基本不等式 作业1
- 格式:doc
- 大小:61.00 KB
- 文档页数:2
题型1 基本不等式正用a +b ≥2ab例1:(1)函数f (x )=x +1x (x >0)值域为________;函数f (x )=x +1x(x ∈R )值域为________;(2)函数f (x )=x 2+1x 2+1的值域为________. 解析:(1)∵x >0,x +1x≥2x ·1x=2,∴f (x )(x >0)值域为[2,+∞); 当x ∈R 时,f (x )值域为(-∞,-2]∪[2,+∞); (2)x 2+1x 2+1=(x 2+1)+1x 2+1-1≥2x 2+1·1x 2+1-1=1,当且仅当 x =0 时等号成立.答案:(1)[2,+∞) (-∞,-2]∪[2,+∞) (2)[1,+∞)4.(2013·镇江期中)若x >1,则x +4x -1的最小值为________.解析:x +4x -1=x -1+4x -1+1≥4+1=5.当且仅当x -1=4x -1,即x =3时等号成立.答案:5 [例1] (1)已知x <0,则f (x )=2+4x+x 的最大值为________.(1)∵x <0,∴-x >0,∴f (x )=2+4x +x =2-⎣⎢⎡⎦⎥⎤4-x +-x .∵-4x +(-x )≥24=4,当且仅当-x =4-x ,即x=-2时等号成立.∴f (x )=2-⎣⎢⎡⎦⎥⎤4-x +-x ≤2-4=-2,∴f (x )的最大值为-2.例:当x >0时,则f (x )=2xx 2+1的最大值为________. 解析:(1)∵x >0,∴f (x )=2x x 2+1=2x +1x≤22=1,当且仅当x =1x,即x =1时取等号. 3.函数y =x 2+2x -1(x >1)的最小值是________.解析:∵x >1,∴x -1>0.∴y =x 2+2x -1=x 2-2x +2x +2x -1=x 2-2x +1+2x -1+3x -1=x -12+2x -1+3x -1=x -1+3x -1+2≥2 x -13x -1+2=23+2.当且仅当x -1=3x -1,即x =1+3时,取等号.答案:23+2 10.已知x >0,a 为大于2x 的常数,求y =1a -2x-x 的最小值. 解:y =1a -2x +a -2x 2-a 2≥2 12-a 2=2-a 2.当且仅当x =a -22时取等号.故y =1a -2x -x 的最小值为2-a2. 题型2 基本不等式反用ab ≤a +b2例:(1)函数f (x )=x (1-x )(0<x <1)的值域为__________;(2)函数f (x )=x (1-2x )⎝ ⎛⎭⎪⎫0<x <12的值域为__________.解析:(1)∵0<x <1,∴1-x >0, x (1-x )≤⎣⎢⎡⎦⎥⎤x +1-x 22=14,∴f (x ) 值域为⎝ ⎛⎭⎪⎫0,14.(2)∵0<x <12,∴1-2x >0. x (1-2x )=12×2x (1-2x )≤12·⎣⎢⎡⎦⎥⎤2x +1-2x 22=18,∴f (x ) 值域为⎝ ⎛⎭⎪⎫0,18.答案:(1)⎝ ⎛⎭⎪⎫0,14 (2)⎝ ⎛⎭⎪⎫0,18 3.(教材习题改编)已知0<x <1,则x (3-3x )取得最大值时x 的值为________.解析:由x (3-3x )=13×3x (3-3x )≤13×94=34,当且仅当3x =3-3x ,即x =12时等号成立.答案:123.函数y =x 1-x 2的最大值为________.解析:x 1-x 2=x 21-x 2≤x 2+1-x 22=12.4.已知0<x <1,则x (3-3x )取得最大值时x 的值为 ( )A.13B.12C.34D.23解析 ∵0<x <1,∴1-x >0.∴x (3-3x )=3x (1-x )≤3⎝ ⎛⎭⎪⎫x +1-x 22=34.当x =1-x ,即x =12时取等号.答案 B 10.已知x >0,a 为大于2x 的常数,求函数y =x (a -2x )的最大值;解:∵x >0,a >2x ,∴y =x (a -2x )=12×2x (a -2x )≤12×⎣⎢⎡⎦⎥⎤2x +a -2x 22=a 28,当且仅当x =a4时取等号,故函数的最大值为a 28.题型三:利用基本不等式求最值2.已知t >0,则函数y =t 2-4t +1t的最小值为________.解析 ∵t >0,∴y =t 2-4t +1t =t +1t -4≥2-4=-2,且在t =1时取等号.答案 -2例:当x >0时,则f (x )=2xx 2+1的最大值为________.解析:∵x >0,∴f (x )=2x x 2+1=2x +1x≤22=1,当且仅当x =1x,即x =1时取等号.例1:(1)求函数f (x )=1x -3+x (x >3)的最小值;(2)求函数f (x )=x 2-3x +1x -3(x >3)的最小值;思维突破:(1)“添项”,可通过减3再加3,利用基本不等式后可出现定值.(2)“拆项”,把函数式变为y =M +aM的形式. (1)∵x >3,∴x -3>0.∴f (x )=1x -3+(x -3)+3≥21x -3·x -3+3=5.当且仅当1x -3=x -3,即x =4时取等号,∴f (x )的最小值是5.(2)令x -3=t ,则x =t +3,且t >0.∴f (x )=t +32-3t +3+1t =t +1t+3≥2t ·1t+3=5. 当且仅当t =1t,即t =1时取等号,此时x =4,∴当x =4时,f (x )有最小值为5.技巧总结:当式子不具备“定值”条件时,常通过“添项”达到目的;形如y =cx 2+dx +fax +b(a ≠0,c ≠0)的函数,一般可通过配凑或变量替换等价变形化为y =t +p t(p 为常数)型函数,要注意t 的取值范围; 例:设x >-1,求函数y =x +4x +1+6的最小值;解:∵x >-1,∴x +1>0.∴y =x +4x +1+6=x +1+4x +1+5≥2x +1·4x +1+5=9,当且仅当x +1=4x +1,即x =1时,取等号.∴当x =1时,函数y 的最小值是9. 1.若x >0,y >0,且x +y =18,则xy 的最大值是________. 解析 由于x >0,y >0,则x +y ≥2xy ,所以xy ≤⎝⎛⎭⎪⎫x +y 22=81,当且仅当x =y =9时,xy 取到最大值81. 答案 815.已知x ,y ∈R +,且满足x 3+y4=1,则xy 的最大值为_______________.解析 ∵x >0,y >0且1=x 3+y 4≥2xy 12,∴xy ≤3.当且仅当x 3=y4时取等号.答案 36.(2013·大连期中)已知x ,y 为正实数,且满足4x +3y =12,则xy 的最大值为________.解析:∵12=4x +3y ≥24x ×3y ,∴xy ≤3.当且仅当⎩⎪⎨⎪⎧4x =3y ,4x +3y =12,即⎩⎪⎨⎪⎧x =32,y =2时xy 取得最大值3.答案:32.已知m >0,n >0,且mn =81,则m +n 的最小值为________.解析:∵m >0,n >0,∴m +n ≥2mn =18.当且仅当m =n =9时,等号成立.答案:18 5.已知x >0,y >0,lg x +lg y =1,则z =2x +5y的最小值为________.解析:由已知条件lg x +lg y =1,可得xy =10.则2x +5y≥210xy=2,故⎝ ⎛⎭⎪⎫2x +5y min =2,当且仅当2y =5x 时取等号.又xy =10,即x =2,y =5时等号成立.答案:2(2012·天津高考)已知log 2a +log 2b ≥1,则3a +9b的最小值为________. 解析:由log 2a +log 2b ≥1得log 2(ab )≥1,即ab ≥2,∴3a +9b =3a +32b≥2×3a +2b 2(当且仅当3a =32b,即a =2b 时取等号).∵a +2b ≥22ab ≥4(当且仅当a =2b 时取等号),∴3a+9b≥2×32=18.即当a =2b 时,3a+9b有最小值18. 3.设x ,y ∈R ,a >1,b >1,若a x =b y=3,a +b =23,则1x +1y的最大值为 ( )A .2 B.32 C .1 D.12解析 由a x =b y=3,得:x =log a 3,y =log b 3,由a >1,b >1知x >0,y >0,1x +1y =log 3a +log 3b =log 3ab ≤log 3⎝ ⎛⎭⎪⎫a +b 22=1,当且仅当a =b =3时“=”成立,则1x +1y的最大值 为1. 答案 C6.(2011·湖南)设x ,y ∈R ,且xy ≠0,则⎝ ⎛⎭⎪⎫x 2+1y 2·⎝ ⎛⎭⎪⎫1x2+4y 2的最小值为________.解析 ⎝ ⎛⎭⎪⎫x 2+1y 2⎝ ⎛⎭⎪⎫1x2+4y 2=5+1x 2y 2+4x 2y 2≥5+21x 2y 2·4x 2y 2=9,当且仅当x 2y 2=12时“=”成立.答案 9例:若正数x ,y 满足x +3y =5xy ,求xy 的最小值.解:∵x >0,y >0,则5xy =x +3y ≥2x ·3y ,∴xy ≥1225,当且仅当x =3y 时取等号.∴xy 的最小值为1225.4.若正实数x ,y 满足2x +y +6=xy ,则xy 的最小值是________. 答案 18解析 由x >0,y >0,2x +y +6=xy ,得xy ≥22xy +6(当且仅当2x =y 时,取“=”),即(xy )2-22xy -6≥0, ∴(xy -32)·(xy +2)≥0. 又∵xy >0,∴xy ≥32,即xy ≥18. ∴xy 的最小值为18.例:已知x >0,y >0,x +2y +2xy =8,则x +2y 的最小值是 ( )A .3B .4 C.92 D.112解析 依题意,得(x +1)(2y +1)=9, ∴(x +1)+(2y +1)≥2x +12y +1=6,即x +2y ≥4.当且仅当⎩⎪⎨⎪⎧x +1=2y +1,x +2y +2xy =8,即⎩⎪⎨⎪⎧x =2,y =1时等号成立.∴x +2y 的最小值是4.3.若x ,y ∈(0,+∞),x +2y +xy =30. (1)求xy 的取值范围; (2)求x +y 的取值范围.解:由x +2y +xy =30,(2+x )y =30-x , 则2+x ≠0,y =30-x2+x >0,0<x <30.(1)xy =-x 2+30xx +2=-x 2-2x +32x +64-64x +2=-x -64x +2+32 =-⎣⎢⎡⎦⎥⎤x +2+64x +2+34≤18,当且仅当x =6时取等号,因此xy 的取值范围是(0,18]. (2)x +y =x +30-x 2+x =x +32x +2-1=x +2+32x +2-3≥82-3,当且仅当⎩⎨⎧x =42-2,y =42-1时,等号成立,又x +y =x +2+32x +2-3<30,因此x +y 的取值范围是[82-3,30).例:已知a >b >0,则a 2+16b a -b的最小值是________.解析:∵a >b >0,∴b (a -b )≤⎝ ⎛⎭⎪⎫b +a -b 22=a 24, 当且仅当a =2b 时等号成立.∴a 2+16b a -b ≥a 2+16a 24=a 2+64a2≥2a 2·64a2=16,当且仅当a =22时等号成立.∴当a =22,b =2时,a 2+16ba -b取得最小值16. 8.设x ,y ,z 为正实数,满足x -2y +3z =0,则y 2xz的最小值是________.解析:由已知条件可得y =x +3z2,所以y 2xz =x 2+9z 2+6xz 4xz=14⎝ ⎛⎭⎪⎫x z +9z x +6 ≥14⎝⎛⎭⎪⎫2 x z ×9z x +6=3, 当且仅当x =y =3z 时,y 2xz取得最小值3.答案:3例:已知x >0,y >0,xy =x +2y ,若xy ≥m -2恒成立,则实数m 的最大值是________.解析:由x >0,y >0,xy =x +2y ≥22xy ,得xy ≥8,于是由m -2≤xy 恒成立,得m -2≤8,即m ≤10.故m 的最大值为10.1.已知正数x ,y 满足x +22xy ≤λ(x +y )恒成立,则实数λ的最小值为________. 解析:依题意得x +22xy ≤x +(x +2y )=2(x +y ),即x +22xy x +y ≤2(当且仅当x =2y 时取等号),即x +22xyx +y的最大值是2;又λ≥x +22xyx +y,因此有λ≥2,即λ的最小值是2.答案:21.已知关于x 的不等式2x +2x -a≥7在x ∈(a ,+∞)上恒成立,则实数a 的最小值为________. 解析:因为x >a ,所以2x +2x -a =2(x -a )+2x -a+2a ≥22x -a ·2x -a+2a =2a +4,即2a +4≥7,所以a ≥32,即a 的最小值为32.答案:325.圆x 2+y 2+2x -4y +1=0关于直线2ax -by +2=0 (a ,b ∈R )对称,则ab 的取值范围是 ( )A.⎝ ⎛⎦⎥⎤-∞,14B.⎝ ⎛⎦⎥⎤0,14C.⎝ ⎛⎭⎪⎫-14,0D.⎝⎛⎭⎪⎫-∞,14 答案 A解析 由题可知直线2ax -by +2=0过圆心(-1,2),故可得a +b =1,又因ab ≤⎝ ⎛⎭⎪⎫a +b 22=14(a =b 时取等号).故ab 的取值范围是⎝⎛⎦⎥⎤-∞,14.典例:(12分)已知a 、b 均为正实数,且a +b =1,求y =⎝⎛⎭⎪⎫a +1a ⎝⎛⎭⎪⎫b +1b 的最小值.易错分析 在求最值时两次使用基本不等式,其中的等号不能同时成立,导致最小值不能取到.审题视角 (1)求函数最值问题,可以考虑利用基本不等式,但是利用基本不等式,必须保证“正、定、等”,而且还要符合已知条件.(2)可以考虑利用函数的单调性,但要注意变量的取值范围. 规范解答解 方法一 y =⎝⎛⎭⎪⎫a +1a ⎝⎛⎭⎪⎫b +1b=⎝⎛⎭⎪⎫ab +1ab +⎝ ⎛⎭⎪⎫b a +a b ≥⎝ ⎛⎭⎪⎫ab +1ab +2=⎝ ⎛⎭⎪⎫ab +1ab 2=⎝ ⎛⎭⎪⎫4ab +1ab -3ab 2≥⎝ ⎛⎭⎪⎫24ab ·1ab -3×a +b 22=⎝⎛⎭⎪⎫4-322=254.[10分] 当且仅当a =b =12时,y =⎝ ⎛⎭⎪⎫a +1a ⎝ ⎛⎭⎪⎫b +1b 取最小值,最小值为254.[12分] 方法二 y =⎝ ⎛⎭⎪⎫a +1a ⎝ ⎛⎭⎪⎫b +1b =ab +1ab +a b +b a =ab +1ab +a 2+b 2ab =ab +1ab +a +b 2-2abab=2ab+ab -2.[8分]令t =ab ≤⎝⎛⎭⎪⎫a +b 22=14,即t ∈⎝ ⎛⎦⎥⎤0,14.又f (t )=2t +t 在⎝ ⎛⎦⎥⎤0,14上是单调递减的,[10分] ∴当t =14时,f (t )min =334,此时,a =b =12.∴当a =b =12时,y 有最小值254.[12分]温馨提醒 (1)这类题目考生总感到比较容易下手.但是解这类题目却又常常出错.(2)利用基本不等式求最值,一定要注意应用条件:即一正、二定、三相等.否则求解时会出现等号成立、条件不具备而出错.(3)本题出错的原因前面已分析,关键是忽略了等号成立的条件. 方法与技巧1.基本不等式具有将“和式”转化为“积式”和将“积式”转化为“和式”的放缩功能,常常用于比较数(式)的大小或证明不等式,解决问题的关键是分析不等式两边的结构特点,选择好利用基本不等式的切入点. 2.恒等变形:为了利用基本不等式,有时对给定的代数式要进行适当变形.比如:(1)当x >2时,x +1x -2=(x -2)+1x -2+2≥2+2=4.(2)0<x <83,x (8-3x )=13(3x )(8-3x )≤13⎝ ⎛⎭⎪⎫3x +8-3x 22=163.失误与防范1.使用基本不等式求最值,其失误的真正原因是对其前提“一正、二定、三相等”的忽视.要利用基本不等式求最值,这三个条件缺一不可.2.在运用重要不等式时,要特别注意“拆”“拼”“凑”等技巧,使其满足重要不等式中“正”“定”“等”的条件.3.连续使用公式时取等号的条件很严格,要求同时满足任何一次的字母取值存在且一致. 题型四:利用基本不等式整体换元例2:若正数 a ,b 满足 ab =a +b +3,求 ab 及 a +b 的取值范围.思维突破:本题主要考查均值不等式在求最值时的运用,并体现了换元法、构造法等重要思想. 自主解答:方法一:由ab =a +b +3≥2ab +3, 即ab -2ab -3≥0. 即(ab -3)(ab +1)≥0. ∵ab ≥0,∴ab +1≥1. 故ab -3≥0,∴ab ≥9. 当且仅当a =b =3时取等号. 又∵ab ≤a +b2,∴ab =a +b +3≤⎝⎛⎭⎪⎫a +b 22.当且仅当a =b =3时取等号. 即(a +b )2-4()a +b -12≥0,(a +b -6)(a +b +2)≥0.∵a +b +2>0,有a +b -6≥0,即a +b ≥6. ∴a +b 的取值范围是[6,+∞). 方法二:由ab =a +b +3,则b =a +3a -1. ab =a +4a a -1=a +4+4a -1=a -1+4a -1+5≥2a -1·4a -1+5=9,当且仅当a =b =3时取等号. ∴ab 的取值范围是[9,+∞). 由ab =a +b +3,得b =a +3a -1, a +b =a +a +3a -1=a +1+4a -1=(a -1)+4a -1+2≥2()a -1·4a -1+2=6, 当且仅当a =b =3时取等号. ∴a +b 的取值范围是[6,+∞).技巧总结:整体思想是分析这类题目的突破口,即a +b 与ab 分别是统一的整体,把a +b 转换成ab 或把ab 转换成a +b .例3:已知正数a ,b 满足a +2b =1,则1a +1b的最小值是____.试解:1a +1b =a +2b a +a +2b b=3+2b a+ab≥3+22b a ·ab=3+2 2.易错点评:多次利用基本不等式解题,没有考虑等号能否同时成立。
高考数学《基本不等式》真题练习含答案一、选择题1.函数y =2x +22x 的最小值为( )A .1B .2C .22D .4 答案:C解析:因为2x >0,所以y =2x +22x ≥22x ·22x =22 ,当且仅当2x =22x ,即x =12时取“=”.故选C.2.若a >0,b >0且2a +b =4,则1ab的最小值为( )A .2B .12C .4D .14答案:B解析:∵a >0,b >0,∴4=2a +b ≥22ab (当且仅当2a =b ,即:a =1,b =2时等号成立),∴0<ab ≤2,1ab ≥12 ,∴1ab 的最小值为12.3.下列结论正确的是( )A .当x >0且x ≠1时,lg x +1lg x≥2B .当x ∈⎝⎛⎦⎤0,π2 时,sin x +4sin x的最小值为4 C .当x >0时,x +1x ≥2D .当0<x ≤2时,x -1x无最大值答案:C解析:当x ∈(0,1)时,lg x <0,故A 不成立,对于B 中sin x +4sin x≥4,当且仅当sinx =2时等号成立,等号成立的条件不具备,故B 不正确;D 中y =x -1x在(0,2]上单调递增,故当x =2时,y 有最大值,故D 不正确;又x +1x ≥2x ·1x=2(当且仅当x =1x即x =1时等号成立).故C 正确. 4.下列不等式恒成立的是( )A .a 2+b 2≤2abB .a 2+b 2≥-2abC .a +b ≥2|ab |D .a +b ≥-2|ab | 答案:B解析:对于A ,C ,D ,当a =0,b =-1时,a 2+b 2>2ab ,a +b <2ab ,a +b <-2|ab | ,故A ,C ,D 错误;对于B ,因为a 2+b 2=|a |2+|b |2≥2|a |·|b |=2|ab |≥-2ab ,所以B 正确.故选B.5.若x >0,y >0,x +2y =1,则xy2x +y的最大值为( )A .14B .15C .19D .112答案:C解析:x +2y =1⇒y =1-x 2 ,则xy2x +y =x -x 23x +1 .∵x >0,y >0,x +2y =1,∴0<x <1.设3x +1=t (1<t <4),则x =t -13,原式=-t 2+5t -49t =59 -⎝⎛⎭⎫t 9+49t ≤59 -2481 =19 ,当且仅当t 9 =49t ,即t =2,x =13 ,y =13 时,取等号,则xy 2x +y 的最大值为19 ,故选C.6.已知a >0,b >0,c >0,且a 2+b 2+c 2=4,则ab +bc +ac 的最大值为( )A .8B .4C .2D .1 答案:B解析:∵a 2+b 2≥2ab ,a 2+c 2≥2ac ,b 2+c 2≥2bc ,∴2(a 2+b 2+c 2)≥2(ab +bc +ca ),∴ab +bc +ca ≤a 2+b 2+c 2=4.7.若直线x a +yb=1(a >0,b >0)过点(1,1),则a +b 的最小值等于( )A .2B .3C .4D .5 答案:C解析:因为直线x a +y b =1(a >0,b >0)过点(1,1),所以1a +1b=1.所以a +b =(a +b )·⎝⎛⎭⎫1a +1b =2+a b +b a ≥2+2a b ·b a =4,当且仅当a b =b a 即a =b =2时取“=”,故选C.8.若向量a =(x -1,2),b =(4,y ),a 与b 相互垂直,则9x +3y 的最小值为( ) A .12 B .2 C .3 D .6 答案:D解析:∵a ⊥b ,∴a ·b =(x -1,2)·(4,y )=4(x -1)+2y =0,即2x +y =2, ∴9x +3y =32x +3y ≥232x +y =232 =6,当且仅当2x =y =1时取等号,∴9x +3y 的最小值为6.9.用一段长8 cm 的铁丝围成一个矩形模型,则这个模型面积的最大值为( ) A .9 cm 2 B .16 cm 2 C .4 cm 2 D .5 cm 2 答案:C解析:设矩形模型的长和宽分别为x cm ,y cm ,则x >0,y >0,由题意可得2(x +y )=8,所以x +y =4,所以矩形模型的面积S =xy ≤(x +y )24 =424 =4(cm 2),当且仅当x =y =2时取等号,所以当矩形模型的长和宽都为2 cm 时,面积最大,为4 cm 2.故选C.二、填空题10.已知a ,b ∈R ,且a -3b +6=0,则2a +18b 的最小值为________.答案:14解析:∵a -3b +6=0,∴ a -3b =-6,∴ 2a +18b =2a +2-3b ≥22a ·2-3b =22a -3b=22-6 =14 .当且仅当2a =2-3b ,即a =-3,b =1时,2a +18b 取得最小值为14.11.已知函数f (x )=4x +ax(x >0,a >0)在x =3时取得最小值,则a =________.答案:36解析:∵x >0,a >0,∴4x +a x ≥24x ·ax=4 a ,当且仅当4x =a x ,即:x =a 2 时等号成立,由a2 =3,a =36.12.[2024·山东聊城一中高三测试]已知a >0,b >0,3a +b =2ab ,则a +b 的最小值为________.答案:2+3解析:由3a +b =2ab , 得32b +12a=1, ∴a +b =(a +b )⎝⎛⎭⎫32b +12a =2+b 2a +3a2b ≥2+2b 2a ·3a 2b =2+3 (当且仅当b 2a =3a2b即b =3 a 时等号成立).[能力提升]13.[2024·合肥一中高三测试]若a ,b 都是正数,则⎝⎛⎭⎫1+b a ⎝⎛⎭⎫1+4ab 的最小值为( ) A .7 B .8C .9D .10 答案:C解析:⎝⎛⎭⎫1+b a ⎝⎛⎭⎫1+4a b =5+b a +4ab≥5+2b a ·4a b =9(当且仅当b a =4ab即b =2a 时等号成立).14.(多选)已知a >0,b >0,且a +b =1,则( )A .a 2+b 2≥12B .2a -b >12C .log 2a +log 2b ≥-2D . a + b ≤2 答案:ABD解析:对于选项A ,∵a 2+b 2≥2ab ,∴2(a 2+b 2)≥a 2+b 2+2ab =(a +b )2=1,∴a 2+b 2≥12,正确;对于选项B ,易知0<a <1,0<b <1,∴-1<a -b <1,∴2a -b >2-1=12,正确;对于选项C ,令a =14 ,b =34 ,则log 214 +log 234 =-2+log 234 <-2,错误;对于选项D ,∵2 =2(a +b ) ,∴[2(a +b ) ]2-( a + b )2=a +b -2ab =( a - b )2≥0,∴ a + b ≤2 ,正确.故选ABD.15.(多选)已知a ,b ,c 为正实数,则( )A .若a >b ,则ab <a +c b +cB .若a +b =1,则b 2a +a 2b 的最小值为1C .若a >b >c ,则1a -b +1b -c ≥4a -cD .若a +b +c =3,则a 2+b 2+c 2的最小值为3 答案:BCD解析:因为a >b ,所以a b -a +c b +c =c (a -b )b (b +c ) >0,所以ab >a +c b +c ,选项A 不正确;因为a +b =1,所以b 2a +a 2b =⎝⎛⎭⎫b 2a +a +⎝⎛⎭⎫a 2b +b -(a +b )≥2b +2a -(a +b )=a +b =1,当且仅当a =b =12 时取等号,所以b 2a +a 2b的最小值为1,故选项B 正确;因为a >b >c ,所以a -b >0,b -c >0,a -c >0,所以(a -c )⎝ ⎛⎭⎪⎫1a -b +1b -c =[](a -b )+(b -c )⎝ ⎛⎭⎪⎫1a -b +1b -c =2+b -c a -b +a -b b -c≥2+2b -c a -b ·a -bb -c=4,当且仅当b -c =a -b 时取等号,所以1a -b +1b -c ≥4a -c,故选项C 正确;因为a 2+b 2+c 2=13 [(a 2+b 2+c 2)+(a 2+b 2)+(b 2+c 2)+(c 2+a 2)]≥13(a 2+b 2+c 2+2ab +2bc +2ca )=13 [(a +b )2+2(a +b )c +c 2]=13 (a +b +c )2=3,当且仅当a =b =c =1时等号成立,所以a 2+b 2+c 2的最小值为3,故选项D 正确.16.某公司一年购买某种货物600吨,每次购买x 吨,运费为6万元/次,一年的总存储费用为4x 万元.要使一年的总运费与总存储费用之和最小,则x 的值是________.答案:30解析:一年的总运费为6×600x =3 600x(万元).一年的总存储费用为4x 万元. 总运费与总存储费用的和为⎝⎛⎭⎫3 600x +4x 万元.因为3 600x +4x ≥2 3 600x ·4x =240,当且仅当3 600x =4x ,即x =30时取得等号,所以当x =30时,一年的总运费与总存储费用之和最小.。
基本不等式作业1.当x>1时,函数y=x+1-1x的最小值是.2.已知正数x,y满足x+y=1,那么1x+4y的最小值为.3.若x+2y=1,则2x+4y的最小值为.4.(2015·宿迁一模)若a2-ab+b2=1,a,b是实数,则a+b的最大值是.5.(2014·扬州中学)设x,y均为正实数,且32x++32y+=1,则xy的最小值是.6.设二次函数f(x)=ax2-4x+c(x∈R)的值域为[0,+∞),则11c++99a+的最大值为.7.(2015·南通、扬州、泰州、淮安三调)已知正实数x,y满足x+2x+3y+4y=10,则xy的取值范围为.8.如图,将一矩形花坛ABCD扩建成一个更大的矩形花园AMPN,要求点B在AM上,点D在AN上,且对角线MN过点C.已知AB=3 m,AD=2 m.(1)当AN的长度是多少时,矩形AMPN的面积最小?并求最小面积.(2)若AN的长度不少于6 m,则当AN的长度是多少时,矩形AMPN的面积最小?并求最小面积.(第8题)11.(2015·苏锡常镇二模)已知a,b∈R,a≠0,曲线y=2ax+,y=ax+2b+1,若两条曲线在区间[3,4]上至少有一个公共点,求a2+b2的最小值.三、选做题(不要求解题过程,直接给出最终结果)12.(2015·南京、盐城一模)若实数x,y满足x>y>0,且log2x+log2y=1,则22-x yx y+的最小值为.13.(2015·镇江期末)已知正数x,y满足1x+1y=1,则4-1xx+9-1yy的最小值为.【检测与评估答案】第47课基本不等式及其应用1.3 【解析】因为x>1,所以y=x+1-1x =(x-1)+1-1x +1=3,当且仅当x-1=1-1x ,且x>1,即x=2时等号成立,故函数y 的最小值为3.2.9 【解析】1x +4y =14x y ⎛⎫+ ⎪⎝⎭(x+y )=1+y x +4xy +4≥5+=5+2×2=9,当且仅当x=13,y=23时取等号.3.【解析】易知2x +4y =2x +22y =当且仅当x=12,y=14时,等号成立.4.2 【解析】方法一:因为a 2-ab+b 2=1,即(a+b )2-3ab=1,从而3ab=(a+b )2-1≤23()4a b +,即(a+b )2≤4,所以-2≤a+b ≤2,所以(a+b )max =2.方法二:令u=a+b ,与a 2-ab+b 2=1联立消去b 得3a 2-3au+u 2-1=0,由于此方程有解,从而有Δ=9u 2-12(u 2-1)≥0,即u 2≤4,所以-2≤u ≤2,所以(a+b )max =2.5.16 【解析】因为x ,y 均为正实数,32x ++32y +=1,所以8+x+y=xy ,xy 8,2)≥0,xy ≥16,即xy 的最小值是16.6. 20 【解析】设每次都购买x t ,则需要购买200x次,则一年的总运费为200x ×2=400x (万元),一年的存储费用为x 万元,则一年的总费用为400x +x 40,当且仅当400x =x ,即x=20时等号成立,故要使一年的总运费与总存储费用之和最小,每次应购买20 t .7.65【解析】由二次函数特点可知,在定义域R上其值域为[0,+∞),则a>0,且Δ=16-4ac=0,即ac=4.欲求11c++99a+的最大值,利用前面关系,建立f(a)=11c++99a+=918(1)(9)c ac a++++=1+53613aa++,由f(a)=1+513aa++≤165,当且仅当36a=a,即a=6时取等号.8.813⎡⎤⎢⎥⎣⎦,【解析】方法一:令t=xy,则x=ty,于是ty+2yt+3y+4y=10,所以10=23t⎛⎫+⎪⎝⎭y+(t+4)1y,解得1≤t≤83.当23t⎛⎫+⎪⎝⎭y=(t+4)1y时,得y2=423tt++.当t=1时,y=1,x=1;当t=83时,y=43,x=2.所以1≤t≤83为所求.方法二:令t=xy,则y=tx,于是x+2x+3tx+4tx=10,可得41t⎛⎫+⎪⎝⎭x2-10x+2+3t=0,由Δ=100-441t⎛⎫+⎪⎝⎭(2+3t)≥0,得1≤t≤83.9.作出可行区域如图中阴影部分所示,当直线z=ax+by(a>0,b>0)过直线x-y+2=0与直线3x-y-6=0的交点A(4,6)时,目标函数z=ax+by(a>0,b>0)取得最大值12,即4a+6b=12,即2a+3b=6,而2 a +3b=23236a ba b+⎛⎫+⎪⎝⎭=136+b aa b⎛⎫+⎪⎝⎭≥136+2=256,当且仅当ba=ab,即a=b=65时取等号.故2a+3b的最小值为256.(第9题)10.(1) 设AN=x m(x>2),则ND=(x-2)m .因为ND DC =AN AM ,即-23x =xAM, 所以AM=3-2x x .所以S 矩形AMPN =23-2x x =23(-2)12(-2)12-2x x x ++=3(x-2)+12-2x +12≥212=24,当且仅当x=4时取等号,即当AN=4 m 时,矩形AMPN 的面积最小,为24 m 2.(2) 由(2)知S 矩形AMPN =3(x-2)+12-2x +12(x ≥6),令x-2=t (t ≥4),则f (t )=3t+12t+12.因为f'(t )=3-212t ,当t ≥4时,f'(t )>0,所以f (t )=3t+12t+12在区间[4,+∞)上单调递增,所以f (t )min =f (4)=27,此时x=6.即当AN=6 m 时,矩形AMPN 的面积最小,为27 m 2.11. 令2a x+=ax+2b+1,可得ax 2+(2b+1)x-a-2=0. 方法一:把等式看成关于a ,b 的直线方程(x 2-1)a+2xb+x-2=0, 由于直线上一点(a ,b )到原点的距离大于等于原点到直线的距离,,所以a 2+b 2≥2222(-2)(-1)(2)x x x +=215-24-2x x ⎛⎫++ ⎪⎝⎭, 因为x-2+5-2x 在x ∈[3,4]是减函数,上述式子在x=3,a=-225,b=-350时取等号,故a 2+b 2的最小值为1100. 方法二:令a 2+b 2=t 2(t>0),所以a=t cos θ,b=t sin θ. 因为2a x+=ax+2b+1, 所以ax 2+(2b+1)x-(a+2)=0,所以t cos θ·x 2+2x ·t sin θ+x -t cos θ-2=0, 所以(tx 2-t )·cos θ+2xt ·sin θ=2-x ,θ+φ)=2-x ,所以|sin(θ+ φ)≤1,所以t ≥2|-2|1x x +. 下同方法一.12.4 【解析】因为log 2x+log 2y=log 2xy=1,所以xy=2.因为x>y>0,所以x-y>0,所以22-x y x y +=2(-)2-x y xyx y +=x-y+4-x y 4,当且仅当x-y=2,即1,1时取等号.13.25 【解析】因为1y =1-1x,所以4-1x x +9-1y y =4-1x x +911-y=4-1x x +9x=4+4-1x +9(x-1)+9=13+4-1x +9(x-1).又因为1y =1-1x >0,所以x>1,同理y>1,所以13+4-1x +9(x-1)≥13+25,当且仅当x=53时取等号,所以4-1x x +9-1yy 的最小值为25.。
课时分层作业(一) 不等式的基本性质(建议用时:45分钟)[基础达标练]一、选择题1.设a,b,c,d∈R ,且a>b,c>d,则下列结论正确的是( )A .a +c>b +dB .a -c>b -dC .ac>bdD .a d >b cA [∵a>b ,c>d,∴a+c>b +d.]2.设a,b∈R ,若a -|b|>0,则下列不等式中正确的是( )A .b -a>0B .a 3+b 3<0C .b +a>0D .a 2-b 2<0 C [a -|b|>0⇒|b|<a ⇒-a<b<a ⇒a +b>0.故选C.]3.若a<b<0,则下列不等式不能成立的是( )A .1a >1bB .2a >2bC .|a|>|b|>0D .⎝ ⎛⎭⎪⎫12a >⎝ ⎛⎭⎪⎫12b B [考查不等式的基本性质及其应用.取a =-2,b =-1验证即可求解.]4.已知a <0,-1<b <0,那么( )A .a >ab >ab 2B .ab 2>ab >a C .ab >a >ab 2D .ab >ab 2>a D [ab 2-ab =ab(b -1),∵a<0,-1<b <0,∴b-1<0,ab >0,∴ab 2-ab <0,即ab 2<ab ;又ab 2-a =a(b 2-1),∵-1<b <0,∴b 2<1,即b 2-1<0.又a <0,∴ab 2-a >0,即ab 2>a.故ab >ab 2>a.]5.设a,b 为实数,则“0<ab <1”是“b<1a”的( ) A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件D [∵0<ab <1,当a <0且b <0时可推得b >1a, 所以“0<ab <1”不是“b<1a”的充分条件, ① 反过来,若b <1a, 当b <0且a >0时,有ab <0,推不出“0<ab <1”,所以“0<ab <1”也不是“b<1a”的必要条件, ②由①②知,应选D.]二、填空题6.若f(x)=3x 2-x +1,g(x)=2x 2+x -1,则f(x)与g(x)的大小关系是f(x)________g(x).[解析] f(x)-g(x)=(3x 2-x +1)-(2x 2+x -1)=x 2-2x +2=(x -1)2+1≥1>0,∴f(x)>g(x).[答案] >7.给出四个条件:①b>0>a ,②0>a>b ,③a>0>b ,④a>b>0.能得出1a <1b成立的有________.(填序号) [解析] 1a <1b ⇔1a -1b <0⇔b -a ab<0, ∴①②④可推出1a <1b成立. [答案] ①②④8.已知α,β满足-1≤α+β≤1,1≤α+2β≤3,则α+3β的取值范围是________.[解析] 设α+3β=λ(α+β)+μ(α+2β),可解得λ=-1,μ=2,∴α+3β=-(α+β)+2(α+2β).又-1≤α+β≤1,1≤α+2β≤3,∴1≤α+3β≤7.[答案] [1,7]三、解答题9.(1)已知a >b >0,c <d <0,求证:3a d <3b c;(2)若a >b >0,c <d <0,e <0,求证:e (a -c )2>e (b -d )2. [证明] (1)∵c<d <0,∴-c >-d >0.∴0<-1c <-1d.又a >b >0, ∴-a d >-b c>0, ∴ 3-a d >3-b c ,即-3a d >-3b c. 两边同乘以-1,得3a d <3b c. (2)∵c<d <0,∴-c >-d >0.∵a>b >0,∴a-c >b -d >0,∴(a-c)2>(b -d)2>0,∴1(a -c )2<1(b -d )2. 又∵e<0,∴e (a -c )2>e (b -d )2. 10.设x,y 为实数,且3≤xy 2≤8,4≤x 2y ≤9,求x 3y 4的取值范围. [解] 由4≤x 2y ≤9,得16≤x 4y2≤81.① 又3≤xy 2≤8,∴18≤1xy 2≤13.② 由①×②得18×16≤x 4y 2·1xy 2≤81×13, 即2≤x 3y 4≤27,因此x 3y4的取值范围是[2,27]. [能力提升练]1.若a,b 为实数,则“0<ab <1”是“a<1b 或b >1a”的( ) A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件A [对于0<ab <1,如果a >0,则b >0,a <1b 成立,如果a <0,则b <0,b >1a成立,因此“0<ab <1”是“a<1b 或b >1a ”的充分条件;反之,若a =-1,b =2,结论“a<1b或 b >1a ”成立,但条件0<ab <1不成立,因此“0<ab <1”不是“a<1b 或b >1a”的必要条件,即“0<ab <1”是“a<1b 或b >1a”的充分而不必要条件.] 2.设a >b >1,c <0,给出下列三个结论:①c a >c b;②a c <b c ;③log b (a -c)>log a (b -c). 其中所有的正确结论的序号是( )A .①B .①②C .②③D .①②③D [由a >b >1,c <0,得1a <1b ,c a >c b;幂函数y =x c (c <0)是减函数,所以a c <b c ;因为a -c >b -c,所以log b (a -c)>log a (a -c)>log a (b -c),①②③均正确.]3.给出下列条件:①1<a <b ;②0<a <b <1;③0<a <1<b.其中能推出log b 1b <log a 1b<log a b 成立的条件的序号是________.(填所有可能的条件的序号)[解析] ∵log b 1b=-1, 若1<a <b,则1b <1a<1<b, ∴log a 1b <log a 1a=-1,故条件①不可以; 若0<a <b <1,则b <1<1b <1a, ∴log a b >log a 1b >log a 1a =-1=log b 1b, 故条件②可以;若0<a <1<b,则0<1b<1, ∴log a 1b>0,log a b <0,条件③不可以.故应填②. [答案] ②4.已知f(x)=ax 2+c,且-4≤f(1)≤-1,-1≤f(2)≤5,求f(3)的取值范围.[解] 由-4≤f(1)≤-1,-1≤f(2)≤5,得⎩⎪⎨⎪⎧ -4≤a+c≤-1,-1≤4a+c≤5.设u =a +c,v =4a +c,则有a =v -u 3,c =4u -v 3, ∴f(3)=9a +c =-53u +83v. 又⎩⎪⎨⎪⎧ -4≤u≤-1,-1≤v≤5,∴⎩⎪⎨⎪⎧ 53≤-53u ≤203,-83≤83v ≤403, ∴-1≤-53u +83v≤20,即-1≤f(3)≤20.∴f(3)的取值范围为[-1,20].。
高一数学基本不等式试题答案及解析1.设且,则的最小值为________.【答案】4【解析】由,当且仅当时等号成立.故答案为4.【考点】均值不等式的应用.2.长为4,宽为3的矩形,当长增加,且宽减少时的面积最大,则此时=_______,最大面积=________.【答案】.【解析】由题意,得所得矩形面积;则,即当时,矩形面积有最大值.【考点】一元二次函数模型的应用.3.已知x,y均为正数且x+2y=xy,则().A.xy+有最小值4B.xy+有最小值3C.x+2y+有最小值11D.xy﹣7+有最小值11【答案】C【解析】由,得,由得,则(当且仅当,即时取等号),;令,则在上为增函数,,排除A,B;而选项D:;选项C:(当且仅当,即或时取等号;故选C.【考点】基本不等式.4.若,则下列不等式正确的是().A.B.C.D.【答案】C【解析】由基本不等式得,则;又,.【考点】基本不等式.5.已知正数满足,则的最小值为.【答案】【解析】.【考点】基本不等式.6.设a>0,b>0,若是和的等比中项,则的最小值为()A.6B.C.8D.9【答案】A【解析】由题意a>0,b>0,且是和的等比中项,即,则,当且仅当时,即时取等号.【考点】重要不等式,等比中项7.(1)阅读理解:①对于任意正实数,只有当时,等号成立.②结论:在(均为正实数)中,若为定值,则,只有当时,有最小值.(2)结论运用:根据上述内容,回答下列问题:(提示:在答题卡上作答)①若,只有当__________时,有最小值__________.②若,只有当__________时,有最小值__________.(3)探索应用:学校要建一个面积为392的长方形游泳池,并且在四周要修建出宽为2m和4 m的小路(如图所示)。
问游泳池的长和宽分别为多少米时,共占地面积最小?并求出占地面积的最小值。
【答案】(2)①1 ,2:②3,10(3)游泳池的长为28m,宽14m时,占地面积最小,占地面积的最小值是648【解析】(2)①利用阅读材料,可知当时,有最小值2,②,当时,有最小值10.(3)设游泳池的长为m,则游泳池的宽为m,又设占地面积为,依题意,得,整理运用所给结论,可求面积的最值.(2)①利用阅读材料,可知当时,有最小值2,②,当时,有最小值10.(3)设游泳池的长为m,则游泳池的宽为m,又设占地面积为,依题意,得,整理.当且仅当即取“=”.此时所以游泳池的长为28m,宽14m时,占地面积最小,占地面积的最小值是648【考点】基本不等式在最值问题中的应用;进行简单的合情推理8.已知且若恒成立,则的范围是【答案】【解析】原式恒成立等价于,,所以解得.【考点】基本不等式求最值9.已知向量=(x,2),=(1,y),其中x>0,y>0.若•=4,则+的最小值为.【答案】【解析】因为所以当且仅当时取等号.【考点】基本不等式求最值10.现要用一段长为的篱笆围成一边靠墙的矩形菜园(如图所示),则围成的菜园最大面积是___________________.【答案】【解析】依题意可知,其中,由基本不等式可知即(当且仅当时等号成立),所以,所以围成的菜园最大面积是.【考点】基本不等式的应用.11.若x>0,则函数的最小值是________.【答案】2【解析】因为,x>0,所以,函数当且仅当时,函数取得最小值2.【考点】均值定理的应用点评:简单题,应用均值定理,要注意“一正,二定,三相等”,缺一不可。
§3.4 基本不等式:ab ≤a +b 2第1课时 基本不等式一、选择题1.a ,b ∈R ,则a 2+b 2与2|ab |的大小关系是( )A.a 2+b 2≥2|ab |B.a 2+b 2=2|ab |C.a 2+b 2≤2|ab |D.a 2+b 2>2|ab |考点 基本不等式的理解题点 基本不等式的理解答案 A解析 ∵a 2+b 2-2|ab |=(|a |-|b |)2≥0,∴a 2+b 2≥2|ab |(当且仅当|a |=|b |时,等号成立).2.若a ,b ∈R 且ab >0,则下列不等式中恒成立的是( )A.a 2+b 2>2abB.a +b ≥2abC.1a +1b >2abD.b a +a b ≥2 考点 基本不等式的理解题点 基本不等式的理解答案 D解析 ∵a 2+b 2-2ab =(a -b )2≥0,∴A 错误;对于B ,C ,当a <0,b <0时,显然错误;对于D ,∵ab >0,∴b a +a b≥2 b a ·a b =2, 当且仅当a =b 时,等号成立.3.若x >0,y >0且x +y =4,则下列不等式中恒成立的是( )A.1x +y ≥14B.1x +1y ≥1C.xy ≥2D.1xy ≥1 考点 基本不等式比较大小题点 利用基本不等式比较大小答案 B解析 若x >0,y >0,由x +y =4,得x +y 4=1, ∴1x +1y =14(x +y )⎝⎛⎭⎫1x +1y =14⎝⎛⎭⎫2+y x +x y ≥14(2+2)=1, 当且仅当x =y =2时,等号成立.4.如果正数a ,b ,c ,d 满足a +b =cd =4,那么( )A.ab ≤c +d ,且等号成立时,a ,b ,c ,d 的取值唯一B.ab ≥c +d ,且等号成立时,a ,b ,c ,d 的取值唯一C.ab ≤c +d ,且等号成立时,a ,b ,c ,d 的取值不唯一D.ab ≥c +d ,且等号成立时,a ,b ,c ,d 的取值不唯一考点 基本不等式的理解题点 基本不等式的理解答案 A解析 因为a +b =cd =4,所以由基本不等式得a +b ≥2ab ,故ab ≤4.又因为cd ≤(c +d )24,所以c +d ≥4,所以ab ≤c +d ,当且仅当a =b =c =d =2时,等号成立.5.设f (x )=ln x,0<a <b ,若p =f (ab ),q =f ⎝⎛⎭⎫a +b 2,r =12(f (a )+f (b )),则下列关系式中正确的是( )A.q =r <pB.p =r <qC.q =r >pD.p =r >q 考点 基本不等式比较大小题点 利用基本不等式比较大小答案 B解析 因为0<a <b ,所以a +b 2>ab . 又因为f (x )=ln x 在(0,+∞)上单调递增,所以f ⎝⎛⎭⎫a +b 2>f (ab ),即p <q . 而r =12(f (a )+f (b ))=12(ln a +ln b ) =12ln(ab )=ln ab , 所以r =p ,故p =r <q ,故选B.6.已知a ,b ∈(0,+∞),则下列不等式中不成立的是( )A.a +b +1ab ≥2 2B.(a +b )⎝⎛⎭⎫1a +1b ≥4C.a 2+b 2ab≥2ab D.2ab a +b >ab 考点 基本不等式的理解题点 基本不等式的理解答案 D解析 a +b +1ab ≥2ab +1ab≥ 22, 当且仅当a =b =22时,等号成立,A 成立; (a +b )⎝⎛⎭⎫1a +1b ≥2ab ·21ab =4, 当且仅当a =b 时,等号成立,B 成立;∵a 2+b 2≥2ab >0, ∴a 2+b 2ab≥2ab ,当且仅当a =b 时,等号成立,C 成立; ∵a +b ≥2ab ,且a ,b ∈(0,+∞),∴2ab a +b ≤1,2ab a +b≤ab . 当且仅当a =b 时,等号成立,D 不成立.二、填空题7.设正数a ,使a 2+a -2>0成立,若t >0,则12log a t ________log a t +12.(填“>”“≥”“≤”或“<”)考点 基本不等式比较大小题点 利用基本不等式比较大小答案 ≤解析 ∵a 2+a -2>0,∴a >1或a <-2(舍),∴y =log a x 是增函数, 又t +12≥ t ,∴log a t +12≥log a t =12log a t . 8.设a ,b 为非零实数,给出不等式:①a 2+b 22≥ab ;②a 2+b 22≥⎝⎛⎭⎫a +b 22;③a +b 2≥ab a +b;④a b +b a ≥2.其中恒成立的不等式是________.考点 基本不等式的理解题点 基本不等式的理解答案 ①②解析 由重要不等式a 2+b 2≥2ab ,可知①正确;a 2+b 22=2(a 2+b 2)4=(a 2+b 2)+(a 2+b 2)4≥a 2+b 2+2ab 4=(a +b )24=⎝⎛⎭⎫a +b 22,可知②正确;当a =b =-1时,不等式的左边为a +b 2=-1,右边为ab a +b=-12,可知③不正确;当a =1,b =-1时,可知④不正确. 9.已知a >b >c ,则(a -b )(b -c )与a -c 2的大小关系是______________________________. 考点 基本不等式比较大小题点 利用基本不等式比较大小答案 (a -b )(b -c )≤a -c 2解析 因为a >b >c ,所以a -b >0,b -c >0,所以a -c 2=(a -b )+(b -c )2≥(a -b )(b -c ),当且仅当a -b =b -c 时,等号成立. 10.设a >1,m =log a (a 2+1),n =log a (a +1),p =log a (2a ),则m ,n ,p 的大小关系是________.(用“>”连接)考点 基本不等式比较大小题点 利用基本不等式比较大小答案 m >p >n解析 ∵a >1,∴a 2+1>2a >a +1,∴log a (a 2+1)>log a (2a )>log a (a +1),故m >p >n .三、解答题11.设a ,b ,c 都是正数,求证:bc a +ca b +ab c≥a +b +c . 考点 基本不等式证明不等式题点 运用基本不等式证明不等式证明 ∵a ,b ,c 都是正数,∴bc a ,ca b ,ab c也都是正数, ∴bc a +ca b ≥2c ,ca b +ab c ≥2a ,bc a +ab c≥2b , 三式相加得2⎝⎛⎭⎫bc a +ca b +ab c ≥2(a +b +c ),即bc a +ca b +ab c≥a +b +c , 当且仅当a =b =c 时,等号成立.12.已知a >0,b >0,a +b =1,求证:(1)1a +1b +1ab≥8;(2)⎝⎛⎭⎫1+1a ⎝⎛⎭⎫1+1b ≥9. 考点 基本不等式证明不等式题点 运用基本不等式证明不等式证明 (1)1a +1b +1ab =1a +1b +a +b ab=2⎝⎛⎭⎫1a +1b , ∵a +b =1,a >0,b >0,∴1a +1b =a +b a +a +b b =2+a b +b a≥2+2=4, ∴1a +1b +1ab ≥8(当且仅当a =b =12时,等号成立). (2)方法一 ∵a >0,b >0,a +b =1,∴1+1a =1+a +b a =2+b a, 同理,1+1b =2+a b, ∴⎝⎛⎭⎫1+1a ⎝⎛⎭⎫1+1b =⎝⎛⎭⎫2+b a ⎝⎛⎭⎫2+a b =5+2⎝⎛⎭⎫b a +a b ≥5+4=9,∴⎝⎛⎭⎫1+1a ⎝⎛⎭⎫1+1b ≥9(当且仅当a =b =12时,等号成立). 方法二 ⎝⎛⎭⎫1+1a ⎝⎛⎭⎫1+1b =1+1a +1b +1ab. 由(1)知,1a +1b +1ab≥8, 故⎝⎛⎭⎫1+1a ⎝⎛⎭⎫1+1b =1+1a +1b +1ab ≥9,当且仅当a =b =12时,等号成立. 四、探究与拓展13.设0<a <1<b ,则一定有( )A.log a b +log b a ≥2B.log a b +log b a ≥-2C.log a b +log b a ≤-2D.log a b +log b a >2考点 基本不等式的理解题点 基本不等式的理解答案 C解析 ∵0<a <1<b ,∴log a b <0,log b a <0,-log a b >0,-log b a >0,∴(-log a b )+(-log b a )=(-log a b )+⎝⎛⎭⎫-1log a b ≥2,当且仅当ab =1时,等号成立,∴log a b +log b a ≤-2.14.设x ,y 为正实数,且xy -(x +y )=1,则( )A.x +y ≥2(2+1)B.xy ≤2+1C.x +y ≤(2+1)2D.xy ≥2(2+1) 考点 基本不等式的理解题点 基本不等式的理解答案 A解析 ∵x ,y 为正实数,且xy -(x +y )=1,xy ≤⎝⎛⎭⎫x +y 22,∴⎝⎛⎭⎫x +y 22-(x +y )-1≥0,解得x +y ≥2(2+1),当且仅当x =y =1+2时取等号.。
1.若xy >0,则对x y +y x 说法正确的是()A .有最大值-2B .有最小值2C .无最大值和最小值D .无法确定2.设x ,y 满足x +y =40且x ,y 都是正整数,则xy 的最大值是()A .400B .100C .40D .203.已知x ≥2,则当x =____时,x +4x 有最小值____.4.已知f (x )=12x +4x .(1)当x >0时,求f (x )的最小值;(2)当x <0时,求f (x )的最大值.一、选择题1.下列各式,能用基本不等式直接求得最值的是()A .x +12x B .x 2-1+1x 2-1C .2x +2-xD .x (1-x )2.函数y =3x 2+6x 2+1的最小值是()A .32-3B .-3C .62D .62-33.已知m 、n ∈R ,mn =100,则m 2+n 2的最小值是()A .200B .100C .50D .204.给出下面四个推导过程:①∵a ,b ∈(0,+∞),∴b a +a b ≥2b a ·a b=2;②∵x ,y ∈(0,+∞),∴lg x +lg y ≥2lg x ·lg y ;③∵a ∈R ,a ≠0,∴4a +a ≥24a ·a =4;④∵x ,y ∈R ,,xy <0,∴x y +y x =-[(-x y )+(-y x )]≤-2?-x y ??-y x?=-2.其中正确的推导过程为()A .①②B .②③C .③④D .①④5.已知a >0,b >0,则1a +1b +2ab 的最小值是()A .2B .22C .4D .56.已知x 、y 均为正数,xy =8x +2y ,则xy 有()A .最大值64B .最大值164C .最小值64D .最小值164二、填空题7.函数y =x +1x +1(x ≥0)的最小值为________.8.若x >0,y >0,且x +4y =1,则xy 有最________值,其值为________.9.(2010年高考山东卷)已知x ,y ∈R +,且满足x 3+y 4=1,则xy 的最大值为________.三、解答题10.(1)设x >-1,求函数y =x +4x +1+6的最小值;(2)求函数y=x2+8x-1(x>1)的最值.11.已知a,b,c∈(0,+∞),且a+b+c=1,求证:(1a-1)·(1b-1)·(1c-1)≥8.12.某造纸厂拟建一座平面图形为矩形且面积为200平方米的二级污水处理池,池的深度一定,池的外圈周壁建造单价为每米400元,中间一条隔壁建造单价为每米100元,池底建造单价每平方米60元(池壁忽略不计).问:污水处理池的长设计为多少米时可使总价最低.答案:1.答案:B2.答案:A3.答案:244.解:(1)∵x >0,∴12x ,4x >0.∴12x +4x ≥212x ·4x =83.当且仅当12x=4x ,即x =3时取最小值83,∴当x >0时,f (x )的最小值为8 3.(2)∵x <0,∴-x >0.则-f (x )=12-x +(-4x )≥212-x ·?-4x ?=83,当且仅当12-x=-4x 时,即x =-3时取等号.∴当x <0时,f (x )的最大值为-8 3.一、选择题1.答案:C2.解析:选D.y =3(x 2+2x 2+1)=3(x 2+1+2x 2+1-1)≥3(22-1)=62-3.3.解析:选A.m 2+n 2≥2mn =200,当且仅当m =n 时等号成立.4.解析:选D.从基本不等式成立的条件考虑.①∵a ,b ∈(0,+∞),∴b a ,a b∈(0,+∞),符合基本不等式的条件,故①的推导过程正确;②虽然x ,y ∈(0,+∞),但当x ∈(0,1)时,lg x 是负数,y ∈(0,1)时,lg y 是负数,∴②的推导过程是错误的;③∵a ∈R ,不符合基本不等式的条件,∴4a +a ≥24a ·a =4是错误的;④由xy <0得x y ,y x 均为负数,但在推导过程中将全体x y +y x 提出负号后,(-x y)均变为正数,符合基本不等式的条件,故④正确.5.解析:选C.∵1a +1b +2ab ≥2ab +2ab ≥22×2=4.1时,等号成立,即a =b =1时,不等式取得最小值4.6.解析:选C.∵x 、y 均为正数,∴xy =8x +2y ≥28x ·2y =8xy ,当且仅当8x =2y 时等号成立.∴xy ≥64.二、填空题7.答案:18.解析:1=x +4y ≥2x ·4y =4xy ,∴xy ≤116.答案:大1169.解析:∵x >0,y >0且1=x 3+y 4≥2xy 12,∴xy ≤3.当且仅当x 3=y 4时取等号.答案:3三、解答题10.解:(1)∵x >-1,∴x +1>0.∴y =x +4x +1+6=x +1+4x +1+5≥2?x +1?·4x +1+5=9,当且仅当x +1=4x +1,即x =1时,取等号.∴x =1时,函数的最小值是9.(2)y =x 2+8x -1=x 2-1+9x -1=(x +1)+9x -1=(x -1)+9x -1+2.∵x >1,∴x -1>0.∴(x -1)+9x -1+2≥2?x -1?·9x -1+2=8.当且仅当x -1=9x -1,即x =4时等号成立,∴y 有最小值8.11.证明:∵a ,b ,c ∈(0,+∞),a +b +c =1,∴1a -1=1-a a =b +c a =b a +c a ≥2bc a ,同理1b -1≥2ac b ,1c -1≥2ab c,以上三个不等式两边分别相乘得(1a -1)(1b -1)(1c-1)≥8.当且仅当a =b =c 时取等号.12.解:设污水处理池的长为x 米,则宽为200x 米.总造价f (x )=400×(2x +2×200x )+100×200x +60×200=800×(x +225x )+12000≥1600x ·225x+12000=36000(元)当且仅当x =225x(x >0),即x =15时等号成立.。
专题训练:基本不等式求最值1.若实数,x y 满足:,0,310x y xy x y >---=,则xy 的最小值为( ) A .1 B .2 C .3 D .4 【答案】A【解析】因为310xy x y ---=,所以31xy x y -=+,由基本不等式可得312xy x y xy -=+≥,故3210xy xy -≥1xy 13xy -(舍),即1xy ≥ 当且仅当1x y ==时等号成立, 故xy 的最小值为1,故选:A.2.已知,a b 为正实数且2a b +=,则2b ab+的最小值为( ) A .32B 21C .52D .3 【答案】D【解析】因为,a b 为正实数且2a b +=,所以2b a =-,所以,2221212211ba b a b a b a ab ⎛⎫+=+=+-=+- ⎪⎭-⎝因为()22111122224b a a b a b a b a b a b ⎛⎫⎛⎫+=+=++=++≥+= ⎪ ⎪⎝⎭⎝⎭, 当且仅当1a b ==时等号成立; 所以2222213b aba b a a b++=+--=≥,当且仅当1a b ==时等号成立;故选:D3.若0x <,则124x x +-有( ) A .最小值1- B .最小值3- C .最大值1- D .最大值3- 【答案】D【解析】因为0x <,所以11122223444x x x x x x ⎛⎫+-=--+-≤--⋅=- ⎪--⎝⎭, 当且仅当14x x-=-,即12x =-时等号成立,故124x x+-有最大值3-.故选:D.4.已知42244924x x y y ++=,则2253x y +的最小值是( ) A .2 B .127C .52 D .4【答案】D【解析】由42244924x x y y ++=,得()()222222222222425342422x y x y x y x y x y ⎛⎫⎛⎫++++++=≤= ⎪ ⎪⎝⎭⎝⎭, 即()2221653x y ≤+,所以22534x y +≥,当且仅当222242x y x y +=+,即2226,77x y ==时,等号成立,所以2253x y +的最小值是4.故选:D.5.若正实数x,y 满足29x y +=,则14x y--的最大值是( ) A 642+ B .642+ C .642+ D .642--【答案】B【解析】由题意可得正实数x,y 满足29x y +=,所以1411418642(2)2499y xx y x y x y x y ⎛⎫⎛⎫++=⨯++=+++≥⎪ ⎪⎝⎭⎝⎭, 当且仅当8y x x y =即9(21)9(22)x y -==时取等号, 所以14642x y +--≤B .6.设正实数m ,n 满足2m n +=,则12n m n+的最小值是( ) A .32B .52C .54D .94【答案】C【解析】因为正实数m ,n ,2m n +=,所以111522444444n n m n n m n m m n m n m n m n ++=+=++≥⋅=,当且仅当4n m m n =且2m n +=,即43m =,23n =时取等号, 此时取得最小值54,故选:C7.已知正数x 、y 满足()()212x y --=,若不等式2x y m +>恒成立,则实数m 的取值范围是( )A .()8,+∞B .()4,+∞C .(),8∞-D .(),4-∞ 【答案】C【分析】由已知可得出211x y +=,将2x y +与21x y +相乘,利用基本不等式可求得2x y +的最小值,即可得出实数m 的取值范围.【解析】因为0x >,0y >,则()()()21222x y xy x y --=-++=,2x y xy ∴+=,所以,211x y +=,所以()2144224428yxy xx y x y x y x y x y ⎛⎫+=++=++≥+⋅= ⎪⎝⎭, 当且仅当4y xx y =时,即4x =,2y =时等号成立.又2x y m +>恒成立,所以8m <.故选:C.8.已知22a b -=,且02a b <+<,则112a b a b++-的最小值为( ) A .2 B .3 C .4 D .5 【答案】A【分析】转化后由基本不等式“1”的妙用求解【解析】因为()()222a b a b a b -=++-=,02a b <+<,所以20a b ->,所以()()2111112222222a b a b a b a b a b a b a b a b a b a b ++-+-⎛⎫⎛⎫+=+⋅=++ ⎪ ⎪+-+--+⎝⎭⎝⎭1222222a b a b a b a b ⎛+-≥⨯+⋅= -+⎝, 当且仅当22a b a ba b a b+-=-+,即1a =,0b =时等号成立. 所以112a b a b++-的最小值为2.故选:A9.若0x >,则241xx +的最大值为( ) A .2 B .3 C .4 D .5 【答案】A【分析】利用基本不等式求最值即可.【解析】当0x >时,24421112x x x x x x=≤=++⋅, 当且仅当1x x=,即1x =时等号成立.故选:A.10.已知正实数x 、y 满足144x y x y++=+,则x y +的最小值为( ) A 132 B .2 C .213 D .214【答案】C【分析】在等式144x y x y ++=+的两边同乘以x y +,结合基本不等式可得出关于x y +的二次不等式,即可解得x y +的最小值.【解析】因为正实数x 、y 满足144x y x y ++=+,等式两边同乘以x y +可得()()()()2444545249y x y x x y x y x y x y x y x y+=++++≥+++⋅=++, 所以,()()2490x y x y +-+-≥,因为0x y +>,解得213x y +≥2y x =时,等号成立. 因此,x y +的最小值为213+故选:C.11.设0a >,0b >,若35a b +=131a b ab++的最小值为( )A .3B .2C .62D .3【答案】C3ab abab=再利用基本不等式计算可得.【解析】解:因为0a >,0b >且35a b +=,632362ab ab abababab=≥⋅当且仅当3ab ab=,即2a =,1b =时,等号成立.故选:C .12.若0a >,0b >,且a b ab +=,则2a b +的最小值为( ) A .322+ B .222+ C .6 D .322-【答案】A【分析】由a b ab +=,得111ab+=,利用“1”的代换求最值. 【解析】因为0a >,0b >,且a b ab +=,所以111ab+=,所以()112222332322aba b a b a b a b b a b a ⎛⎫+=++=++≥+⋅=+ ⎪⎝⎭当且仅当2a bb a=时,取等号, 所以2a b +的最小值为322+ A.13.已知正实数,a b ,且22a b +=,则11121a ab ++++ 的最小值是( ) A .2 B .32C .54D .43【答案】C【分析】将22a b +=变为(1)(21)4a b +++=,即可得1121(1)141b a a +=+++, 因此将11121a a b ++++变为111211(1)1214121a b a a b a b ++++=++++++,结合基本不等式即可求得答案.【解析】因为正实数,a b ,22a b +=,故(1)(21)4a b +++=,所以111121[(1)(21)](1)14141b a b a a a +=+++⨯=++++, 故11121111211115(1)2121412144121444a b a b a a b a b a b ++++++=++=+⨯+≥+++++++, 当且仅当15,36a b ==时取得等号,故选:C14.已知正实数,a b 满足4111a b b +=++,则2+a b 的最小值为( ) A .6 B .8 C .10 D .12【答案】B【分析】令211a b a b b +=+++-,用1a b b +++分别乘4111a b b +=++ 两边再用均值不等式求解即可.【解析】因为4111a b b +=++,且,a b 为正实数 所以1(414(1))41111)(a b b a b b a b b a b b a bb +++=++++++++=+++++4(1)591a b b b a b++≥+⨯=++, 当且仅当4(1)1a b b b a b++=++即2a b =+时等号成立. 所以219,28a b a b ++≥+≥.故选:B.15.设220,0,4x y x y x y >>+-=,则11x y +的最小值等于( )A .2B .4C .12 D .14【答案】B【分析】根据题意得到221144x y x y xy x y xy xy xy+++===+,结合基本不等式,即可求解.【解析】因为224x y x y +-=,可得224x y x y +=+且0,0x y >>,所以221144424x y x y xy xy x y xy xy xy xy+++===+≥⋅=, 当且仅当4xy xy =时,即2xy =等号成立,所以11x y +的最小值为4.故选:B.16.已知x ,y 都是正数,若2x y +=,则14x y +的最小值为( )A .74 B .92 C .134D .1 【答案】B【分析】利用基本不等式求解.【解析】因为2x y +=,所以1414141422x y y x x y x y x y ⎛⎫⎛⎫++=+⋅=+++ ⎪⎪⎝⎭⎝⎭.因为x ,y 都是正数,由基本不等式有:4424y x y x x y x y+≥⋅, 所以141491422y x x y x y ⎛⎫+=+++≥ ⎪⎝⎭,当且仅当2,? 2,y x x y =⎧⎨+=⎩ 即2,343x y ⎧=⎪⎪⎨⎪=⎪⎩时取“=”.故A ,C ,D 错误.故选:B .17.已知0a >,0b >,1ab =,则226a b a b+++的最小值为( )A .2B .4C .22D .42【答案】B【分析】对原式化简,然后根据基本不等式求解. 【解析】因为0a >,0b >,1ab =.所以()()2222264644a b ab a b a b a b a b a b a b a b+-+++++===++≥++++,当且仅当1a b ==时,等号成立.故选:B.18.若不等式()2232a b x a b ++≥+对任意正数a ,b 恒成立,则实数x 的最大值为( )A 2B .3C 3D .1【答案】C【分析】对原不等式进行化简可得()2262a b x a b ++≤+,再利用基本不等式求最值可得答案.【解析】∵不等式()2232a b x a b ++≥+对任意正数a ,b 恒成立, ∴()2262a b x a b ++≤+(0a >,0b >)恒成立, ∵()()()22266332232244a b a b a b a b a b a b a b a b ++++++≥=+≥⋅++++ 当且仅当a b =且34a b a b+=+,即3a b ==.∴3x ≤故选:C.19.(多选)已知0x >,0y >,且30x y xy ++-=,则( ) A .xy 的取值范围是[]1,9 B .x y +的取值范围是[)2,3 C .4x y +的最小值是3 D .2x y +的最小值是423 【答案】BD【分析】根据基本不等式可求得01xy <≤,判断A;将30x y xy ++-=变形为()232x y x y xy +⎛⎫-+=≤ ⎪⎝⎭结合基本不等式,判断B ;由30x y xy ++-=整理得到411x y =-++ 结合基本不等式可判断C,D.【解析】对于A ,因为0x >,0y >,所以2x y xy +≥x y =时取等号,即32xy xy -≥01xy <≤,即01xy <≤,A 错误;对于B, 由0x >,0y >,()232x y x y xy +⎛⎫-+=≤ ⎪⎝⎭,当且仅当x y =时取等号, 得()()24120x y x y +++-≥,所以2x y +≥,又()03x y xy -+=>,所以3x y +<,B 正确; 对于C, 由0x >,0y >,30x y xy ++-=,得34111y x y y -+==-+++, 则()4441441511x y y y y y +=-++=++-++ ()4241531y y ≥⋅+=+, 当且仅当()4411y y =++,即0y =时等号成立,但0y >,所以43x y +>.(等号取不到),故C 错误; 对于D ,由C 的分析知:0x >,0y >,411x y =-++,()4421221342311x y y y y y +=-++=++-≥++, 当且仅当()4211y y =++,即21y =时等号成立,D 正确, 故选:BD20.(多选)若正实数,a b 满足1a b +=,则下列说法正确的是( )A .ab 有最小值14B a b 2C .1122a b a b +++有最小值43D .22a b +有最小值12 【答案】BCD【分析】由已知结合基本不等式及其变形形式分别检验各选项即可判断.【解析】由正实数,a b 满足1a b +=,则2124a b ab +⎛⎫≤= ⎪⎝⎭,当且仅当12a b ==时,等号成立,所以ab 的最大值为14,故A 选项错误;由()222a ba b ab a b =++≤+=2a b , 当且仅当12a b ==a b 2B 选项正确;由11111111(33)[(2)(2)]22322322⎛⎫⎛⎫+=++=++++ ⎪ ⎪++++++⎝⎭⎝⎭a b a b a b a b a b a b a b a b a b1222322++⎛⎫=++ ⎪++⎝⎭a b a b a b a b 1224223223a b a b a b a b ⎛++≥+⋅= ++⎝, 当且仅当12a b ==时,等号成立,所以1122a b a b +++有最小值43,故C 选项正确; 由222222()1()2()2222a b a b a b a b ab a b ++⎛⎫+=+-≥+-⨯== ⎪⎝⎭, 当且仅当12a b ==时,等号成立,所以22a b +有最小值12,故D 选项正确.故选:BCD.21.(多选)下列说法正确的有( ) A .若12x <,则1221x x +-的最大值是-1 B .若x ,y ,z 都是正数,且2x y z ++=,则411x y z+++的最小值是3 C .若0x >,0y >,228x y xy ++=,则2x y +的最小值是2D .若实数x ,y 满足0xy >,则22x yx y x y+++的最大值是422-【答案】ABD 【分析】对1221x x +-进行构造,利用基本不等式即可判断A ; 由2x y z ++=得13x y z +++=,进而将411x y z+++转化为()411531y z x x y z +⎡⎤+++⎢⎥++⎣⎦, 结合基本不等式即可判断B ;由228x y xy ++=得()282xy x y =-+,根据2222x y xy +⎛⎫≤ ⎪⎝⎭可得()()22824x y x y +-+≤,从而可判断C; 令x y t +=,2x y s +=,原式转化成24s tt s--,结合基本不等式即可判断D【解析】对于A ,因为12x <,所以210x -<,所以120x ->,所以()()1112211121212112x x x x x x ⎡⎤+=-++=--++⎢⎥---⎣⎦()12121112x x≤--⋅=--, 当且仅当11212x x-=-,即0x =时等号成立, 所以1221x x +-的最大值为-1,故A 正确; 对于B ,因为x ,y ,z 都是正数,且2x y z ++=, 所以13x y z +++=, 所以()411411131x y z x y z x y z ⎛⎫+=++++ ⎪++++⎝⎭()()44111155233131y z y z x x x y z x y z ⎡++⎡⎤++=++≥+⋅=⎢⎢⎥++++⎢⎣⎦⎣, 当且仅当()411y z x x y z ++=++,即()12x y z +=+即11x y z =⎧⎨+=⎩时等号成立, 所以411x y z +++的最小值为3,故B 正确;对于C ,因为0x >,0y >,所以2222x y x y +⎛⎫⋅≤ ⎪⎝⎭,即()2224x y xy +≤(当且仅当2x y =时等号成立),因为228x y xy ++=,所以()282xy x y =-+,所以()()22824x y x y +-+≤,所以()()2242320x y x y +++-≥, 解得28x y +≤-(舍去)或24x y +≥,当且仅当22x y ==时等号成立, 所以2x y +的最小值为4,故C 错误;对于D ,令x y t +=,2x y s +=,则2x t s =-,y s t =-, 因为0xy >,所以x ,y 同号,则s ,t 同号, 所以2224424222x y s t s t x y x y t s t s+=--≤-⋅-++ 当且仅当2s tts=,即2s t 时取等号,所以22xyx y x y +++的最大值是422-D 正确,故选:ABD .22.(多选)已知实数0a >,0b >,1111a b+=+,则4a b +的值可能是( ) A .7 B .8 C .9 D .10 【答案】BCD【分析】根据题中条件配凑,再运用“1”的代换与基本不等式求出原式范围即可得到答案.【解析】因为0a >,0b >,1111a b+=+, 所以()()1141414114114111b a a b a b a b a b a b +⎛⎫⎡⎤+=++-=++⋅+-=+++- ⎪⎣⎦++⎝⎭ 41481b a a b+≥+⋅+, 当且仅当4111111b a a ba b +⎧=⎪⎪+⎨⎪+=⎪+⎩,即232a b =⎧⎪⎨=⎪⎩时取等号,所以48a b +≥,可能为8,9,10. 故选:BCD23.已知(),0,x y ∈+∞,且1x y +=,若不等式2221124x y xy m m ++>+恒成立,则实数m 的取值范围______.【答案】3,12⎛⎫- ⎪⎝⎭【分析】由题意结合基本不等式可得2234x y xy ++≥,则不等式等价于2311424m m >+,由此即可解出m 的取值范围.【解析】因为(),0,x y ∈+∞,且1x y +=,所以()222231124x y x y xy x y xy xy +⎛⎫++=+-=-≥-= ⎪⎝⎭, 当且仅当12x y ==时等号成立,又不等式2221124x y xy m m ++>+恒成立,所以2311424m m >+,即2230m m +-<,解得312m -<<.故答案为:3,12⎛⎫- ⎪⎝⎭.24.已知正数,a b 满足34318a b a b+++=,则3a b +的最大值是___________. 【答案】936+【分析】设3t a b =+,表达出()18t t -,结合基本不等式求解最值,再根据二次不等式求解即可.【解析】设3t a b =+,则3418t a b+=-, 所以()()3494941831515227bab at t a b a b a b a b ⎛⎫-=++=++≥+⋅ ⎪⎝⎭, 当且仅当23a b =时取等号.所以218270t t -+,解得936936t -+,即3a b +的最大值936+ 当且仅当23a b =,即36a =+262b =. 故答案为:936+25.已知0x >,则423x x--的最大值是_________【答案】243-##432-【分析】直接利用基本不等式求最大值. 【解析】0x,则4442323223243⎛⎫--=-+≤-⋅=- ⎪⎝⎭x x x x x x 当且仅当43x x=即23x = 故答案为:243-.26.若正数a ,b 满足11a b +=1,则41611a b +--的最小值为__. 【答案】16【分析】由条件可得11a b b=-,11ba a =-,代入所求式子,再由基本不等式即可求得最小值,注意等号成立的条件.【解析】因为正数a ,b 满足11ab+=1,则有1a=111b bb--=, 则有11a b b=-,1b =111a a a --=,即有11b a a =-, 则有416416416211b a b aa b a b a bb+=+≥⋅=--16, 当且仅当416b a a b =即有b =2a ,又11a b+=1, 即有a 32=,b =3,取得最小值,且为16. 故答案为:16.27.若正数a ,b 满足21a b +=,则222a ba b+--的最小值是__. 2212【分析】设22,2u a v b =-=-,得到1231123()()222232a b u v a b u v u v +=+-=++---, 结合基本不等式,即可求解.【解析】设22,2u a v b =-=-,则2,22ua b v -==-,可得3(,0)u v u v +=>, 所以11212311232()()222232ua b v u v a b u v u v u v --+=+=+-=++---123123223221(3)(32)1323222v u v u u v u v =++-≥+⋅-==, 当且仅当632,323v u =-=时,等号成立,取得最小值. 2212.28.设a ,b ≥0,且1a b =,则ab的最小值为___________. 【答案】0 【分析】由题可得()214b a -=,代入ab,结合均值不等式即可得出答案.【解析】因为21a b =,所以()221124b b a --⎛⎫=-=⎪⎝⎭, 所以2(1)1111204442442a b b b b b b b -==+-≥⋅=, 当且仅当0,1a b ==时取等. 所以a b的最小值为0. 故答案为:0.29.(1)已知1x >,求1411x x ++-的最小值; (2)已知01x <<,求()43x x -的最大值. 【答案】(1)9;(2)43. 【分析】(1)由于10x ->,则()114141511x x x x ++=-++--,然后利用基本不等式求解即可,(2)由于01x <<,变形得()()()1433433x x x x -=⋅⋅-,然后利用基本不等式求解即可.【解析】(1)因为1x >,所以10x ->,所以()()111414154159111x x x x x x ++=-++≥-⋅=---, 当且仅当()1411x x -=-,即32x =时取等号,所以1411x x ++-的最小值为9.(2)因为01x <<,所以()()()2113434433433323x x x x x x +-⎛⎫-=⋅⋅-≤= ⎪⎝⎭, 当且仅当343x x =-,即23x =时取等号, 故()43x x -的最大值为43.30.(1)已知01x <<,则()43x x -取得最大值时x 的值为? (2)已知54x <,则1()4245f x x x =-+-的最大值为? 【答案】(1)23;(2)1.【分析】(1)根据基本不等式,和为定值求积的最大值,(2)由基本不等式即可求解.【解析】(1)()()()2113(43)4433433323x x x x x x +-⎡⎤-=⨯-≤=⎢⎥⎣⎦, 当且仅当343x x =-,即23x =时取等号. 故所求x 的值为23.(2)因为54x <,所以540x ->,则11()42=(54)323=1.4554f x x x x x =-+--++≤---+ 当且仅当154=54x x--,即=1x 时,取等号. 故()14245f x x x =-+-的最大值为1。
不等式的基本性质知识点:1、不等式的性质1:不等式的两边加上(或减去)同一个数(或式子),不等号的方向不变,用式子表示:如果a>b ,那么a ±c>b ±c.2、不等式的性质2:不等式的两边乘以(或除以)同一正数,不等号的方向不变,3、不等式的性质3:不等式两边乘以(或除以)同一个负数,不等号的方向改变,用式子表示:a>b ,c<0,那么,ac < bc 或 a c < b c. 一.选择题1、若x >y,则ax >ay ,那么a 一定为( )。
A.a >0 B .a<0 C .a≥0 D .a ≤02、若m <n,则下列各式中正确的是( )。
A .m -3>n-3 B.3m >3n C.-3m >-3n D.m /3-1>n /3-13、若a <0,则下列不等关系错误的是( )。
A .a +5<a +7 B.5a >7a C.5-a <7-a D.a /5>a /74、下列各题中,结论正确的是( )。
A .若a >0,b <0,则b /a >0B .若a >b ,则a -b >0C .若a <0,b <0,则ab <0D .若a >b ,a <0,则b /a <05、下列变形不正确的是( )。
A .若a >b ,则b <aB .-a >-b ,得b >aC .由-2x >a ,得x >-a /2D .由x /2>-y ,得x >-2y6、有理数b 满足︱b ︱<3,并且有理数a 使得a <b 恒成立,则a 得取值范围是( )。
A .小于或等于3的有理数B .小于3的有理数C .小于或等于-3的有理数D .小于-3的有理数7、绝对值不大于2的整数的个数有( )A .3个B .4个C .5个D .6个8、如果m <n <0,那么下列结论中错误的是( )A 、m -9<n -9B 、-m >-nC 、11n m >D 、1m n> 9、若a -b <0,则下列各式中一定正确的是( )A 、a >bB 、ab >0C 、0a b< D 、-a >-b 10、由不等式ax >b 可以推出x <b a,那么a 的取值范围是( ) A 、a ≤0 B 、a <0 C 、a ≥0 D 、a >011、如果t >0,那么a +t 与a 的大小关系是( )A 、a +t >aB 、a +t <aC 、a +t ≥aD 、不能确定12、如果34a a <--,则a 必须满足( ) A 、a ≠0 B 、a <0 C 、a >0 D 、a 为任意数13、已知有理数a 、b 、c 在数轴上的位置如图所示,则下列式子正确的是( )a 0b cA 、cb >abB 、ac >abC 、cb <abD 、c +b >a +b14、有下列说法:(1)若a <b ,则-a >-b ; (2)若xy <0,则x <0,y <0;(3)若x <0,y <0,则xy <0; (4)若a <b ,则2a <a +b ;(5)若a <b ,则11a b >; (6)若1122x y --<,则x >y 。
基本不等式作业
1.若xy >0,则对 x y +y
x
说法正确的是( )
A .有最大值-2
B .有最小值2
C .无最大值和最小值
D .无法确定
2.设x ,y 满足x +y =40且x ,y 都是正整数,则xy 的最大值是( ) A .400 B .100 C .40 D .20
3.已知x ≥2,则当x =____时,x +4
x
有最小值____.
4.已知f (x )=12
x
+4x .
(1)当x >0时,求f (x )的最小值; (2)当x <0 时,求f (x )的最大值.
一、选择题
1.下列各式,能用基本不等式直接求得最值的是( )
A .x +12x
B .x 2-1+1
x 2-1
C .2x
+2-x D .x (1-x )
2.函数y =3x 2+6
x 2+1
的最小值是( )
A .32-3
B .-3
C .6 2
D .62-3
3.已知m 、n ∈R ,mn =100,则m 2+n 2
的最小值是( ) A .200 B .100 C .50 D .20 4.给出下面四个推导过程:
①∵a ,b ∈(0,+∞),∴b a +a b ≥2b a ·a
b
=2;
②∵x ,y ∈(0,+∞),∴lg x +lg y ≥2lg x ·lg y ;
③∵a ∈R ,a ≠0,∴4a +a ≥24
a
·a =4;w w w .x k b 1.c o m
④∵x ,y ∈R ,,xy <0,∴x y +y x =-[(-x y )+(-y x )]≤-2(-x y )(-y
x
)=-2.
其中正确的推导过程为( ) A .①② B .②③ C .③④ D .①④
5.已知a >0,b >0,则1a +1
b
+2ab 的最小值是( )
A .2
B .2 2
C .4
D .5 6.已知x 、y 均为正数,xy =8x +2y ,则xy 有( ) A .最大值64 B .最大值1
64
C .最小值64
D .最小值1
64
二、填空题
7.函数y =x +1
x +1
(x ≥0)的最小值为________.
8.若x >0,y >0,且x +4y =1,则xy 有最________值,其值为________.
9.(2010年高考山东卷)已知x ,y ∈R +
,且满足x 3+y 4
=1,则xy 的最大值为________.
三、解答题
10.(1)设x >-1,求函数y =x +4
x +1
+6的最小值;
(2)求函数y =x 2+8
x -1
(x >1)的最值.
11.已知a ,b ,c ∈(0,+∞),且a +b +c =1,求证:(1a -1)·(1b -1)·(1
c
-1)≥8.
12.某造纸厂拟建一座平面图形为矩形且面积为200平方米的二级污水处理池,池的深度一定,池的外圈周壁建造单价为每米400元,中间一条隔壁建造单价为每米100元,池底建造单价每平方米60元(池壁忽略不计).
问:污水处理池的长设计为多少米时可使总价最低.。