【精品】2018学年广东省深圳高级中学高二上学期期中数学试卷和解析(文科)
- 格式:doc
- 大小:362.00 KB
- 文档页数:18
深圳市高级中学2017-2018学年第一学期期中考试高二文科数学一、选择题:本题共12小题,每小题5分,共60分。
在每个小题给出的四个选项中,只有一项是符合题目要求的。
1.已知全集{}1,2,3,4,5,6U =,集合{}1,2,4A =,{}2,4,6B =,则)(B C A ⋃⋂= A .{}1B .{}2C .{}4D .{}1,22.已知向量()1,1λ=+m ,()2,2λ=+n ,若()()+⊥-m n m n ,则λ= A .4-B .3-C .2-D .1-3.已知命题p :0x ∀>,总有()1e 1xx +>,则p ⌝为A .00x ∃≤,使得()001e 1xx +≤B .00x ∃>,使得()001e 1xx +≤C .0x ∀>,总有()1e 1x x +≤D .0x ∀≤,总有()1e 1xx +≤4.已知函数()222,02,0x x x f x x x x ⎧+≥=⎨-<⎩.若()()22f a f a ->,则实数a 的取值范围是 A .()(),21,-∞-+∞ B .()1,1-C .()2,1-D .()1,2-5.为了得到函数πsin 26y x ⎛⎫=- ⎪⎝⎭的图象,可以将函数cos 2y x =的图象 A .向右平移π6个单位长度 B .向右平移π3个单位长度 C .向左平移π6个单位长度D .向左平移π3个单位长度6.已知,过点()2,2P 的直线与圆()2215x y -+=相切,且与直线10ax y -+=垂直,则a =A .2B .1C .12-D .127.已知双曲线()222210,0x y a b a b-=>>的一条渐近线平行于直线l :210y x =+,双曲线的一个焦点在直线l 上,则双曲线的方程为A .2233125100x y -= B .2233110025x y -= C .221520x y -= D .221205x y -=8.若()42f x ax bx c =++满足()12f '=,则()1f '-=A .1-B .2-C .2D .09.若cos 2π2sin 4αα=-⎛⎫- ⎪⎝⎭cos sin αα+的值为 A.B .12-C .12D10.设集合{}260A x x x =+-=,{}10B x mx =+=,则B 是A 的真子集的一个充分不...必要..的条件是 A .11,23m ⎧⎫∈-⎨⎬⎩⎭B .0m ≠C .110,,23m ⎧⎫∈-⎨⎬⎩⎭D .10,3m ⎧⎫∈⎨⎬⎩⎭11.若正数,x y 满足315x y+=,则34x y +的最小值为 A .245B .285C .5D .612.椭圆M :()222210x y a b a b+=>>的左、右焦点分别为1F ,2F ,P 为椭圆上任一点,且12PF PF ⋅的最大值的取值范围是22,3c c ⎡⎤⎣⎦,其中c =M 的离心率e 的取值范围是A .11,42⎡⎤⎢⎥⎣⎦B.12⎡⎢⎣⎦C.⎫⎪⎪⎝⎭D .1,12⎛⎫⎪⎝⎭二、填空题:本题共4小题,每小题5分,共20分。
深圳市高级中学第一学期期中考试高二数学本试卷4页,22小题,全卷共计150分。
考试时间为120分钟。
注意事项:1.答题前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再填涂其它答案标号。
回答非选择题时,将答案写在答题卡上,写在本试卷上无效。
3.考试结束后,监考人员将答题卡按座位号、页码顺序收回。
一、选择题:本题共12小题,每小题5分,共60分.在每个小题给出的四个选项中,只有一项是符合题目要求的.1.若集合,,则A.B.C.D.2.已知平面向量,,且//,则=A.B.C.D.3.“”是“”的A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件4.下列函数中,在区间上为增函数的是A.B.C.D.5.为了得到函数的图象,可以将函数的图象A.向右平移个单位长度B.向右平移个单位长度C.向左平移个单位长度D.向左平移个单位长度6.过点,且圆心在直线上的圆的标准方程为A.B.C.D.7.已知椭圆+=1(a>b>0)的左,右焦点分别为F1(–c,0),F2(c,0),过点F1且斜率为1的直线l 交椭圆于点A,B,若AF2⊥F1F2,则椭圆的离心率为A.B.C.D.8.下列导数运算正确的是A.B.C.D.9.已知,则A.B.C.D.10.己知函数恒过定点A.若直线过点A,其中是正实数,则的最小值是A.B.C.D. 511.若,,则的最小值为A.B.C.D.f x xf x恒成立,则不等式的12.设是定义在上的奇函数,且,当时,有()()解集为A.B.C.D.二、填空题:本题共4小题,每小题5分,共20分.13.已知函数,且函数在点(2,f(2))处的切线的斜率是,则=_____.14.已知实数x,y满足条件的最小值为_____.15.若椭圆的弦被点(4,2)平分,则此弦所在直线的斜率为_____.16.若数列的首项,且,则=_____.三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.17.(本小题满分10分)已知m>0,p:x2﹣2x﹣8≤0,q:2﹣m ≤ x ≤2+m.(1)若p是q的充分不必要条件,求实数m的取值范围;(2)若m=5,“p∨q”为真命题,“p∧q”为假命题,求实数x的取值范围.18.(本小题满分12分)已知等差数列{a n}的前n项和为S n,且a3=10,S6=72,b n=a n-30,(1)求通项公式a n;(2)求数列{b n}的前n项和T n的最小值.19.(本小题满分12分)中,内角的对边分别为,的面积为,若.(1)求角;(2)若,,求角.20.(本小题满分12分)已知O为坐标原点,抛物线y2= –x与直线y=k(x+1)相交于A,B两点.(1)求证:OA⊥OB;(2)当△OAB的面积等于时,求实数k的值.21.(本小题满分12分)设函数在点处的切线方程为.(1)求的值,并求的单调区间;(2)证明:当时,.22.(本小题满分12分)已知椭圆的标准方程为,该椭圆经过点,且离心率为.(1)求椭圆的标准方程;(2)过椭圆长轴上一点作两条互相垂直的弦.若弦的中点分别为,证明:直线恒过定点.深圳市高级中学第一学期期中考试高二数学参考答案题号 1 2 3 4 5 6 7 8 9 10 11 12 答案 B B A A A B B C D B C D13.14.15.16.17.【答案】(1);(2)【解】(1)由x2﹣2x﹣8≤0得﹣2≤x≤4,即p:﹣2≤x≤4,记命题p的解集为A=[﹣2,4],p是q的充分不必要条件,∴A?B,∴,解得:m≥4.(2)∵“p∨q”为真命题,“p∧q”为假命题,∴命题p与q一真一假,①若p真q假,则,无解,②若p假q真,则,解得:﹣3≤x<﹣2或4<x≤7.综上得:﹣3≤x<﹣2或4<x≤7.18.【答案】(1);(2).【解】(1)由a3=10,S6=72,得解得所以a n=4n-2.(2)由(1)知b n=a n-30=2n-31.由题意知得≤n≤.因为n∈N+,所以n=15.所以{b n}前15项为负值时,T n最小.可知b1=-29,d=2,T15=-225.19.【答案】(1) ; (2) 或【解】(1) 中,(2) ,,由得且B>A或或20.【答案】(1)证明见解析;(2).【证明与解答】(1)显然k≠0.联立,消去x,得ky2+y–k=0.如图,设A(x1,y1),B(x2,y2),则x1≠0,x2≠0,由根与系数的关系可得y1+y2=–,y1·y2=–1.因为A,B在抛物线y2=–x上,所以=–x1,=–x2,·=x1x2.因为k OA·k OB=·=–1,所以OA⊥OB.(2)设直线y=k(x+1)与x轴交于点N,令y=0,则x=–1,即N(–1,0).因为S△OAB=S△OAN+S△OBN=ON·|y1|+ON·|y2|=ON·|y1–y2|=×1×,所以,解得k=±.21.【解析】⑴,由已知,,故a= - 2,b= - 2.,当时,,当时,,故f(x)在单调递减,在单调递增;⑵,即,设,,所以g(x)在递增,在递减,所以max26()(2)1eg x g.当x≥0时,.22.【答案】(1);(2).【解】(1)解:∵点在椭圆上,∴,又∵离心率为,∴,∴,∴,解得,,∴椭圆方程为.(2)证明:设直线的方程为,,则直线的方程为,联立,得,设,,则,,∴,由中点坐标公式得,将的坐标中的用代换,得的中点,∴直线的方程为,,令得,∴直线经过定点,当时,直线也经过定点,综上所述,直线经过定点.当时,过定点.。
广东深圳第二高级中学2018-2019学度高二上学期年中考试数学文试题高 二 〔文科〕数 学 试 题石文静第一卷【一】选择题:本大题共10小题,每题5分,总分值50分.在每题给出的四个选项中,只有一项为哪一项符合题目要求的.1.假设数列}{n a 的通项公式为)2(+=n n a n ,那么下面哪个数是那个数列的一项A.18B.20C.24D.302.以下关系式中,正确的选项是 A.22b a b a >⇒> B.ba b a 110<⇒>>C.22bc ac b a >⇒>D.c b c a b a -<-⇒>3.数列{}n a 满足111,21n n a a a +==+〔N n +∈〕,那么4a 的值为 A.4B.8C.15D.314.在等差数列{}na中,假设686=+a a ,那么数列{}n a 的前13项之和为A.239B.39C.2117D.785.在ABC ∆中,角,,A B C 的对边分别为,,a b c ,且C c B b A a sin sin sin =+,那么ABC ∆的形状是A 、等腰三角形B 、直角三角形C 、等腰直角三角形D 、等腰或直角三角形6.在ABC ∆中,角,,A B C 的对边分别为,,a b c ,且45,60,1,B C c ===那么最短边的边长等于127.在等比数列{}n a 中,12a =,前n 项和为n S ,假设数列{}1n a +也是等比数列,那么n S 等于A 、122n +-B 、3nC 、31n -D 、2n8.不等式052>+-b x ax 的解集是}23|{-<<-x x ,那么不等式250bx x a -+>的解是A.3-<x 或2->xB.21-<x 或31->xC.3121-<<-x D.23-<<-x9、数列{}na满足1a ,12a a -,23a a -,…,1--n n a a 是首项为1,公比为2的等比数列,那么=na A.12-n B.121--n C.12+n D.14-n 10、以下关于数列的说法: ①假设数列{}n a 是等差数列,且p q r +=〔,,p q r 为正整数〕那么p q r a a a +=; ②假设数列{}n a 前n 项和2)1(+=n Sn,那么{}n a 是等差数列;③假设数列{}{}n n n n a a a a 则满足,21=+是公比为2的等比数列;④假设数列{}na满足{}n n n a a S 则,12-=是首项为1,公比为2等比数列.其中正确的个数..为 A 、1B 、2C 、3D 、4第二卷非选择题【二】填空题:本大题共4小题,每题5分,总分值20分、 11.二元一次不等式组⎪⎩⎪⎨⎧≤≤≥++000834y x y x 表示的平面区域的面积是.12.实数()b a b a <,的等差中项是23,正等比中项是2,那么=a ,=b .13、在ABC ∆中,角,,A B C 的对边分别为,,a b c ,且,,A B C 成等差数列,2b =,那么=Aa sin .14.函数mx m mx x f +-+=)12(2012)(2的定义域是R ,那么实数m 的取值范围是.【三】解答题:本大题共6小题,总分值80分。
高级中学2018-2019学年第二学期期中测试高二文科数学本试卷分为第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共4页,第Ⅰ卷为1-12题,共60分,第Ⅱ卷为13-22题,共90分. 全卷共计150分. 考试时间为120分钟. 注意事项:1、答第一卷前,考生务必将自己的姓名、准考证号、考试科目用铅笔涂写在答题卡上.2、每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑. 如需改动用橡皮擦干净后,再涂其它答案,不能答在试题卷上.3、考试结束,监考人员将答题卡收回. 附:(1)回归直线方程:y a b x ∧∧∧=+ ;(2)回归系数:1221ni ii ni i x y nx yb x nx∧==-=-∑∑,a y b x ∧∧=-,11n i i x x n ==∑ ,11ni i y y n ==∑.第I 卷 (本卷共计60 分)一、选择题:(本大题共12小题,每小题5分,满分60分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.若p ⌝是q ⌝的必要不充分条件,则p 是q 的 ( )A.充分不必要条件B.必要不充分条件C.充分且必要条件D.既不充分也不必要条件2.下列函数中,定义域是R 且为增函数的是 ( )A .xy e-= B .3y x = C . y lnx = D .y x = 3.有一段“三段论”推理是这样的:对于可导函数()f x ,如果0()0f x '=,那么0x x =是函数()f x 的极值点,因为函数3()f x x =在0x =处的导数值(0)0f '=,所以,0x =是函数3()f x x =的极值点。
以上推理中 ( )A .结论正确B .大前提错误C .小前提错误D .推理形式错误4.若复数21(1)()z a a i a R =-++ ∈是纯虚数,则1z a+的虚部为( ) A .25-B .25i -C .25D .25i 5.定义集合运算:{}|,,A B z z xy x A y B *==∈∈.设{}{}1,2,0,2A B ==,则集合A B *的所有元素之和为 ( ) A .0 B .2 C .3 D .66.函数243,[0,3]y x x x =-+∈的值域为 ( ) A. [0,3] B. [1,0]- C. [1,3]- D. [0,2]7.如图所示,圆O 的直径6AB =,C 为圆周上一点, 3BC =过C 作圆的切线l , 过A 作l 的垂线AD ,垂足为D ,则DAC ∠ =( )A.15︒B.30︒C.45︒D.60︒8.已知()f x 、()g x 均为[]1,3-上连续不断的曲线,根据下表能判断方程()()f x g x =有实数解的区间是( )A. (-C . (0,1)D .(2,3)9.直线12(t )2x ty t=+⎧⎨=+⎩是参数被圆229x y +=截得的弦长等于( )A.125 B. C. 510.若,{1,0,1,2}a b ∈-,则函数2()2f x ax x b =++有零点的概率为 ( )A .316B .78C .34D .5811.若32()33(2)1f x x ax a x =++++有极大值和极小值,则a 的取值范围是 ( )A .12a -<<B .2a >或1a <-C .2a ≥或1a ≤-D .12a a ><-或12. 已知()f x 是定义在R 上周期为4的奇函数,当(0,2]x ∈时,2()2log xf x x =+,则(2015)f = ( )A .2-B .21C .2D .5第II 卷 (本卷共计90 分)注意事项:请用黑色墨水签字笔在答题卡...上作答,在试题卷上答题无效. 二、填空题:(本大题共4小题,每小题5分,满分20分)13.在极坐标系中,点()20P ,与点Q关于直线2sin θ=对称,则PQ = . 14.已知复数122,34,z m i z i =+=-若12z z 为实数,则实数m 的值为 。
深圳中学2017-2018学年第一学期期中试题 年级:高二(理科) 科目:数学(标准、实验、荣誉)考试时长:90分钟 卷面总分:100分注意事项:答案写在答题卡指定的位置上,写在试卷上无效,选择题作答必须用2B 铅笔,修改时用橡皮擦擦干净,解答题作答必须用黑色墨迹签字笔或钢笔填写,答题不得超过答题框. 一、选择题(8小题,每小题4分,共32分)1.在ABC △中,角A ,B ,C 所对的边分别为a ,b ,c ,已知π3C =,2a =,1b =,则c 等于( ) ABCD .12.下列结论正确的是( ) A .若ab bc >,则a b >B .若88a b >,则a b >C .若a b >,0c <,则ac bc <Da b >3.在ABC △中,若sin 2cos sin C A B =⋅,则此三角形必为( ) A .等腰三角形 B .正三角形 C .直角三角形D .等腰直角三角形4.设等差数列{}n a 的前n 项和为n S ,若39S =,636S =,则789a a a ++=( ) A .63B .45C .36D .275.数列{}n a 满足112 , 0212 1 , 12n n n n n a a a a a +⎧⎪⎪=⎨⎪-<⎪⎩≤≤≤,若135a =,则2015a =( )A .15B .25 C .35D .456.已知ABC △的三个内角A ,B ,C 所对的边分别为a ,b ,c ,若22co s s i n s i n s i n B A C B =,则( )A .a ,b ,c 成等差数列 BC .2a ,2b ,2c 成等比数列D .2a ,2b ,2c 成等差数列7.已知函数()121f x x x =+--,则不等式()1f x >的解集为( ) A .2 , 23⎛⎫⎪⎝⎭B .1 , 23⎛⎫⎪⎝⎭C .2 , 33⎛⎫⎪⎝⎭D .1 , 33⎛⎫⎪⎝⎭8.在直角坐标系中,定义()1*1n n nn n n x y x n y y x ++=-⎧∈⎨=+⎩N 为点() , n n n P x y 到点()111 , n n n P x y +++的一个变换:深中变换.已知()10 , 1P ,()222 , P x y ,…,() , n n n P x y ,()111 , n n n P x y +++是经过“深中变换”得到的一列点,设1n n n a P P +=,数列{}n a 的前n 项和为n S ,那么10S 的值为( ) A.(312B.(312+C.)311D.)311二、填空题(6小题,每小题4分,共24分)9. 在ABC △中,135B =︒,15C =︒,5a =,则此三角形的最大边长为________. 10.已知等比数列{}n a 的公比13q =-,则13572468a a a a a a a a ++++++等于________.11.有两个等差数列2,6,10,…,190及2,8,14,…,200,由这两个等差数列的公共项按从小到大的顺序组成一个新数列,则这个新数列的前10项之和为________. 12.已知数列{}n a 满足13a =, 121n n a a +=+,则{}n a 的通项公式为n a =________. 13.已知实数x ,y 满足2102101x y x y x y -+⎧⎪--⎨⎪+⎩≥≤≤,则347x y +-的最大值是________.14.以()0 , m 间的整数()*1 , m m >∈N 为分子,以m 为分母组成分数集合1A ,其所有元素和为1a ;以()20 , m 间的整数()*1 , m m >∈N 为分子,以2m 为分母组成不属于集合A 的分数集合2A ,其所有元素和为2a ;……,依次类推,以()0 , n m 间的整数()*1 , m m >∈N 为分子,以n m 为分母组成不属于1A ,2A ,…,1n A -的分数集合n A ,其所有元素和为n a ,则12n a a a +++= ________.三、解答题(4大题,共44分)15.(本小题满分10分)ABC △中,7BC =,3AB =,且sin 3sin 5C B =. (1)求AC 的长; (2)求A ∠的大小; (3)求ABC △的面积. 16.(本小题满分10分)某工厂修建一个长方体形无盖蓄水池,其容积为4800立方米,深度为3米,池底每平方米的造价为150元,池壁每平方米的造价为120元.设池底长方形长为x 米. (1)用含x 的表达式表示池壁面积S ;(2)怎样设计水池能使总造价最低?最低造价是多少? 17.(本小题满分12分)设数列{}n a 的前n 项和为n S ,12a =,()*12 1 , n n a S n n +=+∈N ≥,数列{}n b 满足21n nn b a -=. (1)求数列{}n a 的通项公式; (2)求数列{}n b 的前n 项和n T ; 若数列{}n c 满足()21nn n a c a =-,且{}n c 的前n 项和为n K ,求证:3n K <.18.(本小题满分12分)设二次函数()()()24f x k x kx k =-+∈R ,对任意实数x ,有()62f x x +≤恒成立;正项数列{}n a 满足()1n n a f a +=.数列{}n b ,{}n c 分别满足12n nb b +-=,2214n n c c +=.(1)若数列{}n b ,{}n c 为递增数列,且11b =,11c =-,求{}n b ,{}n c 的通项公式; (2)在(1)的条件下,若()()()*1 , 12n b g n n n f n =∈-N ≥,求()g n 的最小值;(3)已知113a =,是否存在非零整数λ,使得对任意*n ∈N ,都有()1333312111log log log 112log 2111222n n n a a a λ-⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪+++>-+-+ ⎪ ⎪⎪ ⎪ ⎪ ⎪---⎝⎭⎝⎭⎝⎭ 恒成立,若存在,求之;若不存在,说明理由.深圳中学2015-2016学年第一学期期中试题解析——叶晋飞一、选择题 1.B 2.C 3.A解析:在ABC △中,()πC A B =-+∴sin 2cos sin C A B =()sin 2cos sin A B A B ⇒+=sin cos cos sin 2cos sin sin cos cos sin 0A B A B A B A B A B ⇒+=⇒-=()sin 0A B A B ⇒-=⇒=∴ABC △为等腰三角形4.B解析:{}n a 为等差数列3S ⇒,63S S -,96S S -也或等差关系 即9,27,789a a a ++为等差数列关系78945a a a ⇒++= 5.B解析:135a =代入到递推式中得215a =,同理可得325a =,445a =,535a =;因此{}n a 为一个周期为4的一个数列.∴201545033325a a a ⨯+=== 6.D解析:222222222cos sin sin sin 222Ba cb B A C ac b a c b ac+-=⇒⋅=⇒+=由等差中项定理可得2a ,2b ,2c 或等差数列. 7.A解析:当1x ≥时,()()()1121312f x x x x x >⇒+--=-+>⇒<∴12x <≤① 当11x -<≤时,()()()211211323f x x x x x >⇒+-->⇒>⇒>∴213x <<② 当1x <-时,()()()11211314f x x x x x >⇒-++->⇒->⇒>无解③ 综上,解集为2 , 23⎛⎫⎪⎝⎭.8.C .解析:由11n n nn n n x y x y y x ++=-⎧⎨=-⎩,()()120 , 1 1 , 1P P ⇒,()30 , 2P ,()4 2 , 2P ,()50 , 4P ,()6 4 , 4P . 1121a PP ==,2a =3a =4a =11n n a -=⋅数列{}n a 为首项11a =公比q()()105101112131112S ⋅--===-二、填空题9. 10.3- 11.560解析:等差数列2,6,10,…,190的通项为()21442n a n n =+-⋅=-等差数列2,8,10,14,…,200的通项为()21664n b n n =+-⋅=-数列{}n a 与数列{}n b 首项112a b ==,由这两个等差数列的公共项也是一个等差数列{}n c ,首项12C =,公差为4与6的最小公倍数,12d =,∴()21121210n C n n =+-⋅=- ()()11012101021056022n n C C nS S +⋅⨯-+⨯=⇒==12.121n +- 2解析:(){}11211211n n n n n a a a a a ++=+⇒+=+⇒+为首项为114a +=,公比2q =的等比数列11114242121n n n n n a a --+⇒+=⋅⇒=⋅-=-13.1414.12n m -解析:1121m a m m m -=+++221222121m a a m m m -=+++-()1231121n n n n n nm a a a a a m m m--=+++-++++ ()1231211121n nn n n n nm a a a a m m m m m -⇒++++=+++=+++- ()()1231111122n nn n n m m m a a a a m -+--⇒++++==三、解答题15.(1)由正弦定理所得sin 35535sin 533C AB AC AB B AC ==⇒=⋅=⋅=(2)由余弦定理所得222957151cos 2235302AB AC BC A ABAC 22+-+--∠====-⨯⨯又∵在ABC △中∴2π3A ∠=(3)11sin 3522ABC S AB AC A =⋅⋅∠=⨯⨯=△16.(1)由题意得水池底面积为480016003=(平方米) 池壁面积160096002336S x x x x ⎛⎫=+⋅=+⎪⎝⎭(平方米) (2)设水池总造价为y ,所以960061201600150120240000297600y x x ⎛⎫=+⨯+⨯+= ⎪⎝⎭≥ 当且仅当96006x x=即40x =米时,总造价最低为297600元. 17.(1)∵12n n a S +=+①∴12n n a S -=+② 当2n ≥时①-②112n n n n n a a a a a ++-=⇒= 数列{}n a 为公比2q =的等比数列当1n =时,2124a a =+= 2124a a =⨯=也满足12n n a a += ∴111222n n n n a a q --==⋅= (2)21212n nn n n b a --== 1223135212222n n n n T b b b n T =+++-⇒=++++ ③ 231113232122222n n n n n T +--=++++ ④ ③-④:2311122221222222n n n n T +-=++++-12311211112222232n n n n T +-⎛⎫⇒=-+⋅+++ ⎪⎝⎭111122213214312212n n nnn n T -⎡⎤⎛⎫-⎢⎥ ⎪⎝⎭⎢⎥-+⎣⎦⇒=-+⋅=--∴3232n nnT +=-(3)由(2)所得()()()211221122121212121nn n n n n n n C --⎛⎫=<=-⨯ ⎪----⎝⎭- 123n n k C C C C =++++ ()2222248213721nn n k ⇒=++++- 214811111122229771515312121n n n k -⎛⎫⎛⎫⎛⎫⇒<+++⨯-+⨯-++⨯- ⎪ ⎪ ⎪--⎝⎭⎝⎭⎝⎭ 1481111112294971515312121n n n k -⎛⎫⇒<+++⨯-+-++- ⎪--⎝⎭4221294921n n k <++-- ∵4192<,221149212n -<-∴1123322n n k k <++=⇒<证毕. 18.(1)数列{}n b 为递增数列,则112n n n n b b b b ++-=-= ∴{}n b 为公差2d =的等差数列11b =. ∴()11221n b n n =+-⨯=-(*n ∈N ) 由22211244n n nnC CC C ++=⇒= 又∵数列{}n C 为递增数列∴1122n n n nC C C C ++=⇒= ∴数列{}n C 公比2q =的等比数列,首先11C =- ∴()()11*122n n n C n --=-⋅=-∈N(2)()62f x x +≤恒成立,即()2462k x kx x -++≤恒成立()()24620k x k x ⇒-+--≤恒成立()()()224042684020k k k k k k -<<⎧⎧⎪⎪⇒⇒⇒=⎨⎨=-+-<-⎪⎪⎩⎩△≤ ∴()222f x x x =-+则()222f n n n =-+()()()2221422122441122112222n n n g n n n n n nn n ---====-+-----+-∴()212g n n=-为关于n 的单调递增函数,又∵1n ≥. ∴()()min 21212g n g ===-- (3)由(2)得()()22211222222f x x x x x x ⎛⎫=-+=--=--+ ⎪⎝⎭()1n n a f a +=又∵()12f x ⇒≤正项数列{}n a 满足10 , 2n a ⎛⎤∈ ⎥⎝⎦令12n n b a =-则()2211111222222n n nn n b a a a a ++⎛⎫=-=--+=- ⎪⎝⎭ 2111lg lg 2lg 22lg lg 22lg 22n n n n b a a b +⎛⎫⎛⎫⇒=-=+-=+ ⎪ ⎪⎝⎭⎝⎭()1lg lg22lg lg2n n b b +⇒+=+ 又∵1111lg lg 2lg lg 2lg 233b ⎛⎫+=-+= ⎪⎝⎭∴112211111lg lg 2lg 2lg 2lg 3323n n n n n n b b b ---⎛⎫⎛⎫⎛⎫+=⋅⇒=⇒=⋅ ⎪ ⎪⎪⎝⎭⎝⎭⎝⎭33312111log log log 111222n a a a ⎛⎫⎛⎫ ⎪ ⎪⇒+++ ⎪ ⎪ ⎪ ⎪---⎝⎭⎝⎭11222333log 23log 23log 23n -=⋅+⋅++⋅ 02113log 2322n n -=⋅+++()03212log 212n n -=+-3log 221n n =+-要证()133log 221112log 2n n n n λ-+->-+-⋅+恒成立即证()1212n n λ->-⋅恒成立当n 为奇数时,即12n λ-<恒成立,当且仅当1n =时,12n -有最小值为1∴1λ< 当n 为偶数时,12n x ->-恒成立,当且仅当2n =时,12n --有最大值2-∴2λ>-. 又∵λ为非零整数∴1x =-.。
2018-2019学年广东省深圳市宝安区西乡中学高二(上)期中数学试卷(文科)一、选择题:(本大题共12小题,每小题5分,第12小题,共60分)1.(5分)已知函数f(x)=ax2+bx+c的图象如图,则不等式ax2+bx+c>0的解为()A.{x|x>2}B.{x|x>±2}C.{x|x<﹣2或x>2}D.{x|﹣2<x<2}2.(5分)下列不等式成立的是()A.若a2>b2,则a>b B.若a>b,则a2>b2C.若a>b,则ac2>bc2D.若ac2>bc2,则a>b3.(5分)已知{a n}是等差数列,a n=2n﹣1,则S5等于()A.36B.25C.20D.494.(5分)等比数列{a n}的前n项的和为S n=3n﹣1,则a2等于()A.1B.2C.3D.65.(5分)在等比数列{a n}中,a5﹣a1=15,a4﹣a2=6,则公比q等于()A.B.2C.或2D.﹣26.(5分)在△ABC中,已知b2+c2﹣a2+bc=0,则角A等于()A.B.C.D.7.(5分)如果△ABC三边a,b,c满足bcosA=acosB,则△ABC是()A.等腰三角形B.等边三角形C.等腰三角形或直角三角形D.等腰直角三角形8.(5分)已知数列{a n}满足a1=,a n+1=,则a5=()A.B.C.D.9.(5分)下列不等式成立的个数是()①;②;③a2+b2≥﹣2ab;④.A.1个B.2个C.3个D.4个10.(5分)如图,阴影部分区域中的任意点(含边界)都满足不等式x﹣2y>a,则实数a的取值范围为()A.(﹣∞,1)B.(﹣∞,﹣2)C.(﹣2,+∞)D.(1,+∞)11.(5分)某小镇在今年年底统计有人口20万,预计人口年平均增长率为1%,那么五年后这个小镇的人口数为()A.20×(1.01)5万B.20×(1.01)4万C.万D.万12.(5分)关于x的不等式mx2﹣(1﹣m)x+m>0对任意实数x都成立,则实数m的取值范围是()A.B.C.D.二、填空题:(本大题共4小题,每小题5分,满分20分)13.(5分)已知△ABC的面积为,a=3,b=2,则C=或.14.(5分)不等式组所表示的平面区域的面积为.15.(5分)一元二次不等式ax2+x+c<0的解集为{x|﹣2<x<1},则不等式ax2﹣x+c<0的解集为.16.(5分)求和:=.三、解答题:(本大题共6题,共70分,其中第22题是A层必做,B层选做)17.(12分)已知等差数列{a n}中,a2=﹣5,a8=7(1)求数列的通项公式;。
2017-2018学年广东省深圳高级中学高二(上)期中数学试卷(文科)一、选择题:本题共12小题,每小题5分,共60分.在每个小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)已知全集U={1,2,3,4,5,6},集合A={1,2,4},B={2,4,6},则A∩(∁U B)=()A.{1}B.{2}C.{4}D.{1,2}2.(5分)已知向量=(λ+1,1),=(λ+2,2),若(+)⊥(﹣),则λ=()A.﹣4 B.﹣3 C.﹣2 D.﹣13.(5分)已知命题p:∀x>0,总有(x+1)e x>1,则¬p为()A.∃x0≤0,使得(x0+1)e≤1 B.∃x0>0,使得(x0+1)e≤1C.∀x>0,总有(x+1)e x≤1 D.∀x≤0,总有(x+1)e x≤14.(5分)已知函数f(x)=.若f(2﹣a2)>f(a),则实数a的取值范围是()A.(﹣∞,﹣2)∪(1,+∞)B.(﹣1,1)C.(﹣2,1)D.(﹣1,2)5.(5分)为了得到函数y=sin(2x﹣)的图象,可以将函数y=cos2x的图象()A.向右平移个单位长度B.向右平移个单位长度C.向左平移个单位长度D.向左平移个单位长度6.(5分)已知过点P(2,2)的直线与圆(x﹣1)2+y2=5相切,且与直线ax﹣y+1=0垂直,则a=()A.B.1 C.2 D.7.(5分)已知双曲线﹣=1(a>0,b>0)的一条渐近线平行于直线l:y=2x+10,双曲线的一个焦点在直线l上,则双曲线的方程为()A.B.C.D.8.(5分)若函数f(x)=ax4+bx2+c满足f′(1)=2,则f′(﹣1)=()A.﹣1 B.﹣2 C.2 D.09.(5分)若,则cosα+sinα的值为()A.B.C.D.10.(5分)设集合A={x|x2+x﹣6=0},B={x|mx+1=0},则B是A的真子集的一个充分不必要的条件是()A.B.m≠0 C.D.11.(5分)若正数x,y满足+=5,则3x+4y的最小值是()A.B.C.5 D.612.(5分)椭圆=1(a>b>0)的左、右焦点分别为F1、F2,P为椭圆M上任一点,且的最大值的取值范围是[c2,3c2],其中.则椭圆M的离心率e的取值范围是()A.B. C.D.二、填空题:本题共4小题,每小题5分,共20分.13.(5分)设L为曲线C:y=在点(1,0)处的切线,则L的方程为.14.(5分)若非负数变量x、y满足约束条件,则x+y的最大值为.15.(5分)已知双曲线的左、右焦点分别为F1,F2,过F1的直线与双曲线的左支交于A,B两点,线段AB长为5.若a=4,那么△ABF2的周长是.16.(5分)在数列{a n}中,a1=1,a1+++…+=a n(n∈N*),则数列{a n}的通项公式a n=.三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.17.(10分)设△ABC的内角为A,B,C,且sinC=sinB+sin(A﹣B).(I)求A的大小;=,求△ABC的周长.(II)若a=,△ABC的面积S△ABC18.(12分)已知数列{a n}的前n项和S n=.(Ⅰ)求数列{a n}的通项公式;(Ⅱ)求数列{a n•2n﹣1}的前n项和T n.19.(12分)已知过抛物线y2=2px(p>0)的焦点,斜率为2的直线交抛物线于A(x1,y1),B(x2,y2)(x1<x2)两点,且|AB|=9.(1)求该抛物线的方程;(2)O为坐标原点,C为抛物线上一点,若=+λ,求λ的值.20.(12分)已知向量=(2sinA,1),=(sinA+cosA,﹣3),⊥,其中A 是△ABC的内角.(1)求角A的大小;(2)设△ABC的角A,B,C所对的边分别为a,b,c,D为BC边中点,若a=4,AD=2,求△ABC的面积.21.(12分)如图,等边三角形OAB的边长为,且其三个顶点均在抛物线E:x2=2py(p>0)上.(1)求抛物线E的方程;(2)设动直线l与抛物线E相切于点P,与直线y=﹣1相较于点Q.证明以PQ 为直径的圆恒过y轴上某定点.22.(12分)已知椭圆C的中心在坐标原点,焦点在x轴上,离心率e=,且椭圆C经过点P(2,3),过椭圆C的左焦点F1且不与坐标轴垂直的直线交椭圆C 于A,B两点.(1)求椭圆C的方程;(2)设线段AB的垂直平分线与x轴交于点G,求△PF1G的面积S的取值范围.2017-2018学年广东省深圳高级中学高二(上)期中数学试卷(文科)参考答案与试题解析一、选择题:本题共12小题,每小题5分,共60分.在每个小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)已知全集U={1,2,3,4,5,6},集合A={1,2,4},B={2,4,6},则A∩(∁U B)=()A.{1}B.{2}C.{4}D.{1,2}【解答】解:因为全集U={1,2,3,4,5,6},集合A={1,2,4},B={2,4,6},∴∁U B={1,3,5},∴A∩(∁U B)={1}.故选:A.2.(5分)已知向量=(λ+1,1),=(λ+2,2),若(+)⊥(﹣),则λ=()A.﹣4 B.﹣3 C.﹣2 D.﹣1【解答】解:∵,.∴=(2λ+3,3),.∵,∴=0,∴﹣(2λ+3)﹣3=0,解得λ=﹣3.故选:B.3.(5分)已知命题p:∀x>0,总有(x+1)e x>1,则¬p为()A.∃x0≤0,使得(x0+1)e≤1 B.∃x0>0,使得(x0+1)e≤1C.∀x>0,总有(x+1)e x≤1 D.∀x≤0,总有(x+1)e x≤1【解答】解:根据全称命题的否定为特称命题可知,¬p为∃x0>0,使得(x0+1)e≤1,故选:B.4.(5分)已知函数f(x)=.若f(2﹣a2)>f(a),则实数a的取值范围是()A.(﹣∞,﹣2)∪(1,+∞)B.(﹣1,1)C.(﹣2,1)D.(﹣1,2)【解答】解:函数f(x)=,由f(x)的解析式可知,f(x)的图象经过原点,且x≥0,f(x)递增;x<0时,f(x)递增,则f(x)在(﹣∞,+∞)上是单调递增函数,在由f(2﹣a2)>f(a),得2﹣a2>a,即a2+a﹣2<0,解得﹣2<a<1.故选:C.5.(5分)为了得到函数y=sin(2x﹣)的图象,可以将函数y=cos2x的图象()A.向右平移个单位长度B.向右平移个单位长度C.向左平移个单位长度D.向左平移个单位长度【解答】解:∵y=sin(2x﹣)=cos[﹣(2x﹣)]=cos(﹣2x)=cos (2x﹣)=cos[2(x﹣)],∴将函数y=cos2x的图象向右平移个单位长度.故选:B.6.(5分)已知过点P(2,2)的直线与圆(x﹣1)2+y2=5相切,且与直线ax﹣y+1=0垂直,则a=()A.B.1 C.2 D.【解答】解:因为点P(2,2)满足圆(x﹣1)2+y2=5的方程,所以P在圆上,又过点P(2,2)的直线与圆(x﹣1)2+y2=5相切,且与直线ax﹣y+1=0垂直,所以切点与圆心连线与直线ax﹣y+1=0平行,所以直线ax﹣y+1=0的斜率为:a==2.故选:C.7.(5分)已知双曲线﹣=1(a>0,b>0)的一条渐近线平行于直线l:y=2x+10,双曲线的一个焦点在直线l上,则双曲线的方程为()A.B.C.D.【解答】解:∵双曲线的一个焦点在直线l上,令y=0,可得x=﹣5,即焦点坐标为(﹣5,0),∴c=5,∵双曲线﹣=1(a>0,b>0)的一条渐近线平行于直线l:y=2x+10,∴=2,∵c2=a2+b2,∴a2=5,b2=20,∴双曲线的方程为=1.故选:D.8.(5分)若函数f(x)=ax4+bx2+c满足f′(1)=2,则f′(﹣1)=()A.﹣1 B.﹣2 C.2 D.0【解答】解:∵f(x)=ax4+bx2+c,∴f′(x)=4ax3+2bx,∴f′(﹣x)=﹣4ax3﹣2bx=﹣f′(x),∴f′(﹣1)=﹣f′(1)=﹣2,故选:B.9.(5分)若,则cosα+sinα的值为()A.B.C.D.【解答】解:∵,∴,故选:C.10.(5分)设集合A={x|x2+x﹣6=0},B={x|mx+1=0},则B是A的真子集的一个充分不必要的条件是()A.B.m≠0 C.D.【解答】解:A={x|x2+x﹣6=0}={2,﹣3},当m=0时,B={x|mx+1=0}=∅,满足B是A的真子集,当m≠0时,B={x|mx=﹣1}={﹣},若满足B是A的真子集,则﹣=2或﹣=﹣3,即m=﹣或m=,综上若B是A的真子集,则m=﹣或或0,则B是A的真子集的一个充分不必要的条件是,故选:D.11.(5分)若正数x,y满足+=5,则3x+4y的最小值是()A.B.C.5 D.6【解答】解:由于正数x,y满足+=5,则3x+4y=(3x+4y)()=++≥+2+2×=5,当且仅当=,即y=2x,即+=,∴x=,y=时取等号.故3x+4y的最小值是5,故选:C.12.(5分)椭圆=1(a>b>0)的左、右焦点分别为F1、F2,P为椭圆M上任一点,且的最大值的取值范围是[c2,3c2],其中.则椭圆M的离心率e的取值范围是()A.B. C.D.【解答】解:由题意可知F1(﹣c,0),F2(c,0),设点P为(x,y)∵∴∴,∴=x2﹣c2+y2=﹣c2+y2=当y=0时取到最大值a2﹣c2,即c2≤a2﹣c2≤3c2,∴,∴.故椭圆m的离心率e的取值范围.故选:B.二、填空题:本题共4小题,每小题5分,共20分.13.(5分)设L为曲线C:y=在点(1,0)处的切线,则L的方程为x﹣y ﹣1=0.【解答】解:由y=,得,∴,即曲线C:y=在点(1,0)处的切线的斜率为1,∴曲线C:y=在点(1,0)处的切线方程为y﹣0=1×(x﹣1),即x﹣y﹣1=0.故答案为:x﹣y﹣1=0.14.(5分)若非负数变量x、y满足约束条件,则x+y的最大值为4.【解答】解:画出可行域如图阴影部分,其中,可得A(4,0)目标函数z=x+y可以变形为y=﹣x+z,可看做斜率为﹣1的动直线,其纵截距越大z越大,=4+0=4由图数形结合可得当动直线过点A时,z最大故答案为:415.(5分)已知双曲线的左、右焦点分别为F1,F2,过F1的直线与双曲线的左支交于A,B两点,线段AB长为5.若a=4,那么△ABF2的周长是26.【解答】解:设|AF1|=m,|BF1|=n,由题意可得m+n=5,由双曲线的定义可得|AF2|=m+2a,|BF2|=n+2a,则△ABF2的周长是|AB|+|AF2|+|BF2|=m+n+(m+n)+4a=4a+2|AB|=4×4+2×5=26,故答案为:26.16.(5分)在数列{a n}中,a1=1,a1+++…+=a n(n∈N*),则数列{a n}的通项公式a n=.【解答】解:∵a1=1,a1+++…+=a n(n∈N*),n≥2时,a1+++…+=a n﹣1.,∴=a n﹣a n﹣1化为:=.∴=…=2a1=2.∴a n=.故答案为:.三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.17.(10分)设△ABC的内角为A,B,C,且sinC=sinB+sin(A﹣B).(I)求A的大小;=,求△ABC的周长.(II)若a=,△ABC的面积S△ABC【解答】解:(I)∵A+B+C=π,∴C=π﹣(A+B).∴sinC=sin(A+B)=sinB+sin(A﹣B),∴sinA•cosB+cosA•sinB=sinB+sinA•cosB﹣cosAsinB,∴2cosA•sinB=sinB,∴,∴.(II)依题意得:,∴,∴(b+c)2=b2+c2+2bc=25,∴b+c=5,∴,∴△ABC的周长为.18.(12分)已知数列{a n}的前n项和S n=.(Ⅰ)求数列{a n}的通项公式;(Ⅱ)求数列{a n•2n﹣1}的前n项和T n.【解答】解:(Ⅰ)∵,当n=1时,∴,∴a1=1∴,∴,两式相减得a n=n(n≥2)而当n=1时,a1=1也满足a n=n,∴a n=n;(Ⅱ)由于:a n=n,则:,所以:,则两式相减得,∴.19.(12分)已知过抛物线y2=2px(p>0)的焦点,斜率为2的直线交抛物线于A(x 1,y1),B(x2,y2)(x1<x2)两点,且|AB|=9.(1)求该抛物线的方程;(2)O为坐标原点,C为抛物线上一点,若=+λ,求λ的值.【解答】解:(1)依题意可知抛物线的焦点坐标为(,0),故直线AB的方程为y=2x﹣p,联立,可得4x2﹣5px+p2=0.∵x1<x2,p>0,△=25p2﹣16p2=9p2>0,解得,x2=p.∴经过抛物线焦点的弦|AB|=x1+x2+p=p=9,解得p=4.∴抛物线方程为y2=8x;(2)由(1)知,x1=1,x2=4,代入直线y=2x﹣4,可求得,,即A(1,﹣2),B(4,4),∴=+λ=(1,﹣2)+λ(4,4)=(4λ+1,4λ﹣2),∴C(4λ+1,4λ﹣2),∵C点在抛物线上,故,解得:λ=0或λ=2.20.(12分)已知向量=(2sinA,1),=(sinA+cosA,﹣3),⊥,其中A 是△ABC的内角.(1)求角A的大小;(2)设△ABC的角A,B,C所对的边分别为a,b,c,D为BC边中点,若a=4,AD=2,求△ABC的面积.【解答】解:(1)△ABC中,∵⊥,∴=(2sinA,1)•(sinA+cosA,﹣3)=2sinA•(sinA+cosA)﹣3=2sin2A+2sinAcosA﹣3=sin2A﹣cos2A﹣2=0,即:sin(2A﹣)=1,∴A=.(2)因为D为BC边中点,∴2=+,平方得:42=+2+2,即:b2+c2+bc=48 …①.又=﹣,∴=+2﹣2,即::b2+c2﹣bc=16 …②,由①﹣②可得:2bc=32,故△ABC的面积S=bc•sin A==4.21.(12分)如图,等边三角形OAB的边长为,且其三个顶点均在抛物线E:x2=2py(p>0)上.(1)求抛物线E的方程;(2)设动直线l与抛物线E相切于点P,与直线y=﹣1相较于点Q.证明以PQ 为直径的圆恒过y轴上某定点.【解答】解:(1)依题意,|OB|=8,∠BOy=30°,设B(x,y),则x=|OB|sin30°=4,y=|OB|cos30°=12∵B(4,12)在x2=2py(p>0)上,∴∴p=2,∴抛物线E的方程为x2=4y;(2)由(1)知,,设P(x0,y0),则x0≠0.l:即由得,∴取x0=2,此时P(2,1),Q(0,﹣1),以PQ为直径的圆为(x﹣1)2+y2=2,交y轴于点M1(0,1)或M2(0,﹣1)取x0=1,此时P(1,),Q(﹣,﹣1),以PQ为直径的圆为(x+)2+(y+)2=2,交y轴于点M(0,1)或M4(0,﹣)3故若满足条件的点M存在,只能是M(0,1),证明如下∵∴=2y0﹣2﹣2y0+2=0故以PQ为直径的圆恒过y轴上的定点M(0,1).22.(12分)已知椭圆C的中心在坐标原点,焦点在x轴上,离心率e=,且椭圆C经过点P(2,3),过椭圆C的左焦点F1且不与坐标轴垂直的直线交椭圆C 于A,B两点.(1)求椭圆C的方程;(2)设线段AB的垂直平分线与x轴交于点G,求△PF1G的面积S的取值范围.【解答】解:(1)由题意可知:焦点在x轴上,设椭圆的标准方程为:(a>b>0),由椭圆的离心率e==,即a=2c,b2=a2﹣c2=3c2,将P(2,3)代入椭圆方程:,解得:c2=4,∴a2=16,b2=12,∴椭圆的标准方程为:;(2)设直线AB方程为y=k(x+2),A(x1,y1),B(x2,y2),AB中点M(x0,y0),∴,整理得:(3+4k2)x2+16k2x+16(k2﹣3)=0,由△>0,由韦达定理可知:x1+x2=﹣,x1•x2=﹣,则x0==﹣,y0=k(x0+2)=,M(﹣,),线段AB的垂直平分线MG的方程为y﹣=﹣(x﹣x0),令y=0,得x G=x0+ky0=﹣+=﹣,由k≠0,∴﹣<x G<0,由=丨F 1G丨•丨y P丨=丨x G+2丨,x G∈(﹣,0),∴S求△PF1G的面积的取值范围是(,3).。
深圳高级中学(集团)2017-2018学年第二学期期中考试高二数学本试卷由两部分组成。
第一部分:高二数学第二学期期中前的基础知识和能力考查,共62 分;选择题包含第1题、第3题、第4题、第5题、第7题、第9题、第11题,共35分; 填空题包含第16题,共5分;解答题包含第17题、第21题,共22分。
第二部分:高二数学第二学期期中后的基础知识和能力考查,共88分 选择题包含第2题、第6题、第8题、第10题、第12题,共25分; 填空题包含第13题、第14题、第15题,共15分;解答题包含第18题、第19题、第20题、第22题,共48分。
全卷共计150分。
考试时间120分钟 注意事项:1、答第一卷前,考生务必将自己的姓名、准考证号、考试科目用铅笔涂写在答题卡上。
2、每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑。
如需改动用橡皮擦干净后,再涂其它答案,不能答在试题卷上。
3、考试结束,监考人员将答题卡按座位号、页码顺序收回。
一、选择题(本大题共12小题,每小题 5分,共60分。
每小题给出的四个选项中,只有一项是符合题目要求的)1.为了检查某超市货架上的奶粉是否含有三聚氰胺,要从编号依次为1到50的袋装奶粉中抽取5袋进行检验,用每部分选取的号码间隔一样的系统抽样方法确定所选取的5袋奶粉的编号可能是( )A .5,10,15,20,25B .2,4,8,16,32C .1,2,3,4,5D .7,17,27,37,472.已知随机变量ξ服从正态分布N(1,),P(ξ≤4)=0.84,则P(ξ≤-2)=( ).A .0.08B .0.26C .0.42D .0.163.执行如图程序在平面直角坐标系中打印一系列点,则打印出的点在圆x 2+y 2=10内的个数是( )A .2B .3C .4D .54.如图所示,矩形长为5,宽为2,在矩形内随机地撒300颗黄豆,数得落在阴影部分的黄豆数为138颗,由此我们可估计出阴影部分的面积约为( )A .235B .215C .195D .1655.设不等式组⎩⎪⎨⎪⎧0≤x ≤2,0≤y ≤2表示的平面区域为D ,在区域D 内随机取一个点,则此点到坐标原点的距离大于2的概率是( )A .π4B .π-22C .π6D .4-π46.为了普及环保知识,增强环保意识,某大学随机抽取30名学生参加环保知识测试,测试成绩(单位:分)如图所示,假设得分值的中位数为m e ,众数为m o ,则( )A .m e =m oB .m o <m eC .m e <m oD .m e 、m o 的大小关系不能确定7.某同学有同样的画册2本,同样的集邮册2本,分别赠送给4位朋友,每位朋友1本,则不同的赠送方法共有( )A .2种B .4种C .6种D .10种 8.5)221(y x -的展开式中32y x 的系数是( )A .-20B .-5C .5D .209.连掷两次骰子分别得到点数m ,n ,则向量),(n m =与向量)1,1(-=的夹角θ>90°的概率是( )A .512B .712C .13D .1210.高三某班下午有3节课,现从5名教师中安排3人各上一节课,如果甲、乙两名教师不上第一节课,则不同的安排方案种数为( ) A .12B .72C .36D .2411.设双曲线的一个焦点为F ,虚轴的一个端点为B ,如果直线FB 与该双曲线的一条渐近线垂直,那么此双曲线的离心率为( ).A . 2B . 3C .3+12D .5+1212.若关于x 的方程023)1ln(2=-+-+b x x x 在区间[0,2]上恰有两个不同的实数解,则实数b 的取值范围是( )A . )212ln ,0(+ B .)212ln ,13[ln +- C .)13ln ,0(- D .]212ln ,0(+ 二、填空题(本大题共4小题,每小题 5分,共20分。
深圳高级中学(集团)2018-2019学年高二年级第一学期期末考试数学(文科)一、选择题:本大题共12小题,每小题5分,满分60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合,设,则集合的元素个数为( )A. 9B. 8C. 3D. 2【答案】D【解析】【分析】写出集合A,由交集运算得到集合C,从而得到元素个数.【详解】,,则,集合C的元素个数为2,故选:D【点睛】本题考查集合的交集运算,属于简单题.2.设,则=()A. B. C. D. 2【答案】B【解析】试题分析:因,故,所以应选B.考点:复数及模的计算.3.下列全称命题中假命题的个数是( )①是整数;②对所有的,;③对任意一个,为奇数.A. 0B. 1C. 2D. 3【答案】C【解析】试题分析:当x=时①错;当x=0时②错;所以①②是假命题。
对任意一个x∈Z,∵2x2是偶数,∴③是真命题.即假命题有2个,选C.考点:本题主要考查全称命题真假判断。
点评:要判断一个全称命题是真命题,我们要有一个严格的论证过程,但要说明一个全称命题是一个假命题,只需要举出一个反例即可。
此类题综合性较强,主要涉及知识面广。
4.已知,则()A. B. C. D.【答案】A【解析】【分析】由指数函数和对数函数图像的性质即可判断出a,b,c的大小关系.【详解】指数函数y=在R上单调递增,故a=20.6>20=1,对数函数y=在上单调递增,则0<b=logπ3<1,对数函数y=在上单调递增,则;∴c<b<a.故选:A.【点睛】解答比较大小问题,常见思路有两个:一是判断出各个数值所在区间(一般是看三个区间;二是利用函数的单调性直接解答;5.某公司2013—2018年的年利润(单位:百万元)与年广告支出(单位:百万元)的统计资料如表所示:根据统计资料,则 ( )A. 利润中位数是16,与有正相关关系B. 利润中位数是17,与有正相关关系C. 利润中位数是17,与有负相关关系D. 利润中位数是18,与有负相关关系【答案】B【分析】求出利润中位数,而且随着利润的增加,支出也在增加,故可得结论.【详解】由题意,利润中位数是,而且随着利润的增加,支出也在增加,故x与y有正线性相关关系故选:C.【点睛】本题考查中位数的求法,如果样本容量是奇数中间的数就是中位数,如果样本容量为偶数中间两位数的平均数就是中位数.6.过点引圆的切线,则切线长是 ( )A. 3B.C. 4D. 5【答案】B【解析】【分析】把圆的一般方程化为标准方程,求出圆心到点P的距离d,根据圆的半径r,即可求出切线长.【详解】∵圆x2+y2﹣2x﹣4y+1=0的标准方程是(x﹣1)2+(y﹣2)2=4,圆心(1,2)到点的距离d=;圆的半径r=2,∴切线长为l=.故选:B.【点睛】本题主要考查圆的方程与性质,以及切线长公式的应用,过点向圆作切线PM(M为切点),则切线长.7.已知非零向量,若,则与的夹角()A. B. C. D.【答案】A【解析】【分析】根据条件容易求出t=4,从而得出,从而得出可设与的夹角为θ,这样根据即可求出cosθ,进而得出θ的值.【详解】因∴,,设与的夹角为θ,则:,∴故答案为:A.【点睛】本题主要考查向量的模及平面向量数量积公式、余弦定理的应用,属于中档题.平面向量数量积公式有两种形式,一是,二是,主要应用以下几个方面:(1)求向量的夹角,(此时往往用坐标形式求解);(2)求投影,在上的投影是;(3)向量垂直则;(4)求向量的模(平方后需求).8.执行如下图的程序框图,那么输出的值是( )A. 2B. 1C.D. -1【答案】A【解析】【分析】模拟程序的运行,依次写出每次循环得到的k和S值,根据题意即可得到结果.【详解】程序运行如下,k=0, S==﹣1,k=1,S==;k=2,S=;k=3,S==-1…变量S的值以3为周期循环变化,当k=2018时,s=2,K=2019时,结束循环,输出s的值为2.故选:A.【点睛】本题考查程序框图,是当型结构,即先判断后执行,满足条件执行循环,不满足条件,跳出循环,算法结束,解答的关键是算准周期,是基础题.9.点是函数的图象的一个对称中心,且点到该图象的对称轴的距离的最小值为.①的最小正周期是;②的值域为;③的初相为;④在上单调递增.以上说法正确的个数是()A. B. C. D.【答案】D【解析】【分析】由条件利用正弦函数的周期性、单调性、最值,以及图象的对称性,即可得出结论.【详解】∵点P(﹣,1)是函数f(x)=sin(ωx+φ)+m(ω>0,|φ|<)的图象的一个对称中心,∴m =1,ω•(﹣)+φ=kπ,k∈Z.∵点P到该图象的对称轴的距离的最小值为,∴ω=2,∴φ=kπ+, k∈Z,又|φ|<∴φ=,f(x)=sin(2x+)+1.故①f(x)的最小正周期是π,正确;②f(x)的值域为[0,2],正确;③f(x)的初相φ为,正确;④在[,2π]上,2x+∈[,],根据函数的周期性,函数单调性与[﹣,]时的单调性相同,故函数f(x)单调递增,故④正确,故选:D.【点睛】本题考查正弦函数的周期性、单调性、最值,以及它的图象的对称性,属于基础题.10.分别在区间和内任取一个实数,依次记为和,则的概率为 ( )A. B.C. D.【答案】A【解析】试题分析:的概率为,故选A.考点:几何概型.11.若两个正实数满足,且存在这样的使不等式有解,则实数的取值范围是()A. B.C. D.【答案】C【解析】【分析】此题转化为(x+)min<m2+3m,利用“1”的代换的思想进行构造,运用基本不等式求解最值,最后解关于m的一元二次不等式的解集即可得到答案.【详解】∵不等式x+m2+3m有解,∴(x+)min<m2﹣3m,∵x>0,y>0,且,∴x+=(x+)()==4,当且仅当,即x=2,y=8时取“=”,∴(x+)min=4,故m2+3m>4,即(m-1)(m+4)>0,解得m<﹣4或m>1,∴实数m的取值范围是(﹣∞,﹣4)∪(1,+∞).故选:C.【点睛】本题考查了基本不等式在最值中的应用和不等式有解问题.在应用基本不等式求最值时要注意“一正、二定、三相等”的判断.运用基本不等式解题的关键是寻找和为定值或者是积为定值,难点在于如何合理正确的构造出定值.对于不等式的有解问题一般选用参变量分离法、最值法、数形结合法求解.12.已知椭圆和双曲线有共同焦点,是它们的一个交点,且,记椭圆和双曲线的离心率分别为,则的最大值为()A. 3B. 2C.D.【答案】D【解析】【分析】设椭圆长半轴长为a1,双曲线的半实轴长a2,焦距2c.根据椭圆及双曲线的定义可以用a1,a2表示出|PF1|,|PF2|,在△F1PF2中根据余弦定理可得到,利用基本不等式可得结论.【详解】如图,设椭圆的长半轴长为a1,双曲线的半实轴长为a2,则根据椭圆及双曲线的定义:|PF1|+|PF2|=2a1,|PF1|﹣|PF2|=2a2,∴|PF1|=a1+a2,|PF2|=a1﹣a2,设|F1F2|=2c,∠F1PF2=,则:在△PF1F2中,由余弦定理得,4c2=(a1+a2)2+(a1﹣a2)2﹣2(a1+a2)(a1﹣a2)cos∴化简得:a12+3a22=4c2,该式可变成:,∴≥2∴,故选:D.【点睛】本题考查圆锥曲线的共同特征,考查通过椭圆与双曲线的定义求焦点三角形三边长,考查利用基本不等式求最值问题,属于中档题.二、填空题:本大共4小题.每小题5分,满分20分.13.已知双曲线的焦距为,点在双曲线的渐近线上,则双曲线的方程为__________ . 【答案】【解析】【分析】由题意可得c,即有a2+b2,由点P在渐近线上,可得a=2b,解方程可得a,b,进而得到所求双曲线方程.【详解】双曲线的焦距为,可得2c=,即c=,即有a2+b2=125,双曲线的渐近线方程为y=±x,点在双曲线的渐近线上,可得a=2b,解得a=10,b=5,得到双曲线方程为.故答案为:.【点睛】本题考查双曲线方程的求法,注意运用双曲线的渐近线方程和基本量的关系,考查运算能力,属于基础题.14.已知复数满足,则________.【答案】【解析】【分析】直接利用复数的商的运算计算得到复数的共轭复数,从而得到复数z.【详解】,则复数z=2-i,故答案为:2-i【点睛】本题考查复数的商的运算及共轭复数的概念,属于简单题.15.已知函数,若函数的图象在处的切线方程为,则实数___________ .【答案】【解析】【分析】对函数f(x)求导,由切线斜率为1,可得到答案.【详解】函数f(x)=,则导数,由函数f(x)的图象在x=2处的切线方程为y=x+b可知,解得a=﹣2,故答案为:-2【点睛】本题考查导数的几何意义的应用,利用曲线在某点处的切线的斜率等于函数在这点处的导数解决问题.16.已知数列的前项和为,,且,则数列的通项公式为_____________.【答案】【解析】【分析】根据题意,写出,利用两式作差得到,然后利用累乘法可求出数列的通项.【详解】数列的前项和为,且当n≥2时,,①则有,②②-①得:,整理得(n≥2),则当n≥3时有,解得(n≥3),检验:当n=2时,满足上式,当n=1时,不满足上式,则,故答案为:【点睛】本题考查由数列的递推关系式求数列的通项,考查累乘法求通项,考查计算能力.三、解答题:本大题共6小题,满分70分,解答须写出文字说明、证明过程或演算步骤.17.某银行对某市最近5年住房贷款发放情况(按每年6月份与前一年6月份为1年统计)作了统计调查,得到如下数据:((1)将上表进行如下处理:,得到数据:试求与的线性回归方程,再写出与的线性回归方程.(2)利用(1)中所求的线性回归方程估算2019年房贷发放数额.参考公式:,【答案】(1);(2)108亿元.【解析】【分析】(1)利用题目中数据求出a和b,即可得z=bt+a,将t=x﹣2013,z=(y﹣50)÷10,代入上式整理可得结果.(2)把x=2019代入回归直线方程即可得到答案.【详解】(1)计算得=3,=2.2,,,所以,a=2.2﹣1.2×3=﹣1.4,所以z=1.2t﹣1.4.注意到t=x﹣2013,z=(y﹣50)÷10,代入z=1.2t﹣1.4,即(y﹣50)÷10=1.2(x-2013)-1.4,整理可得y=12x﹣24120.(2)当x=2019时,y=12×2019﹣24120=108,即2019年房贷发放数额为108亿元.【点睛】本题考查回归直线方程的求解及其应用,其中认真审题,利用表中数据和公式,准确合理的运算是解决此类问题的关键,考查运算能力,属于基础题.18.如图,在中,点在边上,,,,.(1)求的面积;(2)求线段的长.【答案】(1);(2).【解析】试题分析:(1)求得的值后再利用三角形的面积计算公式即可求解;(2)利用余弦定理求得的值后即可求解.试题解析:(1)∵,且,∴.又∵,∴.∴.∵,,∴;(2)∵,且,,,∴,∴.又∵,∴,又∵在中,,∴,即,∴.考点:余弦定理解三角形.19.按规定:车辆驾驶员血液酒精浓度在20—80mg/100ml(不含80)之间,属酒后驾车;在(含80)以上时,属醉酒驾车.某市交警在某路段的一次拦查行动中,依法检查了250辆机动车,查出酒后驾车和醉酒驾车的驾驶员20人,右图是对这20人血液中酒精含量进行检查所得结果的频率分布直方图.(1)根据频率分布直方图,求:此次抽查的250人中,醉酒驾车的人数;(2)从血液酒精浓度在范围内的驾驶员中任取2人,求恰有1人属于醉酒驾车的概率.【答案】(1)3人;(2);【解析】试题分析:(1)由频率分布直方图,先求出血液酒精浓度在和在范围内的人数,然后作和即为醉酒驾车的人数;(2)先求出从血液酒精浓度在范围内驾驶员中任取2人的所有个数,以及恰有一人的血液酒精浓度在范围内的所有个数,两个数值做比值即可;试题解析:(1)由频率分布直方图可知:血液酒精浓度在范围内有:人,血液酒精浓度在范围内有:人,所以醉酒驾车的人数为2+1=3人;(2)因为血液酒精浓度在内范围内有3人,记为,范围内有2人,记为,则从中任取2人的所有情况为共10种,恰有一人的血液酒精浓度在范围内的情况有,共6种设“恰有1人属于醉酒驾车”为事件,则考点:频率分布直方图;20.已知等差数列的前项和为,且成等比数列.(1)求数列的通项公式;(2)若数列的公差不为0,数列满足,求数列的前项和.【答案】(1)见解析;(2).【解析】【分析】(1)利用等比数列中项的定义,等差数列的通项和等差数列的前n项和公式列出首项和公差的方程组,即可解得答案.(2)利用错位相减求和即可得到答案.【详解】(1)由成等比数列得,设等差数列的公差为d,则,化简得或d=0.当时,,得,∴,即;当d=0时,由,得,即;(2)若数列的公差不为知,,所以……①……②由①②可得.【点睛】本题考查等差数列通项和等比数列中项的定义的应用,考查等差数列前n项和和错位相减求和法的应用,考查计算能力,属于基础题.21.已知动圆过定点,且在轴上截得的弦长为4.(1)求动圆圆心的轨迹的方程;(2)点为轨迹上任意一点,直线为轨迹上在点处的切线,直线交直线于点,过点作交轨迹于点,求的面积的最小值.【答案】(1);(2)16.【解析】【分析】(1)设出动圆圆心C的坐标,由圆的半径、弦心距及半弦长的关系列式整理求得动圆圆心轨迹C的方程;(2)由抛物线方程设出P点坐标,利用导数得到切线PR方程,代入y=﹣1得点R横坐标,求PQ所在直线方程,和抛物线联立,由根与系数关系得Q点横坐标,求出线段PQ和PR的长度,由三角形面积公式得到面积关于P点横坐标的函数,利用换元法及基本不等式求最值.【详解】(1)设动圆圆心C(x,y),由动圆过定点A(0,2),且在x轴上截得的弦长为4得,|CA|2﹣y2=4,即x2+(y﹣2)2﹣y2=4,整理得:x2=4y.∴动圆圆心的轨迹C的方程为x2=4y;(2)C的方程为x2=4y,即,故,设P(t,)(t≠0),PR所在的直线方程为,即,令y=-1得点R横坐标,|PR|=;PQ所在的直线方程为,即,由,得,由得点Q横坐标为,∴|PQ|=,,不妨设t>0,,记,则当t=2时,f(t)min=4,则三角形面积的最小值为.【点睛】本题考查轨迹方程的求法,考查直线与圆锥曲线的位置关系的应用,涉及直线与圆锥曲线的关系问题,常把直线方程和圆锥曲线方程联立,利用根与系数的关系解题,同时考查利用换元法和基本不等式解决最值问题,属于中档题.22.已知函数.(1)求函数的单调区间;(2)是否存在实数,使得函数的极值大于?若存在,求的取值范围;若不存在,说明理由.【答案】(1)当时,函数的单调递增区间为,单调递减区间为;当时,函数的单调递增区间为,无单调递减区间. (2)存在,范围为【解析】试题分析:(1)函数的定义域为,.①当时,,∵∴,∴函数单调递增区间为②当时,令得,即,.(ⅰ)当,即时,得,故,∴函数的单调递增区间为.(ⅱ)当,即时,方程的两个实根分别为,.若,则,此时,当时,.∴函数的单调递增区间为,若,则,此时,当时,,当时,∴函数的单调递增区间为,单调递减区间为.综上所述,当时,函数的单调递增区间为,单调递减区间为;当时,函数的单调递增区间为,无单调递减区间.(2)由(1)得当时,函数在上单调递增,故函数无极值当时,函数的单调递增区间为,单调递减区间为,∴有极大值,其值为,其中.∵,即,∴.设函数,则,∴在上为增函数,又,则,∴.即,结合解得,∴实数的取值范围为.考点:利用导数研究函数的单调性;利用导数研究函数的极值.点评:本题考查利用导数研究函数的单调性,利用导数研究函数的极值,突出分类讨论思想与转化思想的渗透与应用,属于难题,第二题把有正的极大值的问题转化为图象开口向下与X轴有两个交点,思路巧妙,学习中值得借鉴.。
2018学年广东省深圳高级中学高二(上)期中数学试卷(文科)
一、选择题:本题共12小题,每小题5分,共60分.在每个小题给出的四个选项中,只有一项是符合题目要求的.
1.(5分)已知全集U={1,2,3,4,5,6},集合A={1,2,4},B={2,4,6},则A∩(∁U B)=()
A.{1}B.{2}C.{4}D.{1,2}
2.(5分)已知向量=(λ+1,1),=(λ+2,2),若(+)⊥(﹣),则λ=()A.﹣4 B.﹣3 C.﹣2 D.﹣1
3.(5分)已知命题p:∀x>0,总有(x+1)e x>1,则¬p为()
A.∃x0≤0,使得(x0+1)e≤1 B.∃x0>0,使得(x0+1)e≤1
C.∀x>0,总有(x+1)e x≤1 D.∀x≤0,总有(x+1)e x≤1
4.(5分)已知函数f(x)=.若f(2﹣a2)>f(a),则实数a的取值范围是()
A.(﹣∞,﹣2)∪(1,+∞)B.(﹣1,1)C.(﹣2,1)D.(﹣1,2)
5.(5分)为了得到函数y=sin(2x﹣)的图象,可以将函数y=cos2x的图象()
A.向右平移个单位长度B.向右平移个单位长度
C.向左平移个单位长度D.向左平移个单位长度
6.(5分)已知过点P(2,2)的直线与圆(x﹣1)2+y2=5相切,且与直线ax﹣y+1=0垂直,则a=()
A.B.1 C.2 D.
7.(5分)已知双曲线﹣=1(a>0,b>0)的一条渐近线平行于直线l:y=2x+10,双曲线的一个焦点在直线l上,则双曲线的方程为()
A.B.
C.D.。