线代期末综合练习(B卷)
- 格式:pdf
- 大小:311.01 KB
- 文档页数:3
《线性代数》样卷B一、选择题(本题共10小题,每小题2分,共20分)(从下列备选答案中选择一个正确答案) 1、排 列7352164的逆序数为( ) (A )11 (B )12 (C )13 (D )14 2、若A 为n 阶可逆矩阵,下列各式正确的是( ) (A )11(2)2A A --= (B )0A A *⋅≠(C )11()A A A-*-= (D )111[()][()]T T T A A ---=3、以初等矩阵001010100⎛⎫⎪ ⎪⎪⎝⎭右乘初等矩阵001100010A ⎛⎫⎪= ⎪ ⎪⎝⎭相当于对矩阵A 施行初等变换为( ) (A )23r r ↔ (B )23C C ↔ (C )13r r → (D )13C C ↔ 4、奇异方阵经过( )后,矩阵的秩有可能改变(A )初等变换 (B )左乘初等矩阵 (C )左右同乘初等矩阵 (D )和一个单位矩阵相加 5、 如果n 元齐次线性方程组0=Ax 有基础解系并且基础解系含有)(n s s <个解向量,那么矩阵A 的秩为( )(A )n (B )s (C )s n - (D )以上答案都不正确 6、向量组123,,βββ 线性无关,234,,βββ 线性相关,则有( )(A )1β可由423,,βββ 线性表示 (B )2β可由143,,βββ 线性表示 (C )3β可由124,,βββ 线性表示 (D )4β可由123,,βββ 线性表示 7、 以下结论正确的是( )(A )一个零向量一定线性无关; (B )一个非零向量一定线性相关; (C )含有零向量的向量组一定线性相关; (D )不含零向量的向量组一定线性无关 8、n 阶方阵A 具有n 个不同的特征值是A 与对角阵相似的( )(A )充要条件 (B )充分不必要条件 (C )必要不充分条件(D )既不充分也不必要条件9、 关于x 的一次多项式10213111()2543111f x x ---=-----,则式中一次项的系数为( )(A )2 (B )—2 (C )3 (D )—3 10、下列不可对角化的矩阵是( )(A )实对称矩阵 (B )有n 个相异特征值的n 阶方阵 (C )有n 个线性无关的特征向量的n 阶方阵 (D )不足n 个线性无关的特征向量的n 阶方阵二、填空题(本题共10空,每空2分,共20分) (请将正确答案填入括号内)1、若三阶方阵A 的3重特征值为2,则行列式A =2、已知6834762332124321D --=--,则212223246834A A A A +-+= . 3. 设A 为三阶可逆矩阵,且13A =,则()13A -= 4、 125=13--⎛⎫ ⎪-⎝⎭5、矩阵112134134-⎛⎫⎪- ⎪⎪--⎝⎭的秩是 6、行列式526742321-中元素-2的代数余子式是7、设0=AX 为一个4元齐次线性方程组,若321,,ξξξ为它的一个基础解系,则秩()R A =8、设211132121A -⎛⎫ ⎪= ⎪ ⎪-⎝⎭的行最简形为: .9、已知(6,4,3),(1,3,2)T T x y ==--,则[],x y = . 10、 设向量T )2,2,3(-=α与向量T t ),3,4(=β正交,则=t三、计算题(本题共2小题,每小题6分,共12分) (要求写出主要计算步骤及结果)1、计算4222242222422224n D =2、已知2()41f x x x =-+,120210002A -⎛⎫⎪= ⎪⎪⎝⎭,求()f A .四、综合应用题(本题共4小题,共48分) (要求写出主要计算步骤及结果)1、(8分)已知向量组()()()1231,2,3,2,1,1,3,0,5,7,3,4,TTTααα==--=-,(1)求该向量组的秩. (2)求该向量组的一个最大无关组. (3)将不属于最大无关组的向量用最大无关组线性表示. 2、(8分)验证123(0,2,1),(2,1,3),(3,3,4)T T T ααα==-=--为R 3的一个基并求12(1,2,3),(2,3,1)T T ββ==-在这个基中的坐标。
同济大学课程考核试卷(B 卷)2009—2010学年第一学期命题教师签名: 审核教师签名:课号:122010 课名:线性代数B 考试考查:考试此卷选为:期中考试( )、期终考试( )、重考( √ )试卷(注意:本试卷共七大题,三大张,满分100分.考试时间为 分钟.要求写出解题过程,否则不予计分) 一、填空题(每空3分,共24分)1.已知4阶方阵为()2131,,,A αααβ=, ()1232,2,,B αααβ=, 且 4A =-,2B =-,则行列式 =+B A 6 。
2. 设行列式1131100021034512D =,j i A 是D 中元素j i a 的代数余子式,则=+2414A A -9 .3. 已知矩阵222222a A a a ⎛⎫⎪= ⎪ ⎪⎝⎭,伴随矩阵0≠*A ,且0=*x A 有非零解,则 C .(A) 2=a ; (B ) 2=a 或4-=a ; (C) 4-=a ; (D) 2≠a 且4-≠a .4. 向量组s ααα,,,21)2(≥s 线性无关,且可由向量组s βββ,,, 21线性表示, 则以下结论中不能成立的是 B(A) 向量组s βββ,,,21线性无关; (B) 对任一个j α(1)j s ≤≤,向量组s j ββα,,,2线性相关; (C) 向量组s ααα,,,21与向量组s βββ,,, 21等价. 5. 已知3阶矩阵A 与B 相似且010100001A -⎛⎫⎪= ⎪⎪-⎝⎭, 则201222B A -=300030001⎛⎫- ⎪ ⎪ ⎪⎝⎭. 6. 设0η是非齐次线性方程组Ax b =的特解,12,,,s ξξξ是齐次方程组0Ax =的基础解系,则以下命题中错误的是 B(A) 001020,,,,s ηηξηξηξ---是Ax b =的一组线性无关解向量;(B) 0122s ηξξξ++++是Ax b =的解;(C) Ax b =的每个解均可表为001020,,,,s ηηξηξηξ+++的线性组合.7. 设4阶矩阵A 有一个特征值为2-且满足5T AA E =,||0A >,则其伴随矩阵*A 的一个特征值为 _________8. 已知实二次型2221,231231323(,)2624f x x x x x x ax x x x =++++正定,则常数a 的取值范围为22a -<<.二、(10分)设矩阵A 的伴随矩阵*110011102A -⎛⎫⎪=- ⎪ ⎪-⎝⎭,且0A >, E BA ABA 311+=--。
内蒙古科技大学2006/2007学年第二学期《线性代数》试题 课程号:10132105 考试方式: 闭卷 使用专业、年级: 06级(本科) 工科各专业 命题教师:何林山 考试时间:2007.7.16 一、填空题(每题6分,共24分)1.若矩阵A ⎪⎪⎪⎭⎫ ⎝⎛-=230154012,则行列式|21A|= ,秩 R( A)= 。
2.向量组E :),0,0,1(1=Te )0,1,0(2=Te ,)1,0,0(3=T e 是线性 关的,任一个三维向量),,(321b b b T =β由向量组E 的线性表示式是=β 。
3.设A=⎪⎪⎪⎭⎫ ⎝⎛nn n n a a a a ...............1111, ⎪⎪⎪⎭⎫ ⎝⎛=n x x x 1,⎪⎪⎪⎭⎫ ⎝⎛=n b b b 1,如果秩R(A)= r <n ,并且非齐次线性方程组b Ax =有无穷多解,则R (A ,b )= ,行列式|A|= 。
4.设A 是m 行n 列的矩阵 ,且m>n,如果秩R(A)= n ,那么A 的列向量组线性 关 , A 的行向量组线性 关 。
二、选择题(每题4分,共16分)1.设A 、B 都是n 阶方阵,下面结论不正确的是: 。
A.行列式 |AB|=|B| |A|B. 如果 A 、B 都可逆,则111---=A B AB )( C.T T T A B B A +=+)( D.若 AB=O 则必有A=O 或B=O2.设A 、B 是已知的n 阶方矩阵,X 是未知矩阵,且|A|0≠ ,则矩阵方程XA —B=0中的未知矩阵X= 。
A.1-BAB.B A 1-C.A B 1-D.1-A3.设A=⎪⎪⎪⎭⎫ ⎝⎛mn m n a a a a ......1111 , ⎪⎪⎪⎭⎫ ⎝⎛=n x x x 1,秩r (A )= r < n ,齐次线性方程组O Ax =有非零解,则它的基础解系中解向量的个数是 。
北京师范大学XX 分校2007-2008学年第一学期期末考试(B 卷)开课单位: 应用数学系 课程名称: 线性代数 任课教师:__ __ 考试类型:_ 闭卷_ 考试时间:__120 __分钟 学院___________ 姓名___________ 学号______________ 班级____________试卷说明:(本试卷共4页,满分100分)------------------------------------------------------------------------------------------------------一、 填空(每空3分,共30分)1、行列式123345__0____567= 2、行列式sin cos cos sin _______+-=-1313113xxxx 3、设行列式 -5 11 1 31 0 2D =1,则______-+=21222350A A A4、设A ,B 均为三阶方阵且||,||A B ==45,则||______=20A B5、设A 为3阶方阵,且A =2,则A-=12 46、设矩阵A ⎛⎫ ⎪⎪= ⎪ ⎪⎝⎭12311102103,则A 的秩()R A = 37、已知3阶矩阵A 的伴随矩阵的行列式A *=9,则=A 38、向量组,,,αααα⎛⎫⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪ ⎪==== ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭1234111322023001线性相关还是无关 线性相关试卷装订线9、设向量()(),,,,,x αα==1232963线性相关,则___1____=x10、设5元方程组=0A x 的系数矩阵A 的秩为3,则其解向量的秩应为 2二、选择题(每小题3分,共15分)1、行列式13632196233418第2行第2列元素的代数余子式A =22( D )(A )6; (B )9; (C )12; (D )15。
线性代数B期末考试题及答案一、选择题(每题5分,共20分)1. 以下哪个矩阵是可逆的?A. \(\begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}\)B. \(\begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}\)C. \(\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}\)D. \(\begin{bmatrix} 2 & 3 \\ 4 & 5 \end{bmatrix}\)答案:C2. 设 \(A\) 是一个 \(3 \times 3\) 矩阵,若 \(A^2 = I\),则\(A\) 一定是:A. 正交矩阵B. 斜对称矩阵C. 单位矩阵D. 对角矩阵答案:A3. 线性方程组 \(\begin{cases} x + 2y - z = 1 \\ 3x - 4y + 2z = 2 \\ 5x + 6y + 3z = 3 \end{cases}\) 的解的情况是:A. 有唯一解B. 有无穷多解C. 无解D. 不能确定答案:B4. 设 \(A\) 是一个 \(3 \times 3\) 矩阵,若 \(\det(A) = 0\),则 \(A\) 的秩:A. 等于3B. 小于3C. 等于0D. 大于等于3答案:B二、填空题(每题5分,共20分)1. 设 \(A\) 是一个 \(3 \times 3\) 矩阵,且 \(A\) 的行列式\(\det(A) = 2\),则 \(A\) 的伴随矩阵 \(\text{adj}(A)\) 的行列式是 _______。
答案:82. 若 \(A\) 是一个 \(3 \times 3\) 矩阵,且 \(A\) 的特征值为1,2,3,则 \(A\) 的迹数 \(\text{tr}(A)\) 等于 _______。
线性代数试卷一单项选择题(每题3分,共18分)1.设为实矩阵,则线性方程组只有零解是矩阵为正定矩阵的()(A) 充分条件;(B) 必要条件;(C) 充要条件;(D) 无关条件。
2.已知为四维列向量组,且行列式,,则行列式()(A) 40;(B) -16; (C) -3;(D) -40。
3.设向量组线性无关,且可由向量组线性表示,则以下结论中不能成立的是()(A) 向量组线性无关;(B) 对任一个,向量组线性相关;(C) 存在一个,向量组线性无关;(D) 向量组与向量组等价。
4.已知为阶可逆矩阵(),交换的第1,2列得,为的伴随矩阵,则()(A) 交换的第1,2行得;(B) 交换的第1,2行得;(C) 交换的第1,2列得;(D) 交换的第1,2列得。
5.设为阶可逆矩阵,为的伴随矩阵,则()(A) ;(B) ;(C) ;(D) 。
6.设是方程组的基础解系,下列解向量组中也是的基础解系的是()(A) ;(B) ;(C) ;(D) 。
二填空题(每题3分,共18分)7. 已知列向量是矩阵的对应特征值的一个特征向量。
则=,=,=。
8.设维列向量,其中。
已知矩阵可逆,且,则___ ______。
9.已知实二次型正定,则常数的取值范围为________________。
10.设矩阵,是中元素的代数余子式。
已知,,且,则。
11.设,,其中是非齐次线性方程组的解,已知为矩阵,且。
则线性方程组的通解为。
12.设,已知相似于对角阵,则= ,= 。
三计算题(每题8分,共48分)13.设,计算阶行列式。
14.设线性方程组为,试问取何值时,此线性方程组无解,有唯一解,有无穷多解?当其有无穷多解时,求其通解。
设为4阶方阵,其中为4维列向量,且线性无关,。
已知向量,试求线性方程组的通解。
已知为阶矩阵,且满足 ,其中。
求矩阵。
已知;都是线性空间的基,,在基和下的坐标分别为和,且,其中: ;。
试求:(1) ;(2) 基(用线性表示)。
XXX 学年期末考试试卷《线性代数》期末考试题及详细答案(本科A 、B 试卷)A 卷一、填空题 (将正确答案填在题中横线上。
每小题2分,共10分)。
1、设1D =3512, 2D =345510200,则D =12DD OO=_____________。
2、四阶方阵A B 、,已知A =116,且=B ()1-12A 2A --,则B =_____________。
3、三阶方阵A 的特征值为1,-1,2,且32B=A -5A ,则B 的特征值为_____________。
4、若n 阶方阵A 满足关系式2A -3A-2E O =,若其中E 是单位阵,那么1A -=_____________。
5、设()11,1,1α=,()21,2,3α=,()31,3,t α=线性相关,则t=_____________。
二、单项选择题 (每小题仅有一个正确答案,将正确答案的番号填入下表内,每小题2分,共20分)。
1、若方程13213602214x x xx -+-=---成立,则x 是:课程代码: 适用班级:命题教师:任课教师:(A )-2或3; (B )-3或2; (C )-2或-3; (D )3或2; 2、设A 、B 均为n 阶方阵,则下列正确的公式为: (A )()332233A B+3AB +B A B A +=+; B )()()22A B A+B =A B --; (C )()()2A E=A E A+E --; (D )()222AB =A B ; 3、设A 为可逆n 阶方阵,则()**A=?(A )A E ; (B )A ; (C )nA A ; (D )2n A A -;4、下列矩阵中哪一个是初等矩阵:(A )100002⎛⎫ ⎪⎝⎭; (B )100010011⎛⎫⎪⎪ ⎪⎝⎭; (C )011101001-⎛⎫ ⎪- ⎪ ⎪⎝⎭; (D )010002100⎛⎫⎪- ⎪ ⎪⎝⎭;5、下列命题正确的是:(A )如果有全为零的数1,k 2k 3,,,m k k 使1122m m k k k αααθ+++=,则1,α2α,,m α 线性无关; (B )向量组1,α2α,,m α 若其中有一个向量可由向量组线性表示,则1,α2α,,m α线性相关;(C )向量组1,α2α,,m α 的一个部分组线性相关,则原向量组本身线性相关; (D )向量组1,α2α,,m α线性相关,则每一个向量都可由其余向量线性表示。
2008 -2009学年第二学期《线性代数 B 》试卷量组1,2, ,m , 的秩为5. 设A 为实对称阵,且AI M 0,则二次型f =x T A x 化为f =y T A -1 y 的线性变换是x= __________ .T6. 设 R 3 的两组基为 a 11,1,1 ,a 2 1,0, 1 ,a 3 1,0,1 ;2,3,4 , 3 3,4,3 ,则由基 a !,a 2,a 3到基 1, 2, 3的过渡矩阵为、单项选择题(共6小题,每小题3分,满分18 分)一一一-二二 -三四五六总分(共 0 0 12. A 为n 阶方阵,AA T = E 且A 0,则A E |.3•设方阵A1 2 24 t 3 , B 为三阶非零矩阵,且AB=O,则t 3114.设向量组m线性无关,向量 不能由它们线性表示,贝U 向1(1,2,1,)T ,22009年6月22日6小题,每小题3分,满分18分)、填空题 1 0 0 10 01.设D n 为n 阶行列式,则D n = 0的必要条件是[]. (A) D n 中有两行元素对应成比例; (B) D n 中各行元素之和为零; (C) D n 中有一行元素全为零;(D)以D n 为系数行列式的齐次线性方程组有非零解.2.若向量组 ,,线性无关,,, 线性相关,则[](A)必可由,, 线性表示; (B)必可由,, 线性表示; (C)必可由,, 线性表示; (D)必可由,,线性表示.3.设3阶方阵A 有特征值0,— 1,1,其对应的特征向量为P i , P 2,P 3, 令1 亠( P 1, P 2, P 3),则 P —1AP =[ ].1 0 00 0 0(A) 01 0 ;(B) 01 0 ;0 0 0 0 0 10 01 0(C) 0 10 ;(D) 0 00 .0 0 —10 0—14. 设 a 1, a, a 线性无关,则下列向量组线性相关的是[](A) a, a, a - a ;(B) a 1,a + a, a 1+ a ;(C) a +( 也, a + a, a + a ; (D) a 1- a, a - a, a - a .5. 若矩阵A a x 4有一个3阶子式不为0,则A 的秩R ( A )=[]. (A) 1; (B) 2; (C) 3;(D) 4.6. 实二次型f 二X T A X 为正定的充分必要条件是[].(A) A 的特征值全大于零; (B) A 的负惯性指数为零;(C)AI > 0 ;(D) R(A) = n .、解答题(共5小题,每道题8分,满分40分)。
线性代数B期末试卷及答案2008 – 2009学年第⼆学期《线性代数B 》试卷⼀⼆三四五六总分⼀、填空题(共6⼩题,每⼩题 3 分,满分18分)1。
设??-=*8030010000100001A ,则A =。
2。
A 为n 阶⽅阵,T AA =E 且=+3.设⽅阵12243,311t -??=-A B 为三阶⾮零矩阵,且AB=O ,则=t . 4。
设向量组m ααα,,,21 线性⽆关,向量不能由它们线性表⽰,则向量组,,,,21m ααα的秩为。
5.设A 为实对称阵,且|A |≠0,则⼆次型f =x T A x 化为f =y T A —1 y 的线性变换是x = .6.设3R 的两组基为()T11,1,1a =,()21,0,1a T=-,()31,0,1a T=;),1,2,1(1=βT ,()()232,3,4,3,4,3ββ==T T,则由基123,,a a a 到基123,,βββ的过渡矩阵为 .得分6⼩题,每⼩题3分,满分18分)1.设D n为n阶⾏列式,则D n=0的必要条件是[ ].(A)D n中有两⾏元素对应成⽐例;(B) D n中各⾏元素之和为零;(C) D n中有⼀⾏元素全为零;(D)以D n为系数⾏列式的齐次线性⽅程组有⾮零解.2.若向量组,,线性⽆关,,,线性相关,则[ ].(A)必可由,,线性表⽰;(B) 必可由,,线性表⽰;(C)必可由,,线性表⽰;(D)必可由,,线性表⽰.3.设3阶⽅阵A有特征值0,-1,1,其对应的特征向量为P1,P2,P3,令P=(P1,P2,P3),则P-1AP=[ ]。
(A)100010000-;(B)000010001-;(C)000010001-; (D)100000001-.4.设α1,α2,α3线性⽆关,则下列向量组线性相关的是[ ].(A)α1,α2,α3 - α1;(B)α1,α1+α2,α1+α3;(C)α1+α2,α2+α3,α3+α1; (D)α1-α2,α2—α3,α3—α1.5.若矩阵A3×4有⼀个3阶⼦式不为0,则A的秩R(A) =[ ].(A) 1; (B)2;(C)3; (D)4.6.实⼆次型f=x T Ax为正定的充分必要条件是[].(A) A的特征值全⼤于零;(B) A的负惯性指数为零;(C)|A| > 0 ; (D) R(A) = n .得分三、解答题(共5⼩题,每道题8分,满分40分)1。
线性代数试题测试卷及答案2套一、填空题1.四阶行列式中含有因子112432a a a 的项为_________.2.行列式222111ab c a b c 的值为_________. 3.设矩阵1000010000210022⎛⎫⎪⎪= ⎪⎪⎝⎭A ,则1-=A _________.4.设四元齐次线性方程组的系数矩阵的秩为1,则其解空间的维数为_________.5.设矩阵1234(,,,)=A αααα,其中234,,ααα线性无关,12342=-+αααα,向量41i i ==∑βα,则方程=AX β的通解为_________.6.已知三阶矩阵A 的特征值为1,2,3,则32--=A A E _________.二、选择题1.若两个三阶行列式1D 与2D 有两列元素对应相同,且123,2D D ==-,则12D D +的值为( ).A.1B.6-C.5D.02.对任意的n 阶方阵,A B 总有 ( ). A.=AB BA B.=AB BA C.()111---=AB B A D.()222=AB A B3.若矩阵X 满足方程=AXB C ,则矩阵X 为( ).A.11--A B C B.11--A CB C.11--CA B D.条件不足,无法求解4.设矩阵A 为四阶方阵,且()3R =A ,则*()R =A ( ). A.4 B.3 C.2 D.15.下列说法与非齐次线性方程组=AX β有解不等价的命题是( ).A.向量β可由A 的列向量组线性表示B.矩阵A 的列向量组与(,)A β的列向量组等价C.矩阵A 的行向量组与(,)A β的行向量组等价D.(,)A β的列向量组可由A 的列向量组线性表示6.设n 阶矩阵A 和B 相似,则下列说法错误的是( ). A.=A B B.()()R R =A BC.A 与B 等价D.A 与B 具有相同的特征向量7.设222123121323()224f x x x x ax x x x x x =+++-+为正定二次型,则a 满足( ).A.11a a ><-或B.12a <<C.11a -<<D.21a -<<- 三、计算题1.已知12111111111n na a D a ++=+,其中120n a a a ≠,求12n n nn A A A +++.2.设矩阵022110123⎛⎫ ⎪= ⎪ ⎪-⎝⎭A ,且2=+AX A X ,求X .3.求矩阵123451122102151(,,,,)2031311041⎛⎫ ⎪-⎪== ⎪- ⎪-⎝⎭A ααααα的列向量组的一个最大无关组,并把其余列向量用最大无关组线性表示.4.求非齐次线性方程组12341234123431,3344,5980x x x x x x x x x x x x +--=⎧⎪--+=⎨⎪+--=⎩的通解.5.求一个正交变换=X PY ,将二次型123121323(,,)222f x x x x x x x x x =--化成标准形.四、证明题已知n 阶方阵A 和B 满足124-=-A B B E ,证明2不是A 的特征值。
《线性代数》试题 参考答案及评分标准一、(本大题共5小题,每小题7分,共35分)1、设122122A -=⎛⎪ ⎪ ⎪⎝⎭,求6A 。
解2122122A ⎛⎫-- ⎪⎪= ⎪- ⎪⎝⎭,31001A -⎛⎫= ⎪-⎝⎭,6A E =, ……………… 7分 2、计算行列式1234234134124123D =.解 原式=11111105413132413-=---- . ……………… 7分3、计算行列式121212n n n x ax x x x a x D x x x a--=-.解121212n n n x a x x x x a x D x x x a--=-212121nin i ni ni ni n i x ax x x a x ax x ax x a===---=--∑∑∑ ……………… 3分221211()1n nn i i n x x x a x x a x x a=-=--∑ ……………… 5分2111100()()()0n nnn i i i i x x a x a a x a a-==-=-=---∑∑ ……………… 7分4、计算矩阵20202010102102101010⎛⎫⎪⎪⎪ ⎪⎝⎭的秩。
解2020222220202010100101001010210210122100211010100000000000A ⎛⎫⎛⎫⎛⎫ ⎪⎪ ⎪⎪ ⎪ ⎪=→→ ⎪ ⎪ ⎪---- ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭……………… 7分 5、设矩阵111111000,010004b A b a B =⎛⎫⎛⎫⎪ ⎪= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭,且A 与B 相似,求,a b 。
解 由两行列式相等得:,2(1)0b -=,得1b = ……………… 4分由两对角线的和相等得:25a +=,则3a = ……………… 7分二、(本大题共4小题,每小题9分,共36分)6、设矩阵101020101A =⎛⎫⎪ ⎪ ⎪⎝⎭,且2AB E A B +=+,求B 。
2017级线性代数期末试卷(B)解答与参考评分标准一、单项选择题(每小题3分,共15分)1.当()k C ≠时,方程组02020kx z x ky z kx y z +=⎧⎪++=⎨⎪-+=⎩只有零解。
A. 0;B. -1 ;C. 2 ;D. -22.设,A B 均为n 阶方阵,且()0A B E -=, 则 ( B ) A. 0A =或 B E =;B. 0A =或 0B E -=;C. 0A =或 1B =;D. A BA =.3.以初等矩阵100001010⎛⎫ ⎪ ⎪ ⎪⎝⎭左乘矩阵001100010A ⎛⎫ ⎪= ⎪ ⎪⎝⎭相当于对矩阵A (A )的初等变换.A. 23r r ↔,B. 23c c ↔,C. 13r r ↔, B. 13c c ↔,4.设向量组的秩为r ,则( D )A. 该向量组所含向量的个数必大于r 。
B. 该向量组中任何r 个向量必线性无关,任何1r +个向量必线性相关。
C. 该向量组中有r 个向量线性无关,有1r +个向量线性相关。
D. 该向量组中有r 个向量线性无关,任何1r +个向量必线性相关。
5.设A 为n 阶方阵,则“0是A 的一个特征值“是“A 为奇异矩阵“的( D )A. 充分非必要条件;B. 必要非充分条件;C. 既非充分也非必要条件;D. 充分必要条件。
二、填空题(每小题3分,共15分)6. 设()2201x x e f x =,则()'0f = 27. 设A,B 均为n 阶方阵,2,3A B ==-,则*12A B-=2123n --。
8.设A 是43⨯矩阵,且()2R A =,而102020103B ⎛⎫ ⎪= ⎪ ⎪-⎝⎭,则()R AB = 2 。
9. 设()()()1231,1,1,,0,,1,3,2a b ααα===,若1,23,ααα线性相关,则,a b 满足关系式2a b =。
10.设n 阶方阵A 有n 个特征值0,1,2,L ,1n -,且方阵B 与A 相似,则B E +=!n 。
2011-2012学年第一学期期末考试《线性代数》试卷 (B )评阅人:_____________ 总分人:______________一、单项选择题。
(本大题共10小题,每小题3分,共30分) 1.下列等式中正确的是( ) A .()222A B A AB BA B +=+++ B .()TT T AB A B = C .()()A B A B A B -+=-22 D .()33A A A A -=-22.设⎪⎪⎪⎭⎫ ⎝⎛=311132213A 则21a 的代数余子式21A 的值为 ( )A. 1.B. 1-C. 2.D. 2-3.设12,ββ是非齐次线性方程组AX b =的两个解,则下列向量中仍为方程组解的是( ) A .ββ12+B .12ββ-C .1222ββ+ D .12325ββ+ 4.设0λ是可逆矩阵A 的一个特征值,则21A -必有一个特征值是( )A .210λ B .021λ C .20λD .2λ 5.设向量组(I):1α,2α,…r α,向量组(II):1α,2α,…r α,1r +α,…,s α则必有( )。
A .若(I)线性无关,则(II)线性无关B .若(II)线性无关,则(I)线性无关C .若(I)线性无关,则(II)线性相关D .若(II)线性相关,则(I)线性相关6.设⎪⎪⎪⎭⎫ ⎝⎛-=211121113A 的三个特征值分别是321,,λλλ,则321λλλ++的值等于( ) A. 0. B. 1. C. 2. D. 3.7.已知A 是一个43⨯阶矩阵,则下列命题正确的是( )__________________系__________专业___________班级 姓名_______________ 学号_______________………………………………(密)………………………………(封)………………………………(线)………………………………2 A. 若A 中所有三阶子式都为零,则 2.R AB. 若 2.R A则A 中所有三阶子式都为零C. 若A 中所有二阶子式都不为零,则 2.R AD. 若 2.R A则A 中所有二阶子式都不为零8..设n 阶方阵A 的0=A 则A 的列向量( )A .0)(=A RB . 0)(≠A RC .线性相关D .线性无关 9.设向量组A 可由向量组B 线性表示,则有( )A. )()(B R A R ≤B. )()(B R A R ≥C. )()(B R A R =D. 不能确定)(A R 和)(B R 的大小. 10.设n 元线性方程组Ax =b 且为()()n b A R A R ==,,则该方程组( )A.有唯一解;B.有无穷多解;C.无解;D.不确定。
《线性代数B 》课程试卷一、填空(本题共6小题,每小题3分,共18分)1. 设A 是四阶方阵,且,1=A 则=2-1-A16 .2.设三阶方阵A 的特征值为1,-1,2,则E A A B 2+5-=2的特征值为 -2,8,-4.3. 已知321ααα,,线性相关,3α不能由21αα,线性表示,则21αα,线性 相关.4. 设矩阵⎪⎪⎪⎪⎪⎭⎫ ⎝⎛2-0151-4-02021=t A 的秩为2,则t = 3 . 5. 设⎪⎪⎪⎭⎫⎝⎛400021032=A ,则1-A =⎪⎪⎪⎪⎭⎫⎝⎛4100021-03-2.6.设4阶矩阵[]321=γγγα,,,A ,[]321=γγγβ,,,B ,且,2=A ,3=B 则=+B A 40.二、单项选择(本题共5小题,每小题3分,共15分)1. 矩阵A 适合条件( D )时,它的秩为r)(A A 中任何1+r 列线性相关;)(B A 中任何r 列线性相关;)(C A 中有r 列线性无关; )(D A 中线性无关的列向量最多有r 个.2. 若n 阶方阵B A , 均可逆,C AXB = ,则=X ( C ) C BAA 1-1-)( ; 1-1-ACBB )(; 1-1-CBAC )(; 1-1-CABD )( .3、设⎪⎪⎪⎭⎫⎝⎛=nn n n a a a a A1111,⎪⎪⎪⎭⎫⎝⎛=nn n n A A A A B1111,其中ij A 是ij a 的 代数余子式(i ,j=1,2,…,n ),则 ( C ))(A A 是B 的伴随矩阵; )(B B 是A 的伴随矩阵;)(C B 是T A 的伴随矩阵; )(D B 不是TA 的伴随矩阵.4. A 与B 均为n 阶矩阵,若A 与B 相似,则下列说法正确的是( C ).)A (A 与B 有相同的特征值和特征向量; )B ( B E A E -=-λλ;)C (对任意常数k ,有 A kE -与B kE -相似; )D (A 与B 都相似于同一对角阵.5. 非齐次线性方程组b Ax =中A 为)(n m n m ≠⨯矩阵,则( B )(A) 若b Ax =有无穷多解,则0=Ax 仅有零解;(B) 若b Ax =有唯一解,则0=Ax 仅有零解; (C) 若0=Ax 有非零解,则b Ax =有无穷多解; (D) 若0=Ax 仅有零解,则b Ax =有唯一解.三、计算.(10分)1-1-1-n 2121n 21a a a a a a a a a n解 )1-=∑1=ni i n a D (1-11-11222n n n a a a a a a分4=)1-∑1=ni i a (1-0101-1001分8 1-1-=n )()1-∑1=ni i a (分10四、(10分)设B A ,满足关系式A B AB +2=,且 ⎪⎪⎪⎭⎫⎝⎛410011103=A , 求矩阵B . 解 A E A B 1-2-=)( 分3 ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡4121001101-1103101=2- )(A E A 分5 ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡410211-12-1-1-0103101−→−分6 ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡322-1002-3-40102-2-5001−→−分9⎥⎥⎦⎤⎢⎢⎢⎣⎡322-2-3-42-2-5=∴X 分10 (分或8⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡111-1-2-21-1-2=2-1- )(E A ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡322-2-3-42-2-5=∴X 分10 )五、 (14分) 已知非齐次线性方程组⎪⎪⎩⎪⎪⎨⎧=----=+++-=+-+=+-+bx x x x x ax x x x x x x x x x x 4321432143214321617231462032,问a 、b 为何值时,方程组有解,并求出所有解。
班级 _____一、填空题姓名学号 成绩1、设|七I 5 3 2 2 5 2 2 6 3 5 5 2 54 3 4 1 5321,则(A 31+ A 32+ A 33) - (A 344-A ) =0即(A 31+ A 324- A 33)-(A ^4- A )=1 5 1 225 1 2 3 4 5 31 -12 1 5 253-11 =0线柱代教期水综合练习(B 卷)解析:将(A 3l+ A 32+ A 33)-( A "人35)还原成行列式2、设都是3维行向量,且行列式q a(X+ 2 A + 2 艮 + 2 AY Y Y Y3、设A 是4阶矩阵,&是齐次线性方程组Ax =()的两个线性无关的解, 则A 的伴随矩阵心0.解析:是齐次线性方程组& = 0的两个线性无关的解,则弘=0的基 础解系中至少含有两个解向量,则r(A)<n-2 = 2f 所以A 中所有3阶子 式都为0。
则妃=0。
%a %a 、+%= A = 艮 = A =2,则 P\+ A Y Y Y Y 2/ =166 % % g %%§\+ th — P \ +"2 + P\+”2 —A + A + A + A 2/ 2/ 2/ 2/ 2/ 2/2/ 解析:0 D -1c [n 若尸(4) = 〃r(A*) = < 1 若 r(A) = w-1,其 A 是〃阶方阵0 若r(A) <n — l4、 方阵A 可表示成一个对称矩阵与一个反对称矩阵之和,其为 任意方 K ________ ■5、 设A 是〃阶可逆矩阵,若行列式沽| = -上,则人t = -n .解析:妒=|4'— —oc6、 设矩阵A= » A ,若C 、。
可逆,则A 也可逆,且妃=■ 一7、 设a 与少是4阶正交矩阵A 的前两列,则内积(")=0. 8、 设3阶矩阵A 的3个特征值为2, 3, 4,则行列式|2平 192解析:|2A| = 23|A| = 23-2-3-4,矩阵的行列式等于所有特征值的乘积。