九年级数学竞赛讲座锐角三角函数附答案
- 格式:doc
- 大小:747.50 KB
- 文档页数:6
【例题求解】
【例1】 已知在△ABC 中,∠A 、∠B 是锐角,且sinA =13
5
,tanB=2,AB=29cm , 则S △ABC = .
思路点拨 过C 作CD ⊥AB 于D ,这样由三角函数定义得到线段的比,sinA=13
5
=AC CD ,tanB=2=BD CD ,设CD=5m ,AC =13m ,CD =2n ,BD =n ,解题的关键是求出m 、n 的值.
注:设△ABC 中,a 、b 、c 为∠A 、∠B 、∠C 的对边,R 为△ABC 外接圆的半径,不难证明:与锐角三角函数相关的几个重要结论:
(1) S △ABC =C ab B ac A bc sin 2
1
sin 21sin 21==;
(2)
R C
c
B b A a 2sin sin sin ===. 【例2】 如图,在△AB
C 中.∠ACB =90°,∠ABC =15°,B C=1,则AC=( ) A .32+ B .32- C .0.3
D .23-
思路点拨 由15°构造特殊角,用特殊角的三角函数促使边角转化.
注:(1)求(已知)非特角三角函数值的关是构造出含特殊角直角三角形.
(2)求(已知)锐角角函数值常根据定转化为求对应线段比,有时需通过等的比来转换.
【例3】 如图,已知△ABC 是等腰直角三角形,∠ACB =90°,过BC 的中点D 作DE ⊥AB 于E ,连结CE ,求sin ∠ACE 的值.
思路点拨 作垂线把∠ACE 变成直角三角形的一个锐角,将问题转化成求线段的比.
【例4】 如图,在△ABC 中,AD 是BC 边上的高,tanB=cos ∠DAC , (1)求证:AC =BD ; (2)若sinC=
13
12
,BC=12,求AD 的长. 思路点拨 (1)把三角函数转化为线段的比,利用比例线段证明; (2) sinC=AC
AD
=
1312,引入参数可设AD=12k ,A C =13k .
【例5】 已知:在Rt △ABC 中,∠C=90°,sinA 、sinB 是方程02=++q px x 的两个根. (1)求实数p 、q 应满足的条件;
(2)若p 、q 满足(1)的条件,方程02=++q px x 的两个根是否等于Rt △ABC 中两锐角A 、B 的正弦?
思路点拨 由韦达定理、三角函数关系建立p 、q 等式,注意判别式、三角函数值的有界性,建立严密约
束条件的不等式,才能准确求出实数p 、q 应满足的条件.
学历训练
1.已知α为锐角,下列结论①sin α+cos α=l ;②如果α>45°,那么sin α>cos α;③如果cos α>2
1 ,那么α<60°; ④αsin 11)-(sin 2-=α.正确的有 .
2.如图,在菱形ABCD 中,AE ⊥BC 于E ,BC=1,cosB
13
5
,则这个菱形的面积为 . 3.如图,∠C=90°,∠DBC=30°,AB =BD ,利用此图可求得tan75°= .
4.化简
(1)263tan 27tan 22-+ = .
(2)sin 2
l °+sin 2
2°+…+sin 2
88°+sin 2
89°= .
5.身高相等的三名同学甲、乙、丙参加风筝比赛.三人放出风筝线长、线与地面夹角如下表(假设风筝线是拉直的),则三人所放的风筝中( )
A .甲的最高
B .丙的最高
C .乙的最低
D .丙的最低
6.已知 sin αcos α=8
1
,且0°<α<45°则co α-sin α的值为( )
A .
23 B .2
3
- C .43 D .43-
7.如图,在△ABC 中,∠C =90°,∠ABC =30°,D 是AC 的中点,则ctg ∠DBC 的值是( )
A .3
B .32
C .
23 D .4
3 8.如图,在等腰Rt △ABC 中.∠C =90°,AC =6,D 是AC 上一点,若tan ∠DBA=5
1
,则AD 的长为( )
A .2
B .2
C . 1
D .22
9.已知关于x 的方程0)1(242=++-m x m x 的两根恰是某直角三角形两锐角的正弦,求m 的值. 10.如图,D 是△ABC 的边AC 上的一点,CD=2AD ,AE ⊥BC 于E ,若BD =8,sin ∠CBD=4
3
,求AE 的长. 11.若0°<α<45°,且sin αcon α=
16
7
3,则sin α= .
12.已知关于x 的方程0)cos 1(2sin 423=-+⋅-ααx x 有两个不相等的实数根,α为锐角,那么α的取值范围是 .
13.已知是△ABC 的三边,a 、b 、c 满足等式))((4)2(2a c a c b -+=,且有035=-c a ,则sinA+sinB+sinC 的值为 .
14.设α为锐角,且满足sin α=3cos α,则sin αcos α等于( ) A .
61 B .5
1 C .9
2 D .10
3 15.如图,若两条宽度为1的带子相交成30°的角,则重叠部分(图中阴影部分)的面积是( ) A .2 B .
2
3
C .1
D .21
16.如图,在△ABC 中,∠A =30°,tanB=
23
,AC=32,则AB 的长是( ) A .33+ B .322+ C .5 D .
2
9 17.己在△ABC 中,a 、b 、c 分别是∠A 、∠B 、∠C 的对边,且c=35,若关于x 的方程0)35(2)35(2=-+++b ax x b 有两个相等的实根,又方程0sin 5)sin 10(22=+-A x A x 的两实根的平方和为
6,求△ABC 的面积.
18.如图,已知AB=CD=1,∠ABC =90°,∠CBD °=30°,求AC 的长.