高三数学随机事件的概率
- 格式:ppt
- 大小:329.50 KB
- 文档页数:13
随机事件的概率知识点高三随机事件的概率是高中数学中重要的概念之一。
在高三数学学习中,我们需要掌握随机事件的基本概念、计算方法以及与排列组合之间的关系。
通过学习这些知识点,我们能够更好地理解随机事件的发生规律,为我们解决实际问题提供数学的思维工具。
一、基本概念随机事件是指在一次试验中可能出现的不同结果。
在概率论中,我们把每个试验的结果称为样本点,样本空间是指所有可能的样本点的集合。
随机事件是样本空间的子集。
例如,抛一枚硬币的样本空间为{正面,反面},那么“出现正面”的事件可以表示为A={正面}。
二、概率的计算方法在概率理论中,我们用P(A)表示事件A的概率。
概率的计算方法有以下几种常见的形式:1.频率定义:当试验的次数非常多时,事件A发生的频率接近于A的概率,用频率定义计算概率的方法适用于大量试验的情况。
2.古典定义:对于一个有限样本空间的等可能试验,事件A的概率可以使用P(A)=|A|/|S|来计算,其中|A|表示事件A包含的样本点个数,|S|表示样本空间中的样本点个数。
3.几何概率定义:对于一些几何问题,我们可以利用几何概率的定义来计算概率。
例如,投掷一个点在单位正方形中的均匀分布的事件A,可以通过计算事件A所占的面积来求得概率。
4.条件概率定义:当事件A的发生与事件B的发生有关联时,我们可以通过条件概率来计算事件A在事件B发生的条件下的概率。
条件概率的计算公式为P(A|B)=P(AB)/P(B),其中P(AB)表示事件A与事件B同时发生的概率,P(B)表示事件B的概率。
三、排列与组合与概率的关系排列与组合是高中数学中的基础知识点,它们与概率有着密切的关系。
1.排列:排列是从n个不同元素中取出m个元素,按照一定的顺序排列的方式。
表示为A(n,m)。
当考虑概率时,排列可以用来计算有序事件的概率。
2.组合:组合是从n个不同元素中取出m个元素,不考虑排列顺序的方式。
表示为C(n,m)。
当考虑概率时,组合可以用来计算无序事件的概率。
高三数学总复习讲义--概率第一讲:随机事件的概率随机事件:在一定条件下可能发生也可能不发生的事件。
必然事件:在一定条件必然要发生的事件。
不可能事件:在一定条件下不可能发生的事件。
事件A的概率:一般地,在大量重复进行同一试验时,事件A发生的频率总是接近某个常数,在它附近摆动,这时就把这个常数叫做事件A的概率,记作P(A)。
由定义可知,必然事件的概率是1,不可能事件的概率是0。
等可能事件的概率:一次试验连同其中可能出现的每一个结果称为一个基本事件,通常此试验中的某一事件A由几个基本事件组成。
如果试验中可能出现的结果有n个(即此试验由n个基本事件组成,而且所有结果出现的可能性相等,那么每个基本事件的概率都是,如果某个事件A包含的结果有m个,那么事件A的概率。
在一次试验中,等可能出现的n个结果组成一个集合I,这n个结果就是集合I的n个元素,从集合的角度看,事件A的概率是子集A的元素个数与集合I的元素个数的比值:(古典概型)这样就建立了事件与集合的联系,从排列组合的角度看,m,n实际上就是事件的排列数或组合数。
题型一:与排列组合综合例1.某班委会由4名男生和3名女生组成,现从中选出2人担任正副班长,其中至少有1名女生当选的概率是____________________;练习1.将7人(含甲、乙两人)分成三组,一组3人,另两组各2人,不同的分组数为________________;甲、乙分在同一组的概率P=________________。
题型二:与两个计数原理综合例2.先将一个棱长为3的正方体木块的六个面分别涂上六种颜色,再将正方体均匀切割成棱长为1的小正方体,从切好的小正方体中任选一个,所得正方体的六个面均没有涂色的概率是________________;练习2.由数字0、1、2、3、4、5组成没有重复数字的五位数,所得数是大于20000的偶数的概率是________________;题型三:有、无放回抽样问题例3.从含有两件正品和一件次品的3件产品中每次任取一件,连续取两次,求取出的两件产品中恰有1件次品的概率。
随机事件的概率导言:随机事件是指在一定条件下,由于种种因素的不确定性而发生的事件。
生活中的许多事情都是随机事件,无法预测和控制。
我们对于随机事件的发生与否往往抱有一定的期望或预测,这就引出了随机事件的概率。
一、什么是概率?概率(probability)是现代数学中研究事件发生的一种数学方法。
概率既是一种数学工具,同时也是描述随机现象出现“规律”的一种观念。
概率的大小通常用数字来表示,范围在0到1之间,概率越大,表示事件发生的可能性越大。
二、概率的计算方法1. 古典概率:古典概率也叫“理论概率”,它是指当各种结果发生的机会是等可能的时候,可以根据有限的样本空间中可能结果的数目比来计算。
例如投掷均匀的骰子,每一个面都有相同的机会出现,那么每一个面出现的概率就是1/6。
2. 频率概率:频率概率也叫“实验概率”,它是指在实际的重复试验中,事件发生的次数与总的试验次数的比例。
例如,我们可以通过多次投掷骰子的实验来计算每个面出现的概率,通过实验的结果来估计概率。
3. 主观概率:主观概率也叫“人为概率”,它是指个人根据经验、直觉和一些可能的关联性来估计事件发生的概率。
这种概率是主观的,因为它依赖于个人的判断和看法。
三、随机事件的应用随机事件的概率在现实生活中有着广泛的应用,下面举几个例子进行阐述:1. 赌场中的赌博:在赌场中,很多赌博游戏都基于随机事件的概率来决定输赢。
例如,在轮盘赌中,赌徒根据小球停在哪一个数字上来下注,而小球停留在哪个数字上是完全由随机事件决定的。
赌徒可以根据每个数字出现的概率来决定下注的策略。
2. 保险业的风险评估:在保险业中,概率是一个非常重要的概念。
保险公司需要根据客户的信息以及历史数据来评估风险,并计算出合理的保险费用。
例如,在车险中,保险公司需要根据客户的驾驶记录和车辆信息来评估客户发生车祸的概率,并根据概率来决定保险费用的高低。
3. 股票市场:在股票市场中,投资者根据股票的历史数据和一些基本面分析来预测股票的未来涨跌。
2024高考数学随机事件与概率分布随机事件与概率分布是数学中重要的概念和工具,在2024年的高考数学考试中也将成为不可或缺的考点。
本文将对随机事件与概率分布进行详细的介绍和讨论。
一、随机事件的定义和性质1. 随机事件的定义随机事件是指在一次试验中发生或者不发生的事情。
试验是指具有确定性结果的随机现象,而随机事件则是试验结果的某种子集。
例如,在掷一枚硬币的试验中,出现正面和出现反面可以看作是两个随机事件。
2. 随机事件的性质随机事件具有以下性质:(1)必然事件:必然事件是指一定会发生的事件,它对应于样本空间中的全部样本点。
在抛一枚硬币的试验中,必然事件可以是出现正面或出现反面。
(2)不可能事件:不可能事件是指一定不会发生的事件,它对应于样本空间中的空集。
在抛一枚硬币的试验中,不可能事件可以是出现数字。
(3)对立事件:对立事件是指在一次试验中不能同时发生的两个事件。
例如,在掷一枚硬币的试验中,出现正面和出现反面是对立事件。
二、概率的基本概念和性质1. 概率的定义概率是对随机事件发生可能性的度量。
设S是一次试验的样本空间,A是S的一个事件,P(A)表示事件A发生的概率,通常用来衡量事件A在试验中出现的可能性大小。
2. 概率的性质概率具有以下性质:(1)非负性:对于任意事件A,有0 ≤ P(A) ≤ 1。
(2)若必然事件S的概率为1,那么对于任意事件A,有P(A) +P(A的对立事件) = 1。
(3)加法公式:对于任意两个互斥事件A和B,有P(A∪B) = P(A) + P(B)。
三、离散型随机变量与概率分布1. 随机变量的定义随机变量是指赋予每个样本点一个实数的函数。
它用于描述试验结果和对应的数字之间的关系。
2. 离散型随机变量与概率分布离散型随机变量是指取有限个或可数个数值的随机变量。
概率分布则是离散型随机变量的所有可能取值及其对应的概率。
例如,在一次掷骰子的试验中,骰子的点数可以是1、2、3、4、5或6,因此点数是一个离散型随机变量。
高中概率问题3.1.随机事件的概率3.1.1 随机事件的概率1、必然事件:一般地,把在条件S 下,一定会发生的事件叫做相对于条件S 的必然事件。
2、不可能事件:把在条件S 下,一定不会发生的事件叫做相对于条件S 的不可能事件。
3、确定事件:必然事件和不可能事件统称相对于条件S 的确定事件。
4、随机事件:在条件S 下可能发生也可能不发生的事件,叫相对于条件S 的随机事件。
5、频数:在相同条件S 下重复n 次试验,观察某一事件A 是否出现,称n 次试验中事件A 出现的次数n A 为事件A 出现的频数。
6、频率:事件A 出现的比例()=A n n A nf。
7、概率:随机事件A 的概率是频率的稳定值,反之,频率是概率的近似值.3.1.2 概率的意义1、概率的正确解释:随机事件在一次试验中发生与否是随机的,但随机性中含有规律性。
认识了这种随机中的规律性,可以比较准确地预测随机事件发生的可能性。
2、游戏的公平性:抽签的公平性。
3、决策中的概率思想:从多个可选答案中挑选出正确答案的决策任务,那么“使得样本出现的可能性最大”可以作为决策的准则。
——极大似然法、小概率事件4、天气预报的概率解释:明天本地降水概率为70%解释是“明天本地下雨的机会是70%”。
5、试验与发现:孟德尔的豌豆试验。
6、遗传机理中的统计规律。
3.1.3 概率的基本性质 1、事件的关系与运算(1)包含。
对于事件A 与事件B ,如果事件A 发生,则事件B 一定发生,称事件B 包含事件A (或事件A 包含于事件B ),记作(B A ⊇⊆或A B)。
不可能事件记作∅。
(2)相等。
若B A A B ⊇⊇且,则称事件A 与事件B 相等,记作A=B 。
(3)事件A 与事件B 的并事件(和事件):某事件发生当且仅当事件A 发生或事件B 发生。
(4)事件A 与事件B 的交事件(积事件):某事件发生当且仅当事件A 发生且事件B 发生。
(5)事件A 与事件B 互斥:A B I 为不可能事件,即=A B ∅I ,即事件A 与事件B 在任何一次试验中并不会同时发生。
高中数学概率知识点总结在高中数学中,概率是一个重要的知识点,它不仅在数学学科中有着广泛的应用,也与我们的日常生活息息相关。
下面就让我们一起来详细梳理一下高中数学概率的相关知识。
一、随机事件与概率1、随机事件随机事件是指在一定条件下,可能出现也可能不出现,而在大量重复试验中具有某种规律性的事件。
比如掷骰子出现的点数、明天是否下雨等。
2、概率的定义概率是用来描述随机事件发生可能性大小的数值。
对于一个随机事件 A,其概率 P(A)的值介于 0 到 1 之间。
如果 P(A) = 0,则事件 A 几乎不可能发生;如果 P(A) = 1,则事件 A 一定会发生;如果 0 < P(A) < 1,则事件 A 有可能发生。
3、古典概型古典概型是一种最简单的概率模型。
具有以下两个特点:(1)试验中所有可能出现的基本事件只有有限个。
(2)每个基本事件出现的可能性相等。
在古典概型中,事件 A 的概率 P(A) =事件 A 包含的基本事件个数÷总的基本事件个数。
4、几何概型几何概型是另一种常见的概率模型。
特点是试验中所有可能出现的结果(基本事件)有无限多个,每个基本事件发生的可能性相等。
其概率的计算通常与长度、面积、体积等几何度量有关。
二、事件的关系与运算1、事件的包含关系如果事件 A 发生必然导致事件 B 发生,那么称事件 B 包含事件 A,记作 A⊆B。
2、事件的相等关系如果 A⊆B 且 B⊆A,那么称事件 A 与事件 B 相等,记作 A = B。
3、并事件(和事件)事件 A 或事件 B 至少有一个发生的事件称为事件 A 与事件 B 的并事件,记作 A∪B。
4、交事件(积事件)事件 A 和事件 B 同时发生的事件称为事件 A 与事件 B 的交事件,记作A∩B。
5、互斥事件如果事件 A 与事件 B 不能同时发生,那么称事件 A 与事件 B 互斥,其含义是A∩B =∅。
6、对立事件若两个互斥事件A、B 必有一个发生,则称事件A、B 为对立事件,记作 A =。
概率1.随机事件的概率(1)必然事件:在一定条件下,必然会发生的事件;(2)不可能事件:在一定条件下,肯定不会发生的事件;(3)随机事件:在一定条件下,可能发生也可能不发生的事件.(4)随机事件的概率:对于给定的随机事件,A 在大量重复进行同一试验时,事件A 发生的频率n m会在某个常数附近摆动并趋于稳定,我们把这个常数常数称为随机事件A 的概率,记作).(A P 注:由定义可知,1)(0≤≤A P 必然事件的概率是1,不可能事件的概率是0.2.事件的关系与运算定义符号表示包含关系如果事件A 发生,则事件B 一定发生,这时称事件B 包含事件A (或称事件A 包含于事件B )B ⊇A (或A ⊆B )相等关系若A ⊆B 且B ⊆A A =B并事件(和事件)若某事件发生当且仅当事件A 发生或事件B 发生,称此事件为事件A 与事件B 的并事件(或和事件)A ∪B (或A +B )交事件(积事件)若某事件发生当且仅当事件A 发生且事件B 发生,则称此事件为事件A 与事件B 的交事件(或积事件)A ∩B (或AB )互斥事件若A ∩B 为不可能事件(A ∩B =∅),则称事件A 与事件B 互斥A ∩B =∅对立事件若A ∩B 为不可能事件,A ∪B 为必然事件,那么称事件A 与事件B 互为对立事件A ∩B =∅,P(A)+P(B)=13.古典概型(列举法)(1)古典概型的两大特点:①所有的基本事件只有有限个;②每个基本事件的发生都是等可能的.(2)古典概型的概率计算公式:如果一次试验的等可能基本事件共有n 个,那么每一个等可能基本事件发生的概率都是.1n 如果某个事件A 包含了其中m 个等可能基本事件,那么事件A 发生的概率为.)(nmA P =例1-1【2020全国I 文】设O 为正方形ABCD 的中心,在D CB A O ,,,,中任选三点,则取到三点共线的概率为()A.51B.52 C.21 D.54例1-2【2016全国I 文】为美化环境,从红、黄、白、紫4种颜色的花中任取2种花种在一个花坛中,余下的2种花种在另一个花坛中,则红色和紫色的花不在同一花坛的概率是()A.31 B.21 C.32 D.65例1-3【2016江苏高考】将一颗质地均匀的骰子(一种各个面上分别标有1,2,3,4,5,6个点的正方体玩具)先后抛掷2次,则出现向上的点数之和小于10的概率是.答:1-1:A ;1-2:C;1-3:65.4.互斥事件和对立事件(1)互斥事件:不能同时发生的两个事件叫做互斥事件.一般地,如果事件n A A A ,,,21 中的任意两个都是互斥事件,则称事件n A A A ,,,21 彼此互斥.(2)互斥事件概率公式:如果事件B A ,互斥,那么事件B A +发生(注:B A +表示事件B A ,至少有一个发生)的概率,等于事件B A ,分别发生的概率的和,即).()()(B P A P B A P +=+推广:一般地,若n A A A ,,,21 彼此互斥,那么).()()()(2121n n A P A P A P A A A P +++=+++ 注:若A,B 不互斥,则).()()()(B A P B P A P B A P -+=(3)对立事件:如果两个互斥事件必有一个发生,那么称这两个事件为对立事件.事件A 的对立事件记为.A (4)对立事件的概率公式:).(1)(A P A P -=注:“至多”,“至少”的问题考虑反面(对立事件)往往比较简单.例2-1:某中学的学生积极参加体育锻炼,其中有96%的学生喜欢足球或游泳,60%的学生喜欢足球,82%的学生喜欢游泳,则该中学既喜欢足球又喜欢游泳的学生数占该校学生总数的比例是()A.62% B.56% C.46% D.42%例2-2:将一枚骰子连续抛掷两次,至少有一次向上的点数为1的概率是.答:2-1:C;2-2:.36115.事件的独立性(1)条件概率:一般地,对于两个事件A 和,B 在已知事件B 发生的条件下事件A 发生的概率,称为事件B 发生的条件下事件A 的条件概率,记为).|(B A P 概率的乘法公式:).()|()(B P B A P AB P =注:事件AB 表示事件A 和事件B 同时发生.(2)事件的独立性①定义:一般地,若事件B A ,满足)()|(A P B A P =(即事件B 发生不影响事件A 发生的概率),则称事件B A ,独立.②性质:若事件B A ,相互独立,则事件A 与B ,A 与,B A 与B 都相互独立.③公式:事件B A ,相互独立的充要条件是).()()(B P A P AB P =④推广:若n A A A ,,,21 相互独立,则这n 个事件同时发生的概率为).()()()(2121n n A P A P A P A A A P =⑤区别:独立事件与互斥事件的根本区别在于是否能同时发生,如果不能那是互斥事件,如果能再满足)()()(B P A P AB P =则为独立事件.注:求条件概率的两个思路:思路一:缩减样本空间法计算条件概率,如求P (A |B ),可分别求出事件B ,AB 包含的基本事件的个数,再利用公式P (A |B )=n (AB )n (B )计算;思路二:直接利用公式计算条件概率,即先分别计算出P (AB ),P (B ),再利用公式P (A |B )=P (AB )P (B )计算.(3)全概率公式设n A A A ,,,21 是一组两两互斥的事件,,21Ω=n A A A 且,0)(>i A P ,,,2,1n i =则对任意的事件,Ω⊆B 有∑==ni i i A B P A P B P 1).|()()(我们称上面的公式为全概率公式.全概率公式是概率论中最基本的公式之一.6.离散型随机变量及其概率分布(1)随机变量:一般地,如果随机试验的结果可以用一个变量来表示,那么这样的变量叫做随机变量,通常用大写拉丁字母Z Y X ,,(或小写的希腊字母ξ,η,ζ)等表示,而用小写拉丁字母z y x ,,(加上适当下标)等表示随机变量可能的取值.(2)离散型随机变量的概率分布:一般地,假定随机变量X 有n 个不同的取值,它们分别是1x ,2x ,…,n x ,且()i i P X x p ==,1,2,,i n =⋅⋅⋅,①则称①为随机变量X 的概率分布列,简称为X 的分布列.也可以将①用表的形式来表示.X 1x 2x …nx P1p 2p …np 我们将表称为随机变量X 的概率分布表.它和①都叫做随机变量X 的概率分布.注:①),,2,1(0n i p i =≥;②121=+++n p p p ;③求随机变量的概率分布的步骤:1.确定X 的可能取值(1,2,)i x i =…;2.求出相应的概率()i i P X x p ==;3.列成表格的形式.7.常见离散型随机变量的概率分布(1)两点分布(0-1分布)若随机变量X 服从两点分布,即其分布列为X01P p-1p 则,)(p X E =).1()(p p X D -=(2)超几何分布一批产品共N 件,其中有M 件次品,任取n 件,其中恰有X 件次品,则事件}{r X=发生的概率为()r n r M N MnN C C P X r C --==,0,1,2,,r m = ,其中{}min ,m n M =,称X 服从超几何分布,记为),,,(~N M n H X 并将()r n r M N MnNC C P X r C --==记为).,,;(N M n r H X 01…mP00n M N Mn NC C C --11n M N Mn NC C C --…m n m M N Mn NC C C --则N nM X E =)(;)1())(()(2---=N N n N M N nM X D (了解).8.二项分布(1)n 次独立重复试验(伯努利试验)一般地,由n 次试验构成,且每次试验相互独立完成,每次试验的结果仅有两种对立的状态,即A 和,A 每次试验中.0)(>=p A P 我们将这样的试验称为n 次独立重复试验,也称为伯努利试验.(2)二项分布一般地,在n 次独立重复试验中,设事件A 发生的次数为,X 在每次试验事件A 发生的概率均为,p 那么在n 次独立重复试验中,事件A 恰好发生k 次的概率为),2,1,0()1()(n k p p C k X P k n kk n =-==-.此时称随机变量X 服从参数为p n ,的二项分布,记作).,(~p n B X(3)均值与方差若),,(~p n B X 则np x E =)(,).1()(p np x V -=注:超几何分布与二项分布的区别与联系(1)区别:是否有放回是两个的本质区别,有放回是二项分布,无放回是超几何分布;(2)联系:当总体容量较大时如流水线上,也可以用二项分布近似超几何分布.9.离散型随机变量的均值与方差(1)一般地,若离散型随机变量X 的概率分布为X 1x 2x…nx P1p 2p …np 其中,1,,,2,1,021=+++=≥n i p p p n i p 则有如下公式1.均值(数学期望):.)(2211n n p x p x p x X E ++==μ它反映了离散型随机变量取值的平.均水平....注:对于连续型变量通常取“组中值”来代替i x 计算期望.2.方差:.)()()()(22221212n n p x p x p x X V μμμσ-++-+-== (方差也可以用V(x)表示),它刻画了随机变量X 与其均值E (X )的平均偏离程度........3.标准差:.)(X V =σ注:随机变量的方差和标准差都反映了随机变量的取值偏离于均值的平均程度.方差或标准差越小,随机变量偏离于均值的平均程度就越小,稳定性就越好.(2)均值和方差的性质若随机变量b aX Y +=(b a ,为常数),则,)()(b X aE Y E +=).()(2X V a Y V =10.正态分布(1)正态曲线函数,21)(222)(σμπσ--=x e x f 其中实数μ和σ为参数(σ>0,μ∈R).我们称函数)(x f 的图象为正态分布密度曲线,简称正态曲线.(2)正态曲线的特点①曲线位于x 轴上方,与x 轴不相交;当x 无限增大时,曲线无限接近x 轴.②曲线是单峰的,它关于直线μ=x 对称;③曲线在μ=x 处达到峰值1σ2π;④曲线与x 轴之间的面积为1;⑤当σ一定时,曲线的位置由μ确定,曲线随着μ的变化而沿x 轴平移,如图甲所示;⑥当μ一定时,曲线的形状由σ确定,σ越小,曲线越“瘦高”,表示总体的分布越集中;σ越大,曲线越“矮胖”,表示总体的分布越分散,如图乙所示.(3)正态分布的定义及表示①若随机变量X 的概率分布密度函数为,21)(222)(σμπσ--=x e x f 则称随机变量X 服从正态分布,则记作),(~2σμN X .其中,参数μ反映了正态分布的集中位置,σ反映了随机变量的分布相对于均值μ的离散程度,此时=)(X E μ,=)(X D 2σ.特别地,当10==σμ,时,称随机变量X 服从标准正态分布,记作X~N (0,1).②若),,(~2σμN X 则如图所示,X 取值不超过)(x X P ≤为图中区域A 的面积,而)(b X a P ≤≤为区域B的面积.(4)正态总体在三个特殊区间内取值的概率值①P(μ-σ<X ≤μ+σ)=0.6826;②P(μ-2σ<X ≤μ+2σ)=0.9544;③P(μ-3σ<X ≤μ+3σ)=0.9974.注:在实际应用中,通常认为服从正态分布),(2σμN 的随机变量X 只取]3,3[σμσμ+-之间的值,这在统计学中称为σ3原则.在次区间以外取值的概率只有0.0026,通常认为这种情况几乎不可能发生.【解题规范】【2014江苏高考】盒中共有9个球,其中有4个红球,3个黄球和2个绿球,这些球除颜色外完全相同。
要求层次重难点事件与概率随机事件的概率 A (1)事件与概率①了解随机事件发生的不确定性和频率的稳定性,了解概率的意义,了解频率与概率的区别.②了解两个互斥事件的概率加法公式.(2)古典概型①理解古典概型及其概率计算公式.②会计算一些随机事件所含的基本事件数及事件发生的概率.随机事件的运算 B两个互斥事件的概率加法公式C古典概型古典概型 B(一)知识内容1.必然现象与随机现象必然现象是在一定条件下必然发生某种结果的现象;随机现象是在相同条件下,很难预料哪一种结果会出现的现象.2.试验:我们把观察随机现象或为了某种目的而进行的实验统称为试验,把观察结果或实验的结果称为试验的结果.一次试验是指事件的条件实现一次.在同样的条件下重复进行试验时,始终不会发生的结果,称为不可能事件;在每次试验中一定会发生的结果,称为必然事件;在试验中可能发生,也可能不发生的结果称为随机事件.通常用大写英文字母A B C,,,来表示随机事件,简称为事件.3.基本事件:在一次试验中,可以用来描绘其它事件的,不能再分的最简单的随机事件,称为基本事件.它包含所有可能发生的基本结果.所有基本事件构成的集合称为基本事件空间,常用 表示.例题精讲高考要求概率:随机事件的概率板块一:事件及样本空间(二)典例分析【例1】 下列说法:①既然抛掷硬币出现正面的概率为0.5,那么连续两次抛掷一枚质地均匀的硬币,一定是一次正面朝上,一次反面朝上;②如果某种彩票的中奖概率为110,那么买1000张这种彩票一定能中奖;③在乒乓球、排球等比赛中,裁判通过让运动员猜上抛均匀塑料圆板着地是正面还是反面来决定哪一方先发球,这样做不公平;④一个骰子掷一次得到2的概率是16,这说明一个骰子掷6次会出现一次2.其中不正确的说法有( )A .1个B .2个C .3个D .4个【例2】 下列事件:①同学甲竞选班长成功; ②两队球赛,强队胜利了;③一所学校共有998名学生,至少有三名学生的生日相同; ④若集合A B C ,,,满足A B B C ⊆⊆,,则A C ⊆; ⑤古代有一个国王想处死一位画师,背地里在2张签上都写上“死”字,再让画师抽“生死签”, 画师抽到死签; ⑥从1359,,,中任选两数相加,其和为偶数; 其中属于随机事件的有( ) A .2个 B .3个 C .4个D .5个【例3】 指出下列事件是必然事件,不可能事件,还是随机事件:⑴六月天下雪;⑵同时掷两颗骰子,事件“点数之和不超过12”; ⑶太阳从西边升起;⑷当100x ≥时,事件“lg 2x ≥”;⑸数列{}n a 是单调递增数列时,事件“20082009a a >”;⑹骑车通过10个十字路口,均遇红灯.【例4】 指出下列事件是必然事件,不可能事件,还是随机事件:⑴在标准大气压下且温度低于0C 时,冰融化; ⑵今天晚上下雨;⑶没有水分,种子发芽;⑷技术充分发达后,不需要任何能量的“永动机”将会出现; ⑸买彩票中一等奖;⑹若平面α平面m β=,n β∥,n α∥,则m n ∥.【例5】 将一颗骰子连续投掷两次,观察落地后的点数.⑴写出这个试验的基本事件空间和基本事件总数; ⑵“两次点数相同”这一事件包含了几个基本事件; ⑶“两次点数之和为6”这一事件包含了几个基本事件; ⑷“两次点数之差为1”这一事件包含了几个基本事件.【例6】 一个口袋中有完全相同的2个白球,3个黑球,4个红球,从中任取2球,观察球的颜色.⑴写出这个试验的基本事件空间; ⑵求这个试验的基本事件总数;⑶“至少有1个白球”这一事件包含哪几个基本事件;【例7】 同时转动如图所示的两个转盘,记转盘①得到的数为x ,转盘②得到的数为y ,结果为()x y ,.43214321⑴写出这个试验的基本事件空间; ⑵求这个试验的基本事件总数;⑶“5x y +=”这一事件包含哪几个基本事件?“3x <且1y >”呢? ⑷“4xy =”这一事件包含哪几个基本事件?“x y =”呢?【例8】 在天气预报中,如果预报“明天的降水概率为85%”,这是指( )A .明天该地区约有85%的地区降水,其它15%的地区不降水B .明天该地区约有85%的时间降水,其它时间不降水C .气象台的专家中,有85%的人认为会降水,另外15%的专家认为不会降水D .明天该地区降水的可能性为85%【例9】 同时掷两枚骰子,点数之和在2~12点间的事件是 事件,点数之和为12点的事件是事件,点数之和小于2或大于12的事件是 事件,点数之差为6点的事件是 事件.(一)知识内容1.如果事件A B ,同时发生,我们记作A B ,简记为AB ;2.一般地,对于两个事件A B ,,如果有()()()P AB P A P B =,就称事件A 与B 相互独立,简称A 与B 独立.当事件A 与B 独立时,事件A 与B ,A 与B ,A 与B 都是相互独立的. 3.概率的统计定义一般地,在n 次重复进行的试验中,事件A 发生的频率mn,当n 很大时,总是在某个常数附近摆动,随着n 的增加,摆动幅度越来越小,这时就把这个常数叫做事件A 的概率,记为()P A . 从概率的定义中,我们可以看出随机事件的概率()P A 满足:0()1P A ≤≤. 当A 是必然事件时,()1P A =,当A 是不可能事件时,()0P A =.4.互斥事件与事件的并互斥事件:不可能同时发生的两个事件叫做互斥事件,或称互不相容事件. 由事件A 和事件B 至少有一个发生(即A 发生,或B 发生,或A B ,都发生)所构成的事件C ,称为事件A 与B 的并(或和),记作C A B =.若C A B =,则若C 发生,则A 、B 中至少有一个发生,事件A B 是由事件A 或B 所包含的基本事件组成的集合.5.互斥事件的概率加法公式:若A 、B 是互斥事件,有()()()P A B P A P B =+ 若事件12n A A A ,,,两两互斥(彼此互斥),有1212()()()()n n P A A A P A P A P A =+++.事件“12n A A A ”发生是指事件12n A A A ,,,中至少有一个发生.6.互为对立事件不能同时发生且必有一个发生的两个事件叫做互为对立事件.事件A 的对立事件记作A . 有()1()P A P A =-.<教师备案>1.概率中的“事件”是指“随机试验的结果”,与通常所说的事件不同.基本事件空间是指一次试验中所有可能发生的基本结果.有时我们提到事件或随机事件,也包含不可能事件和必然事件,将其作为随机事件的特例,需要根据情况作出判断.2.概率可以通过频率来“测量”,或者说是频率的一个近似,此处概率的定义叫做概率的统计定义.在实践中,很多时候采用这种方法求事件的概率.随机事件的频率是指事件发生的次数与试验总次数的比值,它具有一定的稳定性,总是在某个常数附近摆,且随着试验次数的增加,摆动的幅度越来越小,这个常数叫做这个随机事件的概率.概率可以看成频率在理论上的期望值,它从数量上反映了随机事件发生的可能性的大小,频率在大量重复试验的前提下可近似地看作这个事件的概率. 3.基本事件一定是两两互斥的,它是互斥事件的特殊情形.(二)主要方法解决概率问题要注意“四个步骤,一个结合”: 求概率的步骤是:板块二:随机事件的概率计算第一步,确定事件性质⎧⎪⎪⎨⎪⎪⎩等可能事件互斥事件独立事件n次独立重复试验,即所给的问题归结为四类事件中的某一种.第二步,判断事件的运算⎧⎨⎩和事件积事件,即是至少有一个发生,还是同时发生,分别运用相加或相乘事件.第三步,运用公式()()()()()()()()(1)k k n kn nmP AnP A B P A P BP A B P A P Bn P k C p p-⎧=⎪⎪⎪+=+⎨⎪⋅=⋅⎪=-⎪⎩等可能事件:互斥事件:独立事件:次独立重复试验:求解第四步,答,即给提出的问题有一个明确的答复.解决此类问题的关键是会正确求解以下六种事件的概率(尤其是其中的(4)、(5)两种概率):⑴随机事件的概率,等可能性事件的概率;⑵互斥事件有一个发生的概率;⑶相互独立事件同时发生的概率;⑷n次独立重复试验中恰好发生k次的概率;⑸n次独立重复试验中在第k次才首次发生的概率;⑹对立事件的概率.另外:要注意区分这样的语句:“至少有一个发生”,“至多有一个发生”,“恰好有一个发生”,“都发生”,“不都发生”,“都不发生”,“第k次才发生”等.(三)典例分析【例1】下列说法:①频率是反映事件发生的频繁程度,概率反映事件发生的可能性的大小;②做n次随机试验,事件A发生的频率mn就是事件的概率;③百分率是频率,但不是概率;④频率是不能脱离具体的n次试验的实验值,而概率是具有确定性的不依赖于试验次数的理论值;⑤频率是概率的近似值,概率是频率的稳定值.其中正确的是()A.①④⑤B.②④⑤C.①③④D.①③⑤【例2】对某工厂所生产的产品质量进行调查,数据如下:抽查件数50100200300500合格件数4795192285478根据上表所提供的数据,估计合格品的概率约为多少?若要从该厂生产的此种产品中抽到950件合格品,大约需要抽查多少件产品?【例3】某篮球运动员在最近几场大赛中罚球投篮的结果如下:投篮次数810129101660100进球次数68977124574进球频率(1)在表中直接填写进球的频率;(2)这位运动员投篮一次,进球的概率为多少?【例4】下列说法:①频率是反映事件发生的频繁程度,概率反映事件发生的可能性的大小;②做n次随机试验,事件A发生m次,则事件A发生的概率为mn;③频率是不能脱离n次试验的实验值,而概率是具有确定性的不依赖于试验次数的理论值;④频率是概率的近似值,概率是频率的稳定值.其中正确命题的序号为.【例5】盒中装有4只相同的白球与6只相同的黄球.从中任取一只球.试指出下列事件分别属于什么事件?它们的概率是多少?⑴A=“取出的球是白球”;⑵B=“取出的球是蓝球”;⑶C=“取出的球是黄球”;⑷D=“取出的球是白球或黄球”.【例6】掷两枚均匀的骰子,记A=“点数不同”,B=“至少有一个是6点”,判断A与B是否为独立事件.【例7】设M和N是两个随机事件,表示事件M和事件N都不发生的是()A.M N+B.M N⋅C.M N M N⋅+⋅D.M N⋅【例8】 判断下列各对事件是否是相互独立事件⑴ 甲组3名男生、2名女生;乙组2名男生、3名女生,今从甲、乙两组中各选1名同学参加 演讲比赛,“从甲组中选出1名男生”与“从乙组中选出1名女生”.⑵ 容器内盛有5个白乒乓球和3个黄乒乓球,“从8个球中任意取出1个,取出的是白球”与“从剩下的7个球中任意取出1个,取出的还是白球”.【例9】 ⑴某县城有两种报纸甲、乙供居民订阅,记事件A 为“只订甲报”,事件B 为“至少订一种报”,事件C 为“至多订一种报”,事件D 为“不订甲报”,事件E 为“一种报也不订”.判断下列每对事件是不是互斥事件,再判断它们是不是对立事件.①A 与C ;②B 与E ;③B 与D ;④B 与C ;⑤C 与E .【例10】 抛掷一枚骰子,记事件A 为“落地时向上的数是奇数”,事件B 为“落地时向上的数是偶数”,事件C 为“落地时向上的数是3的倍数”,事件D 为“落地时向上的数是6或4”,则下列每对事件是互斥事件但不是对立事件的是( )A .A 与B B .B 与C C .A 与D D .C 与D【例11】 每道选择题都有4个选择支,其中只有1个选择支是正确的.某次考试共有12道选择题,某人说:“每个选择支正确的概率是14,我每题都选择第一个选择支,则一定有3题选择结果正确”.对该人的话进行判断,其结论是( ) A .正确的 B .错误的 C .模棱两可的 D .有歧义的【例12】 甲、乙两人进行击剑比赛,甲获胜的概率是0.41,两人战平的概率是0.27,那甲不输的概率为________甲不获胜的概率为_______.【例13】 已知A B ,是相互独立事件,且()0.3P A =,()0.6P B =,则()P A B ⋅=______.【例14】 某人射击5枪,命中3枪,3枪中恰有2枪连中的概率为( )A .120B .110C .25D .35【例15】 袋中有大小相同的5个白球和3个黑球,从中任意摸出4个,求下列事件发生的概率.⑴ 摸出2个或3个白球; ⑵ 至少摸出一个黑球.【例16】一批产品共100件,其中5件是废品,任抽10件进行检查,求下列事件的概率.⑴10件产品中至多有一件废品;⑵10件产品中至少有一件废品.【例17】为拉动经济增长,某市决定新建一批重点工程,分为基础设施工程、民生工程和产业建设工程三类.这三类工程所含项目的个数分别占总数的12,13,16.现有3名工人独立地从中任选一个项目参与建设.求:⑴他们选择的项目所属类别互不相同的概率;⑵至少有1人选择的项目属于民生工程的概率.【例18】甲、乙二射击运动员分别对一目标射击1次,甲射中的概率为0.8,乙射中的概率为0.9,求:⑴2人都射中的概率?⑵2人中有1人射中的概率?【例19】(2009全国卷Ⅰ文)甲、乙二人进行一次围棋比赛,约定先胜3局者获得这次比赛的胜利,比赛结束.假设在一局中,甲获胜的概率为0.6,乙获胜的概率为0.4,各局比赛结果相互独立.已知前2局中,甲、乙各胜1局.⑴求再赛2局结束这次比赛的概率;⑵求甲获得这次比赛胜利的概率.【例20】纺织厂某车间内有三台机器,这三台机器在一天内不需工人维护的概率:第一台为0.9,第二台为0.8,第三台为0.85,问一天内:⑴3台机器都要维护的概率是多少?⑵其中恰有一台要维护的概率是多少?⑶至少一台需要维护的概率是多少?【例21】从甲口袋摸出一个红球的概率是13,从乙口袋中摸出一个红球的概率是12,则23是()A.2个球不都是红球的概率B.2个球都是红球的概率C.至少有一个红球的概率D.2个球中恰好有1个红球的概率【例22】甲、乙两个人独立地破译一个密码,他们能译出密码的概率分别为13和14,求:⑴两个人都译出密码的概率;⑵两个人都译不出密码的概率;⑶恰有1个人译出密码的概率;⑷至多1个人译出密码的概率;⑸至少1个人译出密码的概率.【例23】现时盛行的足球彩票,其规则如下:全部13场足球比赛,每场比赛有3种结果:胜、平、负,13场比赛全部猜中的为特等奖,仅猜中12场为一等奖,其它不设奖,则某人获得特等奖的概率为.【例24】从10位同学(其中6女,4男)中,随机选出3位参加测验,每位女同学能通过测验的概率均为45,每位男同学能通过测验的概率均为35,试求:⑴选出的3位同学中至少有一位男同学的概率;【例25】甲、乙两个篮球运动员互不影响地在同一位置投球,命中率分别为12与p,且乙投球2次均未命中的概率为116.⑴求乙投球的命中率p;⑵求甲投球2次,至少命中1次的概率;⑶若甲、乙两人各投球2次,求两人共命中2次的概率.【例26】甲盒中有红、黑、白三种颜色的球各3个,乙盒子中有黄、黑、白三种颜色的球各2个,从两个盒子中各取1个球,求取出的两个球是不同颜色的概率.【例27】某商场有奖销售中,购满100元商品得1张奖券,多购多得.第1000张奖券为一个开奖单位,设特等奖1个,一等奖10个,二等奖50个.设1张奖券中特等奖、一等奖、二等奖的事件分别为,,A B C,求:⑴()()(),,P A P B P C;⑵1张奖券的中奖概率;⑶1张奖券不中特等奖且不中一等奖的概率.【例28】把10张卡片分别写上0129,,,,后,任意叠放在一起,从中任取一张,设“抽到大于3的奇数”为事件A,“抽到小于7的奇数”为事件B,求()P A,()P B和()P A B.【例29】甲、乙两人下棋,乙不输的概率是0.7,下成和棋的概率为0.5,分别求出甲、乙获胜的概率.【例30】黄种人群中各种血型的人所占的比如下表所示:血型A B AB O该血型的人所占比例(%)2829835已知同种血型的人可以输血,O型血可以输给任一种血型的人,任何人的血都可以输给AB型血的人,其他不同血型的人不能互相输血.小明是B型血,若小明因病需要输血,问:⑴任找一个人,其血可以输给小明的概率是多少?⑵任找一个人,其血不能输给小明的概率是多少?【例31】在袋中装20个小球,其中彩球有n个红色、5个蓝色、10个黄色的,其余为白球.求:⑴如果从袋中取出3个都是相同颜色彩球(无白色)的概率是13114,且2≥n,那么,袋中的红球共有几个?⑵根据⑴的结论,计算从袋中任取3个小球至少有一个是红球的概率.【例32】某射手射击一次射中10环、9环、8环、7环的概率分别为0.120.320.270.11,,,,计算这名射手射击一次:⑴射中9环或8环的概率;⑵至少射中7环的概率;⑶至多射中8环的概率.【例33】射击运动员李强射击一次击中目标的概率是0.8,他射击3次,恰好2次击中目标的概率是多少?【例34】在12345,,,,条线路汽车经过的车站上,有位乘客等候着134,,路车的到来.假如汽车经过该站的次数平均来说2345,,,路车是相等的,而1路车是其他各路车次数的总和.试求首先到站的汽车是这位乘客所需要线路的汽车的概率.【例35】某商场经销某商品,顾客可采用一次性付款或分期付款购买.根据以往资料统计,顾客采用一次性付款的概率是0.6,经销一件该商品,若顾客采用一次性付款,商场获得利润200元;若顾客采用分期付款,商场获得利润250元.⑴求3位购买该商品的顾客中至少有1位采用一次性付款的概率;⑵求3位位顾客每人购买1件该商品,商场获得利润不超过650元的概率.【例36】从某批产品中,有放回地抽取产品二次,每次随机抽取1件,假设事件A:“取出的2件产品中至多有1件是二等品”的概率()0.96P A .⑴求从该批产品中任取1件是二等品的概率p;⑵若该批产品共100件,从中任意抽取2件,求事件B:“取出的2件产品中至少有一件二等品”的概率()P B.【例37】甲、乙二人进行一次围棋比赛,约定先胜3局者获得这次比赛的胜利,比赛结束.假设在一局中,甲获胜的概率为0.6,乙获胜的概率为0.4,各局比赛结果相互独立.已知前2局中,甲、乙各胜1局.⑴求再赛2局结束这次比赛的概率;⑵求甲获得这次比赛胜利的概率.【例38】为防止某突发事件发生,有甲、乙、丙、丁四种相互独立的预防措施可供采用,单独采用甲、乙、丙、丁预防措施后此突发事件不发生的概率(记为P)和所需费用如下表:预防措施甲乙丙丁P0.90.80.70.6费用(万元)90 60 30 10预防方案可单独采用一种预防措施或联合采用几种预防措施,在总费用不超过120万元的前提下,请确定一个预防方案,使得此突发事件不发生的概率最大.【例39】某售货员负责在甲、乙、丙三个柜面上售货.如果在某一小时内各柜面不需要售货员照顾的概率分别为0.90.80.7,,.假定各个柜面是否需要照顾相互之间没有影响,求在这个小时内:⑴只有丙柜面需要售货员照顾的概率;⑵三个柜面恰好有一个需要售货员照顾的概率;⑶三个柜面至少有一个需要售货员照顾的概率.【例40】某公司招聘员工,指定三门考试课程,有两种考试方案.方案一:考试三门课程,至少有两门及格为考试通过;方案二:在三门课程中,随机选取两门,这两门都及格为考试通过.假设某应聘者对三门指定课程考试及格的概率分别是a b c,,,且三门课程考试是否及格相互之间没有影响.⑴分别求该应聘者用方案一和方案二时考试通过的概率;⑵试比较该应聘者在上述两种方案下考试通过的概率的大小.(说明理由)【例41】假设飞机的每一台发动机在飞行中的故障率都是1P-,且各发动机互不影响.如果至少50%的发动机能正常运行,飞机就可以顺利地飞行.问对于多大的P而言,四发动机飞机比二发动机飞机更安全?【例42】椐统计,某食品企业一个月内被消费者投诉的次数为012,,的概率分别为0.4,0.5,0.1⑴求该企业在一个月内被消费者投诉不超过1次的概率;⑵假设一月份与二月份被消费者投诉的次数互不影响,求该企业在这两个月内共被消费者投诉2次的概率.【例43】某项选拔共有四轮考核,每轮设有一个问题,能正确回答问题者进入下一轮考核,否则即被淘汰.已知某选手能正确回答第一、二、三、四轮的问题的概率分别为45、35、25、15,且各轮问题能否正确回答互不影响.⑴求该选手进入第四轮才被淘汰的概率;⑵求该选手至多进入第三轮考核的概率.【例44】设某批产品有4%是废品,而合格品中的75%是一等品,任取一件产品是一等品的概率是_____.【例45】某地区气象台统计,该地区下雨的概率是415,刮风的概率是215,既刮风又下雨的概率是110,设A=“刮风”,B=“下雨”,求()()P B A P A B,.【例46】把一枚硬币抛掷两次,事件A=“第一次出现正面”,事件B=“第二次出现反面”,则P B A=.()_____【例47】设某种动物活到20岁以上的概率为0.7,活到25岁以上的概率为0.4,求现龄为20岁的这种动物能活到25岁以上的概率.【例48】抛掷一颗骰子两次,在第一次掷得向上一面点数是偶数的条件下,则第二次掷得向上一面点数也是偶数的概率为.【例49】掷两枚均匀的骰子,记A=“点数不同”,B=“至少有一个是6点”,求(|)P B A.P A B与(|)。
随机事件的概率概率理论是一门研究随机事件发生的可能性的数学学科。
通过计算和统计,我们可以了解随机事件发生的概率。
在这篇文章中,我们将探讨随机事件的概念、概率的定义和计算方法,以及一些实际问题中与概率相关的应用。
一、随机事件的概念随机事件是指在一次试验中可能出现的各种结果。
每个结果都有一定的概率发生。
例如,掷骰子时,1到6的点数出现的概率都是相等的,并且总和为1。
我们用事件的符号表示随机事件。
例如,事件A表示掷骰子出现点数为2的结果。
事件B表示掷骰子出现点数为偶数的结果。
事件的发生取决于试验的结果。
如果一个事件发生了,我们称之为该事件发生。
二、概率的定义概率是描述事件发生可能性大小的数值。
概率的取值范围是0到1之间,0表示不可能发生,1表示肯定会发生。
在数学中,我们用P(A)表示事件A的概率。
例如,P(A)表示掷骰子出现点数为2的概率。
概率的计算需要考虑事件发生的可能性和总体样本空间的大小。
三、概率的计算方法1. 经典概率经典概率是指在一次试验中,每个事件发生的可能性相等的情况下,计算事件发生概率的方法。
假设一个袋子里有红、蓝、绿三种颜色的球,每种球的数量相等。
从袋子中随机抽取一球,事件A表示抽到红球的结果。
由于每种颜色出现的概率相等,所以P(A) = 1/3。
2. 统计概率统计概率是通过实验和统计数据来计算事件发生概率的方法。
例如,我们抛硬币的实验中,事件A表示出现正面的结果。
通过大量的实验数据,我们可以统计出正面出现的次数与总实验次数的比值,从而得到事件A的概率。
3. 条件概率条件概率是指在已知一定条件下,某个事件发生的概率。
条件概率用P(A|B)表示,读作在事件B发生的条件下事件A发生的概率。
例如,事件A表示抛一次硬币出现正面的结果,事件B表示抛一次硬币出现的是铜币。
我们知道铜币的一面是正面,因此在已知抛出的是铜币的情况下,事件A发生的概率为1。
四、概率的应用1. 游戏与赌博概率理论在游戏和赌博中扮演着重要的角色。
概率知识点高三概率是高三数学中的重要知识点,涉及到对随机事件发生的可能性进行量化和计算。
在高三阶段,学生需要掌握基本的概率概念和计算方法,并能够运用概率知识解决实际问题。
本文将从概率的基本概念、概率计算方法以及概率在高三数学中的应用等方面进行论述。
一、概率的基本概念概率是指某一随机事件在所有可能结果中发生的可能性大小。
用数学语言表达,概率可以表示为0到1之间的一个数。
当事件不可能发生时,概率为0;当事件必然发生时,概率为1。
例如,掷一颗骰子,出现1的概率为1/6,出现2的概率也为1/6,以此类推。
二、概率计算方法1.经典概率:当随机试验的样本空间的元素个数有限且等可能时,可以使用经典概率计算方法。
经典概率的计算公式为:事件发生的可能数除以样本空间的元素个数。
例如,从一副扑克牌中随机抽取一张牌,计算得到一张红色的概率为26/52=1/2。
2.几何概率:几何概率适用于样本空间中的元素无限且均匀分布的情况。
几何概率的计算公式为:事件发生的区域的面积除以样本空间的面积。
例如,扔一枚硬币,正面朝上的概率为1/2。
3.条件概率:条件概率是指在已知某个条件下发生某一事件的概率。
条件概率的计算公式为:事件A在条件B下发生的概率等于事件A和事件B同时发生的概率除以事件B发生的概率。
例如,从一副扑克牌中随机抽取一张牌,已知抽取的牌为红色,则抽取到红色的皇后的概率为2/26=1/13。
三、概率在高三数学中的应用1.排列组合问题:概率在排列组合问题中发挥着重要作用。
根据概率计算方法,我们可以计算一个事件发生的可能性,并通过排列组合的方法解决涉及到概率的问题。
例如,某班级有30个学生,其中10个男生和20个女生,现从中随机抽取4名学生,计算全为男生的概率为C(10,4)/C(30,4)。
2.生活中的概率问题:概率知识在生活中有广泛的应用,例如,在购买彩票、进行赌博、进行投资决策等方面都需要运用概率知识。
在高三数学中,我们可以通过实际的例子来帮助学生理解概率的应用。
高考数学中的随机事件及条件概率随机事件及条件概率在我们的日常生活中随处可见,相信大家都曾经多次遇到这些概念。
而在高考数学中,这些概念也被广泛应用。
本文将会对高考数学中的随机事件及条件概率的相关知识做一些介绍和解析。
一. 随机事件及概率在数学语境下,“事件”是指某一结果的总称,而随机事件则是指在一定的随机试验中,可能发生的各种事件。
例如,抛一枚硬币的正反面,掷一颗色子的点数,高考中某个学生是否能够被某所大学所录取等等都可以作为随机事件。
在计算随机事件的概率时,我们需要求出一个特定事件发生的可能性。
要计算概率,我们需要做的第一件事就是将我们需要的事件数目与总数目进行对比。
例如,如果我们需要计算抛一枚硬币出现正面的概率,我们需要将硬币正面朝上的出现的次数与硬币被抛掷的总次数相除。
二. 条件概率条件概率通常是指在发生某些事件的条件下,某个随机事件发生的概率。
例如,在已知一枚硬币正面朝上的情况下,掷出该硬币正面朝上的概率就是条件概率。
在高考数学中,条件概率通常会涉及到一些数学公式。
其中最常见的就是 Bayes 定理。
该定理是一个在条件概率计算中非常有用的公式,可以帮助我们计算两个事件中的一个事件已经发生,另一个事件发生的概率。
三. 马蒂尼斯图马蒂尼斯图也是高考数学中的一个重要概念。
这是一种图表,可以帮助我们更好地表示出各种事件之间的相互依赖关系。
例如,在考虑一个人是否需要自行车的时候,我们需要考虑到这个人是否喜欢自行车、这个人是否需要自行车等等。
在此过程中,我们就可以使用马蒂尼斯图,以更加清晰的方式呈现出不同事件之间的关系。
四. 概率分布函数在高考数学中,我们也需要掌握概率分布函数的相关知识。
这是一种可以帮助我们计算事件的概率的函数,可以将各种不同类型的事件映射到概率值上。
对于那些需要考虑多个不同事件的复杂问题来说,概率分布函数是非常有用的工具。
总之,随机事件及条件概率在高考数学中有着非常重要的作用。
如果我们希望在考试中做到最好,了解这些概念是非常重要的。