Artificial Neural Network Maximum Power Point Tracker for Solar Electric Vehicle
- 格式:pdf
- 大小:135.28 KB
- 文档页数:5
……………………. ………………. …………………毕业设计装题目:基于BP神经网络的变压器故障诊断研究订线……………….……. …………. …………. ………毕业设计(论文)原创性声明和使用授权说明原创性声明本人郑重承诺:所呈交的毕业设计(论文),是我个人在指导教师的指导下进行的研究工作及取得的成果。
尽我所知,除文中特别加以标注和致谢的地方外,不包含其他人或组织已经发表或公布过的研究成果,也不包含我为获得及其它教育机构的学位或学历而使用过的材料。
对本研究提供过帮助和做出过贡献的个人或集体,均已在文中作了明确的说明并表示了谢意。
作者签名:日期:指导教师签名:日期:使用授权说明本人完全了解大学关于收集、保存、使用毕业设计(论文)的规定,即:按照学校要求提交毕业设计(论文)的印刷本和电子版本;学校有权保存毕业设计(论文)的印刷本和电子版,并提供目录检索与阅览服务;学校可以采用影印、缩印、数字化或其它复制手段保存论文;在不以赢利为目的前提下,学校可以公布论文的部分或全部内容。
作者签名:日期:学位论文原创性声明本人郑重声明:所呈交的论文是本人在导师的指导下独立进行研究所取得的研究成果。
除了文中特别加以标注引用的内容外,本论文不包含任何其他个人或集体已经发表或撰写的成果作品。
对本文的研究做出重要贡献的个人和集体,均已在文中以明确方式标明。
本人完全意识到本声明的法律后果由本人承担。
作者签名:日期:年月日学位论文版权使用授权书本学位论文作者完全了解学校有关保留、使用学位论文的规定,同意学校保留并向国家有关部门或机构送交论文的复印件和电子版,允许论文被查阅和借阅。
本人授权大学可以将本学位论文的全部或部分内容编入有关数据库进行检索,可以采用影印、缩印或扫描等复制手段保存和汇编本学位论文。
涉密论文按学校规定处理。
作者签名:日期:年月日导师签名:日期:年月日注意事项1.设计(论文)的内容包括:1)封面(按教务处制定的标准封面格式制作)2)原创性声明3)中文摘要(300字左右)、关键词4)外文摘要、关键词5)目次页(附件不统一编入)6)论文主体部分:引言(或绪论)、正文、结论7)参考文献8)致谢9)附录(对论文支持必要时)2.论文字数要求:理工类设计(论文)正文字数不少于1万字(不包括图纸、程序清单等),文科类论文正文字数不少于1.2万字。
Error MessagesF9001 Error internal function call.F9002 Error internal RTOS function callF9003 WatchdogF9004 Hardware trapF8000 Fatal hardware errorF8010 Autom. commutation: Max. motion range when moving back F8011 Commutation offset could not be determinedF8012 Autom. commutation: Max. motion rangeF8013 Automatic commutation: Current too lowF8014 Automatic commutation: OvercurrentF8015 Automatic commutation: TimeoutF8016 Automatic commutation: Iteration without resultF8017 Automatic commutation: Incorrect commutation adjustment F8018 Device overtemperature shutdownF8022 Enc. 1: Enc. signals incorr. (can be cleared in ph. 2) F8023 Error mechanical link of encoder or motor connectionF8025 Overvoltage in power sectionF8027 Safe torque off while drive enabledF8028 Overcurrent in power sectionF8030 Safe stop 1 while drive enabledF8042 Encoder 2 error: Signal amplitude incorrectF8057 Device overload shutdownF8060 Overcurrent in power sectionF8064 Interruption of motor phaseF8067 Synchronization PWM-Timer wrongF8069 +/-15Volt DC errorF8070 +24Volt DC errorF8076 Error in error angle loopF8078 Speed loop error.F8079 Velocity limit value exceededF8091 Power section defectiveF8100 Error when initializing the parameter handlingF8102 Error when initializing power sectionF8118 Invalid power section/firmware combinationF8120 Invalid control section/firmware combinationF8122 Control section defectiveF8129 Incorrect optional module firmwareF8130 Firmware of option 2 of safety technology defectiveF8133 Error when checking interrupting circuitsF8134 SBS: Fatal errorF8135 SMD: Velocity exceededF8140 Fatal CCD error.F8201 Safety command for basic initialization incorrectF8203 Safety technology configuration parameter invalidF8813 Connection error mains chokeF8830 Power section errorF8838 Overcurrent external braking resistorF7010 Safely-limited increment exceededF7011 Safely-monitored position, exceeded in pos. DirectionF7012 Safely-monitored position, exceeded in neg. DirectionF7013 Safely-limited speed exceededF7020 Safe maximum speed exceededF7021 Safely-limited position exceededF7030 Position window Safe stop 2 exceededF7031 Incorrect direction of motionF7040 Validation error parameterized - effective thresholdF7041 Actual position value validation errorF7042 Validation error of safe operation modeF7043 Error of output stage interlockF7050 Time for stopping process exceeded8.3.15 F7051 Safely-monitored deceleration exceeded (159)8.4 Travel Range Errors (F6xxx) (161)8.4.1 Behavior in the Case of Travel Range Errors (161)8.4.2 F6010 PLC Runtime Error (162)8.4.3 F6024 Maximum braking time exceeded (163)8.4.4 F6028 Position limit value exceeded (overflow) (164)8.4.5 F6029 Positive position limit exceeded (164)8.4.6 F6030 Negative position limit exceeded (165)8.4.7 F6034 Emergency-Stop (166)8.4.8 F6042 Both travel range limit switches activated (167)8.4.9 F6043 Positive travel range limit switch activated (167)8.4.10 F6044 Negative travel range limit switch activated (168)8.4.11 F6140 CCD slave error (emergency halt) (169)8.5 Interface Errors (F4xxx) (169)8.5.1 Behavior in the Case of Interface Errors (169)8.5.2 F4001 Sync telegram failure (170)8.5.3 F4002 RTD telegram failure (171)8.5.4 F4003 Invalid communication phase shutdown (172)8.5.5 F4004 Error during phase progression (172)8.5.6 F4005 Error during phase regression (173)8.5.7 F4006 Phase switching without ready signal (173)8.5.8 F4009 Bus failure (173)8.5.9 F4012 Incorrect I/O length (175)8.5.10 F4016 PLC double real-time channel failure (176)8.5.11 F4017 S-III: Incorrect sequence during phase switch (176)8.5.12 F4034 Emergency-Stop (177)8.5.13 F4140 CCD communication error (178)8.6 Non-Fatal Safety Technology Errors (F3xxx) (178)8.6.1 Behavior in the Case of Non-Fatal Safety Technology Errors (178)8.6.2 F3111 Refer. missing when selecting safety related end pos (179)8.6.3 F3112 Safe reference missing (179)8.6.4 F3115 Brake check time interval exceeded (181)Troubleshooting Guide | Rexroth IndraDrive Electric Drivesand ControlsI Bosch Rexroth AG VII/XXIITable of ContentsPage8.6.5 F3116 Nominal load torque of holding system exceeded (182)8.6.6 F3117 Actual position values validation error (182)8.6.7 F3122 SBS: System error (183)8.6.8 F3123 SBS: Brake check missing (184)8.6.9 F3130 Error when checking input signals (185)8.6.10 F3131 Error when checking acknowledgment signal (185)8.6.11 F3132 Error when checking diagnostic output signal (186)8.6.12 F3133 Error when checking interrupting circuits (187)8.6.13 F3134 Dynamization time interval incorrect (188)8.6.14 F3135 Dynamization pulse width incorrect (189)8.6.15 F3140 Safety parameters validation error (192)8.6.16 F3141 Selection validation error (192)8.6.17 F3142 Activation time of enabling control exceeded (193)8.6.18 F3143 Safety command for clearing errors incorrect (194)8.6.19 F3144 Incorrect safety configuration (195)8.6.20 F3145 Error when unlocking the safety door (196)8.6.21 F3146 System error channel 2 (197)8.6.22 F3147 System error channel 1 (198)8.6.23 F3150 Safety command for system start incorrect (199)8.6.24 F3151 Safety command for system halt incorrect (200)8.6.25 F3152 Incorrect backup of safety technology data (201)8.6.26 F3160 Communication error of safe communication (202)8.7 Non-Fatal Errors (F2xxx) (202)8.7.1 Behavior in the Case of Non-Fatal Errors (202)8.7.2 F2002 Encoder assignment not allowed for synchronization (203)8.7.3 F2003 Motion step skipped (203)8.7.4 F2004 Error in MotionProfile (204)8.7.5 F2005 Cam table invalid (205)8.7.6 F2006 MMC was removed (206)8.7.7 F2007 Switching to non-initialized operation mode (206)8.7.8 F2008 RL The motor type has changed (207)8.7.9 F2009 PL Load parameter default values (208)8.7.10 F2010 Error when initializing digital I/O (-> S-0-0423) (209)8.7.11 F2011 PLC - Error no. 1 (210)8.7.12 F2012 PLC - Error no. 2 (210)8.7.13 F2013 PLC - Error no. 3 (211)8.7.14 F2014 PLC - Error no. 4 (211)8.7.15 F2018 Device overtemperature shutdown (211)8.7.16 F2019 Motor overtemperature shutdown (212)8.7.17 F2021 Motor temperature monitor defective (213)8.7.18 F2022 Device temperature monitor defective (214)8.7.19 F2025 Drive not ready for control (214)8.7.20 F2026 Undervoltage in power section (215)8.7.21 F2027 Excessive oscillation in DC bus (216)8.7.22 F2028 Excessive deviation (216)8.7.23 F2031 Encoder 1 error: Signal amplitude incorrect (217)VIII/XXII Bosch Rexroth AG | Electric Drivesand ControlsRexroth IndraDrive | Troubleshooting GuideTable of ContentsPage8.7.24 F2032 Validation error during commutation fine adjustment (217)8.7.25 F2033 External power supply X10 error (218)8.7.26 F2036 Excessive position feedback difference (219)8.7.27 F2037 Excessive position command difference (220)8.7.28 F2039 Maximum acceleration exceeded (220)8.7.29 F2040 Device overtemperature 2 shutdown (221)8.7.30 F2042 Encoder 2: Encoder signals incorrect (222)8.7.31 F2043 Measuring encoder: Encoder signals incorrect (222)8.7.32 F2044 External power supply X15 error (223)8.7.33 F2048 Low battery voltage (224)8.7.34 F2050 Overflow of target position preset memory (225)8.7.35 F2051 No sequential block in target position preset memory (225)8.7.36 F2053 Incr. encoder emulator: Pulse frequency too high (226)8.7.37 F2054 Incr. encoder emulator: Hardware error (226)8.7.38 F2055 External power supply dig. I/O error (227)8.7.39 F2057 Target position out of travel range (227)8.7.40 F2058 Internal overflow by positioning input (228)8.7.41 F2059 Incorrect command value direction when positioning (229)8.7.42 F2063 Internal overflow master axis generator (230)8.7.43 F2064 Incorrect cmd value direction master axis generator (230)8.7.44 F2067 Synchronization to master communication incorrect (231)8.7.45 F2068 Brake error (231)8.7.46 F2069 Error when releasing the motor holding brake (232)8.7.47 F2074 Actual pos. value 1 outside absolute encoder window (232)8.7.48 F2075 Actual pos. value 2 outside absolute encoder window (233)8.7.49 F2076 Actual pos. value 3 outside absolute encoder window (234)8.7.50 F2077 Current measurement trim wrong (235)8.7.51 F2086 Error supply module (236)8.7.52 F2087 Module group communication error (236)8.7.53 F2100 Incorrect access to command value memory (237)8.7.54 F2101 It was impossible to address MMC (237)8.7.55 F2102 It was impossible to address I2C memory (238)8.7.56 F2103 It was impossible to address EnDat memory (238)8.7.57 F2104 Commutation offset invalid (239)8.7.58 F2105 It was impossible to address Hiperface memory (239)8.7.59 F2110 Error in non-cyclical data communic. of power section (240)8.7.60 F2120 MMC: Defective or missing, replace (240)8.7.61 F2121 MMC: Incorrect data or file, create correctly (241)8.7.62 F2122 MMC: Incorrect IBF file, correct it (241)8.7.63 F2123 Retain data backup impossible (242)8.7.64 F2124 MMC: Saving too slowly, replace (243)8.7.65 F2130 Error comfort control panel (243)8.7.66 F2140 CCD slave error (243)8.7.67 F2150 MLD motion function block error (244)8.7.68 F2174 Loss of motor encoder reference (244)8.7.69 F2175 Loss of optional encoder reference (245)Troubleshooting Guide | Rexroth IndraDrive Electric Drivesand Controls| Bosch Rexroth AG IX/XXIITable of ContentsPage8.7.70 F2176 Loss of measuring encoder reference (246)8.7.71 F2177 Modulo limitation error of motor encoder (246)8.7.72 F2178 Modulo limitation error of optional encoder (247)8.7.73 F2179 Modulo limitation error of measuring encoder (247)8.7.74 F2190 Incorrect Ethernet configuration (248)8.7.75 F2260 Command current limit shutoff (249)8.7.76 F2270 Analog input 1 or 2, wire break (249)8.7.77 F2802 PLL is not synchronized (250)8.7.78 F2814 Undervoltage in mains (250)8.7.79 F2815 Overvoltage in mains (251)8.7.80 F2816 Softstart fault power supply unit (251)8.7.81 F2817 Overvoltage in power section (251)8.7.82 F2818 Phase failure (252)8.7.83 F2819 Mains failure (253)8.7.84 F2820 Braking resistor overload (253)8.7.85 F2821 Error in control of braking resistor (254)8.7.86 F2825 Switch-on threshold braking resistor too low (255)8.7.87 F2833 Ground fault in motor line (255)8.7.88 F2834 Contactor control error (256)8.7.89 F2835 Mains contactor wiring error (256)8.7.90 F2836 DC bus balancing monitor error (257)8.7.91 F2837 Contactor monitoring error (257)8.7.92 F2840 Error supply shutdown (257)8.7.93 F2860 Overcurrent in mains-side power section (258)8.7.94 F2890 Invalid device code (259)8.7.95 F2891 Incorrect interrupt timing (259)8.7.96 F2892 Hardware variant not supported (259)8.8 SERCOS Error Codes / Error Messages of Serial Communication (259)9 Warnings (Exxxx) (263)9.1 Fatal Warnings (E8xxx) (263)9.1.1 Behavior in the Case of Fatal Warnings (263)9.1.2 E8025 Overvoltage in power section (263)9.1.3 E8026 Undervoltage in power section (264)9.1.4 E8027 Safe torque off while drive enabled (265)9.1.5 E8028 Overcurrent in power section (265)9.1.6 E8029 Positive position limit exceeded (266)9.1.7 E8030 Negative position limit exceeded (267)9.1.8 E8034 Emergency-Stop (268)9.1.9 E8040 Torque/force actual value limit active (268)9.1.10 E8041 Current limit active (269)9.1.11 E8042 Both travel range limit switches activated (269)9.1.12 E8043 Positive travel range limit switch activated (270)9.1.13 E8044 Negative travel range limit switch activated (271)9.1.14 E8055 Motor overload, current limit active (271)9.1.15 E8057 Device overload, current limit active (272)X/XXII Bosch Rexroth AG | Electric Drivesand ControlsRexroth IndraDrive | Troubleshooting GuideTable of ContentsPage9.1.16 E8058 Drive system not ready for operation (273)9.1.17 E8260 Torque/force command value limit active (273)9.1.18 E8802 PLL is not synchronized (274)9.1.19 E8814 Undervoltage in mains (275)9.1.20 E8815 Overvoltage in mains (275)9.1.21 E8818 Phase failure (276)9.1.22 E8819 Mains failure (276)9.2 Warnings of Category E4xxx (277)9.2.1 E4001 Double MST failure shutdown (277)9.2.2 E4002 Double MDT failure shutdown (278)9.2.3 E4005 No command value input via master communication (279)9.2.4 E4007 SERCOS III: Consumer connection failed (280)9.2.5 E4008 Invalid addressing command value data container A (280)9.2.6 E4009 Invalid addressing actual value data container A (281)9.2.7 E4010 Slave not scanned or address 0 (281)9.2.8 E4012 Maximum number of CCD slaves exceeded (282)9.2.9 E4013 Incorrect CCD addressing (282)9.2.10 E4014 Incorrect phase switch of CCD slaves (283)9.3 Possible Warnings When Operating Safety Technology (E3xxx) (283)9.3.1 Behavior in Case a Safety Technology Warning Occurs (283)9.3.2 E3100 Error when checking input signals (284)9.3.3 E3101 Error when checking acknowledgment signal (284)9.3.4 E3102 Actual position values validation error (285)9.3.5 E3103 Dynamization failed (285)9.3.6 E3104 Safety parameters validation error (286)9.3.7 E3105 Validation error of safe operation mode (286)9.3.8 E3106 System error safety technology (287)9.3.9 E3107 Safe reference missing (287)9.3.10 E3108 Safely-monitored deceleration exceeded (288)9.3.11 E3110 Time interval of forced dynamization exceeded (289)9.3.12 E3115 Prewarning, end of brake check time interval (289)9.3.13 E3116 Nominal load torque of holding system reached (290)9.4 Non-Fatal Warnings (E2xxx) (290)9.4.1 Behavior in Case a Non-Fatal Warning Occurs (290)9.4.2 E2010 Position control with encoder 2 not possible (291)9.4.3 E2011 PLC - Warning no. 1 (291)9.4.4 E2012 PLC - Warning no. 2 (291)9.4.5 E2013 PLC - Warning no. 3 (292)9.4.6 E2014 PLC - Warning no. 4 (292)9.4.7 E2021 Motor temperature outside of measuring range (292)9.4.8 E2026 Undervoltage in power section (293)9.4.9 E2040 Device overtemperature 2 prewarning (294)9.4.10 E2047 Interpolation velocity = 0 (294)9.4.11 E2048 Interpolation acceleration = 0 (295)9.4.12 E2049 Positioning velocity >= limit value (296)9.4.13 E2050 Device overtemp. Prewarning (297)Troubleshooting Guide | Rexroth IndraDrive Electric Drivesand Controls| Bosch Rexroth AG XI/XXIITable of ContentsPage9.4.14 E2051 Motor overtemp. prewarning (298)9.4.15 E2053 Target position out of travel range (298)9.4.16 E2054 Not homed (300)9.4.17 E2055 Feedrate override S-0-0108 = 0 (300)9.4.18 E2056 Torque limit = 0 (301)9.4.19 E2058 Selected positioning block has not been programmed (302)9.4.20 E2059 Velocity command value limit active (302)9.4.21 E2061 Device overload prewarning (303)9.4.22 E2063 Velocity command value > limit value (304)9.4.23 E2064 Target position out of num. range (304)9.4.24 E2069 Holding brake torque too low (305)9.4.25 E2070 Acceleration limit active (306)9.4.26 E2074 Encoder 1: Encoder signals disturbed (306)9.4.27 E2075 Encoder 2: Encoder signals disturbed (307)9.4.28 E2076 Measuring encoder: Encoder signals disturbed (308)9.4.29 E2077 Absolute encoder monitoring, motor encoder (encoder alarm) (308)9.4.30 E2078 Absolute encoder monitoring, opt. encoder (encoder alarm) (309)9.4.31 E2079 Absolute enc. monitoring, measuring encoder (encoder alarm) (309)9.4.32 E2086 Prewarning supply module overload (310)9.4.33 E2092 Internal synchronization defective (310)9.4.34 E2100 Positioning velocity of master axis generator too high (311)9.4.35 E2101 Acceleration of master axis generator is zero (312)9.4.36 E2140 CCD error at node (312)9.4.37 E2270 Analog input 1 or 2, wire break (312)9.4.38 E2802 HW control of braking resistor (313)9.4.39 E2810 Drive system not ready for operation (314)9.4.40 E2814 Undervoltage in mains (314)9.4.41 E2816 Undervoltage in power section (314)9.4.42 E2818 Phase failure (315)9.4.43 E2819 Mains failure (315)9.4.44 E2820 Braking resistor overload prewarning (316)9.4.45 E2829 Not ready for power on (316)。
电力专业常用英语词汇网易电力专业英语词汇(较全)1)元件设备三绕组变压器:three-column transformer ThrClnTrans 双绕组变压器:double-column transformer DblClmnTrans 电容器:Capacitor并联电容器:shunt capacitor电抗器:Reactor母线:Busbar输电线:TransmissionLine发电厂:power plant断路器:Breaker刀闸(隔离开关):Isolator分接头:tap电动机:motor2)状态参数有功:active power无功:reactive power电流:current容量:capacity电压:voltage档位:tap position有功损耗:reactive loss无功损耗:active loss空载损耗:no-load loss铁损:iron loss铜损:copper loss空载电流:no-load current阻抗:impedance正序阻抗:positive sequence impedance负序阻抗:negative sequence impedance零序阻抗:zero sequence impedance无功负载:reactive load 或者QLoad有功负载: active load PLoad遥测:YC(telemetering)遥信:YX励磁电流(转子电流):magnetizing current定子:stator功角:power-angle上限:upper limit下限:lower limit并列的:apposable高压: high voltage低压:low voltage中压:middle voltage电力系统 power system发电机 generator励磁 excitation励磁器 excitor电压 voltage电流 current母线 bus变压器 transformer升压变压器 step-up transformer高压侧 high side输电系统 power transmission system输电线 transmission line固定串联电容补偿fixed series capacitor compensation 稳定 stability电压稳定 voltage stability功角稳定 angle stability暂态稳定 transient stability电厂 power plant能量输送 power transfer交流 AC装机容量 installed capacity电网 power system落点 drop point开关站 switch station双回同杆并架 double-circuit lines on the same tower 变电站 transformer substation补偿度 degree of compensation高抗 high voltage shunt reactor无功补偿 reactive power compensation故障 fault调节 regulation裕度 magin三相故障 three phase fault故障切除时间 fault clearing time极限切除时间 critical clearing time切机 generator triping高顶值 high limited value强行励磁 reinforced excitation线路补偿器 LDC(line drop compensation)机端 generator terminal静态 static (state)动态 dynamic (state)单机无穷大系统 one machine - infinity bus system 机端电压控制 AVR功角 power angle有功(功率) active power无功(功率) reactive power功率因数 power factor无功电流 reactive current下降特性 droop characteristics斜率 slope额定 rating变比 ratio参考值 reference value电压互感器 PT分接头 tap下降率 droop rate仿真分析 simulation analysis传递函数 transfer function框图 block diagram受端 receive-side裕度 margin同步 synchronization失去同步 loss of synchronization阻尼 damping摇摆 swing保护断路器 circuit breaker电阻:resistance电抗:reactance阻抗:impedance电导:conductance电纳:susceptance导纳:admittance电感:inductance电容: capacitanceAGC Automatic Generation Control自动发电控制AMR Automatic Message Recording 自动抄表ASS Automatic Synchronized System 自动准同期装置ATS Automatic Transform System 厂用电源快速切换装置AVR Automatic Voltage Regulator 自动电压调节器BCS Burner Control System 燃烧器控制系统BMS Burner Management System 燃烧器管理系统CCS Coordinated Control System 协调控制系统CRMS Control Room Management System 控制室管理系统CRT Cathode Ray Tube 阴极射线管DAS Data Acquisition System 数据采集与处理系统DCS Distributed Control System 分散控制系统DDC Direct Digital Control 直接数字控制(系统)DEH Digital Electronic Hydraulic Control 数字电液(调节系统)DPU Distributed Processing Unit 分布式处理单元EMS Energy Management System 能量管理系统ETS Emergency Trip System 汽轮机紧急跳闸系统EWS Engineering Working Station 工程师工作站FA Feeder Automation 馈线自动化FCS Field bus Control System 现场总线控制系统FSS Fuel Safety System 燃料安全系统FSSS Furnace Safeguard Supervisory System 炉膛安全监控系统GIS Gas Insulated Switchgear 气体绝缘开关设备GPS Global Position System 全球定位系统HCS Hierarchical Control System 分级控制系统LCD Liquid Crystal Display 液晶显示屏LCP Local Control Panel 就地控制柜MCC Motor Control Center (电动机)马达控制中心MCS Modulating Control System 模拟量控制系统MEH Micro Electro Hydraulic Control System 给水泵汽轮机电液控制系统MIS Management Information System 管理信息系统NCS Net Control System 网络监控系统OIS Operator Interface Station 操作员接口站OMS Outage Management System 停电管理系统PID Proportion Integration Differentiation 比例积分微分PIO Process inputOutput 过程输入输出(通道)PLC Programmable Logical Controller 可编程逻辑控制器PSS Power System Stabilizator 电力系统稳定器SCADA Supervisory Control And Data Acquisition 数据采集与监控系统SCC Supervisory Computer Control 监督控制系统SCS Sequence Control System 顺序(程序)控制系统SIS Supervisory Information System 监控信息系统TDCS(TDC)Total Direct Digital Control 集散控制系统TSI Turbine Supervisory Instrumentation 汽轮机监测仪表UPS Uninterrupted Power Supply 不间断供电专业英语(电力词汇)标准的机组数据显示 (Standard Measurement And Display Data)负载电流百分比显示 Percentage of Current load(%)单相/三相电压 Voltage by One/Three Phase (Volt.)每相电流 Current by Phase (AMP)千伏安 Apparent Power (KVA)中线电流 Neutral Current (N Amp)功率因数 Power Factor (PF)频率 Frequency(HZ)千瓦 Active Power (KW)千阀 Reactive Power (KVAr)最高/低电压及电流 Max/Min. Current and Voltage输出千瓦/兆瓦小时 Output kWh/MWh运行转速 Running RPM机组运行正常 Normal Running超速故障停机 Overspeed Shutdowns低油压故障停机 Low Oil Pressure Shutdowns高水温故障停机 High Coolant Temperature Shutdowns起动失败停机 Fail to Start Shutdowns冷却水温度表 Coolant Temperature Gauge机油油压表 Oil Pressure Gauge电瓶电压表 Battery Voltage Meter机组运行小时表 Genset Running Hour Meter怠速-快速运行选择键 Idle Run – Normal Run Selector Switch运行-停机-摇控启动选择键 Local Run-Stop-Remote Starting Selector Switch其它故障显示及输入 Other Common Fault Alarm Display and电力行波词汇行波travelling wave模糊神经网络fuzzy-neural network神经网络neural network模糊控制fuzzy control研究方向 research direction副教授associate professor电力系统the electrical power system大容量发电机组large capacity generating set输电距离electricity transmission超高压输电线super voltage transmission power line 投运commissioning行波保护Traveling wave protection自适应控制方法adaptive control process动作速度speed of action行波信号travelling wave signal测量信号measurement signal暂态分量transient state component非线性系统nonlinear system高精度high accuracy自学习功能self-learning function抗干扰能力anti-jamming capability自适应系统adaptive system行波继电器travelling wave relay输电线路故障transmission line malfunction仿真simulation算法algorithm电位electric potential短路故障short trouble子系统subsystem大小相等,方向相反equal and opposite in direction 电压源voltage source故障点trouble spot等效于equivalent暂态行波transient state travelling wave偏移量side-play mount电压electric voltage附加系统add-ons system波形waveform工频power frequency延迟变换delayed transformation延迟时间delay time减法运算subtraction相减运算additive operation求和器summator模糊规则fuzzy rule参数值parameter values可靠动作action message等值波阻抗equivalent value wave impedance附加网络additional network修改的modified反传算法backpropagation algorithm隶属函数membership function模糊规则fuzzy rule模糊推理fuzzy reasoning模糊推理矩阵fuzzy reasoning matrix样本集合 sample set给定的given采样周期sampling period三角形隶属度函数Triangle-shape grade of membership function负荷状态load conditions区内故障troubles inside the sample space门槛值threshold level采样频率sampling frequency全面地all sidedly样本空间sample space误动作malfunction保护特性protection feature仿真数据simulation data灵敏性sensitivity小波变换wavelet transformation神经元neuron谐波电流harmonic current电力系统自动化power system automation继电保护relaying protection中国电力 China Power学报 journal初探primary exploration电机学 electrical machinery自动控制理论 automatic control theory电磁场 electromagnetic field电磁场与电磁波Electromagnetic Fields & Magnetic Waves微机原理 principle of microcomputer电工学 electrotechnics principle of circuit s电力系统稳态分析 steady-state analysis o f power system电力系统暂态分析 transient-state analysi s of power system电力系统继电保护原理 principle of electrica l system's relay protection电力系统元件保护原理 protection principl e of power system 's element电力系统内部过电压 past voltage within po wer system模拟电子技术基础 basis of analogue electr onic technique数字电子技术 digital electrical technique 电路原理实验lab. of principle of circuits电气工程讲座 lectures on electrical powe r production电力电子基础basic fundamentals of powe r electronics高电压工程high voltage engineering电子专题实践topics on experimental proje ct of electronics电气工程概论introduction to electrical eng ineering电子电机集成系统electronic machine syste m电力传动与控制electrical drive and contro l电力电子电路Power Electronic Circuit电力电子电器Power Electronic Equipment电力电子器件Power Electronic Devices电力电子学Power Electronics电力工程Electrical Power Engineering电力生产技术Technology of Electrical Power Generation电力生产优化管理Optimal Management of Electrical Power Generation电力拖动基础Fundamentals for Electrical Towage电力拖动控制系统Electrical Towage Control Systems电力系统Power Systems电力系统电源最优化规划Optimal Planning of Power Source in a PowerSystem电力系统短路Power System Shortcuts电力系统分析Power System Analysis电力系统规划Power System Planning电力系统过电压Hyper-Voltage of Power Systems电力系统继电保护原理Power System Relay Protection电力系统经济分析Economical Analysis of Power Systems电力系统经济运行Economical Operation of Power Systems电力系统可靠性Power System Reliability电力系统可靠性分析Power System Reliability Analysis电力系统无功补偿及应用Non-Work Compensation in Power Systems &Applicati电力系统谐波Harmonious Waves in Power Systems电力系统优化技术Optimal Technology of Power Systems电力系统优化设计Optimal Designing of Power Systems电力系统远动Operation of Electric Systems电力系统远动技术Operation Technique of Electric Systems电力系统运行Operation of Electric Systems电力系统自动化Automation of Electric Systems电力系统自动装置Power System Automation Equipment电路测试技术Circuit Measurement Technology电路测试技术基础Fundamentals of Circuit Measurement Technology电磁感应定律law of electromagnetic induction励磁 excitation 励磁器 magnetizing ex citer励磁器 exciter 恒定励磁器constant excit er励磁器激振器exciter励磁电流:magnetizing current 强行励磁reinforced excitation励磁调节器excitation regulator无功伏安volt-ampere reactive无功伏安时volt-ampere-hour reactive稳态控制homeostatic control; stable co ntrol a steady-state control水电厂hydroelectric station落点 drop point 调节 regulation调节器conditioner 励磁调节器exc itation regulator调速器regulator, governor ;speed re gulator ;(正规)speed governor高抗 high voltage shunt reactor并列的: apposite; paratactic 同步 sy nchronization系统解列system splitting( trip)失去同步loss of synchronization分接头:tap 裕度 margin 档位:tap p osition故障 fault 三相故障 three phase fault 切机 generator triping故障切除时间fault clearing time高顶值 high limited value静态 static (state) 动态 dynamic (sta te) 暂态transient机端电压控制 avr电动机:motor有功负载: active load/pload 无功负载:r eactive load电压互感器pt (potential /voltage transformer )参考值 reference value 单机无穷大系统one machine - infinity bus system仿真分析 simulation analysis 下降率 dr oop rate传递函数 transfer function 框图 bloc k diagram受端 receive-side 同步 synchronizatio n保护断路器 circuit breaker阻尼 damping无刷直流电机:brusless dc motor永磁直流电动机permanent-magnet direct current motor机端 generator terminal永磁同步电机:permanent-magnet synchr onism motor异步电机:asynchronous motor三绕组变压器:three-column transformer t hrclntransthree winding transforme r双绕组变压器:double-column transforme r dblclmntranstwo-circuit transformer; two -winding transformer固定串联电容补偿fixed series capacitor co mpensation双回同杆并架 double-circuit lines on the s ame tower单机无穷大系统 one machine - infinity bu s system偿度 degree of compensation电磁场失去同步electromagnetic fields los s of synchronization装机容量 installed capacity无功补偿 reactive power compensation故障切除时间 fault clearing time极限切除时间 critical clearing time强行励磁 reinforced excitation并联电容器:shunt capacitor下降特性 droop characteristics线路补偿器 ldc(line drop compensatio n) 《。
3GPP TS 36.521-1 V14.4.0 (2017-09)Technical Specification3rd Generation Partnership Project; Technical Specification Group Radio Access Network; Evolved Universal Terrestrial Radio Access (E-UTRA);User Equipment (UE) conformance specification;Radio transmission and reception;Part 1: Conformance Testing(Release 14)The present document has been developed within the 3rd Generation Partnership Project (3GPP TM) and may be further elaborated for the purposes of 3GPP.KeywordsUMTS LTE3GPPPostal address3GPP support office address650 Route des Lucioles - Sophia AntipolisValbonne - FRANCETel.: +33 4 92 94 42 00 Fax: +33 4 93 65 47 16InternetCopyright NotificationNo part may be reproduced except as authorized by written permission.The copyright and the foregoing restriction extend to reproduction in all media.© 2017, 3GPP Organizational Partners (ARIB, ATIS, CCSA, ETSI, TSDSI, TTA, TTC).All rights reserved.UMTS™ is a Trade Mark of ETSI registered for the benefit of its members3GPP™ is a Trade Mark of ETSI registered for the benefit of its Members and of the 3GPP Organizational Partners LTE™ is a Trade Mark of ETSI registered for the benefit of its Members a nd of the 3GPP Organizational Partners GSM® and the GSM logo are registered and owned by the GSM AssociationContentsForeword (92)Introduction (92)1Scope (93)2References (94)3Definitions, symbols and abbreviations (96)3.1Definitions (96)3.2Symbols (98)3.3Abbreviations (100)4General (103)4.1Categorization of test requirements in CA, UL-MIMO, ProSe, Dual Connectivity, UE category 0, UEcategory M1, UE category 1bis, UE category NB1 and V2X Communication (104)4.2RF requirements in later releases (105)5Frequency bands and channel arrangement (106)5.1General (106)5.2Operating bands (106)5.2A Operating bands for CA (108)5.2B Operating bands for UL-MIMO (116)5.2C Operating bands for Dual Connectivity (116)5.2D Operating bands for ProSe (117)5.2E Operating bands for UE category 0 and UE category M1 (118)5.2F Operating bands for UE category NB1 (118)5.2G Operating bands for V2X Communication (118)5.3TX–RX frequency separation (119)5.3A TX–RX frequency separation for CA (120)5.4Channel arrangement (120)5.4.1Channel spacing (120)5.4.1A Channel spacing for CA (121)5.4.1F Channel spacing for UE category NB1 (121)5.4.2Channel bandwidth (121)5.4.2.1Channel bandwidths per operating band (122)5.4.2A Channel bandwidth for CA (124)5.4.2A.1Channel bandwidths per operating band for CA (126)5.4.2B Channel bandwidth for UL-MIMO (171)5.4.2B.1Channel bandwidths per operating band for UL- MIMO (171)5.4.2C Channel bandwidth for Dual Connectivity (171)5.4.2D Channel bandwidth for ProSe (171)5.4.2D.1Channel bandwidths per operating band for ProSe (171)5.4.2F Channel bandwidth for category NB1 (172)5.4.2G Channel bandwidth for V2X Communication (173)5.4.2G.1Channel bandwidths per operating band for V2X Communication (173)5.4.3Channel raster (174)5.4.3A Channel raster for CA (175)5.4.3F Channel raster for UE category NB1 (175)5.4.4Carrier frequency and EARFCN (175)5.4.4F Carrier frequency and EARFCN for category NB1 (177)6Transmitter Characteristics (179)6.1General (179)6.2Transmit power (180)6.2.1Void (180)6.2.2UE Maximum Output Power (180)6.2.2.1Test purpose (180)6.2.2.4Test description (182)6.2.2.4.1Initial condition (182)6.2.2.4.2Test procedure (183)6.2.2.4.3Message contents (183)6.2.2.5Test requirements (183)6.2.2_1Maximum Output Power for HPUE (185)6.2.2_1.1Test purpose (185)6.2.2_1.2Test applicability (185)6.2.2_1.3Minimum conformance requirements (185)6.2.2_1.4Test description (185)6.2.2_1.5Test requirements (186)6.2.2A UE Maximum Output Power for CA (187)6.2.2A.0Minimum conformance requirements (187)6.2.2A.1UE Maximum Output Power for CA (intra-band contiguous DL CA and UL CA) (189)6.2.2A.1.1Test purpose (189)6.2.2A.1.2Test applicability (189)6.2.2A.1.3Minimum conformance requirements (189)6.2.2A.1.4Test description (189)6.2.2A.1.5Test Requirements (191)6.2.2A.2UE Maximum Output Power for CA (inter-band DL CA and UL CA) (192)6.2.2A.2.1Test purpose (192)6.2.2A.2.2Test applicability (192)6.2.2A.2.3Minimum conformance requirements (192)6.2.2A.2.4Test description (192)6.2.2A.2.5Test Requirements (194)6.2.2A.3UE Maximum Output Power for CA (intra-band non-contiguous DL CA and UL CA) (196)6.2.2A.4.1UE Maximum Output Power for CA (intra-band contiguous 3DL CA and 3UL CA) (196)6.2.2A.4.1.1Test purpose (196)6.2.2A.4.1.2Test applicability (196)6.2.2A.4.1.3Minimum conformance requirements (196)6.2.2A.4.1.4Test description (196)6.2.2A.4.1.5Test Requirements (198)6.2.2A.4.2UE Maximum Output Power for CA (inter-band 3DL CA and 3UL CA) (198)6.2.2A.4.2.1Test purpose (199)6.2.2A.4.2.2Test applicability (199)6.2.2A.4.2.3Minimum conformance requirements (199)6.2.2A.4.2.4Test description (199)6.2.2A.4.2.5Test Requirements (201)6.2.2B UE Maximum Output Power for UL-MIMO (201)6.2.2B.1Test purpose (201)6.2.2B.2Test applicability (202)6.2.2B.3Minimum conformance requirements (202)6.2.2B.4Test description (204)6.2.2B.4.1Initial condition (204)6.2.2B.4.2Test procedure (205)6.2.2B.4.3Message contents (205)6.2.2B.5Test requirements (205)6.2.2B_1HPUE Maximum Output Power for UL-MIMO (207)6.2.2B_1.1Test purpose (207)6.2.2B_1.2Test applicability (207)6.2.2B_1.3Minimum conformance requirements (207)6.2.2B_1.4Test description (207)6.2.2B_1.5Test requirements (208)6.2.2C 2096.2.2D UE Maximum Output Power for ProSe (209)6.2.2D.0Minimum conformance requirements (209)6.2.2D.1UE Maximum Output Power for ProSe Discovery (209)6.2.2D.1.1Test purpose (209)6.2.2D.1.2Test applicability (209)6.2.2D.1.3Minimum Conformance requirements (209)6.2.2D.2UE Maximum Output Power for ProSe Direct Communication (211)6.2.2D.2.1Test purpose (211)6.2.2D.2.2Test applicability (211)6.2.2D.2.3Minimum conformance requirements (211)6.2.2D.2.4Test description (211)6.2.2E UE Maximum Output Power for UE category 0 (212)6.2.2E.1Test purpose (212)6.2.2E.2Test applicability (212)6.2.2E.3Minimum conformance requirements (212)6.2.2E.4Test description (212)6.2.2E.4.3Message contents (213)6.2.2E.5Test requirements (213)6.2.2EA UE Maximum Output Power for UE category M1 (215)6.2.2EA.1Test purpose (215)6.2.2EA.2Test applicability (215)6.2.2EA.3Minimum conformance requirements (215)6.2.2EA.4Test description (216)6.2.2EA.4.3Message contents (217)6.2.2EA.5Test requirements (217)6.2.2F UE Maximum Output Power for category NB1 (218)6.2.2F.1Test purpose (218)6.2.2F.2Test applicability (218)6.2.2F.3Minimum conformance requirements (218)6.2.2F.4Test description (219)6.2.2F.4.1Initial condition (219)6.2.2F.4.2Test procedure (220)6.2.2F.4.3Message contents (220)6.2.2F.5Test requirements (220)6.2.2G UE Maximum Output Power for V2X Communication (221)6.2.2G.1UE Maximum Output Power for V2X Communication / Non-concurrent with E-UTRA uplinktransmission (221)6.2.2G.1.1Test purpose (221)6.2.2G.1.2Test applicability (221)6.2.2G.1.3Minimum conformance requirements (221)6.2.2G.1.4Test description (222)6.2.2G.1.4.1Initial conditions (222)6.2.2G.1.4.2Test procedure (222)6.2.2G.1.4.3Message contents (222)6.2.2G.1.5Test requirements (223)6.2.2G.2UE Maximum Output Power for V2X Communication / Simultaneous E-UTRA V2X sidelinkand E-UTRA uplink transmission (223)6.2.2G.2.1Test purpose (223)6.2.2G.2.2Test applicability (223)6.2.2G.2.3Minimum conformance requirements (223)6.2.2G.2.4Test description (224)6.2.2G.2.4.1Initial conditions (224)6.2.2G.2.4.2Test procedure (225)6.2.2G.2.4.3Message contents (226)6.2.2G.2.5Test requirements (226)6.2.3Maximum Power Reduction (MPR) (226)6.2.3.1Test purpose (226)6.2.3.2Test applicability (226)6.2.3.3Minimum conformance requirements (227)6.2.3.4Test description (227)6.2.3.4.1Initial condition (227)6.2.3.4.2Test procedure (228)6.2.3.4.3Message contents (228)6.2.3.5Test requirements (229)6.2.3_1Maximum Power Reduction (MPR) for HPUE (231)6.2.3_1.1Test purpose (231)6.2.3_1.4Test description (232)6.2.3_1.5Test requirements (232)6.2.3_2Maximum Power Reduction (MPR) for Multi-Cluster PUSCH (232)6.2.3_2.1Test purpose (232)6.2.3_2.2Test applicability (232)6.2.3_2.3Minimum conformance requirements (233)6.2.3_2.4Test description (233)6.2.3_2.4.1Initial condition (233)6.2.3_2.4.2Test procedure (234)6.2.3_2.4.3Message contents (234)6.2.3_2.5Test requirements (234)6.2.3_3Maximum Power Reduction (MPR) for UL 64QAM (235)6.2.3_3.1Test purpose (236)6.2.3_3.2Test applicability (236)6.2.3_3.3Minimum conformance requirements (236)6.2.3_3.4Test description (236)6.2.3_3.4.1Initial condition (236)6.2.3_3.4.2Test procedure (237)6.2.3_3.4.3Message contents (237)6.2.3_3.5Test requirements (238)6.2.3_4Maximum Power Reduction (MPR) for Multi-Cluster PUSCH with UL 64QAM (240)6.2.3_4.1Test purpose (240)6.2.3_4.2Test applicability (240)6.2.3_4.3Minimum conformance requirements (240)6.2.3_4.4Test description (241)6.2.3_4.4.1Initial condition (241)6.2.3_4.4.2Test procedure (242)6.2.3_4.4.3Message contents (242)6.2.3_4.5Test requirements (242)6.2.3A Maximum Power Reduction (MPR) for CA (243)6.2.3A.1Maximum Power Reduction (MPR) for CA (intra-band contiguous DL CA and UL CA) (243)6.2.3A.1.1Test purpose (243)6.2.3A.1.2Test applicability (243)6.2.3A.1.3Minimum conformance requirements (244)6.2.3A.1.4Test description (245)6.2.3A.1.5Test Requirements (248)6.2.3A.1_1Maximum Power Reduction (MPR) for CA (intra-band contiguous DL CA and UL CA) for UL64QAM (250)6.2.3A.1_1.1Test purpose (251)6.2.3A.1_1.2Test applicability (251)6.2.3A.1_1.3Minimum conformance requirements (251)6.2.3A.1_1.4Test description (252)6.2.3A.1_1.5Test requirement (254)6.2.3A.2Maximum Power Reduction (MPR) for CA (inter-band DL CA and UL CA) (255)6.2.3A.2.1Test purpose (255)6.2.3A.2.2Test applicability (255)6.2.3A.2.3Minimum conformance requirements (255)6.2.3A.2.4Test description (256)6.2.3A.2.5Test Requirements (260)6.2.3A.2_1Maximum Power Reduction (MPR) for CA (inter-band DL CA and UL CA) for UL 64QAM (263)6.2.3A.2_1.1Test purpose (263)6.2.3A.2_1.2Test applicability (263)6.2.3A.2_1.3Minimum conformance requirements (263)6.2.3A.2_1.4Test description (264)6.2.3A.2_1.5Test Requirements (266)6.2.3A.3Maximum Power Reduction (MPR) for CA (intra-band non-contiguous DL CA and UL CA) (267)6.2.3A.3.1Test purpose (267)6.2.3A.3.2Test applicability (267)6.2.3A.3.3Minimum conformance requirements (268)6.2.3A.3.4Test description (268)6.2.3A.3_1Maximum Power Reduction (MPR) for CA (intra-band non-contiguous DL CA and UL CA) forUL 64QAM (270)6.2.3A.3_1.1Test purpose (270)6.2.3A.3_1.2Test applicability (270)6.2.3A.3_1.3Minimum conformance requirements (270)6.2.3A.3_1.4Test description (271)6.2.3A.3_1.5Test Requirements (272)6.2.3B Maximum Power Reduction (MPR) for UL-MIMO (272)6.2.3B.1Test purpose (272)6.2.3B.2Test applicability (272)6.2.3B.3Minimum conformance requirements (273)6.2.3B.4Test description (273)6.2.3B.4.1Initial condition (273)6.2.3B.4.2Test procedure (274)6.2.3B.4.3Message contents (275)6.2.3B.5Test requirements (275)6.2.3D UE Maximum Output Power for ProSe (277)6.2.3D.0Minimum conformance requirements (277)6.2.3D.1Maximum Power Reduction (MPR) for ProSe Discovery (278)6.2.3D.1.1Test purpose (278)6.2.3D.1.2Test applicability (278)6.2.3D.1.3Minimum conformance requirements (278)6.2.3D.1.4Test description (278)6.2.3D.1.4.1Initial condition (278)6.2.3D.1.4.2Test procedure (279)6.2.3D.1.4.3Message contents (279)6.2.3D.1.5Test requirements (280)6.2.3D.2Maximum Power Reduction (MPR) ProSe Direct Communication (281)6.2.3D.2.1Test purpose (282)6.2.3D.2.2Test applicability (282)6.2.3D.2.3Minimum conformance requirements (282)6.2.3D.2.4Test description (282)6.2.3D.2.4.1Initial conditions (282)6.2.3D.2.4.2Test procedure (282)6.2.3D.2.4.3Message contents (282)6.2.3D.2.5Test requirements (282)6.2.3E Maximum Power Reduction (MPR) for UE category 0 (282)6.2.3E.1Test purpose (282)6.2.3E.2Test applicability (282)6.2.3E.3Minimum conformance requirements (282)6.2.3E.4Test description (282)6.2.3E.4.1Initial condition (282)6.2.3E.4.2Test procedure (283)6.2.3E.4.3Message contents (283)6.2.3E.5Test requirements (283)6.2.3EA Maximum Power Reduction (MPR) for UE category M1 (284)6.2.3EA.1Test purpose (284)6.2.3EA.2Test applicability (284)6.2.3EA.3Minimum conformance requirements (284)6.2.3EA.4Test description (285)6.2.3EA.4.1Initial condition (285)6.2.3EA.4.2Test procedure (287)6.2.3EA.4.3Message contents (287)6.2.3EA.5Test requirements (287)6.2.3F Maximum Power Reduction (MPR) for category NB1 (290)6.2.3F.1Test purpose (290)6.2.3F.2Test applicability (290)6.2.3F.3Minimum conformance requirements (290)6.2.3F.4Test description (291)6.2.3F.4.1Initial condition (291)6.2.3F.5Test requirements (292)6.2.3G Maximum Power Reduction (MPR) for V2X communication (292)6.2.3G.1Maximum Power Reduction (MPR) for V2X Communication / Power class 3 (293)6.2.3G.1.1Maximum Power Reduction (MPR) for V2X Communication / Power class 3 / Contiguousallocation of PSCCH and PSSCH (293)6.2.3G.1.1.1Test purpose (293)6.2.3G.1.1.2Test applicability (293)6.2.3G.1.1.3Minimum conformance requirements (293)6.2.3G.1.1.4Test description (293)6.2.3G.1.1.4.1Initial condition (293)6.2.3G.1.1.4.2Test procedure (294)6.2.3G.1.1.4.3Message contents (294)6.2.3G.1.1.5Test Requirements (294)6.2.3G.1.2 2956.2.3G.1.3Maximum Power Reduction (MPR) for V2X Communication / Power class 3 / SimultaneousE-UTRA V2X sidelink and E-UTRA uplink transmission (295)6.2.3G.1.3.1Test purpose (295)6.2.3G.1.3.2Test applicability (295)6.2.3G.1.3.3Minimum conformance requirements (295)6.2.3G.1.3.4Test description (295)6.2.3G.1.3.4.1Initial conditions (295)6.2.3G.1.3.4.2Test procedure (296)6.2.3G.1.3.4.3Message contents (297)6.2.3G.1.3.5Test requirements (297)6.2.4Additional Maximum Power Reduction (A-MPR) (297)6.2.4.1Test purpose (297)6.2.4.2Test applicability (297)6.2.4.3Minimum conformance requirements (298)6.2.4.4Test description (310)6.2.4.4.1Initial condition (310)6.2.4.4.2Test procedure (339)6.2.4.4.3Message contents (339)6.2.4.5Test requirements (344)6.2.4_1Additional Maximum Power Reduction (A-MPR) for HPUE (373)6.2.4_1.2Test applicability (374)6.2.4_1.3Minimum conformance requirements (374)6.2.4_1.4Test description (375)6.2.4_1.5Test requirements (376)6.2.4_2Additional Maximum Power Reduction (A-MPR) for UL 64QAM (378)6.2.4_2.1Test purpose (378)6.2.4_2.2Test applicability (378)6.2.4_2.3Minimum conformance requirements (378)6.2.4_2.4Test description (378)6.2.4_2.4.1Initial condition (378)6.2.4_2.4.2Test procedure (392)6.2.4_2.4.3Message contents (392)6.2.4_2.5Test requirements (392)6.2.4_3Additional Maximum Power Reduction (A-MPR) with PUSCH frequency hopping (404)6.2.4_3.1Test purpose (404)6.2.4_3.2Test applicability (404)6.2.4_3.3Minimum conformance requirements (405)6.2.4_3.4Test description (405)6.2.4_3.5Test requirements (406)6.2.4A Additional Maximum Power Reduction (A-MPR) for CA (407)6.2.4A.1Additional Maximum Power Reduction (A-MPR) for CA (intra-band contiguous DL CA and ULCA) (407)6.2.4A.1.1Test purpose (407)6.2.4A.1.2Test applicability (407)6.2.4A.1.3Minimum conformance requirements (407)6.2.4A.1.3.5A-MPR for CA_NS_05 for CA_38C (411)6.2.4A.1.4Test description (413)6.2.4A.1.5Test requirements (419)6.2.4A.1_1Additional Maximum Power Reduction (A-MPR) for CA (intra-band contiguous DL CA and ULCA) for UL 64QAM (425)6.2.4A.1_1.1Test purpose (425)6.2.4A.1_1.2Test applicability (425)6.2.4A.1_1.3Minimum conformance requirements (426)6.2.4A.1_1.3.5A-MPR for CA_NS_05 for CA_38C (429)6.2.4A.1_1.3.6A-MPR for CA_NS_06 for CA_7C (430)6.2.4A.1_1.3.7A-MPR for CA_NS_07 for CA_39C (431)6.2.4A.1_1.3.8A-MPR for CA_NS_08 for CA_42C (432)6.2.4A.1_1.4Test description (432)6.2.4A.1_1.5Test requirements (437)6.2.4A.2Additional Maximum Power Reduction (A-MPR) for CA (inter-band DL CA and UL CA) (443)6.2.4A.2.1Test purpose (443)6.2.4A.2.2Test applicability (444)6.2.4A.2.3Minimum conformance requirements (444)6.2.4A.2.4Test description (444)6.2.4A.2.4.1Initial conditions (444)6.2.4A.2.4.2Test procedure (457)6.2.4A.2.4.3Message contents (458)6.2.4A.2.5Test requirements (461)6.2.4A.3Additional Maximum Power Reduction (A-MPR) for CA (intra-band non-contiguous DL CAand UL CA) (466)6.2.4A.3.1Minimum conformance requirements (466)6.2.4A.2_1Additional Maximum Power Reduction (A-MPR) for CA (inter-band DL CA and UL CA) forUL 64QAM (466)6.2.4A.2_1.1Test purpose (466)6.2.4A.2_1.2Test applicability (466)6.2.4A.2_1.3Minimum conformance requirements (467)6.2.4A.2_1.4Test description (467)6.2.4A.2_1.4.1Initial conditions (467)6.2.4A.2_1.4.2Test procedure (479)6.2.4A.2_1.4.3Message contents (480)6.2.4A.2_1.5Test requirements (480)6.2.4B Additional Maximum Power Reduction (A-MPR) for UL-MIMO (484)6.2.4B.1Test purpose (484)6.2.4B.2Test applicability (485)6.2.4B.3Minimum conformance requirements (485)6.2.4B.4Test description (485)6.2.4B.4.1Initial condition (485)6.2.4B.4.2Test procedure (508)6.2.4B.4.3Message contents (508)6.2.4B.5Test requirements (508)6.2.4E Additional Maximum Power Reduction (A-MPR) for UE category 0 (530)6.2.4E.1Test purpose (530)6.2.4E.2Test applicability (531)6.2.4E.3Minimum conformance requirements (531)6.2.4E.4Test description (531)6.2.4E.4.1Initial condition (531)6.2.4E.4.2Test procedure (535)6.2.4E.4.3Message contents (535)6.2.4E.5Test requirements (536)6.2.4EA Additional Maximum Power Reduction (A-MPR) for UE category M1 (542)6.2.4EA.1Test purpose (542)6.2.4EA.2Test applicability (542)6.2.4EA.3Minimum conformance requirements (543)6.2.4EA.4Test description (544)6.2.4EA.4.1Initial condition (544)6.2.4EA.4.2Test procedure (552)6.2.4G Additional Maximum Power Reduction (A-MPR) for V2X Communication (562)6.2.4G.1Additional Maximum Power Reduction (A-MPR) for V2X Communication / Non-concurrentwith E-UTRA uplink transmissions (562)6.2.4G.1.1Test purpose (562)6.2.4G.1.2Test applicability (562)6.2.4G.1.3Minimum conformance requirements (563)6.2.4G.1.4Test description (563)6.2.4G.1.4.1Initial condition (563)6.2.4G.1.4.2Test procedure (564)6.2.4G.1.4.3Message contents (564)6.2.4G.1.5Test Requirements (564)6.2.5Configured UE transmitted Output Power (564)6.2.5.1Test purpose (564)6.2.5.2Test applicability (564)6.2.5.3Minimum conformance requirements (564)6.2.5.4Test description (594)6.2.5.4.1Initial conditions (594)6.2.5.4.2Test procedure (595)6.2.5.4.3Message contents (595)6.2.5.5Test requirement (596)6.2.5_1Configured UE transmitted Output Power for HPUE (596)6.2.5_1.1Test purpose (596)6.2.5_1.2Test applicability (597)6.2.5_1.3Minimum conformance requirements (597)6.2.5_1.4Test description (597)6.2.5_1.4.1Initial conditions (597)6.2.5_1.4.2Test procedure (597)6.2.5_1.4.3Message contents (597)6.2.5_1.5Test requirement (598)6.2.5A Configured transmitted power for CA (599)6.2.5A.1Configured UE transmitted Output Power for CA (intra-band contiguous DL CA and UL CA) (599)6.2.5A.1.1Test purpose (599)6.2.5A.1.2Test applicability (599)6.2.5A.1.3Minimum conformance requirements (599)6.2.5A.1.4Test description (601)6.2.5A.1.5Test requirement (602)6.2.5A.2Void (603)6.2.5A.3Configured UE transmitted Output Power for CA (inter-band DL CA and UL CA) (603)6.2.5A.3.1Test purpose (603)6.2.5A.3.2Test applicability (603)6.2.5A.3.3Minimum conformance requirements (603)6.2.5A.3.4Test description (605)6.2.5A.3.5Test requirement (606)6.2.5A.4Configured UE transmitted Output Power for CA (intra-band non-contiguous DL CA and ULCA) (607)6.2.5A.4.1Test purpose (607)6.2.5A.4.2Test applicability (607)6.2.5A.4.3Minimum conformance requirements (607)6.2.5A.4.4Test description (608)6.2.5A.4.5Test requirement (610)6.2.5B Configured UE transmitted Output Power for UL-MIMO (611)6.2.5B.1Test purpose (611)6.2.5B.2Test applicability (611)6.2.5B.3Minimum conformance requirements (611)6.2.5B.4Test description (612)6.2.5B.4.1Initial conditions (612)6.2.5B.4.2Test procedure (612)6.2.5B.4.3Message contents (613)6.2.5B.5Test requirement (613)6.2.5E Configured UE transmitted Output Power for UE category 0 (614)6.2.5E.4.1Initial conditions (614)6.2.5E.4.2Test procedure (614)6.2.5E.4.3Message contents (614)6.2.5E.5Test requirement (615)6.2.5EA Configured UE transmitted Power for UE category M1 (615)6.2.5EA.1Test purpose (615)6.2.5EA.2Test applicability (615)6.2.5EA.3Minimum conformance requirements (615)6.2.5EA.4Test description (616)6.2.5EA.4.1Initial condition (616)6.2.5EA.4.2Test procedure (617)6.2.5EA.4.3Message contents (617)6.2.5EA.5Test requirements (617)6.2.5F Configured UE transmitted Output Power for UE category NB1 (618)6.2.5F.1Test purpose (618)6.2.5F.2Test applicability (618)6.2.5F.3Minimum conformance requirements (618)6.2.5F.4Test description (619)6.2.5F.4.1Initial conditions (619)6.2.5F.4.2Test procedure (620)6.2.5F.4.3Message contents (620)6.2.5F.5Test requirement (620)6.2.5G Configured UE transmitted Output Power for V2X Communication (620)6.2.5G.1Configured UE transmitted Output Power for V2X Communication / Non-concurrent with E-UTRA uplink transmission (621)6.2.5G.1.1Test purpose (621)6.2.5G.1.2Test applicability (621)6.2.5G.1.3Minimum conformance requirements (621)6.2.5G.1.4Test description (622)6.2.5G.1.4.1Initial conditions (622)6.2.5G.1.4.2Test procedure (622)6.2.5G.1.4.3Message contents (622)6.2.5G.1.5Test requirements (622)6.2.5G.2Configured UE transmitted Output Power for V2X Communication / Simultaneous E-UTRAV2X sidelink and E-UTRA uplink transmission (622)6.2.5G.2.1Test purpose (623)6.2.5G.2.2Test applicability (623)6.2.5G.2.3Minimum conformance requirements (623)6.2.5G.2.4Test description (625)6.2.5G.2.4.1Initial conditions (625)6.2.5G.2.4.2Test procedure (626)6.2.5G.2.4.3Message contents (626)6.2.5G.2.5Test requirements (626)6.3Output Power Dynamics (627)6.3.1Void (627)6.3.2Minimum Output Power (627)6.3.2.1Test purpose (627)6.3.2.2Test applicability (627)6.3.2.3Minimum conformance requirements (627)6.3.2.4Test description (627)6.3.2.4.1Initial conditions (627)6.3.2.4.2Test procedure (628)6.3.2.4.3Message contents (628)6.3.2.5Test requirement (628)6.3.2A Minimum Output Power for CA (629)6.3.2A.0Minimum conformance requirements (629)6.3.2A.1Minimum Output Power for CA (intra-band contiguous DL CA and UL CA) (629)6.3.2A.1.1Test purpose (629)6.3.2A.1.4.2Test procedure (631)6.3.2A.1.4.3Message contents (631)6.3.2A.1.5Test requirements (631)6.3.2A.2Minimum Output Power for CA (inter-band DL CA and UL CA) (631)6.3.2A.2.1Test purpose (631)6.3.2A.2.2Test applicability (632)6.3.2A.2.3Minimum conformance requirements (632)6.3.2A.2.4Test description (632)6.3.2A.2.4.1Initial conditions (632)6.3.2A.2.4.2Test procedure (633)6.3.2A.2.4.3Message contents (633)6.3.2A.2.5Test requirements (633)6.3.2A.3Minimum Output Power for CA (intra-band non-contiguous DL CA and UL CA) (634)6.3.2A.3.1Test purpose (634)6.3.2A.3.2Test applicability (634)6.3.2A.3.3Minimum conformance requirements (634)6.3.2A.3.4Test description (634)6.3.2A.3.4.1Initial conditions (634)6.3.2A.3.4.2Test procedure (635)6.3.2A.3.4.3Message contents (635)6.3.2A.3.5Test requirements (635)6.3.2B Minimum Output Power for UL-MIMO (636)6.3.2B.1Test purpose (636)6.3.2B.2Test applicability (636)6.3.2B.3Minimum conformance requirements (636)6.3.2B.4Test description (636)6.3.2B.4.1Initial conditions (636)6.3.2B.4.2Test procedure (637)6.3.2B.4.3Message contents (637)6.3.2B.5Test requirement (637)6.3.2E Minimum Output Power for UE category 0 (638)6.3.2E.1Test purpose (638)6.3.2E.2Test applicability (638)6.3.2E.3Minimum conformance requirements (638)6.3.2E.4Test description (638)6.3.2E.4.1Initial conditions (638)6.3.2E.4.2Test procedure (639)6.3.2E.4.3Message contents (639)6.3.2E.5Test requirement (639)6.3.2EA Minimum Output Power for UE category M1 (639)6.3.2EA.1Test purpose (639)6.3.2EA.2Test applicability (640)6.3.2EA.3Minimum conformance requirements (640)6.3.2EA.4Test description (640)6.3.2EA.4.1Initial condition (640)6.3.2EA.4.2Test procedure (641)6.3.2EA.4.3Message contents (641)6.3.2EA.5Test requirements (641)6.3.2F Minimum Output Power for category NB1 (641)6.3.2F.1Test purpose (641)6.3.2F.2Test applicability (641)6.3.2F.3Minimum conformance requirements (642)6.3.2F.4Test description (642)6.3.2F.4.1Initial conditions (642)6.3.2F.4.2Test procedure (643)6.3.2F.4.3Message contents (643)6.3.2F.5Test requirements (643)6.3.3Transmit OFF power (643)6.3.3.5Test requirement (644)6.3.3A UE Transmit OFF power for CA (644)6.3.3A.0Minimum conformance requirements (644)6.3.3A.1UE Transmit OFF power for CA (intra-band contiguous DL CA and UL CA) (645)6.3.3A.1.1Test purpose (645)6.3.3A.1.2Test applicability (645)6.3.3A.1.3Minimum conformance requirements (645)6.3.3A.1.4Test description (645)6.3.3A.1.5Test Requirements (645)6.3.3A.2UE Transmit OFF power for CA (inter-band DL CA and UL CA) (646)6.3.3A.2.1Test purpose (646)6.3.3A.2.2Test applicability (646)6.3.3A.2.3Minimum conformance requirements (646)6.3.3A.2.4Test description (646)6.3.3A.2.5Test Requirements (646)6.3.3A.3UE Transmit OFF power for CA (intra-band non-contiguous DL CA and UL CA) (646)6.3.3A.3.1Test purpose (646)6.3.3A.3.2Test applicability (646)6.3.3A.3.3Minimum conformance requirements (647)6.3.3A.3.4Test description (647)6.3.3A.3.5Test Requirements (647)6.3.3B UE Transmit OFF power for UL-MIMO (647)6.3.3B.1Test purpose (647)6.3.3B.2Test applicability (647)6.3.3B.3Minimum conformance requirement (647)6.3.3B.4Test description (647)6.3.3B.5Test requirement (648)6.3.3C 6486.3.3D UE Transmit OFF power for ProSe (648)6.3.3D.0Minimum conformance requirements (648)6.3.3D.1UE Transmit OFF power for ProSe Direct Discovery (648)6.3.3D.1.1Test purpose (649)6.3.3D.1.2Test applicability (649)6.3.3D.1.3Minimum Conformance requirements (649)6.3.3D.1.4Test description (649)6.3.3D.1.5Test requirements (650)6.3.3E UE Transmit OFF power for UE category 0 (650)6.3.3E.1Test purpose (650)6.3.3E.2Test applicability (650)6.3.3E.3Minimum conformance requirement (650)6.3.3E.4Test description (651)6.3.3E.5Test requirement (651)6.3.3EA UE Transmit OFF power for UE category M1 (651)6.3.3EA.1Test purpose (651)6.3.3EA.2Test applicability (651)6.3.3EA.3Minimum conformance requirements (651)6.3.3EA.4Test description (651)6.3.3EA.5Test requirements (652)6.3.3F Transmit OFF power for category NB1 (652)6.3.3F.1Test purpose (652)6.3.3F.2Test applicability (652)6.3.3F.3Minimum conformance requirement (652)6.3.3F.4Test description (652)6.3.3F.5Test requirement (652)6.3.4ON/OFF time mask (652)6.3.4.1General ON/OFF time mask (652)6.3.4.1.1Test purpose (652)6.3.4.1.2Test applicability (653)。
Neural NetworksIngrid RussellDepartment of Computer ScienceUniversity of HartfordWest Hartford, CT 06117irussell@IntroductionThe power and usefulness of artificial neural networks have been demonstrated in several applications including speech synthesis, diagnostic problems, medicine, business and finance, robotic control, signal processing, computer vision and many other problems that fall under the category of pattern recognition. For some application areas, neural models show promise in achieving human-like performance over more traditional artificial intelligence techniques.What, then, are neural networks? And what can they be used for? Although von-Neumann-architecture computers are much faster than humans in numerical computation, humans are still far better at carrying out low-level tasks such as speech and image recognition. This is due in part to the massive parallelism employed by the brain, which makes it easier to solve problems with simultaneous constraints. It is with this type of problem that traditional artificial intelligence techniques have had limited success. The field of neural networks, however, looks at a variety of models with a structure roughly analogous to that of a set of neurons in the human brain.The branch of artificial intelligence called neural networks dates back to the 1940s, when McCulloch and Pitts [1943] developed the first neural model. This was followed in 1962 by the perceptron model, devised by Rosenblatt, which generated much interest because of its ability to solve some simple pattern classification problems. This interest started to fade in 1969 when Minsky and Papert [1969] provided mathematical proofs of the limitations of the perceptron and pointed out its weakness in computation. In particular, it is incapable of solving the classic exclusive-or (XOR) problem, which will be discussed later. Such drawbacks led to the temporary decline of the field of neural networks.The last decade, however, has seen renewed interest in neural networks, both among researchers and in areas of application. The development of more-powerful networks, better training algorithms, and improved hardware have all contributed to the revival of the field. Neural-network paradigms in recent years include the Boltzmann machine, Hopfield’s network, Kohonen’s network, Rumelhart’s competitive learning model, Fukushima’s model, and Carpenter and Grossberg’s Adaptive Resonance Theory model [Wasserman 1989; Freeman and Skapura 1991]. The field has generated interest from researchers in such diverse areas as engineering, computer science, psychology, neuroscience, physics, and mathematics. We describe several of the more important neural models, followed by a discussion of some of the available hardware and software used to implement these models, and a sampling of applications.DefinitionInspired by the structure of the brain, a neural network consists of a set of highly interconnected entities, called nodes or units . Each unit is designed to mimic itsbiological counterpart, the neuron. Each accepts a weighted set of inputs and responds with an output. Figure 1 presents a picture of one unit in a neural network.1x 3x()A f S = 2xFigure 1. A single unit in a neural network. Let ),...,,(21n x x x X = , where the are real numbers, represent the set of inputs presented to the unit U . Each input has an associated weight that represents the strength i xof that particular connection. Let ),...,,(21n w w w W = , with real, represent the weightvector corresponding to the input vector i w X . Applied to U , these weighted inputs producea net sum at U given by ∑⋅==V W x w S i i .Learning rules, which we will discuss later, will allow the weights to be modified dynamically.The state of a unit U is represented by a numerical value A , the activation value of U . An activation function f determines the new activation value of a unit from the net sum to the unit and the current activation value. In the simplest case, f is a function of only the net sum, so ()A f S =. The output at unit U is in turn a function of A , usually taken to be just A .A neural network is composed of such units and weighted unidirectional connections between them. In some neural nets, the number of units may be in thethousands. The output of one unit typically becomes an input for another. There may also be units with external inputs and/or outputs. Figure 2 shows one example of a possible neural network structure.Figure 2. An example of a neural network structure.For a simple linear network , the activation function is a linear function, so thatf(cS)=cf(S),f(S 1+S 2)=f(S 1)+f(S 2)Another common form for an activation function is a threshold function : the activation value is 1 if the net sum S is greater than a given constant T , and is 0 otherwise.Single-Layer Linear NetworksA single –layer neural network consists of a set of units organized in a layer. Each unit U i receives a weighted input x j with weight w ji . Figure 3 shows a single-layer linear model with m inputs and n outputs.Figure 3. A single-layer linear model. Let be the input vector and let the activation function f be simply, so that the activation value is just the net sum to a unit. The (m x x x X ,,,21… =)n m × weight matrix is111212122212n n m m mn w w w w w w W w w w ⎛⎞⎜⎟⎜⎟=⎜⎟⎜⎟⎝⎠…… … Thus the output y k at unit U k is x 1x 2x my 1 y 2 y n()1212,,,k k k mk m x x y w w w x ⎛⎞⎜⎟⎜⎟=⎜⎟⎜⎟⎝⎠…So the output vector is given by(12,,,T n Y y y y = …)111T nx mx mx Y W X =Learning RulesA simple linear network, with its fixed weights, is limited in the range of output vectors it can associate with input vectors. For example, consider the set of input vectors (x 1,x 2), where each x i is either 0 or 1. No simple linear network can produce outputs as shown in Table 1, for which the output is the boolean exclusive-or (XOR) of the inputs. (You can easily show that the two weights w l and w 2 would have to satisfy threeinconsistent linear equations.) Implementing the XOR function is a classic problem in neural networks, as it is a subproblem of other more complicated problems.Table 1.Inputs and outputs for a neural net that implements the boolean exclusives (XOR) function.Hence, in addition to the network topology, an important component of mostneural networks is a learning rule . A learning rule allows the network to adjust its connection weights in order to associate given input vectors with corresponding output vectors. During training periods, the input vectors are repeatedly presented, and the weights are adjusted according to the learning rule, until the network learns the desiredassociations, i.e., until . It is this ability to learn that is one of the mostattractive features of neural networks.T Y W X = A single-layer model usually uses either the Hebb rule or the delta rule .In the Hebb rule, the change ij w δin the weights is calculated as follows. Let()(11,,,,,T m )n X x x Y y y ……be the input and output vectors that we wish to associate. Ineach training iteration, the weights are adjusted by,ij i j w ex y δ=where e is a constant called the learning rate , usually taken to be the reciprocal of the number of training vectors presented. During the training period, a number of suchiterations can be made, letting the (),X Y pairs vary over the associations to be learned. A network using the Hebb rule is guaranteed (by mathematical proof) to be able to learn associations for which the set of input vectors are orthogonal. [McClelland andRumelhart et al. 1986]. A disadvantage of the Hebb rule is that if the input vectors are not mutually orthogonal, interference may occur and the network may not be able to learn the associations.The delta rule was developed to address the deficiencies of the Hebb rule. Under the delta rule, the change in weight is()ij i j j w rx t y δ=−Wherer is the learning rate,t j is the target output, andy j is the actual output at unit U j .The delta rule changes the weight vector in a way that minimizes the error , the difference between the target output and the actual output. It can be shownmathematically that the delta rule provides a very efficient way to modify .the initial weight vector toward the optimal one (the one that corresponds to minimum error)[McClelland and Rumelhart et al. 1986]. It is possible for a network to learn moreassociations with the delta rule than with the Hebb rule. McClelland and Rumelhart et al.prove that a network using the delta rule can learn associations whenever the inputs are linearly independent [1986].Threshold NetworksMuch early work in neural networks involved the perceptron . Devised byRosenblatt, a perceptron is a single-layer network with an activation function given by1()0if S T f S otherwise >⎧=⎨⎩where T is some constant. Because it uses a threshold function, such a network is called a threshold network .But even though it uses a nonlinear activation function, the perceptron still cannot implement the XOR function. That is, a perceptron is not capable of responding with an output of 1 whenever it is presented with input vectors (0,l) or (1,0), and responding with output 0 otherwise.The impossibility proof is easy. There would have to be a weight vector for which for which the scalar product net sum(1112,W w w = )111212S W X w x w x =⋅=+leads to an output of 1 for input (0,l) or (1,0), and 0 otherwise (see Table 2).Table 2.Inputs, net sum, and desired output for a perceptmn that implementsthe boolean exclusives (XOR) function.Now, the line with equation w ll x l + w 21x 2 = T divides the x l x 2-plane into tworegions, as illustrated in Figure 4. Input vectors that produce a net sum S greater than T lie on one side of the line, while those with net sum less than T lie on the other side. For the network to represent the XOR function, the inputs (1,l) and (0, 0), with sums (w l +w 2)w11x1 + w21x2 = T(0,1) (1,1)(0,0) (1,0)Figure 4. The graph of w11x1+w21x2=T.and 0, must produce outputs on one side, while the inputs (1, 0) and (0, 1), with sums w l and w2, must produce outputs on the other side. But if w l> T and w2> T, then w l+ w2> T; and similarly for <. So a perceptron cannot represent the XOR function.In fact, there are many other functions that cannot be represented by a single-layer network with fixed weights. While such limitations were the cause of a temporary decline of interest in the perceptron and in neural networks in general, the perceptron laid foundations for much of the later work in neural networks. The limitations of single-layer networks can, in fact, be overcome by adding more layers; as we will see in the following section, there is a multilayer threshold system that can represent the XOR function.Multilayer NetworksA multilayer network has two or more layers of units, with the output from one layer serving as input to the next. The layers with no external output connections are referred to as hidden layers (Figure 5).However, any multilayer system with fixed weights that has a linear activation function is equivalent to a single-layer linear system. Take, for example, the case of atwo-layer linear system. The input vector to the first layer is X , the output ofthe first layer is given as input to the second layer, and the second layer produces output 1Y W X = 2Z W Y = .hidden layerFigure 5. A multilayer network.Hence()()2121Z W W X W W X == Consequently, the system is equivalent to a single-layer network with weight matrix W = W 2W 1. By induction, a linear system with any number n of layers is equivalent to a single-layer linear system whose weight matrix is the product of the n intermediate weight matrices.On the other hand, a multilayer system that is not linear can provide morecomputational capability than a single-layer system. For instance, the problems encountered by the perceptron can be overcome with the addition of hidden layers; Figure 6 demonstrates how a multilayer system can represent the XOR function. The threshold is set to zero, and consequently a unit responds if its activation is greater than zero.The weight matrices for the two layers are12111,.111W W −⎛⎞⎛==⎜⎟⎜−⎝⎠⎝⎞⎟⎠, We thus get 12111,1000T T W W ⎛⎞⎛⎞⎛⎞==⎜⎟⎜⎟⎜⎟⎝⎠⎝⎠⎝⎠12000,1111T T W W ⎛⎞⎛⎞⎛⎞,==⎜⎟⎜⎟⎜⎟⎝⎠⎝⎠⎝⎠12100,0100T T W W ⎛⎞⎛⎞⎛⎞,==⎜⎟⎜⎟⎜⎟⎝⎠⎝⎠⎝⎠12000,0000T T W W ⎛⎞⎛⎞⎛⎞.==⎜⎟⎜⎟⎜⎟⎝⎠⎝⎠⎝⎠With input vector (1,0) or (0,l), the output produced at the outer layer is 1; otherwise it is 0.Multilayer networks have proven to be very powerful. In fact, any booleanfunction can be implemented by such a network [McClelland and Rumelhart 1988].Figure 6. A multilayer system representation of the XOR function.Multilayer networks have proven to be very powerful. In fact, any boolean function can be implemented by such a network [McClelland and Rumelhart 1988].Multilayer Networks with LearningNo learning algorithm had been available for multilayer networks until Rumelhart, Hinton, and Williams introduced the backpropagation training algorithm, also referred to as the generalized delta rule [1988]. At the output layer, the output vector is compared to the expected output. If the difference is zero, no changes are made to the weights of the connections. If the difference is not zero, the error is calculated from the delta rule and is propagated back through the network. The idea, similar to that of the delta rule, is to adjust the weights to minimize the difference between the real output and the expected output. Such networks can learn arbitrary associations by using differentiable activation functions. A theoretical foundation of backpropagation can be found in McClelland and Rumelhart et al. [1986] and in Rumelhart et al. [1988].One drawback of backpropagation is its slow rate of learning, making it less than ideal for real-time use. In spite of some drawbacks, backpropagation has been a widely used algorithm, particularly in pattern recognition problems.All the models discussed so far use supervised learning, i.e., the network is provided the expected output and trained to respond correctly. Other neural network models employ unsupervised learning schemes. Unsupervised learning implies the absence of a trainer and no knowledge beforehand of what the output should be for any given input. The network acts as a regularity detector and tries to discover structure in the patterns presented to it. Such networks include competitive learning, for which there are four major models [Wasserman 1989; Freeman and Skapura 1991; McClelland and Rumelhart et al. 1986].Software and Hardware ImplementationIt is relatively easy to write a program to simulate one of the networks described in the preceding sections (see, e.g., Dewdney [1992]); and a number of commercial software packages are available, including some for microcomputers. Many programs feature a neural-network development system that supports several different neural types, to allow the user to build, train, and test networks for different applications. Reid and Zeichick provide a description of 50 commercial neural-network products, as well as pricing information and the addresses of suppliers [1992].The training of a neural network through software simulation demands intensive mathematical computation, often leading to excessive training times on ordinary general-purpose processors. A neural network accelerator board, such as the NeuroBoard developed to support the NeuroShell package, can provide high-speed performance. NeuroBoard’s speed is up to 100 times that of a 20 MHz 30386 chip with a math co-processor.Another alternative is a chip that implements neural networks in hardware;both analog and digital implementations are available. Carver Mead at UCLA, a leading researcher in analog neural-net chips, has developed an artificial retina [1989]. Two companies lead in commercialized neural network chip development: Intel, with its 80170 ETANN (Electronically Trainable Artificial Neural Network) chip, and NeuralSemiconductor, with its DNNA (Digital Neural Network Architecture) chip. These chips, however, do not have the capabilities of on-chip learning. In both cases, the chip is interfaced with a software simulation package, based on backpropagation, which is used for training and adjustment of weights; the adjusted weights are then transferred to the chip [Caudill 1991]. The first chips with on-chip training capability should be available soon.ApplicationsNeural networks have been applied to a wide variety of different areas including speech synthesis, pattern recognition, diagnostic problems, medical illnesses, robotic control and computer vision.Neural networks have been shown to be particularly useful in solving problems where traditional artificial intelligence techniques involving symbolic methods have failed or proved inefficient. Such networks have shown promise in problems involving low-level tasks that are computationally intensive, including vision, speech recognition, and many other problems that fall under the category of pattern recognition. Neural networks, with their massive parallelism, can provide the computing power needed for these problems. A major shortcoming of neural networks lies in the long training times that they require, particularly when many layers are used. Hardware advances should diminish these limitations, and neural-network-based systems will become greater complements to conventional computing systems.Researchers at Ford Motor Company are developing a neural-network system that diagnoses engine malfunctions. While an experienced technician can analyze engine malfunction given a set of data, it is extremely complicated to design a rule-based expert system to do the same diagnosis. Marko et al. [I990] trained a neural net to diagnose engine malfunction, given a number of different faulty states of an engine such as open plug, broken manifold, etc. The trained network had a high rate of correct diagnoses. Neural nets have also been used in the banking industry, for example, in the evaluation of credit card applications.Most neural network applications, however, have been concentrated in the area of pattern recognition, where traditional algorithmic approaches have been ineffective. Suchnets have been used for classifying a given input into one of a number of categories and have demonstrated success, even with noisy input, when compared to other more conventional techniques.Since the 1970s, work has been done on monitoring the Space ShuttleMain Engine (SSME), involving the development of an Integrated Diagnostic System (IDS). The IDS is a hierarchical multilevel system, which integrates various fault detection algorithms to provide a monitoring system that works for all stages of operation of the SSME. Three fault-detection algorithms have been used, depending on the SSME sensor data. These employ statistical methods that have a high computational complexity and a low degree of reliability, particularly in the presence of noise. Systems based on neural networks offer promise for a fast and reliable real-time system to help overcome these difficulties, as is seen in the work of Dietz et al. [1989]. This work involves the development of a fault diagnostic system for the SSME that is based on three-layer backpropagation networks. Neural networks in this application allow for better performance and for the diagnosis to be accomplished in real time. Furthermore, because of the parallel structure of neural networks, better performance is realized by parallel algorithms running on parallel architectures.At Boeing Aircraft Company, researchers have been developing a neural network to identify aircraft parts that have already been designed and manufactured,in efforts to help them with the production of new parts. Given a new design, the system attempts to identify a previously designed part that resembles the new one. If one is found, it may be able to be modified to conform to the new specifications, thus saving time and money in the manufacturing process.Neural networks have also been used in biomedical research, which often involves the analysis and classification of an experiment's outcomes. Traditional techniques include the linear discriminant function and the analysis of covariance. The outcome of the experiment is in some cases dependent on a number of variables, with the dependence usually a nonlinear function that is not known. Such problems can, in many cases, be managed by neural networks.Stubbs [I990] presents three biomedical applications in which neural networks have been used, one of which involves drug design. Non-steroidal anti-inflammatorydrugs (NOSAIDs) are a commonly prescribed class of drugs, which in some cases may cause adverse reactions. The rate of adverse reactions (ADR) is about l0%, with 1% of these involving serious cases and 0.1% being fatal [Stubbs 1990]. A three-layer backpropagation neural network was developed to predict the frequency of serious ADR cases for 17 particular NOSAIDs, using four inputs, each representing a particular property of the drugs. The predicted rates given by the model matched within 5% the observed rates, a much better performance than by other techniques. Such a neural network might be used to predict the ADR rate for new drugs, as well as to determine the properties that tend to make for "safe" drugs.ConclusionIn the early days of neural networks, some overly optimistic hopes for success were not always realized, causing a temporary setback to research. Today, though, a solid basis of theory and applications is being formed; and the field has begun to flourish. For some tasks, neural networks will never replace conventional methods; but for a growing list of applications, the neural architecture will provide either an alternative or a complement to these other techniques.ReferencesCarpenter, G., and S. Grossberg. 1988. The ART of Adaptive Pattern Recognition by a Self-organizing Neural Network. IEEE Computer 21: 77-88.Caudill, M. 1990. Using neural nets: Diagnostic expert nets. A1Expert 5(9) (September 1990): 43-47.-------. 1991. Embedded neural networks. AI Expert 6 (4) (April 1991): 40-45. Denning, Peter J. 1992. The science of computing: Neural networks. American Scientist 80: 426-429.Dewdney, A.K. 1992. Computer recreations: Programming a neural net. Algorithm: Recreational Computing 3 (4) (October-December 1992): 11-15.Dietz, W., E. Kiech, and M. Ali. 1989. Jet and rocket engine fault diagnosis in real time. Journal of Neural Network Computing (Summer 1989): 5-18.Freeman, J., and D. Skapura. 1991. Neural Networks. Reading MA: Addison-Wesley.Fukushima, K. 1988. A neural network for visual pattern recognition. IEEE Computer 21 (3) (March 1988): 65-75.Kohonen, T. 1988. Self-Organization and Associative Memory. New York: Springer-Verlag.Marko, K., J. Dosdall, and J. Murphy. 1990. Automotive control system diagnosis using neural nets for rapid pattern classification of large data sets. In Proceedings of the International Joint Conference on Neural Networks I-33-I-38. Piscataway, NJ: IEEE Service Center.McClelland, J., D. Rumelhart, and the PDP Research Group. 1986. ParallelDistributed Processing: Explorations in the Microstructure of Cognition. Vol. 1: Foundations. Cambridge, MA: MIT Press.McClelland, J., and D. Rumelhart. 1988. Explorations in Parallel Distributed Processing. Cambridge, MA: MIT Press.McCulloch, W., and W. Pitts. 1943. A logical calculus of the ideas imminent in nervous activity. Bulletin of Mathematical Biophysics 5: 115-33.Mead, C. 1989. Analog VLSI and Neural Systems. Reading MA: Addison-Wesley. Minsky, M., and S. Papert. 1969. Perceptrons. Cambridge, MA: MIT Press.Reid, K., and A. Zeichick. 1992. Neural network products resource guide. AI Expert 7 (6) (June 1992): 50-56.Rumelhart, D., G. Hinton, and R. Williams. 1988. Learning internal representations by error propagation. In Neurocornputing, edited by J. Anderson and E. Rosenfeld, 675-695. Cambridge, MA: MIT Press.Russell, I. 1991. Self-organization and adaptive resonance theory networks. In Proceedings of the Fourth Annual Neural Networks and Parallel Processing Systems Conference, edited by Samir I. Sayegh, 227-234. Indianapolis, IN: Indiana University-Purdue University.Shea, P., and V. Lin. 1989. Detection of explosives in checked airline baggage using an artificial neural system. International Journal of Neural Networks 1 (4) (October 1989): 249-253.Stubbs, D. 1990. Three applications of neurocomputing in biomedical research. Neurocomputing 2: 61-66.Wasserman, P. 1989. Neural Network Computing. New York: Van Nostrand Reinhold.。
无穷概念计算机中的应用全文共四篇示例,供读者参考第一篇示例:无穷概念一直是人类思考的重要议题之一,无限大的概念在现实生活中很难想象和理解,但是在计算机科学领域中,无限大的概念却可以得到有效的应用和实现。
无穷概念计算机作为一种理论模型,被广泛应用在算法分析、程序设计、人工智能等诸多领域。
本文将探讨无穷概念计算机在这些领域中的应用。
首先,无穷概念计算机在算法分析中发挥着重要的作用。
在计算机科学中,算法是解决问题的方法和步骤的有限序列,而算法复杂度是衡量算法执行效率的指标。
无穷概念计算机可以有效地模拟算法的执行过程,从而得到算法的时间复杂度、空间复杂度等重要指标。
通过对算法的无穷概念计算机分析,可以更好地理解和优化算法,提高计算机程序的效率与性能。
其次,无穷概念计算机在程序设计中也起到关键作用。
程序设计是计算机科学领域的核心内容之一,无穷概念计算机可以用来模拟程序的执行过程,从而帮助程序员理解程序的运行逻辑和调试程序中的错误。
通过无穷概念计算机的模拟,程序设计者可以更好地优化程序结构,提高程序的可维护性和可扩展性,实现更好的软件开发效果。
此外,无穷概念计算机在人工智能领域也具有重要价值。
人工智能是模拟人类智能的理论和技术,无穷概念计算机可以提供更强大的计算能力和计算模型,从而实现更复杂的智能算法和模型。
通过对无穷概念计算机的模拟和分析,可以更好地理解人工智能算法中的复杂性和难度,从而推动人工智能技术的发展和应用。
总的来说,无穷概念计算机在计算机科学领域中的应用是非常广泛和重要的。
它不仅可以帮助人们更好地理解和分析算法、程序设计和人工智能等领域的问题,还可以提供更有效的模拟和计算能力,为解决实际问题提供更有效的解决方案。
随着计算机科学领域的不断发展和进步,无穷概念计算机的应用前景将越来越广阔,为人类社会的发展和进步做出更大的贡献。
第二篇示例:无穷概念在计算机科学领域中具有重要意义,它们在算法设计、数据结构、数学计算等方面发挥着关键作用。
神经网络人工智能的核心技术之一人工智能(Artificial Intelligence,简称AI)作为一种前沿的技术,正在深刻地改变我们的生活。
神经网络作为AI的核心技术之一,正发挥着重要的作用。
本文将从神经网络的定义、结构和应用领域等方面介绍神经网络人工智能的核心技术之一。
一、神经网络的定义和原理神经网络是一种模仿生物神经系统的信息处理方式的数学模型。
它由大量的节点和连接组成,每个节点可以接收和传递信息。
神经网络的核心原理是通过学习和调整连接权重,从而实现对输入模式的识别和输出模式的生成。
二、神经网络的结构神经网络通常由输入层、隐藏层和输出层组成。
输入层接收外部输入信息,隐藏层对输入信息进行处理和传递,输出层产生最终的输出结果。
每个层由多个节点(神经元)组成,节点之间通过连接进行信息传递。
神经网络的结构可以很复杂,层数和节点数的选择根据具体问题而定。
三、神经网络的学习方法神经网络的学习过程主要包括前向传播和反向传播两个阶段。
前向传播是指将输入信息在网络中依次传递,直到输出层产生结果。
反向传播是指通过计算输出结果与真实结果之间的误差,然后将误差从输出层向前传递,更新连接权重,以使网络能够更好地预测和学习。
四、神经网络的应用领域神经网络在许多领域都有广泛的应用。
在图像识别领域,神经网络可以帮助我们识别和分类图片;在自然语言处理领域,神经网络可以用于文本情感分析和机器翻译;在金融领域,神经网络可以用于股票预测和风险评估等。
除此之外,神经网络还可以应用于医学诊断、智能驾驶等多个领域。
五、神经网络的挑战和发展趋势尽管神经网络在许多领域取得了显著的成果,但仍面临一些挑战。
例如,神经网络需要大量的数据进行训练,并且训练时间较长;同时,训练后的神经网络也可能出现过拟合问题。
为了解决这些问题,研究人员正在不断改进神经网络算法和结构,并探索新的技术,如深度学习和强化学习,以提高神经网络的性能和稳定性。
综上所述,神经网络作为人工智能的核心技术之一,在计算机科学和人工智能领域发挥着重要的作用。
emernerf 原理解析全文共四篇示例,供读者参考第一篇示例:emernerf是一种新型的技术理念,它将人工智能和机器学习相结合,旨在帮助人们更好地理解和使用这些技术。
通过emernerf,我们能够更好地理解人工智能如何工作,并且更好地应用在实际生活中。
emernerf背后的原理是神经网络的演变和进化。
神经网络是人工智能的基础,它模拟人脑中的神经元之间的连接,并通过学习算法来训练和提高其性能。
传统的神经网络存在一些局限性,比如需要大量的数据来训练、容易过拟合等问题。
emernerf试图通过结合进化算法和神经网络来解决这些问题。
emernerf的工作原理可以简单概括为以下几个步骤:利用进化算法生成初始的神经网络结构。
然后,利用这个初始的神经网络来训练模型,获得初始的性能。
接着,在每一代中,通过进化算法对神经网络进行变异和交叉,生成新的神经网络结构。
通过比较不同神经网络的性能来筛选出优秀的个体,更新当前神经网络。
这样不断迭代,直到达到预定的性能指标为止。
emernerf的优势在于能够快速适应不同的环境和任务,并且可以在较短的时间内获得较好的性能。
相比于传统的神经网络,emernerf 更具有灵活性和可塑性,能够更好地适应新的需求和挑战。
emernerf还能够更好地利用稀疏的数据进行训练,并且能够更好地避免过拟合等问题。
需要注意的是,emernerf并不是一种万能的技术,它也有一些局限性。
在处理大规模数据集时,emernerf的计算复杂度可能会增加,导致训练时间过长。
由于emernerf采用了进化算法,可能会面临局部最优解的问题,需要细致的调整和设计。
第二篇示例:emernerf原理解析emernerf (Energetic Material Emulation by ReaxFF)是一种通过Reactive Force Field(ReaxFF)模拟技术来模拟含能材料的工具。
ReaxFF方法是一种基于原子的一般性的离子态反应势场,它可以用来描述化学反应的动力学和热力学过程。
一个拥有100多万台相变存储器器件的脉冲神经网络中对多记忆突触结构进行了实验演示众所周知,目前将深度神经网络和生物神经网络进行匹配的研究正处于瓶颈期。
而近期,IBM公司Irem Boybat等人在《Nature Communication》中发表的文章,有望改善此难题:他们设计了多记忆突触结构(multi-memristive synaptic architecture),能够在不增加功率密度的情况下提高突触的精度,并在一个拥有100多万台相变存储器(PCM)器件的脉冲神经网络(SNN)中对多记忆突触结构进行了实验演示。
我们人类的大脑可以用低于20瓦的能量来驱动,再想想我们的笔记本电脑,大约需要消耗80瓦的能量。
在能源效率和体积方面,我们的大脑比最先进的超级计算机要多出几个数量级。
自然,最先进的神经网络与生物的神经网络是完全无法抗衡的。
造成这个结果的其中一个原因是现今的计算机的架构还是依照冯·诺依曼的思想,即内存和处理工作是分开的。
这意味着数据需要不断来回穿梭,产生热量并且需要大量的能量——这是一个效率瓶颈。
当然,大脑是不存在这个问题的。
那么这便是改善该问题的一个突破口。
多记忆突触(Multi-Memristive Synapse)多记忆突触的结构如下图所示:多记忆突触概念a.一个多记忆突触的突触净权重(net synaptic weight)是由多记忆设备(multiple memristive devices)电导累加和()表示。
为了实现突触效能(synaptic efficacy),所有设备都使用电压读取信号(read voltage signal),V。
通过每个设备产生的电流被汇总起来,由此产生突触输出(synaptic output)。
b.为了捕捉突触可塑性(synaptic plasticity),在任何突触更新时,都只选择一个装置。
而突触的更新是通过改变被选择设备的电导率来决定的。
TSINGHUA SCIENCE AND TECHNOLOGYISSN1007-021412/23pp204-208Volume10,Number2,April2005Artificial Neural Network Maximum Power Point Trackerfor Solar Electric VehicleTheodore Amissah OCRAN, CAO Junyi (曹军义)**,CAO Binggang (曹秉刚), SUN Xinghua (孙兴华)Research and Development Center for Electric Vehicle, Xi’an Jiaotong University, Xi’an 710049, ChinaAbstract:This paper proposes an artificial neural network maximum power point tracker (MPPT) for solar electric vehicles. The MPPT is based on a highly efficient boost converter with insulated gate bipolar transis-tor (IGBT) power switch. The reference voltage for MPPT is obtained by artificial neural network (ANN) with gradient descent momentum algorithm. The tracking algorithm changes the duty-cycle of the converter so that the PV-module voltage equals the voltage corresponding to the MPPT at any given insolation, tempera-ture, and load conditions. For fast response, the system is implemented using digital signal processor (DSP).The overall system stability is improved by including a proportional-integral-derivative (PID) controller, which is also used to match the reference and battery voltage levels. The controller, based on the information sup-plied by the ANN, generates the boost converter duty-cycle. The energy obtained is used to charge the lith-ium ion battery stack for the solar vehicle. The experimental and simulation results show that the proposed scheme is highly efficient.Key words:artificial neural network; maximum power point tracker (MPPT); photovoltaic module; digital signal processor; solar electric vehicleIntroductionPhotovoltaic (PV) generation is gaining increased im-portance as a renewable source of energy. The undesir-able rapid changes of solar power, which usually occur in a running vehicle, arise as a result of shade from buildings, large trees, and clouds in the sky. Conven-tional PV systems have difficulties in responding to rapid variations due to shade. The main drawbacks of PV systems are that the initial installation cost is con-siderably high and the energy conversion efficiency (from 12% to 29%) is relatively low. Furthermore, in most cases, PV systems require a power conditioner (dc-dc or dc-ac converter) for load interface. Therefore, the overall system cost could be reduced drastically by using highly efficient power conditioners, such as the maximum power point tracker (MPPT), to extract and maintain the peak power from the PV module even when the above-mentioned unfavorable conditions occur.Various methods of maximum power tracking have been considered in PV power applications[1-12]. Among the hill climbing methods[1-5], the perturb and observe (P&O) method tracks maximum power point (MPP) by repeatedly increasing or decreasing the output voltage at MPP of the PV module. This method requires calcu-lation of d P/d V to determine the MPP[1,2,4]. Though the method is relatively simple to implement, it cannot track the MPP when the irradiance changes rapidly. Also, the method oscillates around the MPP instead ofReceived: 2004-03-24﹡﹡To whom correspondence should be addressed.E-mail: caojy@;Tel: 86-29-87570252Theodore Amissah OCRAN et al :Artificial Neural Network Maximum Power Point Tracker (205)directly tracking it. The incremental conductance technique (ICT) is the most accurate [6,7] among the other methods. This method gives good performance under rapidly changing conditions. However, the com-plex calculation of d I /d V and the complicated algorithm require use of a digital signal processor (DSP), which will usually increase the total system cost. The MPP tracking method using the short circuit current of the PV module utilizes the fact that the op-erating current at MPP of the PV module is linearly proportional to the short circuit current of the PV mod-ule [9]. Under rapidly changing atmospheric conditions, this method has a fast response speed of tracking the MPP, but the control circuit is complicated. The MPP tracking method using open circuit voltage of the solar panel [11] utilizes the fact that the operating voltage at MPP is almost linearly proportional to open circuit voltage at MPP of the PV module (using 76% of open circuit voltage as the MPP voltage). This method is very simple and cost-effective, but the reference volt-age does not change between samplings. MPPTs using the fuzzy logic [13,14] and the artificial neural network (ANN) [15] have been reported. These studies show that such modern control algorithms are capable of improv-ing the tracking performance as compared to the conventional methods.In this paper, we propose an ANN MPPT for solar electric vehicle PV systems. The tracking algorithm changes the duty ratio of the converter so that the PV module voltage equals the voltage corresponding to the MPP at that atmospheric condition. This adjustment is carried out by using the back-propagation ANN. The reference voltage to the MPP is obtained by an offline trained ANN. The controller generates the boost converter duty-cycle.1 PV Module CharacteristicsThe solar array characteristics significantly influencethe design of the converter and the control system, so the PV characteristics will be briefly reviewed here. The solar array is a nonlinear device and can be repre-sented as a current source model, as shown in Fig. 1. The traditional I -V characteristics of a solar array, when neglecting the internal shunt resistance, are givenby the following equation:Fig. 1 Equivalent circuit of a solar cell()o o s o g sat o o s sh exp 1V I R qI I I V I R AkT R+⎧⎫⎡⎤=−+−−⎨⎬⎢⎥⎣⎦⎩⎭ (1)where o I and are the output current and output voltage of the solar array; o V g I is the generated current under a given insolation; sat I is the reverse saturation current; q is the charge of an electron; k is the Boltzmann constant; A is the ideality factor for a P-N junction; is the array temperature; and are the intrinsic series and shunt resistances of the solar array.T s R sh R The saturation current of the solar array varies with temperature according to the following equation:3sat orr T I I T ⎡⎤=⎢⎥⎣⎦exp GO 11r qE Bk T T ⎡⎤⎛⎞−⎢⎥⎜⎢⎥⎝⎠⎣⎦⎟ (2) ()g sc 25100I I I K T λ=+−⎡⎣⎤⎦ (3)where is the reference temperature; r T or I is the saturation current at ; is the band-gap en-ergy of the semiconductor used in the solar array; B is also an ideality factor; r T GO E sc I is the short circuit current at 25°C; I K is the short-circuit current temperature coefficient and λ is the insolation in mW/cm².Equations (1)-(3) are used in the development of computer simulations for the solar array. The Matlab programming language is used. Figure 2 show the simulated current-voltage and power-voltage curves for the solar array at different insolations and different temperatures. These curves show that the output char-acteristics of the solar array are nonlinear and greatly affected by the solar radiation, temperature, and load condition. Each curve has a maximum power point (P max ), which is the optimal operating point for the ef-ficient use of the solar array.2 Artificial Neural NetworkANN technology has been successfully applied to206 Tsinghua Science and Technology , April 2005, 10(2): 204–208Fig. 2 Current-voltage and power-voltage curves for the solar array at different insolations and different temperatures (S is the solar radiation)solve very complex problems. Recently, its application in various fields is increasing rapidly [16,17].The instantaneous sum of error squares or error en-ergy at iteration is given byn 21()()2j j Cn e ε∈=∑n (4) where neuron lies in a layer to the right of neuron , and neuron lies in a layer to the right of neuronwhen neuron is a hidden unit;j i k j j ()j e n is the er-ror signal at the output of neuron for iteration ; and the set includes all the neurons in the outer layer of the network. The correction j n C ()ji w n ∆ to the synaptic weight ()ji w n is given by()()()()1ji ji j i w n w n n y n αηδ∆=∆−+ (5)where α is the momentum constant; η is the learn-ing-rate parameter of the back-propagation algorithm; is the local gradient. The error signal at the out-put is defined as()j n δ()()()j j j e n d n y n =− (6) where ()j d n is the desired response or wanted tar-gets and is the output signal. Adjustment of the weights for these layers is given by()j y n ()()()()()11ji ji ji j i w n w n w n n y n αηδ+=+−+i (7)From Eqs. (4) and (6), the mean squared error per-formance index can be rewritten as()()()()2ref A 1.2n V n V n ε=−The network training is performed repeatedly until theperformance index falls below a specified value, ideally to zero. In other words (2ref A V V ε=−)ε→0 implies 0, and then the connecting weights of the network are adjusted in such a way that the array voltage is identically equal to the maxi-mum power point voltage . At this stage the refer-ence voltage becomes equal to the maximum power point voltage .()→2ref A V V −A V mp V ref V mp V The configuration of the proposed three-layer feed-forward neural network function approximator is shown in Fig. 3. The neural network is used to obtain the voltage of the maximum power ()mp V n of the so-lar panel. The network has three layers: an input, a hidden, and an output layer. The numbers of nodes are two, four, and one in the input, the hidden, and output layers, respectively. The reference-cell open circuit voltage ()oc V n and the time parameter ()T n are supplied to the input layer of the neural network. These signals are directly passed to the nodes in the next hid-den layer. The node in the output layer provides the identified maximum power point voltage ()mp V n . The nodes in the hidden layer get signals from the inputTheodore Amissah OCRAN et al :Artificial Neural Network Maximum Power Point Tracker (207)layer and send their output to the node in the output layer. The sigmoid activation function is utilized in the layers of the network. The training program calculates the connecting weights with the bias for the input to hidden layer mapping, the connecting weights with bias for the hidden layer tooutput layer mapping. During the training, the con-necting weights are modified recursively until the best fit is achieved for the input-output patterns in the train-ing data. The training of the net was accomplished off-line using Matlab.I {1,1}W {1}b L {2,1}W {2}b Fig. 3 Feed-forward neural network function approximator3 Experimental/Simulation ResultsA PV array used for the collection of the experimental data is JDG-M-45 (Germany) type modules. The mod-ule has a maximum power output of 45 W and a 20-V open-circuit voltage at an irradiation of 1000 W/ and a temperature. The PV module specifica-tions provided by the manufacturer in Table 1.2m 25C °Table 1 Electrical specifications for the PV module(JDG-M-45) Maximum power, P m (W) 45 Short circuit current, I sc (A) 2.93 Open circuit voltage, V oc (V) 20 Voltage at max power point, V mp (V) 17.1 Current at max power point, I mp (A) 2.64 Size (mm ×mm ×mm) 971×441×28Mass (kg)5The feed-forward back-propagation ANN, as shown in Fig. 3 was trained with values obtained from ex-perimental data of the reference cell. Gradient descent algorithm was used in training as it improves the per-formance of the ANN, reducing the total error by changing the weights along its gradient. The training parameters are as follows: learning rate parameterη=0.1; momentum factor α=0.9; number of trainingiterations=10 000; error goal=0.000 001. The conver-gence error for the training process is shown in Fig. 4.Fig. 4 Convergence error for the neural network training processThe parameters used for the training of the ANN and the output values given by the ANN after the training can be found in Table 2. Various sets of reference cell open circuit voltage V oc and a time parameter T (as shown in Table 2) are supplied as the input to the ANN. In order to validate the learning capability of the ANN, other sets of V oc different from the one in Table 2 were also supplied to the ANN, which gave out values of V mp as expected. The software Matlab was used in the training of the ANN.Table 2 The results of the trained data given by the ANNHour of the day9:00 9:30 10:00 10:30 11:00 11:30 12:00 12:30 13:00 13:3014:00 Time parameter −1 −0.9 −0.8 −0.7 −0.6−0.5−0.4−0.3−0.2−0.1 0V oc measured 0.555 0.519 0.516 0.529 0.517 0.514 0.516 0.510 0.511 0.5090.508 V mp measured0.422 0.394 0.392 0.402 0.393 0.391 0.392 0.388 0.388 0.3870.386 V mp given by ANN0.4210.3790.3880.4160.395 0.394 0.392 0.388 0.388 0.3860.385208 Tsinghua Science and Technology , April 2005, 10(2): 204–208⎤⎥⎦The weights to the hidden layer 1 from input 1 are asfollows:I 2.1706 5.3865 3.2326 5.1766{1,1}.109.830927.943597.72508.5640W −−−⎡=⎢−−⎣ The weights to the output layer 2 are I {2,1}W =[]0.20390.00650.05610.3029.−− The bias tolayer 1 is {1}[60.0887 12.996 54.4753b =−−]1.5969.− The bias to layer 2 is .{2}[0.0397]b =−4 ConclusionsAn artificial neural network MPPT for charging the battery stack of a solar (hybrid) vehicle has been pro-posed in this paper. An off-line ANN, trained using a back-propagation with gradient descent momentum al-gorithm, is utilized for online estimation of reference voltage for the feed-forward loop. Experimental data is used for the offline training of the ANN, and software Matlab is used in the training of the net. The precision of the estimation has been verified by the graph of the convergence error. The proposed method has several advantages over the conventional methods, particularly in that there is no need for voltage and current sensors, and in that it avoids a complex calculation of power. The experimental and simulation results show that the proposed scheme is highly efficient. References[1] Hua C, Lin J, Shen C. Implementation of a DSP-controlledphotovoltaic system with peak power tracking. IEEE Trans. Ind. Electron ., 1998, 45(1): 99-107.[2] Koutroulis E, Kalaitzakis K, Voulgaris N C. Developmentof a microcontroller-based photovoltaic maximum power point tracking control system. IEEE Trans. Power Elec-tron., 2001, 16(1): 46-54.[3] Kuo Y C, Liang T J, Chen J F. Novel maximum powerpoint tracking controller for photovoltaic energy conver-sion system. IEEE Trans. Ind. Electron., 2001, 48(3): 594-601.[4] Sullivan C R, Powers M J. A high-efficiency maximumpower point tracker for photovoltaic arrays in a solar-powered race vehicle. In: Proc. IEEE Power Electron. Spec. Conf., Seattle, WA, USA, 1993: 574-580.[5] Simoes M G, Franceschetti N N. A risc-microcontrollerbased photovoltaic system for illumination applications. In: Proc. IEEE Applied Power Electron. Conf., New Orleans,LA, USA, 2000: 115-1156.[6] Tse K K, Ho M T, Chung H S, Hui S Y. A novel maximumpower point tracker for PV panels using switching fre-quency modulation. IEEE Trans. Power Electron., 2002, 17(6): 980-989.[7] Brambilla A, Gambarra M, Garutti A, Ronchi F. New ap-proach to photovoltaic arrays maximum power point track-ing. In: Proc. IEEE Power Electron. Spec. Conf., Charles-ton, SC, USA, 1999: 632-637.[8] Mutoh N, Matuo T, Okada K, Sakai M. Prediction-data-based maximum power point tracking method for photo-voltaic power generation systems. In: Proc. IEEE Power Electron. Spec. Conf., Caims, Austrilia, 2002: 1489-1494. [9] Noguchi T, Togashi S, Nakamoto R. Short-current pulse-based maximum power point tracking method for multiple photovoltaic and converter module system. IEEE Trans. Ind. Electron., 2002, 49(1): 217-223.[10] Lee D Y, Noh H J, Hyun D S, Choy I. An improvedMPPT converter using current compensation method for small scaled PV-applications. In: Proc. IEEE Applied Power Electron. Conf., Dalas, TX, USA, 2002: 540-545. [11] Enslin J H R, Wolf M S, Snyman D B, Sweigers W. Inte-grated photovoltaic maximum power point tracking con-verter. IEEE Trans. Ind. Electron., 1997, 44(6): 769-773. [12] Chen Y, Smedley K, Vacher F, Brouwer J. A new maxi-mum power point tracking controller for photovoltaic power generation. In: Proc. IEEE Applied Power Electron. Conf., Miami Beach, FL, USA, 2003: 56-62.[13] Nafeh A, Fahmy F H, El-Zahab E M A. Evaluation of aproper controller performance for maximum power point tracking of a stand-alone PV system. International Journal of Numerical Modelling , 2002, 15(4): 385-398.[14] Veerachary M, Senjyu T S, Uezato K. Feedforwardmaximum power point tracking of PV systems using fuzzy controller. IEEE Trans. Aerosp. and Electron. Syst., 2002, 38(3): 969-981.[15] Hiyama T, Kouzuma S, Ortmeyer T. Evaluation of neuralnetwork based real time maximum power tracking control-ler for PV system. IEEE Trans. on Energy Conv., 1995, 10(3): 543-548.[16] Bose B K. Artificial neural network applications in powerelectronics. In: Proc. IEEE Ind. Electron. Conf., Denver, CO, USA, 2001: 1631-1638.[17] Haykin S. Neural Networks—A Comprehensive Founda-tion, 2nd Edition. New York: Prentice Hall Inc., 1999.。