高一数学 函数解析式的求法
- 格式:doc
- 大小:125.50 KB
- 文档页数:2
一、待定系数法:1、已知()f x 二次实函数,且2(1)(1)f x f x x ++-=+2x +4,求()f x .2、已知二次函数()x f 满足()()2--2-x f x f =,且图象在y 轴上的截距为1,被x 轴截得的线段长为22,求函数()x f 的解析式。
3、已知函数f(x)是一次函数,且满足关系式3f(x+1)-2f(x-1)=2x+17,求f(x)的解析式。
4、求一次函数f(x),使f[f(x)]=9x+1;二、配凑法:5、已知221)1(x x x x f +=+ )0(>x ,求 ()f x 的解析式6、已知函数()11-23+=-x -x x x f ,求()x f 的解析式。
7、(1)已知f(x-1)= 2x -4x ,解方程f(x+1)=0. (2)若x x x f 2)1(+=+,求)(x f8、(1)已知x x x f 2)1(+=+,求)1(+x f (2)已知 ()211xf x x =++,求()f x .9、已知x ≠0,函数f (x )满足f (x x 1-)=x 2+21x ,求f (x )四、代入法:10、已知:函数)(2x g y x x y =+=与的图象关于点)3,2(-对称,求)(x g 的解析式11、已知函数()x x x f 22+=,求函数()1-x f y =的解析式。
已知)3(41)(,2)(2+=+=x x g a x x f ,若g[f(x)]=x 2+x+1,则a=_____________.12、已知f(1-cosx)=sin 2x ,则f(x)=______________.已知f(cosx)=cos5x ,则f(sinx)=______________.13、已知)3(41)(,2)(2+=+=x x g a x x f ,若g[f(x)]=x 2+x+1,则a=_____________.五、构造方程组法:14、设,)1(2)()(x x f x f x f =-满足求)(x f 15、已知3f(x)+f(x 1)=x ,求f(x)16、已知函数()x f 满足2()x x f x f 31=⎪⎭⎫⎝⎛+,求函数()x f 的解析式。
人教版新高一数学必修一求函数的解析式换元法
人教版新高一数学必修一求函数的解析式换元法是求函数的重
要方法之一,它能帮助学生掌握函数的求解方法,是数学学习的重要组成部分。
本文将介绍如何使用换元法来求函数的解析式,以便学生能够更有效地学习和理解求函数的概念。
首先,要想用换元法求得函数的解析式,我们需要了解其中的基本概念,即换元法的概念与其定义。
它是一种将原函数形式中的变量进行替换的方法,使其变为另外一种函数,从而可以解决函数的求解。
下面我们来看一个例子,用换元法求函数解析式。
假设有函数y=5x+3,我们将其中的x替换成y,可以得到
y-3=5(x-3),两边同时除以5,可以得到x=y-3/5.以看出,用换元法之后得到的函数解析式为:x=y-3/5。
这样,我们就可以得到函数解析式,从而更有效地求函数解析式。
另外,换元法在求函数解析式过程中也有一些注意事项:
1、在换元之前,首先识别函数的形式,确定变量的范围;
2、其次,要注意换元时的相互变换是否正确;
3、最后,要根据指定的变量,实际算出求解结果函数;
4、最后,要正确核对最终结果,以免出现错误。
以上就是换元法求函数解析式的基本方法,通过这种方法,可以有效地求得函数的解析式。
换元法是求函数解析式的有效方法,其不仅可以使学习者更容易理解函数的性质,而且可以提高学习者的函数求解能力,是一种有效的数学学习方法。
总之,换元法在求函数解析式过程中非常有用,它可以帮助学生更好地掌握和理解函数求解方法,增进学生学习数学的兴趣,提高学生数学学习的能力。
ʏ秦雷宇函数的解析式是函数的三要素之一,求函数解析式的常用方法有:配凑法㊁待定系数法㊁方程组法和函数奇偶性法㊂下面举例分析求函数解析式的四种方法,供大家学习与参考㊂方法一:配凑法由已知条件f [g (x )]=F (x ),可将F (x )改写成关于g (x )的表达式,然后以x 替代g (x ),可得f (x )的表达式㊂例1 已知f (x +1)=x +2x ,则f (x )=㊂解:f (x +1)=x +2x =x +2x +1-1=(x +1)2-1㊂因为x +1ȡ1,所以f (x )=x 2-1(x ȡ1)㊂方法二:待定系数法已知函数的类型(如一次函数㊁二次函数),可先设函数的解析式,再确定其系数即得解析式㊂例2 已知f (x )是一次函数,且满足3f (x +1)-f (x )=2x +9,求f (x )的解析式㊂解:由f (x )是一次函数,设f (x )=k x +b ,且k ʂ0㊂因为3f (x +1)-f (x )=2x +9,所以3[k (x +1)+b ]-(k x +b )=2x +9,整理得2k x +3k +2b =2x +9,所以2k =2,3k +2b =9,解得k =1,b =3,所以函数f (x )=x +3㊂方法三:方程组法已知关于f (x )与f 1x或f (-x )的关系式,可根据已知条件,构造出另一个等式,通过解方程求出f (x )㊂例3 若对任意的实数x ,都有2f (x )-f1x=2x +1,则f (x )=㊂解:对任意的实数x ,都有2f (x )-f1x=2x +1,把x 用1x 替换可得方程组2f (x )-f1x=2x +1,2f 1x-f (x )=2x +1㊂据此消去f 1x 得f (x )=43x +23x+1(x ʂ0)㊂方法四:函数的奇偶性法已知函数f (x )的奇偶性及f (x )在某区间上的解析式,求该函数在整个定义域上的解析式的方法:求哪个区间上的解析式,x 就设在那个区间上;把x 的对称转化到已知区间上,代入已知区间上的解析式;利用f (x )的奇偶性,将f (-x )用-f (x )或f (x )表示,从而求出f (x )㊂例4 若函数f (x )是R 上的奇函数,且当x >0时,f (x )=x 3+x 2+1,则f (x )=㊂解:因为当x >0时,f (x )=x 3+x 2+1,所以当x <0时,-x >0,则f (-x )=(-x )3+(-x )2+1=-x 3+x 2+1㊂因为f (x )是奇函数,所以f (x )=-f (-x )=-(-x 3+x 2+1)=x 3-x 2-1㊂又因为f (x )为R 上的奇函数,所以f (0)=0㊂综上可得,函数f(x )=x 3+x 2+1,x >0,0,x =0,x 3-x 2-1,x <0㊂作者单位:湖北省巴东县第一高级中学(责任编辑 郭正华)12知识结构与拓展高一数学 2023年10月Copyright ©博看网. All Rights Reserved.。
求函数)(x f 解析式常用的方法济宁一中高一数学组 贾广素(邮编272000)电话:130****4397根据实际问题求解函数的表达式,是利用函数知识解决实际问题的基础。
因此,有必要掌握函数解析式的求法,下面就介绍几种求解函数解析式的常用方法:一、直接法直接法就是从题设(已知)条件出发,执因索果,进行演绎推导,从而得出函数解式的方法。
例1、 已知432)(2++=x x x f ,求函数)1(+x f 的解析式。
解:由于432)(2++=x x x f ,∴)1(+x f =4)1(3)1(22++++x x =9722++x x。
例2、 已知)(x f 是奇函数,且当0>x 时)1()(x x x f -=,求当0<x 时)(x f 的解析式。
解: 当0>x 时)1()(x x x f -=,∴当x<0时,-x>0,从而)1())(1)(()(x x x x x f +-=---=-又 )(x f 是奇函数,)()(x f x f -=-;)1()(x x x f +=∴。
注:直接法是一种正向的思维,解决问题时要善于将稍复杂的问题进行分解,各个击破,它不需要特殊的技巧。
二、待定系数法用一些字母作为待定系数,然后根据条件列出含有待定系数的方程式或方程组,解出这些待定系数,从而求出函数解析式的方法称为待定系数法。
例3、已知)(x f 是一次函数,并且满足172)1(2)1(3+=--+x x f x f ,求函数)(x f 的解析式。
解:设)0()(≠+=a b ax x f ,则)1(2)1(3--+x f x f =ba axb a ax 222333-+-++=b a ax ++5,又 172)1(2)1(3+=--+x x f x f ,比较系数得⎩⎨⎧=+=1752a b a 解得7,2==b a ,所以所求函数的解析为72)(+=x x f 。
例4、已知二次函数)(x f y =的最大值等于13,且,5)1()3(=-=f f 求函数)(x f 的解析式。
高一数学求函数的定义域与值域的常用法:求函数解析式 1、换元法: 例1.已知 题目给出了与所求函数有关的复合函数表达式,可将函数用一个变量代换。
心) X t 解:设 2 f (x ) X X X ,则1,x 1 。
x 2 X 1 x 2 ,试求 f (X )。
1 t 1,代入条件式可得: f (t )t 2 t 1,t ≠ 1。
故得: 说明:要注意转换后变量围的变化,必须确保等价变形。
2、构造程组法:对同时给出所求函数及与之有关的复合函数的条件式,可以据此构造出 另一个程,联立求解。
f (X) 例2. ( 1)已知 (2)已知 f (X) 2f(2f(1) 3X 24X 5 XX)3X 2解:(1)由条件式,以 • 1 消去 X ,则得: X 代2_ X X,则得 8 3x4X 5f(1) X X 24x 3(2) 由条件式,以一 X 代X 则得: X 24x -3。
f( 去说明: 定义域由解析式确定,不需要另外给出。
例4.求下列函数的解析式: (1) (2) (3) ,试求f (X);f(x).3厶 X试求 2f(x)5 3OX) 2f (X)3X 24X5,与条件式联立,,与条件式联立,消,则得: 本题虽然没有给出定义域,但由于变形过程一直保持等价关系, 故所求函数的 已知 已知 已知 f (X )是二次函数,且f (0) f (∙一 X 1) 心) X 3f (x ) 2, f (X 1) f(X) X 1 ,求 f(X); 2 X ,求 f (x), f (x 1), f (x 2) 1 1 亠 2 ,求 X X f (X);(4) 【题意分析】(1) 设法求出a,b,c 即可。
若能将X 2 - X 适当变形,用.XX 1 设 为一个整体,不妨设为 X X , 已知 2 f ( x) X 3 ,求 f (x)。
由已知f (X)是二次函数,所以可设 f(X) ax 2 bx c(a 0),(2) (3) 1的式子表示就容易解决了。
高一数学求函数的定义域与值域的常用方法一. 求函数的定义域与值域的常用方法求函数的解析式,求函数的定义域,求函数的值域,求函数的最值二. 求函数的解析式3、求函数解析式的一般方法有:(1)直接法:根据题给条件,合理设置变量,寻找或构造变量之间的等量关系,列出等式,解出y。
(2)待定系数法:若明确了函数的类型,可以设出其一般形式,然后代值求出参数的值;(3)换元法:若给出了复合函数f[g(x)]的表达式,求f(x)的表达式时可以令t=g(x),以换元法解之;(4)构造方程组法:若给出f(x)和f(-x),或f(x)和f(1/x)的一个方程,则可以x代换-x(或1/x),构造出另一个方程,解此方程组,消去f(-x)(或f(1/x))即可求出f(x)的表达式;(5)根据实际问题求函数解析式:设定或选取自变量与因变量后,寻找或构造它们之间的等量关系,列出等式,解出y的表达式;要注意,此时函数的定义域除了由解析式限定外,还受其实际意义限定。
(二)求函数定义域1、函数定义域是函数自变量的取值的集合,一般要求用集合或区间来表示;2、常见题型是由解析式求定义域,此时要认清自变量,其次要考查自变量所在位置,位置决定了自变量的范围,最后将求定义域问题化归为解不等式组的问题;3、如前所述,实际问题中的函数定义域除了受解析式限制外,还受实际意义限制,如时间变量一般取非负数,等等;4、对复合函数y=f[g(x)]的定义域的求解,应先由y=f(u)求出u的范围,即g(x)的范围,再从中解出x的范围I1;再由g(x)求出y=g(x)的定义域I2,I1和I2的交集即为复合函数的定义域;5、分段函数的定义域是各个区间的并集;6、含有参数的函数的定义域的求解需要对参数进行分类讨论,若参数在不同的范围内定义域不一样,则在叙述结论时分别说明;7、求定义域时有时需要对自变量进行分类讨论,但在叙述结论时需要对分类后求得的各个集合求并集,作为该函数的定义域;一:求函数解析式1、换元法:题目给出了与所求函数有关的复合函数表达式,可将内函数用一个变量代换。
第四讲 函数解析式的求法
重 点:求解析式的方法.
难 点:求复合函数的解析式.
教学目标:掌握求解析式的几种常用方法
教学过程:
一、导入新课
复习函数定义(重点是构成函数的三要素).
二、新课
1.求解析式的常用方法:
(1)待定系数法:
例1.若)(x f 是二次函数,其图象过原点,且.5)1(,1)1(=-=f f 求:).(x f 练习:1.若一次函数)(x f 满足()[]{}.78+=x x f f f 求:).(x f
小结:①待定系数法适用于:已知所求函数解析式的一般形式;
②解法是:根据已知条件列出以所求系数为未知数的方程或方程组,解出系数的值,代回所设解析式.
(2)换元法:(配凑)
例2.⑴2()1f x x =+,求(1)f x +
⑵2(1)22f x x x +=++,求()f x
练习:2(1)21f x x +=+,求()f x
例3.2(2)5f x x x -=+,求()f x
练习:1.1)f x =2.已知:,1)1(22x
x x x f +=+
求).(x f 解法二:.2)(,2)1(1)1(2222-=∴-+=+=+x x f x x x x x x f 小结:①应用换元法求解析式的题型特征是:题中没有给出函数最简的解析式 ②解法是:通过换元,找出原函数的解析式.(还可以用配凑) (3)函数方程法(消元法)
例4.已知:.2)(2)(x x f x f =-+求:).(x f
小结:①例4的解法相当于消元法.
②消元法的特点是在所给解析式中)(x f 与)(x f -中的自变量互为相反的数,或)(x f 与)1(x
f 中的自变量互为倒数;得到相当于两个未知数的两个方程,求解。
(4)特殊值法:(选讲)
例5.对于一切实数y x ,有x y x x f y x f )12()()(+--=-都成立,且.1)0(=f 求).(x f
小结:此类型题的特点是:条件是:对于一切实数y x ,都成立.
课后作业:
求下列函数的解析式:
1. 已知)(x f 是一次函数,且64)]([+=x x f f ,求)(x f .
()(x f 62)(22--=+=x x f x 或) 2. 若,1)1(x x x
f -=
求)(x f . ()(x f 1
1-=x ) 3.若221)1(x
x x x f +=-,求()f x . (()f x 22x =+) 4.若,)(2)1(x x f x f =+求)(x f .()(x f )3122x
x -= 5.若x x x f -=-2)23(,求)2(f . ()2(f =9
4) 6.已知()3()26,f x f x x --=+求()f x .()(x f 132x =-)
7.已知3f (x 5) + f (–x 5) = 4x ,求f (x )的解析式.(f (x )。