实验一蔗糖水解反应速率常数的测定
- 格式:ppt
- 大小:1.92 MB
- 文档页数:21
实验六 一级反应——蔗糖水解速率常数的测定一、实验目的1.测定蔗糖在酸中水解的速率常数。
2.学会使用旋光仪。
二、预习要求1.掌握一级反应的速率方程。
2.了解旋光度的概念。
3.了解旋光度与浓度的关系。
4.了解旋光仪的工作原理及使用方程。
三、实验原理蔗糖水溶液在有氢离子存在时发生水解反应:C 12H 22O 11 + H 2O ——→C 6H 12O 6 + C 6H 12O 6蔗糖 葡萄糖 果糖蔗糖水解的反应为准一级反应,其速率方程可写成: ㏑,0A A c c =ktln c A =-kt + ln c A ,0 (1) 式中c A ,0为蔗糖的初浓度,c A 为反应进行到t 时刻蔗糖的浓度,ln c A ~t 呈线性, 其直线斜率即为速率常数k 。
蔗糖、葡萄糖、果糖都是旋光物质,它们的比旋光度分别为:[α蔗]20D=66.65°、[α葡]20D =52.5°和[α果]20D = -91.9°。
这里的α表示在20℃时用钠黄光作光源测得的旋光度。
正值表示右旋,负值表示左旋。
由于蔗糖的水解是能进行到底的,又由于生成物中果糖的左旋远大于葡萄糖的右旋,所以生成物呈左旋光性。
随着反应的进行,系统逐渐由右旋变为左旋,直至左旋最大。
设反应开始测得的旋光度为α0,经t 分钟后测得的旋光度为αt ,反应完毕后测得的旋光度为c ∞。
当测定是在同一台仪器、同一光源、同一长度的旋光管中进行时,则浓度的改变正比于旋光度的改变,且比例常数相同。
(A,0c -c ∞)∝(0α-∞α)(A c -c ∞)∝(t α-∞α)又 c ∞= 0所以 ,0A c /c A =(0α-∞α)/(t α-∞α) (2) 将式(2)代入式(1)得ln(t α-∞α)= - kt + ln (0α-∞α) (3)式中(0α-∞α)为常数。
用ln(t α-∞α)对t 作图,所得直线的负斜率即为速率常数k 。
四、实验仪器与试剂旋光仪一台;秒表一块;50ml 容量瓶一个;锥形瓶若干;烧杯若干;移液管若干;天平或台秤一台;恒温槽一个; 蔗糖(A.R );3mol/dm 3HCl 溶液五、实验步骤用蒸馏水校正旋光仪的零点,记下检偏镜的旋角α,重复三次取平均值,作为零点误差。
蔗糖水解反应速率常数的测定实验报告误差分析实验目的:研究酵母酶对蔗糖水解的反应速率,测定反应速率常数。
实验原理:蔗糖在酵母酶的催化下水解成葡萄糖和果糖,反应方程式为:C12H22O11 + H2O → C6H12O6 + C6H12O6水解反应速率符合一级反应的速率方程式为:-d[C12H22O11]/dt = k[C12H22O11]实验步骤:1.准备600ml 0.1mol/L pH=6.8的磷酸缓冲溶液。
2.称取1.5g 酵母、0.5g 氨酸,配制成15%(w/v) 溶液。
3.向50ml磷酸缓冲溶液中加入1.0g蔗糖,大量搅拌溶解。
4.将50ml蔗糖溶液装入恒温水浴中,等温至37℃。
5.加入2.0ml酵母、氨酸混合液,迅速装入比色皿。
6.用紫外-可见分光光度计测定反应体系中蔗糖浓度变化的光密度,记录反应开始后15秒至5分钟内,每15秒一次。
误差来源:1.实验装置的误差。
在反应过程中,实验装置的磁力搅拌器、恒温水浴等可能存在误差,影响反应速率的计算。
2.反应体系的不确定性。
反应体系可能存在其他物质的存在,对反应速率的计算造成影响。
3.实验操作的技术误差。
实验过程中的体积计量、时间控制等操作可能存在误差。
误差分析:1.实验装置的误差。
为了避免实验装置的误差对结果的影响,需要使用标准化的实验装置,并进行一定的校准,以减小误差。
2.反应体系的不确定性。
为了保证反应体系的准确性,需要进行充分的反应前处理,去除可能会干扰反应的其他物质。
另外,在实验计算中,也需要对可能的干扰因素进行考虑和修正。
3.实验操作的技术误差。
为了减小技术误差,需要进行实验操作的训练和规范化,准确控制实验操作的每一个细节,避免误差的出现。
结论:通过对酵母酶催化下蔗糖水解反应速率的测定,可以得出反应速率常数的数值,并对误差源进行分析。
为了准确测定反应速率和反应速率常数,需要注意实验装置标准化、反应体系准确性和实验操作规范化等方面的问题,以减小误差的影响。
蔗糖水解反应速度常数的测定一、实验目的1.根据物质的光学性质研究蔗糖水解反应,测定其反应速度常数。
2.了解旋光仪的基本原理、掌握使用方法。
3.学习用Origin 或Excel 处理实验数据。
二、实验原理蔗糖在水中水解成葡萄糖与果糖的反应为:122211261266126HC H O H O C H O C H O ++−−→+蔗糖葡萄糖果糖为使水解反应加速,反应常常以H 3O +作催化剂,故在酸性介质中进行。
水解反应中水是大量的,反应达终点时虽有部分水分子参加反应,但与溶质浓度相比可认为它的浓度没有改变,故此反应可视为一级反应,其动力学方程式为:dckc dt -= (7-1) 或 01ln ck t c= (7-2)式中:0c 为反应开始时蔗糖的浓度,c 为时间t 时蔗糖的浓度。
当0/2c c =时,t 可用1/2t 表示,即为反应的半衰期。
1/2ln 2t k=(7-3) 上式说明一级反应的半衰期只决定于反应速度常数k 而与反应物起始浓度无关,这是一级反应的一个特点。
蔗糖及其水解产物均为旋光物质。
当反应进行时,如以一束偏振光通过溶液则可观察到偏振面的转移。
蔗糖是右旋的,水解的混合物中有左旋的,所以偏振面将由右边旋向左边。
偏振面的转移角度称之为旋光度,以α表示。
因此可利用体系在反应过程中旋光度的改变来量度反应的进程。
溶液的旋光度与溶液中所含旋光物质的种类、浓度、液层厚度、光源的波长以及反应时的温度等因素有关。
为了比较各种物质的旋光能力引入比旋光度[]α这一概念并以下式表示[]tD lcαα=(7-4)式中,t 为实验时的温度;D 为所用光源的波长,α为旋光度,l 为液层厚度(常以10cm 为单位);c 为浓度(常用100mL 溶液中溶有m 克物质来表示),式可写成: []/100tD l m αα=⋅或 []tD lc αα= (7-5)由(7-5)式可以看出,当其他条件不变时,旋光度α与反应物浓度成正比,即Kc α= (7-6)式中K 是与物质的旋光能力、溶液层厚度、溶剂性质、光源的波长、反应时的温度等有关系的常数。
蔗糖水解反应速率常数的测定实验目的(1)明了旋光度法测定化学反应速率的原理;(2)测定蔗糖水解反应速率常数;(3)掌握旋光仪的使用方法;(4)掌握用图解法求反应速率常数。
实验原理蔗糖溶液在H+离子存在时,按下式进行水解:C12H22O11 + H2O → C6H12O6 + C6H12O6蔗糖葡萄糖果糖时间t=0 c00 0t=t c0-c x c x c xt=∞0 c0c0其中,c0为反应物初始浓度,c x为反应进行至t时间的产物浓度,c0-c x为反应进行t时间后反应物的浓度。
此反应中H+离子为催化剂。
当H+离子浓度一定时,此反应在某时间t的反应速率与蔗糖及水浓度一次方的乘积成正比,故为二级反应。
由于在反应过程中水是大大过量,故认为水的浓度在反应过程中不变,这样蔗糖水解反应就可以作为一级反应处理,起速率方程的积分式为:(1)式中,c0为反应开始时蔗糖的浓度;c0-c x为反应至时间t时蔗糖的浓度;k为速率常数。
若测得在反应过程中不同时刻对应的蔗糖浓度,代入上式就可以求出此反应的速率常数k。
而测定各时间所对应的反应物浓度的方法有化学方法与物理方法两种。
化学方法是在反应过程中反应进行若干时间,取出一部分反应混合物,并让其迅速停止反应,记录时间,然后分析与此时间相对应的反应物浓度。
但是要时反应迅速停止在实验上是很困难的,因而所分析的浓度总与取样的时间存在偏差,所以此方法是不够准确的;而物理方法则是利用反应系统中某一物理性质(如电导率、折射率、旋光度、吸收光谱、体积、气压等)与反应物的浓度有直接关系时,通过测量该物理性质的变化就可相应知道反应物浓度的改变。
不过对物理性质有以下要求:(1)物理性质和反应物的浓度要有简单的线性关系,最好是正比关系;(2)在反应过程中反应系统的物理性质要有明显的变化;(3)不能有干扰因素。
这个方法的优点是不需要从反应物系中取出样品,可直接测定,而且可连续地进行分析,方便迅速,还可将物理性质变成电信号进行自动记录等。
蔗糖水解反应速率常数的测定一. 实验目的1. 了解旋光仪的基本原理,掌握旋光仪的正确使用方法。
2. 熟悉反应物和产物的浓度与其旋光度之间的关系。
3. 用自动旋光仪测定蔗糖在酸催化下水解的反映速率常数和半衰期。
二. 实验原理1. 蔗糖在水中转化为葡萄糖和果糖,反应式为:C 12H 22O 11(蔗糖)+H 2O →C 6H 12O 6(葡萄糖)+C 6H 12O 6(果糖)此反应的反应速率与蔗糖,水及催化剂H +离子的浓度有关。
由于H +离子及水的浓度可近似认为不变,因此,蔗糖水解反应可看作为一级反应(假一级反应)。
2. 此反应速率可由下式表示:-dc/dt=kc积分后可得lnc t =lnc 0-ktc t 为时间t 时反应物的浓度, c 0为反应开始时反应物的浓度,k 为反应速率常数。
3. 反应速率还可以用半衰期t 1/2表示,即反应物浓度为反应开始浓度的一半时所需要的时间。
4. 由2式子可得 -d (c 0-x )/dt=k (c 0-x )积分后可得ln(00C C X -)=KX t=0.693k ln 00C C X -当反应进行一半时:t1/2=1k ln000cc1/2c=1kln0c1/2c=ln2k=0.693k5.蔗糖是右旋性物质,比旋光度为66.6°,生成物葡萄糖也是右旋性物质,比旋光度为52.5°,果糖是左旋性物质,比旋光度为-91.9°。
由于果糖的左旋光性比葡萄糖的右旋光性大,所以生成物呈左旋光性。
故随着反应的不断进行,反应体系的旋光性将由右旋变为左旋,直到蔗糖完全水解,这时的左旋角度达到最大值。
三.仪器与试剂WZZ-2B自动旋光仪带塞锥形瓶(150ml)烧杯(100ml)秒表电子台秤移液管(25ml)玻璃棒洗耳球铁夹子HCL(4mol/L)蔗糖(分析纯)四.实验步骤1.插上电源,打开仪器电源开关。
这时钠光灯在交流工作状态下起辉,预热5min,至钠光灯从紫色变到黄色,钠光灯才发光稳定。
蔗糖水解反应速率常数的测定一、实验目的(1) 根据物质的旋光性质研究蔗糖水解反应,测定蔗糖转化反应的速率常数和半衰期;(2) 了解该反应的反应物浓度与旋光度之间的关系; (3) 了解旋光仪的基本原理,掌握旋光仪的使用方法。
二、实验原理蔗糖在水中转化为葡萄糖和果糖,反应式如下:C 12H 22O 11+H 2O →C 6H 12O 6 + C 6H 12O 6 蔗糖 葡萄糖 果糖蔗糖水解速率极慢,在酸性介质中反应速率大大加快,故H +为催化剂。
由于反应时H 2O 是大量存在的,尽管有部分水参加反应 ,仍近似认为整个反应过程中水的浓度是恒定的,故蔗糖水解反应可近似为一级反应。
一级反应的速率方程可由下表示:kc dtdc=- (1)积分式为: 0c kt c ln ln +-= (2)当c=0.5c 0时,可用t 1/2表示,即为反应的半衰期:kt 221ln /= (3)从(2)式可看出在不同的时间测定反应物的相应浓度,并以ln c t 对t 作图得一直线,由直线斜率即可求出反应速率常数k 。
溶液的旋光度与溶液中所含旋光物质的种类、浓度、液层厚度、光源波长及反应时的温度等因素有关。
当其他条件固定时,旋光度α与反应物浓度c 呈线性关系: α = A c (4)式中A 与物质的旋光能力、溶液厚度、溶剂性质、光源波长、反应温度等有关系的常数。
蔗糖水解反应中,反应物与生成物都具有旋光性,旋光度与浓度成正比,且溶液的旋光度为各组成旋光度之和(有加和性)。
当反应进行到某一时刻,体系的旋光度进过零点,然后左旋角不断增加。
当蔗糖完全转化时,左旋角达到最大值α∞。
若以α0 ,αt ,α∞分别为反应时间0,t ,∞时溶液的旋光度,则有:)ln()ln(0t ∞∞-+-=-ααααkt (5)显然,以)ln(∞-a a t 对t 作图可得一直线,从直线斜率即可求得反应速率常数k 。
如果测出两个不同温度时的k 值,利用Arrhenius 公式求出反应在该温度范围内的平均活化能。
一级反应——蔗糖水解反应速率常数的测定一、实验目的1.用旋光仪测定当蔗糖水解时,其旋光度变化与时间的关系,从而推算蔗糖水解 反应的速率常数和半衰期。
2.了解旋光仪的基本原理,掌握其使用方法。
二、实验原理:蔗糖水解反应的计量方程式为:C 12H 22O 11+H 2O ==== C 6H 12O 6+C 6H12O 6蔗糖 葡萄糖 果糖蔗糖水解速率极慢,在酸性介质中反应速率大大加快,故H 3O +为催化剂。
反应中,H 2O 是大量的,反应前后与溶质浓度相比,看成它的浓度不变,故蔗糖水解反应可看做一级反应。
其动力学方程式如下:-dtdc =K 1C 积分式为: ln CC O=K 1 tK 1 =t 1ln CC O 或 K=t303.2lg C C O反应的半衰期2/1t =k2ln K 1 速率常数 t 时间Co 蔗糖初始浓度 C 蔗糖在t 时刻的浓度可见一级反应的半衰期只决定于反应速率常数K ,而与反应物起始浓度无关。
若测得反应在不同时刻时蔗糖的浓度,代入上述动力学的公式中,即可求出K和2/1t 。
测定反应物在不同时刻浓度可用化学法和物理法,本实验采用物理法即测定反应系统旋光度的变化。
蔗糖及其水解产物均为旋光性物质,蔗糖是右旋的,但水解后的混合物葡萄糖和果糖则为左旋,这是因为左旋的果糖比右旋的葡萄糖旋光度稍大的缘故。
因此,当蔗糖开始水解后,随着时间增长,溶液的右旋光度渐小,逐渐变为左旋,即随着蔗糖浓度减小,溶渡的旋光度在改变。
因此,借助反应系统旋光度的测定,可以测定蔗糖水解的速率。
所谓旋光度,指一束偏振光,通过有旋光性物质的溶液时,使偏振光振动面旋转某一角度的性质。
其旋转角度称为旋光度(a )。
使偏振光按顺时针方向旋转的物质称为右旋物质,a 为正值,反之称为左旋物质,a 为负值。
物质的旋光度,除决定于物质本性外,还与温度、浓度、液层厚度、光源波长等因素有关,当光源用钠灯,波长一定,λ=D(5890nm ),实验温度t =20℃时,旋光度与溶液浓度和溶层厚度成正比,a ∝c.l 写成等式 a=[a]t D ·c·l 式中比例常数[a] tD ,称为比旋光度。
蔗糖水解速率常数的测定祁波 031131104一、实验目的1.根据物质的光学性质研究蔗糖水解反应,测定其反应速率常数和半衰期。
2.了解反应物浓度与反应体系旋光度之间的关系。
3.掌握旋光仪的使用方法。
二、实验原理蔗糖溶液在酸性介质中可水解生成葡萄糖和果糖。
反应如下:612661262112212O H C O H C O H O H C +→+(蔗糖) (葡萄糖) (果糖)水解反应中,水是大量的,虽然有部分水分子参加了反应,但与溶质浓度的改变相比可以认为它的浓度是恒定的,而且氢离子是催化剂,其浓度也保持不变,故反应速率只与蔗糖浓度有关,可视为一级反应,其速率方程为:dc kc dt -= (1) 积分上式得: 0lnc kt c= (2)反应的半衰期与反应速率常数的关系式为:12ln 20.693t kk==(3)由积分式不难看出:只要测得不同反应时刻对应的反应物浓度,就可以lnc 对c 作图得到一条直线,由直线斜率求得反应速率常数。
然而,反应是在不断进行,要快速分析出不同时刻反应物的浓度是困难的。
在本实验中,蔗糖及其水解产物都具有旋光性,即能够通过它们的偏振光的偏振面旋转一定的角度(该角度称为旋光度,常以α 符号表示),来量度其浓度。
蔗糖是右旋的,水解混合物是左旋的,所以随水解反应的进行,反应体系的旋光度会由右旋逐渐转变为左旋,因此可以利用体系在反应过程中旋光度的改变来量度反应的进程。
测定物质旋光度所用的仪器称为旋光仪。
溶液的旋光度与溶液中所含旋光物质的旋光能力,溶剂性质、溶液浓度、样品管长度、光源波长和温度等因素有关。
[]M C L t⋅⋅⋅=λαα (4)式中[]tλα为比旋光度,可以量度物质的旋光能力,λ为所用光源的波长,一般用钠光的D 线,其波长为5.89×10-7m, t 为测定温度(℃),L 为样品管长度,C 为旋光物质的物质的量浓度,M为旋光物质的摩尔质量。
由(4)式可以看出,当其它条件不变时,旋光度与物质浓度成正比,即KC =α (5)式中 []M L K t⋅⋅=λα 为比例系数。
蔗糖水解速率常数的测定一、引言蔗糖是一种重要的天然产物,广泛应用于食品、化妆品、医药等领域。
蔗糖水解是制备其他产品的关键步骤,因此对蔗糖水解速率常数进行准确测定具有重要意义。
本文将介绍蔗糖水解速率常数的测定方法。
二、理论背景蔗糖水解反应为:C12H22O11 + H2O → C6H12O6 + C6H12O6该反应为一级反应,其速率方程为:r = k[C12H22O11]其中,r为反应速率,k为速率常数,[C12H22O11]为蔗糖浓度。
三、实验步骤1. 实验器材准备:取一定量的蔗糖和适量的水,在恒温搅拌器中进行溶解;准备pH计和温度计。
2. 实验条件设置:将恒温搅拌器的温度设定在40℃左右,并保持恒温;将pH设置在5.0左右。
3. 反应开始:将适量酵母加入溶液中,并开始计时。
4. 反应过程监测:每隔一定时间,取出一定量的反应液,用酵母浸膏停止反应,然后用pH计测定溶液的pH值。
5. 数据处理:根据反应过程中蔗糖浓度和反应时间的变化关系,计算出速率常数k。
四、实验注意事项1. 实验器材要干净、无杂质,以免影响实验结果。
2. 反应过程中需要严格控制温度和pH值,以确保实验结果准确可靠。
3. 取出反应液时要注意不要污染样品或破坏反应体系。
4. 实验结束后要及时清洗器材并妥善处理废液。
五、实验结果分析通过上述实验方法可以得到蔗糖水解速率常数k的测定结果。
该结果可用于指导工业制备过程中的蔗糖水解反应控制和优化。
六、结论本文介绍了一种简单易行的蔗糖水解速率常数测定方法。
该方法具有可靠性高、精度高等优点,在工业生产中具有广泛的应用前景。
一级反应-蔗糖水解反应速率常数的测定材料1班倪靖 200892044035实验九一级反应,蔗糖水解反应速率常数的测定一实验目的1(测定蔗糖转化反应的速率常数和半衰期;2(了解反应物浓度与旋光度之间的关系;3(了解旋光仪的基本原理,掌握旋光仪的正确使用方法二实验原理蔗糖在酸性条件下水解反应为:,H 2HO,,,,,,COCOCOHHH12662212121166(蔗糖) (葡萄糖) (果糖)+ 它是一个二级反应,在纯水中此反应的速率极慢,通常需要在H催化作用下进行。
由于反应时水是大量存在的,尽管有部分水分子参加了反应,仍可近似地认为整个反应过程中+ 水的浓度是恒定的,而且H是催化剂,其浓度也保持不变。
因此蔗糖转化反应可看作为一级反应。
一级反应的速率方程可表示为:dc,,kclnc,,kt,lnco 其积分式: (10-1) dtc及c分别为反应开始时及t时刻的反应物浓度,k为反应速率常数。
01,,cc当时,时间t可用t表示,即为反应半衰期: 01/22ln20.693,,1t (10-2) 2kk从(10-1)式不难看出,在不同时间测定反应物的相应浓度,并以ln c对t作图,可得一直线,由直线斜率即可得反应速率常数k。
然而反应是在不断进行的,要快速分析出反应物的浓度是困难的。
但蔗糖及其转化物,都具有旋光性,而且它们的旋光能力不同,故可以利用体系在反应进程中旋光度的变化来度量反应的进程。
测量物质旋光度的仪器称为旋光仪。
溶液的旋光度与溶液中所含物质的旋光能力、溶液性质、溶液浓度、样品管长度及温度等均有关系。
当其它条件固定时,旋光度α与反应物浓度c呈线形关系,即α = βc (10-3) 式中比例常数β与物质旋光能力、溶液性质、溶液浓度、样品管长度、温度等有关。
物质的旋光能力可用“比旋光度”来量度。
其定义为:,tt,,,,,L,c,k,c,,,,,,, (10-4) DDL,ct式中[α]为物质的比旋光度;上标“t”表示实验时溶液的温度,λ是指所用光源的波长,一般Do用钠光的D线,其波长为589 nm;α为测得的旋光度( ),L 为样品管长度( dm ),c为旋光物质的质量浓度( g/100mL )。
蔗糖水解反应速率常数的测定一、实验目的1、根据物质的光学性质研究蔗糖水解反应,测定其反应速率常数。
2、了解旋光仪器仪的基本原理,掌握其使用方法。
二、实验原理蔗糖在水中转化成葡萄糖与果糖,其反应为:612661262112212O H C O H C O H O H C +→+它属于二级反应,在纯水中此反应的速率极慢,通常需要在H+离子催化作用下进行。
由于反应时水大量存在,尽管有部分水分子参与反应,仍可近似地认为整个反应过程中水的浓度是恒定的,而且H+是催化剂,其浓度也保持不变。
因此在一定浓度下,反应速度只与蔗糖的浓度有关,蔗糖转化反应可看作为一级反应。
一级反应的速率方程可由下式表示:式中:c 为蔗糖溶液浓度,k 为蔗糖在该条件下的水解反应速率常数。
令蔗糖开始水解反应时浓度为c0,水解到某时刻时的蔗糖浓度为ct,对上式进行积分得: 该反应的半衰期与k 的关系为:蔗糖及其转化产物,都具有旋光性,而且它们的旋光能力不同,故可以利用体系在反应进程中旋光度的变化来度量反应进程。
测量物质旋光度所用的仪器称为旋光仪。
溶液的旋光度与溶液中所含旋光物质的旋光能力,溶剂性质,溶液浓度,样品管长度及温度等均有关系。
当温度、波长、溶剂一定时,旋光度的数值为:[]t D C L αα⋅⋅=或 KC =αL 为液层厚度,即盛装溶液的旋光管的长度;C 为旋光物质的体积摩尔浓度;[]tD α为比旋光度;t 为温度;D 为所用光源的波长。
比例常数’K 与物质旋光能力,溶剂性质,样品管长度,光源的波长,溶液温度等有关.可见,旋光度与物质的浓度有关,且溶液的旋光度为各组分旋光度之和。
作为反应物的蔗糖是右旋性物质,其比旋光度[]02065.66=D 蔗α;生成物中葡萄糖也是右旋性物质,其比旋光度[]0205.52=D葡α;但果糖是左旋性物质,其比旋光度[]0209.91-=D 果α。
由于生成物中果糖的左旋性比葡萄糖右旋性大,所以生成物呈左旋性质.因此随着反应的进行,体系的右旋角不断减小,反应至某一瞬间,体系的旋光度可恰好等于零,而后就变成左旋,直至蔗糖完全转化,这时左旋角达到最大值∞α。
蔗糖水解反应速率常数的测定引言蔗糖是生活中常见的一种二糖,在产生甜味的同时也具有很高的营养价值。
在食品工业和医药工业中,蔗糖的应用广泛,能够作为甜味剂、保湿剂、防腐剂、药物载体等使用。
蔗糖同时也是生化反应中重要的底物,其水解反应可由多种酶催化完成。
研究蔗糖水解反应的速率常数,对于生物化学领域的进一步探索和应用具有重要意义。
蔗糖的水解反应可以由酸、碱和酶催化完成,其中酶催化的反应催化效率最高。
蔗糖的酶催化反应能使其在体内快速水解为葡萄糖和果糖,进而为机体能量供给。
蔗糖水解反应是一个典型的酶催化反应,对研究酶催化的底物特异性、反应过程、催化机理及酶活性等具有重要的参考价值。
本实验通过测定酶催化蔗糖水解反应的速率常数,探究酶催化反应的特性和规律。
实验方法1. 原料和试剂(1)蔗糖:化学纯,粉末状,净重10 g。
(2)葡萄糖酸酐酶:来源于大肠杆菌,50 U/mg,储存在-20℃中。
(3)甲基橙指示剂:化学纯。
(4)0.5 mol/L HCl:对照溶液。
2. 实验步骤(1)制备反应液:称取0.5 g蔗糖,加入5 mL 0.1 mol/L NaAc缓冲液中,摇匀均匀混合,制备出10 % 的蔗糖溶液。
(2)反应过程① 选取10 mL 10 % 蔗糖溶液,加入0.2 mL 0.1 mol/L NaAc缓冲液和0.1 mL 0.5 mol/L HCl,混合均匀后,才向其中加入0.1 mL 50 U/mg的葡萄糖酸酐酶,开始计时。
② 实验过程中加入甲基橙指示剂,当颜色由黄色变为橙色时,反应终止,计算反应时间。
(3)对照实验对照实验组二:取10 mL的10 % 蔗糖溶液,加入0.2 mL NaAc缓冲液和0.1 mL 0.5 mol/L NaOH。
与实验组一相同,加入甲基橙指示剂。
记录反应时间。
3.数据处理反应速率常数 K 的公式如下:K = (1/ t) ×ln[(A-B)/(A0-B)]其中:A为初始时刻的吸光度值,B为反应结束时的吸光度值,A0为对照实验组一的吸光度值,t为反应时间/min,ln为自然对数。
蔗糖水解反应速度常数的测定一、实验目的1、了解旋光仪的基本原理、掌握其正确的操作技术。
2、根据物质的光学性质研究蔗糖水解反应,测定其反应速率常数和半衰期。
二、基本原理1. 蔗糖的转化可看作一级反应蔗糖在H + 催化作用下水解为葡萄糖和果糖,反应方程式为:C 12H 22O 11 + H 2O −−→−+H C 6H 12O 6 + C 6H 12O 6蔗糖 葡萄糖 果糖此反应的反应速率与蔗糖的浓度、水的浓度以及催化剂H +的浓度有关。
但在反应过程中,由于水是大量的,可以认为水的浓度基本不变,且H + 是催化剂,其浓度也保持不变,故反应速率只与蔗糖的浓度有关,而反应速率与反应物浓度的一次方成正比的反应称为一级反应,所以蔗糖的转化反应视为一级反应。
(1) 反应速率公式和半衰期 r kc = (1)k —反应速率常数,为单位浓度时的反应速率, r —反应速率。
r 也可以写为r dc kc dt-== (2) t 反应时间,c 为时间 t 时蔗糖的浓度。
不定积分:ln c kt C =-+ (3)C 积分常数,当0=t 时,0ln C c =0c 蔗糖的起始浓度,代入上式可得定积分式cc t k 0ln 1= (4) 当反应进行一半所用的时间称为半衰期,用t 1/2表示,则2/1002/lnkt c c = (5) 解得 k k t 6932.02ln 2/1==(6)(2)一级反应有三个特点:① k 的数值与浓度无关,量纲:时间-1,常用单位1-s ,1min -等。
② 半衰期与反应物起始浓度无关。
③ 以c ln 对 t 作图应得一直线,斜率为k -,截距为C 。
由此可用作图法求得直线斜率,计算反应速度常数-=k 斜率。
2. 反应物质的旋光性蔗糖及其水解产物葡萄糖,果糖都含有不对称碳原子,它们都具有旋光性,即都能使透过他们的偏振光的振动面旋转一定的角度,此角度称为旋光度,以α表示。
蔗糖,葡萄糖能使偏振光的振动面按顺时针方向旋转,为右旋物质,旋光度为正值。