果蔬的呼吸对果蔬的储藏
- 格式:doc
- 大小:30.50 KB
- 文档页数:2
果蔬气调贮藏保鲜的原理是什么?气调贮藏简称CA,是指在特定的气体环境中的冷藏方法。
正常大气中氧含量为20.9%,二氧化碳含量为0.03%,而气调贮藏则是在低温贮藏(温度一般控制在1~10℃范围内,湿度一般控制在80~95%范围内)的基础上,调节空气中氧、二氧化碳的含量,即改变贮藏环境的气体成份,降低氧的含量至l/~10%,提高二氧化碳的含量到1~10%,这样的贮藏环境能保持果蔬在采摘时的新鲜度,减少损失,且保鲜期长,无污染;与冷藏相比,气调贮藏保鲜技术更趋完善。
新鲜果蔬在采摘后,仍进行着旺盛的呼吸作用和蒸发作用,从空气中吸取氧气,分解消耗自身的营养物质,产生二氧化碳、水和热量。
由于呼吸要消耗果蔬采摘后自身的营养物质,所以延长果蔬贮藏期的关键是降低呼吸速率。
贮藏环境中气体成份的变化对果蔬采摘后生理有着显著的影响:低氧含量能够有效地抑制呼吸作用,在一定程度上减少蒸发作用,微生物生长;适当高浓度的二氧化碳可以减缓呼吸作用,对呼吸跃变型果蔬有推迟呼吸跃变启动的效应,从而延缓果蔬的后熟和衰老。
乙烯是一种果蔬催熟剂,控制或减少乙烯浓度对推迟果蔬后熟是十分有利的。
降低温度可以降低果蔬呼吸速率,并可抑制蒸发作用和微生物的生长。
采用气调贮藏法能有效地抑制果蔬的呼吸作用,延缓衰老(成熟和老化)及有关生理学和生物化学变化,达到延长果蔬贮藏保鲜的目的。
因此,近二十年来气调贮藏保鲜技术己成为世界各国所公认的一种先进的果蔬贮藏方法。
我国山东、陕西、河南、北京、河北、辽宁、广东、福建等地近年来己先后建立了气调综合冷藏库。
气调保鲜有哪些特点?(1)在气调库内储藏的水果蔬菜,储藏时间较长,一般比普通冷藏库长0.5~1.0倍,用户可灵活掌握出库时间,捕获销售良机,创造最佳经济效果。
(2)出库后的果蔬保持原有的鲜度及脆性,果蔬的水分、VC含量、糖份、酸度、硬度、色泽、重量等与新采摘状态相差无几,果蔬质量高,具有市场竞争力。
有研究说明,经过气调库贮藏的果蔬的失水率可比普通冷藏的果蔬的失水率减少1/5。
1.论述果蔬的呼吸作用对于采后生理和贮藏保鲜的意义。
(1 )果蔬需要进行呼吸作用以维持正常的生命活动;(2 )呼吸作用在分解有机物过程中产生的中间产物,是进一步合成新物质的基础。
(3 )呼吸作用过强,使贮藏的有机物过多消耗,含量迅速减少,果蔬品质下降;且过强的呼吸作用,会加速果蔬衰老,缩短贮藏寿命。
所以控制和利用呼吸作用来延长贮藏期至关重要。
2.跃变型果实与非跃变型果实在采后生理上有什么区别?(1 )内源乙烯的产量不同:所有的果实在发育期间都产生微量的乙烯。
然而在完熟期内,跃变型果实所产生乙烯的量比非跃变型果实多得多,而且跃变型果实在跃变前后的内源乙烯的量变化幅度很大。
非跃变型果实的内源乙烯一直维持在很低的水平,没有产生上升现象。
(2 )对外源乙烯刺激的反应不同:对跃变型果实来说,外源乙烯只在跃变前期处理才有作用,可引起呼吸上升和内源乙烯的自身催化,这种反应是不可逆的,虽停止处理也不能使呼吸回复到处理前的状态。
而对非跃变型果实来说,任何时候处理都可以对外源乙烯发生反应,但将外源乙烯除去,呼吸又恢复到未处理时的水平。
(3 )对外源乙烯浓度的反应不同:提高外源乙烯的浓度,可使跃变型果实的呼吸跃变出现的时间提前,但不改变呼吸高峰的强度,乙烯浓度的改变与呼吸跃变的提前时间大致呈对数关系。
对非跃变型果实,提高外源乙烯的浓度,可提高呼吸的强度,但不能提早呼吸高峰出现的时间。
(4 )乙烯的产生体系不同:非跃变型只有乙烯合成系统I而无乙烯合成系统II,跃变型果实两者都有。
3.在贮藏实践中,哪些措施可调控果蔬采后的呼吸作用?1)温度:呼吸作用是一系列酶促反应过程,在一定温度范围内,随温度的升高而增强。
适宜的低温,可以显著降低产品的呼吸强度,并推迟呼吸跃变型产品的呼吸跃变高峰的出现,甚至不表现呼吸跃变。
在不出现冷害的前提下,果蔬采后应尽量降低贮运温度,并保持冷库温度的恒定,否则,温度的波动可刺激果蔬的呼吸作用,缩短贮藏寿命。
呼吸作用与果蔬贮藏的关系————————————————————————————————作者: ————————————————————————————————日期:ﻩ呼吸作用与果蔬贮藏的关系呼吸作用是采后果蔬的一个最基本的生理过程,它与果蔬的成熟、品质的变化以及贮藏寿命有密切的关系。
(一)呼吸强度与贮藏寿命呼吸强度(respiration rate)是评价呼吸强弱常用的生理指标,它是指在一定的温度条件下,单位时间、单位重量果蔬放出的CO2量或吸收O2的量。
呼吸强度是评价果蔬新陈代谢快慢的重要指标之一,根据呼吸强度可估计果蔬的贮藏潜力。
产品的贮藏寿命与呼吸强度成反比,呼吸强度越大,表明呼吸代谢越旺盛,营养物质消耗越快。
呼吸强度大的果蔬,一般其成熟衰老较快,贮藏寿命也较短。
例如,不耐贮藏的菠菜在20-21℃下,其呼吸强度约是耐贮藏的马铃薯呼吸强度的20倍。
常见的果蔬呼吸强度见表2-4。
ﻫ测定果蔬呼吸强度的方法有多种,常用的方法有气流法、红外线气体分析仪、气相色谱法等。
(二)呼吸热前面已提到果蔬呼吸中,氧化有机物释放的能量,一部分转移到ATP和NADH分子中,供生命活动之用。
一部分能量以热的形式散发出来,这种释放的热量称为呼吸热(respir ation heat)。
已知每摩尔葡萄糖通过呼吸作用彻底氧化分解为CO2和水,放出自由能2867.5KJ;在这过程中形成36molATP,每形成1molATP需自由能305.1KJ,形成36molATP共消耗1099.3KJ,约占葡萄糖氧化放出自由能的38%。
这就是说,其余62%(1768.1KJ)的自由能直接以热能的形式释放。
ﻫ由于果蔬采后呼吸作用旺盛,释放出大量的呼吸热。
因此,在果蔬采收后贮运期间必须及时散热和降温,以避免贮藏库温度升高,而温度升高又会使呼吸增强,放出更多的热,形成恶性循环,缩短贮藏寿命。
为了有效降低库温和运输车船的温度,首先要算出呼吸热,以便配置适当功率的制冷机,控制适当的贮运温度。
果蔬采后考试重点第二章思考题1.为什么说延缓果蔬成熟衰老进程对延长果蔬贮藏寿命是很重要的?当果蔬充分长成以后,便进入成熟阶段。
果蔬的成熟无论对采后生理还是对果蔬贮藏保鲜的实践来说,都是一个非常重要的阶段。
通过眼界果蔬的成熟衰老问题,了解其发生的内在原因、推动力和进程,有助于采用人为的手段来控制其成熟与衰老的进程。
延长果蔬的贮藏寿命。
2论述果蔬的呼吸作用对于贮藏保鲜的意义。
呼吸作用是采后果蔬的一个最基本的生理过程。
果蔬需要进行呼吸作用,以维持正常的生命活动;但另一方面,如果呼吸作用过强,则会使贮藏的有机物过多地被消耗,含量迅速减少,果蔬品质下降,同时过强的呼吸作用,也会加速果蔬的衰老,缩短贮藏寿命。
此外,呼吸作用在在分解有机物过程中产生许多中间产物,他们是进一步合成植物体内新的有机物的物质基础。
3跃变型与非跃变型果实在采后生理上有什么区别?在贮藏实践上有哪些措施可调控果蔬采后的呼吸作用。
特性项目跃变型果蔬跃变型果蔬呼吸变化明显不明显体内淀粉含量富含淀粉淀粉含量极少内源乙烯产生量多极少采收成熟度要求一定成熟度时采收成熟时采收呼吸作用的调控:a在不出现冷害的前提下,果蔬菜后应尽量降低贮运温度,并且要保持冷库温度的恒定。
b稍干燥的环境可以抑制呼吸。
c 适当降低贮藏环境氧气的浓度或适当增高二氧化碳的浓度可有效降低呼吸强度和延缓呼吸跃变的出现。
d避免机械损伤4阐述乙烯对果蔬成熟衰老的影响。
乙烯促进果蔬成熟与衰老,诱导和促进跃变型果实的成熟。
5叙述乙烯生物合成的主要步骤及其有关的影响因素。
蛋氨酸—SAM—ACC—乙烯在SAM转变为ACC这一过程中,受AVG(氨基乙氧基乙烯基甘氨酸)和AOA(氨基乙氧酸)的抑制。
缺氧、高温、接偶联剂、某些金属离子等可抑制ACC转化为乙烯6.为什么说温度是影响果蔬水分蒸腾的主要因素?当环境中绝对湿度不变而温度升高时,产品与空气之间水蒸气饱和差增加,此时果蔬的失水就会加快。
当温度下降到饱和蒸汽压等于绝对蒸汽压时,就会发生结露现象。
影响果蔬呼吸作用的几个因素一、呼吸作用与果蔬贮藏的关系呼吸作用是果蔬采后的一个基本生理过程,果蔬的成熟、品质的变化以及贮藏寿命的长短都与它有密切的关系。
果蔬呼吸作用的强弱用呼吸强度来表示,它是指在一定的温度条件下,单位时间、单位重量的果蔬释放出的CO2量或吸收O2的量。
呼吸强度是果蔬新陈代谢快慢的重要指标之一,根据呼吸强度的大小可以估计果蔬的贮藏时间。
果蔬的贮藏寿命与呼吸强度成反比,呼吸强度越大,贮藏寿命越短。
因为呼吸强度大表明呼吸代谢越旺盛,营养物质消耗越快,那么果蔬成熟以及衰老也比较快。
测定果蔬呼吸强度的方法有多种,常用的方法有气流法、果蔬呼吸测定仪、气相色谱法等。
二、影响呼吸强度的因素因为果蔬的贮藏寿命与它的呼吸作用有直接的关系,所以我们需要在不妨碍果蔬正常生理活动和不出现生理病害的前提下尽可能降低它们的吸吸强度,以减少物质的消耗,延缓果蔬的成熟衰老。
如果要降低果蔬的呼吸强度就必须要了解影响果蔬呼吸的几个重要因素:(一)温度温度是影响果蔬呼吸作用重要的环境因素。
一般来说在0℃~35℃范围内,随着温度的升高,呼吸强度增大。
当温度高于一定的程度35℃-45℃,呼吸强度在短时间内可能增加,但稍后呼吸强度很快就急剧下降,这是因为温度太高导致酶的钝化或失活。
同样,呼吸强度随着温度的降低而下降。
注意:在贮藏果蔬的时候一定要在适合果蔬贮藏的温度下恒温贮藏,如果温度剧烈变化可能会造成果蔬呼吸作用的剧烈变化,从而造成果蔬的损坏或变质。
(二)湿度湿度对果蔬呼吸强度也有一定的影响,干燥的环境可以抑制果蔬呼吸强度。
但是,我们也要根据贮藏的果蔬种类进行相应的湿度控制,例如白菜收割后稍为晾晒,当外面一层叶子稍微干燥时,利于降低呼吸强度便于贮藏;相反香蕉在湿度过低时虽然能降低呼吸强度,却不利于其正常成熟。
(三)机械损伤果蔬在采收、采后处理过程中,很容易受到机械损伤。
受到机械损伤的果蔬的呼吸强度一般也会比正常果蔬的呼吸强度大很多,所以我们要尽量避免果蔬在采收以及后续处理过程中的机械损伤,同时也尽量将有机械损伤的果蔬单独贮藏处理。
果蔬采后呼吸类型与贮藏保鲜果蔬在整个生长发育过程中,其呼吸作用的强弱不是始终不变的,而是高低起伏的。
各种果蔬采后呼吸强度高低起伏的变化趋势称为呼吸漂移。
各种果蔬呼吸漂移的趋势是不同的。
一、有一类果蔬呼吸强度在生长发育过程中逐渐下降,达到一定的成熟度时又显著上升,上升到一个顶峰时又再度下降,直至果实衰老死亡,这种现象称为呼吸跃变。
一般认为这是果实在成熟,即最佳食用状态前发生贮藏物质的强烈水解,不管在植株上还是在采收后,都会表现出相似的呼吸高峰。
习惯上把开始成熟时出现呼吸上升的果实称为跃变型果实。
跃变型果实如:苹果、梨、油梨、香蕉、杏、李子、猕猴桃、柿子、桃、无花果、番石榴、芒果、面包果、番木瓜、菠萝蜜、蓝莓、甜瓜、木瓜、番茄等二、而将另一类果实呼吸强度在采后一直下降,不会出现呼吸高峰的称之为非跃变型果实。
非跃变型果实如:甜橙、葡萄、草莓、荔枝、石榴、柠檬、柚、枇杷、凤梨、可可、龙眼、西瓜、杨桃、黑莓、樱桃、枣等不同种类跃变型果实呼吸高峰出现的时间和峰值不完全相同,一般原产于热带、亚热带的果实,例如油梨和香蕉,跃变顶峰的呼吸强度分别为跃变前的3-5倍和10倍,且跃变时间维持很短,很快完成成熟并衰老。
原产于温带的果实,例如苹果、梨等跃变顶峰的呼吸强度仅比其跃变前的呼吸强度增加1倍左右,但维持跃变时间很多,这类果实比前一类果实更慢成熟,因而更耐贮藏。
有些果实,如苹果,留在树上也可以出现呼吸跃变,但与采摘果实相比,呼吸跃变出现较晚,峰值较高,另外一些果实,如油梨,只有采后才能成熟和出现呼吸跃变,如果留在植株上可以维持不断的生长而不能成熟,当然也不出现呼吸跃变。
呼吸跃变是果实发育进程中的一个关键时期,对果实贮藏寿命有重要影响。
它既是成熟的后期,同时也是衰老的开始,此后产品将不宜继续贮藏。
生产中要采取各种手段来推迟跃变型果实的呼吸高峰以延长贮藏期。
现在主要有两种方法,一个是化学保鲜方法,就是我们经常见到的防潮剂以及在果品表面喷液态石蜡或者使用一些化学药剂。
呼吸与果蔬储藏摘要:果蔬的贮藏是我们一直在研究的问题,果蔬采摘之后,会持续不断地进行呼吸作用,由于呼吸作用的存在,会造成果蔬营养物质的损失、品质的下降、贮藏期短,所以研究呼吸作用与果蔬贮藏之间的关系十分重要,本文主要分析了呼吸作用与果蔬贮藏之间的关系并提出了提高果蔬贮藏期的措施。
关键词:果蔬、呼吸作用、贮藏、保鲜果蔬采收后,由于离开了母体,水分、矿物质及有机物的输入均已停止,由于果蔬不断褪绿以及缺少光线,光合作用趋于停止,但是果蔬采收后直至食用,生命活动仍在进行,生物大分子的转换更新,细胞结构的维持和修复,均需要能量,这些能量是由呼吸作用分解有机物提供的,因此呼吸作用是采后果蔬的一个最基本的生理过程。
果蔬需要进行呼吸作用以维持正常的生命活动,但另外一方面,如如果呼吸作用过强,则会使贮藏的有机物过多的被消耗,含量迅速减少,果蔬品质下降,同时过强的呼吸作用也会加速果蔬的衰老,缩短贮藏寿命。
在呼吸过程中,果蔬吸进氧气,呼出二氧化碳,产生乙烯气体,并使水分降低。
呼吸作用会造成内部消耗、肉质软化、营养价值降低;乙烯气体能促进果蔬老化,并使呼吸作用加快;果蔬中水分的含量高达85-95%,如果水分丧失量达到5%,外观就会蔫萎,降低商品价值。
此外,呼吸作用在分解有机物过程中产生许多中间产物,它们是进一步合成植物体内新的有机物的物质基础,当呼吸作用改变时,中间产物的数量和种类也随之发生改变,从而影响其物质代谢过程。
因此,控制采收后果蔬的呼吸作用,是果蔬采后贮藏的中心问题。
[1]呼吸作用是指生物活细胞内的有机物在酶的参与下,逐步氧化分解并释放出能量的过程。
依据呼吸作用过程中是否有氧气参与,可将呼吸作用分为有氧呼吸和无氧呼吸两大类。
有氧呼吸是指生活细胞利用分子氧,将某些有机物质彻底氧化分解,形成CO2和H2O,同时释放能量的过程;无氧呼吸是指生活细胞在无氧条件下,把某些有机物分解成为不彻底的氧化产物,同时释放少量能量的过程。
呼吸作用与果蔬贮藏的关系呼吸作用是采后果蔬的一个最基本的生理过程,它与果蔬的成熟、品质的变化以及贮藏寿命有密切的关系。
(一)呼吸强度与贮藏寿命呼吸强度(respiration rate)是评价呼吸强弱常用的生理指标,它是指在一定的温度条件下,单位时间、单位重量果蔬放出的CO2量或吸收O2的量。
呼吸强度是评价果蔬新陈代谢快慢的重要指标之一,根据呼吸强度可估计果蔬的贮藏潜力。
产品的贮藏寿命与呼吸强度成反比,呼吸强度越大,表明呼吸代谢越旺盛,营养物质消耗越快。
呼吸强度大的果蔬,一般其成熟衰老较快,贮藏寿命也较短。
例如,不耐贮藏的菠菜在20-21℃下,其呼吸强度约是耐贮藏的马铃薯呼吸强度的20倍。
常见的果蔬呼吸强度见表2-4。
测定果蔬呼吸强度的方法有多种,常用的方法有气流法、红外线气体分析仪、气相色谱法等。
(二)呼吸热前面已提到果蔬呼吸中,氧化有机物释放的能量,一部分转移到ATP和NADH分子中,供生命活动之用。
一部分能量以热的形式散发出来,这种释放的热量称为呼吸热(respiration heat)。
已知每摩尔葡萄糖通过呼吸作用彻底氧化分解为CO2和水,放出自由能2867.5KJ;在这过程中形成36molATP,每形成1molATP需自由能305.1KJ,形成36molATP 共消耗1099.3KJ,约占葡萄糖氧化放出自由能的38%。
这就是说,其余62%(1768.1KJ)的自由能直接以热能的形式释放。
由于果蔬采后呼吸作用旺盛,释放出大量的呼吸热。
因此,在果蔬采收后贮运期间必须及时散热和降温,以避免贮藏库温度升高,而温度升高又会使呼吸增强,放出更多的热,形成恶性循环,缩短贮藏寿命。
为了有效降低库温和运输车船的温度,首先要算出呼吸热,以便配置适当功率的制冷机,控制适当的贮运温度。
根据呼吸反应方程式,消耗1mol己糖产生6mol(264g)CO2,并放出2817.3KJ 能计算,则每释放1mgCO2,应同时释放10.676J(2.553cal)的热能。
呼吸作用与果蔬贮藏的关系呼吸作用是采后果蔬的一个最基本的生理过程,它与果蔬的成熟、品质的变化以及贮藏寿命有密切的关系。
(一)呼吸强度与贮藏寿命呼吸强度(respiration rate)是评价呼吸强弱常用的生理指标,它是指在一定的温度条件下,单位时间、单位重量果蔬放出的CO2量或吸收O2的量。
呼吸强度是评价果蔬新陈代谢快慢的重要指标之一,根据呼吸强度可估计果蔬的贮藏潜力。
产品的贮藏寿命与呼吸强度成反比,呼吸强度越大,表明呼吸代谢越旺盛,营养物质消耗越快。
呼吸强度大的果蔬,一般其成熟衰老较快,贮藏寿命也较短。
例如,不耐贮藏的菠菜在20-21℃下,其呼吸强度约是耐贮藏的马铃薯呼吸强度的20倍。
常见的果蔬呼吸强度见表2-4。
测定果蔬呼吸强度的方法有多种,常用的方法有气流法、红外线气体分析仪、气相色谱法等。
(二)呼吸热前面已提到果蔬呼吸中,氧化有机物释放的能量,一部分转移到ATP和NADH分子中,供生命活动之用。
一部分能量以热的形式散发出来,这种释放的热量称为呼吸热(respiration heat)。
已知每摩尔葡萄糖通过呼吸作用彻底氧化分解为CO2和水,放出自由能2867.5KJ;在这过程中形成36molATP,每形成1molATP需自由能305.1KJ,形成36molATP共消耗1099.3KJ,约占葡萄糖氧化放出自由能的38%。
这就是说,其余62%(1768.1KJ)的自由能直接以热能的形式释放。
由于果蔬采后呼吸作用旺盛,释放出大量的呼吸热。
因此,在果蔬采收后贮运期间必须及时散热和降温,以避免贮藏库温度升高,而温度升高又会使呼吸增强,放出更多的热,形成恶性循环,缩短贮藏寿命。
为了有效降低库温和运输车船的温度,首先要算出呼吸热,以便配置适当功率的制冷机,控制适当的贮运温度。
.2817.3KJCO2,并放出6mol(264g)根据呼吸反应方程式,消耗 1mol己糖产生)的热能。
假设这些能全部转(2.553cal1mgCO2,应同时释放10.676J能计算,则每释放变为呼吸热,则可以通过测定果蔬的呼吸强度计算呼吸热。
呼吸作用与果蔬贮藏的关系呼吸作用是采后果蔬的一个最基本的生理过程,它与果蔬的成熟、品质的变化以及贮藏寿命有密切的关系。
(一)呼吸强度与贮藏寿命呼吸强度(respiration rate)是评价呼吸强弱常用的生理指标,它是指在一定的温度条件下,单位时间、单位重量果蔬放出的CO2量或吸收O2的量。
呼吸强度是评价果蔬新陈代谢快慢的重要指标之一,根据呼吸强度可估计果蔬的贮藏潜力。
产品的贮藏寿命与呼吸强度成反比,呼吸强度越大,表明呼吸代谢越旺盛,营养物质消耗越快。
呼吸强度大的果蔬,一般其成熟衰老较快,贮藏寿命也较短。
例如,不耐贮藏的菠菜在20-21℃下,其呼吸强度约是耐贮藏的马铃薯呼吸强度的20倍。
常见的果蔬呼吸强度见表2-4。
测定果蔬呼吸强度的方法有多种,常用的方法有气流法、红外线气体分析仪、气相色谱法等。
(二)呼吸热前面已提到果蔬呼吸中,氧化有机物释放的能量,一部分转移到ATP和NADH分子中,供生命活动之用。
一部分能量以热的形式散发出来,这种释放的热量称为呼吸热(respiration heat)。
已知每摩尔葡萄糖通过呼吸作用彻底氧化分解为CO2和水,放出自由能2867.5KJ;在这过程中形成36molATP,每形成1molATP需自由能305.1KJ,形成36molATP 共消耗1099.3KJ,约占葡萄糖氧化放出自由能的38%。
这就是说,其余62%(1768.1KJ)的自由能直接以热能的形式释放。
由于果蔬采后呼吸作用旺盛,释放出大量的呼吸热。
因此,在果蔬采收后贮运期间必须及时散热和降温,以避免贮藏库温度升高,而温度升高又会使呼吸增强,放出更多的热,形成恶性循环,缩短贮藏寿命。
为了有效降低库温和运输车船的温度,首先要算出呼吸热,以便配置适当功率的制冷机,控制适当的贮运温度。
根据呼吸反应方程式,消耗1mol己糖产生6mol(264g)CO2,并放出2817.3KJ 能计算,则每释放1mgCO2,应同时释放10.676J(2.553cal)的热能。
果蔬的呼吸对果蔬的储藏和抗病性的关系河北xxxxxxxx xxxxxx学院xxxxxxxxxxxx专业xxxxxxx摘要:当今果品储藏成为越来越重要的一门科学,本文主要介绍了呼吸对果蔬的影响。
首先介绍了两种储藏方法,之后从五种呼吸影响因素对这两种储藏方法和抗病性的的影响。
关键词:储藏方法,抗病性,温度,湿度,机械损伤,化学物质引言:果蔬在采收后,由于离开了母体,水分、矿物质及有机物的输入均已停止;由于果蔬不断褪绿,或由于在贮运条件下缺少光线等原因,使光合作用趋于停止。
但果蔬在采收后直至食用或腐烂之前的一段时间内,生命活动仍在进行。
生物大分子的转换更新,细胞结构的维持和修复,均需要能量。
这些能量是由呼吸作用分解有机物供应的,因此呼吸作用是采后果蔬的一个最基本的生理过程。
果蔬需要进行呼吸作用,以维持正常的生命活动;但另一方面如果呼吸作用过强,则会使贮藏的有机物过多地被消耗,含量迅速减少,果蔬品质下降,同时过强的呼吸作用,也会加速果蔬的衰老,缩短贮藏寿命。
一、果蔬的两种储藏方法自然降温贮藏是一种简易的、传统的贮藏方式。
人们常用的自然降温贮藏主要有堆藏(垛藏)、沟藏(埋藏)、冻藏、假植贮藏和通风窖,所需建筑材料少,费用低廉,在缓解产品供需上又能起到一定的作用,所以这种简易贮藏方式在我国许多水果和蔬菜产区使用非常普遍,但是个体储藏量小,储藏时间短。
人工降温贮藏是利用机械制冷和调节贮藏环境温度的贮藏方式,使用时不受季节和地区的限制,可以比较精确地控制贮藏温度,适用于各种水果和蔬菜,如果管理得当可以达到满意的贮藏效果。
它只能储藏大量的果蔬,并且代价相对较高。
二、五种条件因素对储藏和抗病性的影响1温度呼吸作用和温度的关系十分密切。
一般地说,降低温度,呼吸强度就大大减弱。
果蔬呼吸强度越小,物质消耗也就越慢,贮藏寿命便延长。
因此,贮藏果蔬的普遍措施,就是尽可能维持较低的温度,将果蔬的呼吸作用抑制到最低限度。
但是对于自然降温储藏方法例如堆藏,因为技术有限,降温能力不强,只能要求一些简单的储藏,人工降温就可以降到呼吸最低点。
果蔬采后呼吸类型与贮藏保鲜果蔬在整个生长发育过程中,其呼吸作用的强弱不是始终不变的,而是高低起伏的.各种果蔬采后呼吸强度高低起伏的变化趋势称为呼吸漂移.各种果蔬呼吸漂移的趋势是不同的。
一、有一类果蔬呼吸强度在生长发育过程中逐渐下降,达到一定的成熟度时又显著上升,上升到一个顶峰时又再度下降,直至果实衰老死亡,这种现象称为呼吸跃变。
一般认为这是果实在成熟,即最佳食用状态前发生贮藏物质的强烈水解,不管在植株上还是在采收后,都会表现出相似的呼吸高峰。
习惯上把开始成熟时出现呼吸上升的果实称为跃变型果实。
跃变型果实如:苹果、梨、油梨、香蕉、杏、李子、猕猴桃、柿子、桃、无花果、番石榴、芒果、面包果、番木瓜、菠萝蜜、蓝莓、甜瓜、木瓜、番茄等二、而将另一类果实呼吸强度在采后一直下降,不会出现呼吸高峰的称之为非跃变型果实。
非跃变型果实如:甜橙、葡萄、草莓、荔枝、石榴、柠檬、柚、枇杷、凤梨、可可、龙眼、西瓜、杨桃、黑莓、樱桃、枣等不同种类跃变型果实呼吸高峰出现的时间和峰值不完全相同,一般原产于热带、亚热带的果实,例如油梨和香蕉,跃变顶峰的呼吸强度分别为跃变前的3—5倍和10倍,且跃变时间维持很短,很快完成成熟并衰老。
原产于温带的果实,例如苹果、梨等跃变顶峰的呼吸强度仅比其跃变前的呼吸强度增加1倍左右,但维持跃变时间很多,这类果实比前一类果实更慢成熟,因而更耐贮藏。
有些果实,如苹果,留在树上也可以出现呼吸跃变, 但与采摘果实相比,呼吸跃变出现较晚,峰值较高,另外一些果实,如油梨,只有采后才能成熟和出现呼吸跃变,如果留在植株上可以维持不断的生长而不能成熟,当然也不出现呼吸跃变。
呼吸跃变是果实发育进程中的一个关键时期,对果实贮藏寿命有重要影响.它既是成熟的后期,同时也是衰老的开始,此后产品将不宜继续贮藏。
生产中要采取各种手段来推迟跃变型果实的呼吸高峰以延长贮藏期。
现在主要有两种方法,一个是化学保鲜方法,就是我们经常见到的防潮剂以及在果品表面喷液态石蜡或者使用一些化学药剂。
呼吸作用与果实贮藏
很多鲜果当其长到充分大小以后,伴随着内部生化变化,细胞里果胶质水解,淀粉转化为糖,色泽由绿转变为黄、红、橙等,因而果质松软、香甜、色泽鲜艳,这时已达成熟。
成熟的果子
在这一成熟过程中很多种果实要经历一个特殊的呼吸形式,即首先呼吸略有降低,而后突然升高,最后又突然下降,经过这样的呼吸转折果实即进入成熟。
果实成熟前的呼吸高峰叫果实呼吸跃变现象,跃变时呼吸强度比跃变前高5倍以上。
跃变强度及出现的时间与温度有关,例如,苹果在贮藏过程中,大约在达一半成熟时,出现呼吸跃变,如在25℃贮藏时,其呼吸跃变出现得早而强,在10℃以下跃变强度小,在2.5℃下几乎无跃变。
呼吸跃变的机理现已基本证明,是由于伴随组织质地变软,果实内乙烯形成所致。
呼吸跃变是与果实内乙烯的释放增加相伴的,气相层析证明,果实内部乙烯浓度达到~L时,即可表现出乙烯的生理作用,主要是催熟作用。
水果贮藏
为了降低果实的呼吸强度,可采用降低氧浓度和温度的方法。
例如贮藏新鲜果蔬如番茄用气调法,先把未完全成熟的番茄装箱,罩以塑料帐幕密封,内放石灰以吸收CO2(每10~14d检查一次并换石灰),开始时抽出空气充进氮气,将氧浓度降到并保持在3%~6%。
在这种条件下贮藏,呼吸强度微弱,果实成熟缓慢,果子贮藏几个月也不会腐烂变质。
果蔬的呼吸对果蔬的储藏和抗病性的关系
河北xxxxxxxx xxxxxx学院xxxxxxxxxxxx专业xxxxxxx
摘要:当今果品储藏成为越来越重要的一门科学,本文主要介绍了呼吸对果蔬的影响。
首先介绍了两种储藏方法,之后从五种呼吸影响因素对这两种储藏方法和抗病性的的影响。
关键词:储藏方法,抗病性,温度,湿度,机械损伤,化学物质
引言:果蔬在采收后,由于离开了母体,水分、矿物质及有机物的输入均已停止;由于果蔬不断褪绿,或由于在贮运条件下缺少光线等原因,使光合作用趋于停止。
但果蔬在采收后直至食用或腐烂之前的一段时间内,生命活动仍在进行。
生物大分子的转换更新,细胞结构的维持和修复,均需要能量。
这些能量是由呼吸作用分解有机物供应的,因此呼吸作用是采后果蔬的一个最基本的生理过程。
果蔬需要进行呼吸作用,以维持正常的生命活动;但另一方面如果呼吸作用过强,则会使贮藏的有机物过多地被消耗,含量迅速减少,果蔬品质下降,同时过强的呼吸作用,也会加速果蔬的衰老,缩短贮藏寿命。
一、果蔬的两种储藏方法
自然降温贮藏是一种简易的、传统的贮藏方式。
人们常用的自然降温贮藏主要有堆藏(垛藏)、沟藏(埋藏)、冻藏、假植贮藏和通风窖,所需建筑材料少,费用低廉,在缓解产品供需上又能起到一定的作用,所以这种简易贮藏方式在我国许多水果和蔬菜产区使用非常普遍,但是个体储藏量小,储藏时间短。
人工降温贮藏是利用机械制冷和调节贮藏环境温度的贮藏方式,使用时不受季节和地区的限制,可以比较精确地控制贮藏温度,适用于各种水果和蔬菜,如果管理得当可以达到满意的贮藏效果。
它只能储藏大量的果蔬,并且代价相对较高。
二、五种条件因素对储藏和抗病性的影响
1温度
呼吸作用和温度的关系十分密切。
一般地说,降低温度,呼吸强度就大大减弱。
果蔬呼吸强度越小,物质消耗也就越慢,贮藏寿命便延长。
因此,贮藏果蔬的普遍措施,就是尽可能维持较低的温度,将果蔬的呼吸作用抑制到最低限度。
但是对于自然降温储藏方法例如堆藏,因为技术有限,降温能力不强,只能要求一些简单的储藏,人工降温就可以降到呼吸最低点。
但是不是所有的果蔬都可以无限降低温度,都有一定限制。
另外人工储藏容易导致腐烂和病虫害的发生,人工降温则大大避免。
2湿度
一般来说,轻微的干燥较湿润更可抑制呼吸作用。
果蔬种类不同,反应也不一样。
例如,柑橘在80%的湿度下储存更好,因此少量的储存可采用人工降温。
对于其他的果蔬大量储存则需要在低温、干燥的人工降温下储存。
对于较高的湿度有利于病害的发生,所以我们要将适度调在合适的水平。
3环境气体
在环境气体成分中,二氧化碳和由果实释放的乙烯对果实呼吸影响很大。
对于自然降温我们基本改变不了环境的气体,但对于人工降温我们可以提高二氧化碳浓度,设置充入惰性气体来改变其呼吸。
自然降温因为出于自然环境中,自然气体下相比于人工控制的环境有助于病虫害的发生。
4机械损伤
果蔬在采摘过程或者其他过程中,不管是人工降温储藏还是自然降温储藏,一旦出现机械损伤,果蔬就会加大呼吸强度,更加大大缩短寿命,另外也会易受病菌的感染而腐烂,失去储藏价值。
对于自然降温储藏我们可以吃掉,但是对于人工降温,我们只能扔掉,否则会带来大量病害的发生。
所以我们也应注意在人工降温中分级、包装和运输时的机械损伤。
因此避免机械损伤,这是长期贮藏果蔬的重要前提。
5化学物质调节
化学调节物质主要是指植物激素类物质,包括乙烯、2.4-D 、萘乙酸、脱落酸、青鲜素、矮壮素、B9等。
植物激素、生长素和激动素对果蔬总的作用是抑制呼吸、延缓后熟。
乙烯和脱落酸总的作用是促进呼吸、加速后熟。
当然,由于浓度的不同和种类不同,各种植物激素的反应也是十分多样的。
植物激素的过多使用会致使果蔬出现异样的病害,对于激素能不用尽量不用。
总而言之,因为两种储藏方法都有优缺点,在避免出现病虫害的前提下尽量使两者在同一地区互相补充,原则上对于大量的长途运输的用人工降温储藏,少量当地鲜食的可采用自然降温储藏。
但对于不同的品种和不同的市场,不同的消费水平,我们应该采取相应的不同措施。
希望以后可以做到要做到“旺季不烂,淡季不淡”。