sin(-π3)=32. 7.函数y =-x cos x 的部分图像是( )答案 D解析 方法一 由函数y =-x cos x 是奇函数,知图像关于原点对称. 又由当x ∈[0,π2]时,cos x ≥0,有-x cos x ≤0.当x ∈[-π2,0]时,cos x ≥0,有-x cos x ≥0.∴应选D.方法二 特殊值法,由f (±π2)=0, ∵f (π4)=-π4·cos π4<0,由图像可排除A 、B ,又∵f (-π4)=π4·cos π4>0,排除C ,故选D.8.关于x 的函数f (x )=sin(πx +φ)有以下命题: ①∀φ∈R ,f (x +2π)=f (x ); ②∃φ∈R ,f (x +1)=f (x ); ③∀φ∈R ,f (x )都不是偶函数; ④∃φ∈R ,使f (x )是奇函数. 其中假命题的序号是 ( )A .①③B .①④C .②④D .②③答案 A解析 对命题①,取φ=π时,f (x +2π)≠f (x ),命题①错误;如取φ=2π,则f (x +1)=f (x ),命题②正确;对于命题③,φ=π2时f (x )=f (-x ),则命题③错误;如取φ=π,则f (x )=sin(πx +π)=-sinπx ,命题④正确.9.(2011·全国课标理)设函数f (x )=sin(ωx +φ)+cos(ωx +φ)(ω>0,|φ|<π2)的最小正周期为π,且f (-x )=f (x ),则( )A .f (x )在(0,π2)单调递减B .f (x )在(π4,3π4)单调递减C .f (x )在(0,π2)单调递增D .f (x )在(π4,3π4)单调递增答案 A解析 y =sin(ωx +φ)+cos(ωx +φ)=2sin(ωx +φ+π4),由最小正周期为π,得ω=2,又由f (-x )=f (x )可知f (x )为偶函数,|φ|<π2可得φ=π4,所以y =2cos2x ,在(0,π2)单调递减.10.已知函数y =sin wx 在[-π3,π3]上是减函数,则w 的取值范围是( )A .[-32,0)B .[-3,0)C .(0,32]D .(0,3]答案 A解析 由题意可知,ω<0,且有⎪⎪⎪⎪⎪⎪π3ω≤π2.∴-32≤ω<0.11.函数f (x )=M sin(ωx +φ)(ω>0)在区间[a ,b ]上是增函数,且f (a )=-M ,f (b )=M ,则函数g (x )=M cos(ωx +φ)在[a ,b ]上( )A .是增函数B .是减函数C .可以取得最大值MD .可以取得最小值-M 答案 C解析 方法一(特值法):取M =2,w =1,φ=0画图像即得答案.方法二:T =2πw ,g (x )=M cos(wx +φ)=M ·sin(wx +φ+π2)=M ·sin[w (x +π2w )+φ],∴g (x )的图像是由f (x )的图像向左平移π2w (即T4)得到的由b -a =T 2,可知,g (x )的图像由f (x )的图像向左平移b -a2得到的.∴得到g (x )图像如图所示.选C.12.设f (x )=x sin x ,若x 1、x 2∈[-π2,π2],且f (x 1)>f (x 2),则下列结论中,必成立的是( )A .x 1>x 2B .x 1+x 2>0C .x 1<x 2D .x 21>x 22答案 D13.(2012·衡水调研卷)将函数y =sin(6x +π4)图像上各点的横坐标伸长到原来的3倍,再向右平移π8个单位,得到的函数的一个对称中心是( )A .(π2,0)B .(π4,0)C .(π9,0)D .(π16,0)答案 A解析 将函数y =sin(6x +π4)图像上各点的横坐标伸长到原来的3倍,得到函数y =sin(2x +π4)的图像,再向右平移π8个单位,得到函数f (x )=sin[2(x -π8)+π4]=sin2x的图像,而f (π2)=0,故选A.14.(2011·山东文)若函数f (x )=sin ωx (ω>0)在区间[0,π3]上单调递增,在区间[π3,π2]上单调递减,则ω= ( )A.23 B.32 C .2 D .3答案 B解析 由于函数f (x )=sin ωx 的图像经过坐标原点,根据已知并结合函数图像可知,π3为这个函数的四分之一周期,故2πω=4π3,解得ω=32.15.将函数y =sin(ωx +φ)(π2<φ<π)的图像,仅向右平移4π3,或仅向左平移2π3,所得到的函数图像均关于原点对称,则ω=________.答案 12解析 注意到函数的对称轴之间距离是函数周期的一半,即有T 2=4π3-(-2π3)=2π,T =4π,即2πω=4π,ω=12. 16.已知函数f (x )=sin x +a cos x 的图像的一条对称轴是x =5π3,则函数g (x )=a sin x+cos x 的初相是________.答案 23π解析 f ′(x )=cos x -a sin x ,∵x =5π3为函数f (x )=sin x +a cos x 的一条对称轴,∴f ′(5π3)=cos 5π3-a sin 5π3=0,解得a =-33.∴g (x )=-33sin x +cos x =233(-12sin x +32cos x ) =233sin(x +2π3). 17.已知函数f (x )=2cos 2x +23sin x cos x -1(x ∈R ). (1)求函数f (x )的周期、对称轴方程;(2)求函数f (x )的单调增区间. 答案 (1)T =π,对称轴方程为x =k π2+π6(k ∈Z ) (2)[k π-π3,k π+π6](k ∈Z )解析 f (x )=2cos 2x +23sin x cos x -1=3sin2x +cos2x =2sin(2x +π6).(1)f (x )的周期T =π,函数f (x )的对称轴方程为x =k π2+π6(k ∈Z ). (2)由2k π-π2≤2x +π6≤2k π+π2(k ∈Z ),得kx -π3≤x ≤k π+π6(k ∈Z ).∴函数f (x )的单调增区间为[k π-π3,k π+π6](k ∈Z ).18.已知f (x )=2sin(x +θ2)·cos(x +θ2)+23cos 2(x +θ2)- 3.(1)化简f (x )的解析式,并求其最小正周期; (2)若0≤θ≤π,求θ,使函数f (x )为偶函数;(3)在(2)成立的条件下,求满足f (x )=1,x ∈[-π,π]的x 的集合. 解析 (1)f (x )=sin(2x +θ)+3cos(2x +θ) =2sin(2x +θ+π3),∴T =2πω=2π2=π.(2)由于θ∈[0,π]要使f (x )为偶函数, ∴θ+π3=π2,∴θ=π6.(3)在(2)成立的条件下,f (x )=2cos2x . 由2cos2x =1,∴cos2x =12,∵x ∈[-π,π],∴x =-π6或x =π6.∴x ∈⎩⎨⎧⎭⎬⎫-π6,π6.19.(2012·北京)已知函数f (x )=sin x -cos x sin2xsin x.(1)求f (x )的定义域及最小正周期; (2)求f (x )的单调递减区间.解析 (1)由sin x ≠0,得x ≠k π(k ∈Z ).故f (x )的定义域为{x ∈R |x ≠k π,k ∈Z }. 因为f (x )=(sin x -cos x )sin2xsin x=2cos x (sin x -cos x ) =sin2x -cos2x -1 =2sin(2x -π4)-1,所以f (x )的最小正周期T =2π2=π. (2)函数y =sin x 的单调递减区间为[2k π+π2,2k π+3π2](k ∈Z ).由2k π+π2≤2x -π4≤2k π+3π2,x ≠k π(k ∈Z ),得k π+3π8≤x ≤k π+7π8(k ∈Z ).所以f (x )的单调递减区间为[k π+3π8,k π+7π8](k ∈Z ).1.(2013·东北四校模拟)已知函数f (x )=-2sin(2x +φ)(|φ|<π),若f (π8)=-2,则f (x )的一个单调递增区间可以是( )A .[-π8,3π8]B .[5π8,9π8]C .[-3π8,π8]D .[π8,5π8]答案 D解析 f (π8)=-2,∴-2sin(2×π8+φ)=-2,即sin(π4+φ)=1.∵|φ|<π,∴φ=π4.∴f (x )=-2sin(2x +π4).由2k π+π2≤2x +π4≤2k π+3π2,得k π+π8≤x ≤k π+5π8(k ∈Z ). 当k =0时,π8≤x ≤5π8.2.已知函数y =2sin(wx +θ)为偶函数(0<θ<π),其图像与直线y =2的某两个交点横坐标为x 1、x 2,若|x 2-x 1|的最小值为π,则( )A .w =2,θ=π2B .w =-12,θ=π2C .w =12,θ=π4D .w =2,θ=π4答案 A解析 ∵y =2sin(wx +θ)为偶函数,∴θ=π2.∵图像与直线y =2的两个交点横坐标为x 1,x 2,|x 2-x 1|min =π,即T =π.3.已知函数y =sin πx3在区间[0,t ]上至少取得2次最大值,则正整数t 的最小值是A .6B .7C .8D .9答案 C解析 周期T =2ππ3=6.由题意,T +T4≤t ,得t ≥7.5.故选C.4.函数g (x )=sin 22x 的单调递增区间是 ( )A .[k π2,k π2+π4](k ∈Z )B .[k π,k π+π4](k ∈Z )C .[k π2+π4,k π2+π2](k ∈Z )D .[k π+π4,k π+π2](k ∈Z )答案 A5.(2012·冀州中学模拟)如果关于x 的不等式f (x )<0和g (x )<0的解集分别为(a ,b ),(1b ,1a),那么称这两个不等式为“对偶不等式”,如果不等式x 2-43x ·cos2θ+2<0与不等式2x 2+4x sin2θ+1<0为“对偶不等式”,且θ∈(π2,π),那么θ=________.答案5π6解析 设x 2-43x cos2θ+2<0解集为(a ,b ), 则2x 2+4x sin2θ+1<0解集为(1b ,1a).∴a +b =43cos2θ,ab =2, 1a +1b=-2sin2θ.又1a +1b =a +b ab =43cos2θ2=23cos2θ, ∴23cos2θ=-2sin2θ. ∴tan2θ=- 3.又θ∈(π2,π),∴2θ∈(π,2π).∴2θ=5π3,θ=5π6.6.已知函数f (x )=m sin x +n cos x ,且f (π4)是它的最大值(其中m ,n 为常数且mn ≠0),给出下列命题:①f (x +π4)为偶函数;②函数f (x )的图像关于点(7π4,0)对称; ③f (-3π4)是函数f (x )的最小值;④函数f (x )的图像在y 轴右侧与直线y =m2的交点按横坐标从小到大依次记为P 1,P 2,P 3,P 4,…,则|P 2P 4|=π;⑤m n=1.其中真命题是________.(写出所有正确命题的序号) 答案 ①②③⑤解析 由题意得f (x )=m sin x +n cos x =m 2+n 2sin(x +φ)(tan φ=n m). 因为f (π4)是它的最大值,所以π4+φ=2k π+π2(k ∈Z ),φ=2k π+π4.所以f (x )=m 2+n 2sin(x +2k π+π4) =m 2+n 2sin(x +π4).且tan φ=n m =tan(2k π+π4)=1,即nm =1.故f (x )=2|m |sin(x +π4). ①f (x +π4)=2|m |sin(x +π4+π4)=2|m |cos x ,为偶函数,①正确;②当x =7π4时,f (7π4)=2|m |sin(π4+7π4)=2|m |sin2π=0,所以f (x )的图像关于点(7π4,0)对称,②正确;③f (-3π4)=2|m |sin(π4-3π4)=-2|m |sin π2=-2|m |,取得最小值,③正确;④根据f (x )=2|m |sin(x +π4)可得其周期为2π,由题意可得P 2与P 4相差一个周期2π,即|P 2P 4|=2π,④错误; ⑤m n=1,显然成立,⑤正确.7.已知函数f (x )=cos 2x -sin 2x +23sin x cos x +1.(1)求函数f (x )的最小正周期及单调递减区间;(2)当x ∈[-π6,π3]时,f (x )-3≥m 恒成立,试确定m 的取值范围.答案 (1)π [π6+k π,2π3+k π](k ∈Z ) (2)(-∞,-3]解析 (1)f (x )=cos 2x -sin 2x +23sin x cos x +1=3sin2x +cos2x +1=2sin(2x +π6)+1. 因此函数f (x )的最小正周期为2π2=π.由π2+2k π≤2x +π6≤3π2+2k π(k ∈Z ), 得π6+k π≤x ≤2π3+k π(k ∈Z ). 故函数f (x )的单调递减区间为[π6+k π,2π3+k π](k ∈Z ).(2)当x ∈[-π6,π3]时,2x +π6∈[-π6,5π6],所以-1≤2sin(2x +π6)≤2,因此0≤f (x )≤3.因为f (x )-3≥m 恒成立, 所以m ≤f (x )min -3=0-3=-3. 故m 的取值范围是(-∞,-3].8.已知函数f (x )=3(sin 2x -cos 2x )-2sin x cos x . (1)求f (x )的最小正周期;(2)设x ∈[-π3,π3],求f (x )的值域和单调递增区间.解析 (1)∵f (x )=-3(cos 2x -sin 2x )-2sin x cos x =-3cos2x -sin2x =-2sin(2x +π3),∴f (x )的最小正周期为π. (2)∵x ∈[-π3,π3],∴-π3≤2x +π3≤π,∴-32≤sin(2x +π3)≤1.∴f (x )的值域为[-2,3].∵当y =sin(2x +π3)单调递减时,f (x )单调递增,∴π2≤2x +π3≤π,即π12≤x ≤π3. 故f (x )的单调递增区间为[π12,π3].9.函数f (x )=A sin(ωx +φ)(A >0,ω>0,|φ|<π2)的部分图像(如下图).(1)求f (x )的最小正周期及解析式;(2)设g (x )=f (x )-cos2x ,求函数g (x )在区间[0,π2]上的最大值和最小值.解析 (1)由题图可得A =1,T 2=2π3-π6=π2.所以T =π.所以ω=2.当x =π6时,f (x )=1,可得sin(2×π6+φ)=1.因为|φ|<π2,所以φ=π6.所以f (x )的解析式为f (x )=sin(2x +π6).(2)g (x )=f (x )-cos2x =sin(2x +π6)-cos2x=sin2x cos π6+cos2x sin π6-cos2x=32sin2x -12cos2x =sin(2x -π6).因为0≤x ≤π2,所以-π6≤2π-π6≤5π6.当2x -π6=π2,即x =π3时,g (x )有最大值,最大值为1;当2x -π6=-π6,即x =0时,g (x )有最小值,最小值为-12.10.已知函数f (x )=sin x cos φ+cos x sin φ(其中x ∈R,0<φ<π). (1)求函数f (x )的最小正周期;(2)若函数y =f (2x +π4)的图像关于直线x =π6对称,求φ的值.解析 (1)∵f (x )=sin(x +φ), ∴函数f (x )的最小正周期为2π.(2)函数y =f (2x +π4)=sin(2x +π4+φ),y =sin x 的图像的对称轴为x =k π+π2(k ∈Z ),令2x +π4+φ=k π+π2,k ∈Z ,将x =π6代入上式,得φ=k π-π12(k ∈Z ).∵0<φ<π,∴φ=11π12.11.(2011·浙江文)已知函数f (x )=A sin(π3x +φ),x ∈R ,A >0,0<φ<π2.y =f (x )的部分图像如图所示,P ,Q 分别为该图像的最高点和最低点,点P 的坐标为(1,A ).(1)求f (x )的最小正周期及φ的值;(2)若点R 的坐标为(1,0),∠PRQ =2π3,求A 的值.解析 (1)由题意,得T =2ππ3=6.因为P (1,A )在y =A sin(π3x +φ)的图像上,所以sin(π3+φ)=1.又因为0<φ<π2,所以φ=π6.(2)设点Q 的坐标为(x 0,-A ).由题意可知π3x 0+π6=3π2,得x 0=4,所以Q (4,-A ).如图,连接PQ ,在△PRQ 中,∠PRQ =2π3,由余弦定理,得cos ∠PRQ =RP 2+RQ 2-PQ 22RP ·RQ =A 2+9+A 2-9+4A 22A ·9+A2=-12,解得A 2=3. 又A >0,所以A = 3.。
课时作业(二十五)
1.已知点P 1(0,0)、P 2(1,1)、P 3(1
3,0),则在3x +2y -1≥0表示的平面区域内的点是( )
A .P 1、P 2
B .P 1、P 3
C .P 2、P 3
D .P 2
答案 C
解析 ∵3×0+2×0-1≥0不成立,3×1+2×1-1≥0成立,3×1
3+2×0-1≥0成立,∴P 2、P 3在3x +2y -1≥0表示的区域内,P 1不在该区域内.
2.若点A (5,m )在两平行直线6x -8y +1=0及3x -4y +5=0之间,则m 应取的整数为( )
A .-4
B .4
C .-5
D .5 答案 B
解析 ∵(30-8m +1)(15-4m +5)<0,∴31
8<m <5. ∴m =4.
3.不等式x 2-y 2≥0表示的平面区域是( )
答案 B
解析 ∵不等式x 2-y 2≥0可以写成(x +y )(x -y )≥0,即
⎩⎨
⎧
x +y ≥0x -y ≥0,
点(1,0)满足此不等式组,或⎩⎨
⎧
x +y ≤0
x -y ≤0,
点(-1,0)满
足此不等式组.
4.不等式组⎩⎪⎨⎪
⎧
x ≥0x +3y ≥4
3x +y ≤4所表示的平面区域的面积等于( )
A.3
2 B.2
3 C.43 D.34
答案 C
解析 不等式组表示的平面区域是一个三角形,三个顶点的坐标
分别是(0,43),(0,4),(1,1),所以三角形的面积S =12×(4-43)×1=4
3.
5.不等式组⎩
⎪⎨
⎪⎧
4x +3y ≤12
x -y >-1,y ≥0
表示的平面区域内整点的个数
是( )
A .2个
B .4个
C .6个
D .8个
答案 C
6.在平面直角坐标系中,不等式组⎩⎪⎨⎪
⎧
x +y ≥0x -y +4≥0
x ≤a (a 为常数)表
示的平面区域的面积是9,那么实数a 的值为( )
A .32+2
B .-32+2
C .-5
D .1
答案 D
7.完成一项装修工程,木工和瓦工的比例为2∶3,请木工需付工资每人50元,请瓦工需付工资每人40元,现有工资预算2 000元,设木工x 人,瓦工y 人,请工人数的限制条件是( )
A.⎩
⎪⎨⎪⎧
2x +3y ≤5
x 、y ∈N *
B.⎩⎨⎧
50x +40y ≤2 000
x y =23
C.⎩⎨⎧
5x +4y ≤200
x y =23x 、y ∈N
*
D.⎩⎨⎧
5x +6y <100x y =23
答案 C
8.若点P (m,3)到直线4x -3y +1=0的距离为4,且点P 在不等
式2x +y <3表示的平面区域内,则m =________.
答案 -3
解析 由题意可得⎩
⎪⎨⎪⎧
|4m -9+1|
5=4,m +3<3,解得m =-3.
9.原点O 在直线sin α·x +cos α·y -1=0(其中α∈(0,π2))的________.
答案 左下方 解析 数形结合.
10.如图所示,阴影部分可用二元一次不等式组表示为________.
答案
⎩⎪⎨⎪
⎧
0≤y ≤2y -2x ≤4x ≤0
11.不等式|x |+|y |<3表示的区域内的点的横坐标、纵坐标都是整数的个数有________.
答案 13
解析 数形结合,穷举法.
12.用三条直线x +2y =2,2x +y =2,x -y =3围成一个三角形,则三角形内部区域(不包括边界)可用不等式表示为________.
答案
⎩⎪⎨⎪
⎧
x -y <3x +2y <22x +y >2
解析 数形结合.
13.当m ∈________时,点(1,2)和点(1,1)在y -3x -m =0的异侧. 答案 (-2,-1)
解析 把(1,2)和(1,1)代入y -3x -m 所得到的两个代数式值异号即可,于是(-1-m )(-2-m )<0⇒(m +1)(m +2)<0.
∴-2<m <-1.
14.已知点P (-1,2)及其关于原点的对称点均在不等式2x -ky +1>0表示的平面区域内,求k 的取值范围.
解析
据题意得⎩⎨
⎧
2×(-1)-2k +1>0×1-(-2)·
k +1>0,
即⎩⎪⎨⎪⎧
k <-12
2k +3>0,
解得-32<k <-1
2.
15.某工厂生产甲、乙两种产品,已知生产甲种产品1 t 需耗A 种矿石10 t ,B 种矿石5 t ,煤4 t ;生产乙种产品1 t 需耗A 种矿石4 t ,B 种矿石4 t ,煤9 t .每1 t 甲种产品的利润是600元,每1 t 乙种产品的利润是1 000元.工厂在生产这两种产品的计划中要求消耗A 种矿石不超过300 t ,B 种矿石不超过200 t ,煤不超过360 t ,请列出满足生产条件的数学关系式,并画出相应的平面区域.
解析 设生产甲、乙两种产品分别为x t ,y t ,利润总额为z 元,那么
⎩⎪⎪⎨⎪
⎪⎧
10x +4y ≤3005x +4y ≤2004x +9y ≤360x ≥0y ≥0,
z =600x +1 000y .
作出以上不等式组所表示的平面区域(如图所示).。