卡方检验
- 格式:ppt
- 大小:998.50 KB
- 文档页数:87
统计方法卡方检验卡方检验(Chi-Square Test)是一种统计方法,用于检验两个或多个分类变量之间的关系。
它通过比较观察到的频数与期望的频数之间的差异,来判断这些变量是否独立或存在相关性。
卡方检验可以用于不同类型的问题,包括:1.两个分类变量之间的关系:例如,我们可以使用卡方检验来确定性别和吸烟偏好之间是否存在关联。
2.多个分类变量之间的关系:例如,我们可以使用卡方检验来确定教育水平、职业和收入之间是否有关联。
卡方检验的原理是基于观察到的频数与期望的频数之间的差异。
观察到的频数是指在实际数据中观察到的变量组合的频数。
期望的频数是指在假设独立的情况下,根据变量边际分布计算得到的预期频数。
卡方检验通过计算卡方统计量来衡量这两组频数之间的差异。
在进行卡方检验之前,需要设置零假设(H0)和备择假设(Ha)。
零假设通常是指两个或多个分类变量之间独立的假设,而备择假设则是指两个或多个分类变量之间存在相关性的假设。
卡方检验的计算过程可以分为以下几个步骤:1.收集观察数据:将观察到的数据以交叉表格的形式整理起来。
表格的行和列分别代表两个或多个分类变量的不同组合,表格中的数值表示观察到的频数。
2.计算期望频数:根据变量边际分布计算得到期望频数。
期望频数是在零假设成立的情况下,根据变量边际分布计算得到的预期频数。
3.计算卡方统计量:根据观察频数和期望频数之间的差异计算卡方统计量。
卡方统计量的计算公式为:X^2=Σ((O-E)^2/E)其中,Σ代表对所有单元格进行求和,O表示观察到的频数,E表示期望频数。
4. 计算自由度:自由度(degrees of freedom)是进行卡方检验时需要考虑的自由变量或条件的数量。
在卡方检验中,自由度等于(行数 - 1)乘以(列数 - 1)。
5.查找临界值:使用给定的自由度和显著性水平(通常为0.05)查找卡方分布表格,以确定接受或拒绝零假设。
6.比较卡方统计量和临界值:如果卡方统计量大于临界值,则拒绝零假设,认为两个或多个分类变量之间存在相关性;如果卡方统计量小于临界值,则接受零假设,认为两个或多个分类变量之间独立。
卡方检验的名词解释
卡方检验是一种非参数检验方法,用于检验样本是否符合某种分布,或者两个样本是否来自于同一分布。
其基本思想是根据样本数据计算出某个统计量,然后通过这个统计量的值与期望值的比较来判断样本数据是否偏离预期分布。
卡方检验适用于样本数据不服从正态分布或样本大小较小的情况。
卡方检验的应用非常广泛,例如在医学研究中用于比较治疗方法的效果、在社会学研究中用于比较不同群体的特征等。
卡方检验的结果可以用卡方值、自由度和显著性水平来表示。
其中,卡方值表示样本数据与预期分布之间的差异,自由度表示卡方检验中减去的理论频数,显著性水平表示样本数据是否显著偏离预期分布。
在实际应用中,要根据具体情况选择合适的卡方检验方法,并根据卡方检验结果做出相应的决策。
卡方检验名词解释
卡方检验属于非参数检验,由于非参检验不存在具体参数和总体正态分布的假设,所以有时被称为自由分布检验。
参数和非参数检验最明显的区别是它们使用数据的类型。
非参检验通常将被试分类,如民主党和共和党,这些分类涉及名义量表或顺序量表,无法计算平均数和方差。
卡方检验分为拟合度的卡方检验和卡方独立性检验。
我们用几个例子来区分这两种卡方检验:
•对于可口可乐公司的两个领导品牌,大多数美国人喜欢哪一种?•公司采用了新的网页页面B,相较于旧版页面A,网民更喜欢哪一种页面?
以上两个例子属于拟合度的卡方检验,原因在于它们都是有关总体比例的问题。
我们只是将个体分类,并想知道每个类别中的总体比例。
它检验的内容仅涉及一个因素多项分类的计数资料,检验的是单一变量在多项分类中实际观察次数分布与某理论次数是否有显著差异。
拟合度的卡方检验定义:
主要使用样本数据检验总体分布形态或比例的假说。
测验决定所获得的的样本比例与虚无假设中的总体比例的拟合程度如何。
拟合度的卡方检验又叫最佳拟合度的卡方检验,为何取名“最佳拟合”?这是因为最佳拟合度的卡方检验的目的是比较数据(实际频数)与虚无假设。
确定数据如何拟合虚无假设指定的分布,因此取名“最佳拟合”。
关于拟合度的卡方检验有一些翻译上的区别,其实表达的是一个意思:
拟合度的卡方检验=卡方拟合优度检验=最佳拟合度卡方检验
以下统称:卡方拟合优度检验
卡方统计的公式:卡方卡方=χ2=Σ(fo−fe)2fe
公式中O代表observation,即实际频数;E代表Expectation,即期望频数。
卡方检验是一种统计检验方法,其原理是比较理论频数和实际频数的吻合度或拟合优度。
基本思想是通过统计样本的实际观测值与理论推断值之间的偏离程度,来判断理论值是否符合。
卡方检验的应用范围包括检验某个连续变量或离散变量是否与某种理论分布接近,即分布拟合检验;以及检验类别变量之间是否存在相关性,即列联分析。
卡方检验的基本公式是卡方值,它是由实际频数和理论频数之间的差的平方与理论频数的比值计算得出的。
卡方值的计算公式如下:
卡方值=∑(实际频数-理论频数)^2 / 理论频数
其中,∑表示求和,实际频数和理论频数分别表示观测频数和期望频数。
如果卡方值越大,说明观测频数和期望频数之间的偏离程度越大;如果卡方值越小,说明观测频数和期望频数之间的偏离程度越小,越趋于符合。
需要注意的是,卡方检验的前提假设是样本数据服从卡方分布,且样本量足够大。
同时,卡方检验对于样本量较小的数据可能不太稳定,此时可以考虑使用其他统计方法如Fisher's exact test等。
卡方检验什么是卡方检验卡方检验是一种用途很广的计数资料的假设检验方法。
它属于非参数检验的范畴,主要是比较两个及两个以上样本率( 构成比)以及两个分类变量的关联性分析。
其根本思想就是在于比较理论频数和实际频数的吻合程度或拟合优度问题。
它在分类资料统计推断中的应用,包括:两个率或两个构成比比较的卡方检验;多个率或多个构成比比较的卡方检验以及分类资料的相关分析等。
卡方检验的基本原理卡方检验是以χ2分布为基础的一种常用假设检验方法,它的无效假设H0是:观察频数与期望频数没有差别。
该检验的基本思想是:首先假设H0成立,基于此前提计算出χ2值,它表示观察值与理论值之间的偏离程度。
根据χ2分布及自由度可以确定在H0假设成立的情况下获得当前统计量及更极端情况的概率P。
如果P值很小,说明观察值与理论值偏离程度太大,应当拒绝无效假设,表示比较资料之间有显著差异;否则就不能拒绝无效假设,尚不能认为样本所代表的实际情况和理论假设有差别。
卡方值的计算与意义χ2值表示观察值与理论值之问的偏离程度。
计算这种偏离程度的基本思路如下。
(1)设A代表某个类别的观察频数,E代表基于H0计算出的期望频数,A与E之差称为残差。
(2)显然,残差可以表示某一个类别观察值和理论值的偏离程度,但如果将残差简单相加以表示各类别观察频数与期望频数的差别,则有一定的不足之处。
因为残差有正有负,相加后会彼此抵消,总和仍然为0,为此可以将残差平方后求和。
(3)另一方面,残差大小是一个相对的概念,相对于期望频数为10时,期望频数为20的残差非常大,但相对于期望频数为1 000时20的残差就很小了。
考虑到这一点,人们又将残差平方除以期望频数再求和,以估计观察频数与期望频数的差别。
进行上述操作之后,就得到了常用的χ2统计量,由于它最初是由英国统计学家Karl Pearson在1900年首次提出的,因此也称之为Pearson χ2,其计算公式为:其中,Ai为i水平的观察频数,Ei为i水平的期望频数,n为总频数,pi为i水平的期望频率。
第16章无序分类变量的统计推断——卡方检验通过前面的介绍可以知道,变量可以被分为连续性变量(定距、定比)和分类变量,后者又被细分为有序、无序变量两种。
对于各组所在总体的定量变量(即连续性变量)的平均水平,可以使用t检验和方差分析方法进行比较,秩和检验则用于比较各组所在总体为有序分类变量的分布情况是否相同。
这里将要介绍的卡方检验主要用于是在应用的程度上可以和t检验相媲美的另一种常用检验方法。
连续变量两组t检验多组方差分析分类变量有序秩和检验无序卡方检验16.1 卡方检验概述16.1.1 卡方检验的基本原理1. 卡方检验的基本思想卡方检验是以χ2分布为基础的一种常用假设检验方法,它的无效假设为H0是:观察频数与期望频数没有差异。
卡方检验的基本思想是:首先假设H0成立,基于此前提计算出χ2值,它表示观察值与理论值之间的偏离程度。
根据χ2分布及自由度可以确H0假设成立的情况下获得当前统计量及更极端情况的概率P。
如果P值很小,说明观察值与理论值偏离程度太大,应当拒绝原假设,表示比较资料之间有显著差异;否则不能拒绝无效假设,尚不能认为样本所代表的实际情况和理论假设有差别。
2.卡方值的计算与意义见复印资料柯惠新等人编著《调查研究中的统计分析法》卡方统计量,由于它最初是由英国统计学家Karl Pearson 在1900年首次提出的,因此也称之为Pearson χ2。
由卡方的计算公式可知,当观察频数与期望频数完全一致时,χ2值为0;观察频数与期望频数越接近,两者之间的差异越小,χ2值越小;反之,观察频数与期望频数差别越大,两者之间的差异越大,χ2值越大。
换言之,大的χ2值表明观察频数远离期望频数,即表明远离假设。
3.卡方检验的样本量要求一般认为,对于卡方检验中的每一个单元格,要求其最小期望频数均大于1,且至少有4/5的单元格期望频数大于5,此时使用卡方分布计算出的概率值才是准确的。
16.1.2 卡方检验的用途卡方检验最常间的用途就是考察无序分类变量各水平在两组或多组之间的分布是否一致。