基于ANSYS和ADAMS的连续液压装载机装载部研究
- 格式:pdf
- 大小:190.20 KB
- 文档页数:3
液压挖掘机工作装置在ADAMS中的运动仿真解析姓名:XXX部门:XXX日期:XXX液压挖掘机工作装置在ADAMS中的运动仿真解析虚拟样机技术在使用过程中为液压挖掘机设计提供了有效的方法和手段,在使用过程中受到了条件限制,较少的单位会对运行学进行仿真研究,降低了色剂方案可行性。
文章基于动力学仿真软件ADAMS建立起了挖掘机工作装置虚拟系统,更好的完成了前期处理工作,使得建模正确性更高。
液压缸顺序工作的运动仿真分析1.1.基于尺寸确定当液压的挖掘机工作装置尺寸以及基本结构都确定下来之后,该挖掘机的工作范围也基本确定下来。
简单理解就是挖掘机铲斗齿尖轨迹的包络图得以确定。
在包括图中,有些部分区间靠近的比较紧密,有的会深入到挖掘机停点底部下,这一个位置虽然还可以挖掘到,但是在挖掘过程中会引起土壤坍塌,从而影响机械运行稳定,使得施工安全性受到影响。
在以上动臂液压缸、斗杆液压缸和铲斗液压缸运动仿真分析过程中,选择的挖掘机工作顺序和方式一般都是在装置范畴内,这里讲解的顺序指的是,挖掘工作进行时,各个油缸都是根据一定顺序进行收缩或者伸出。
例如:挖掘进行时,需要先下降动动臂,再收回斗杆,这个动作完成之后,在使用铲斗进行挖掘。
1.2.顺序工作运动仿真实现的路线仿真路线是,在斗杆液压缸、动臂液压缸、铲斗液压缸上进行设置,一般在不同的时间段内,它的运动驱动函数都不同,需要进行调节处理,使得各缸在相应的工作极限范围内相互运行,这样就可以获得挖掘机的工作范围。
可以在液压缸移动副约束处添加移动驱动,改变运动方式,第 2 页共 5 页将其更换成位移运动方式。
运动的函数输入时,需要注意相匹配的的STEP函数。
对液压缸进行STEP函数值设置时,应该满足运动函数需求。
当完成了函数值输入之后,在运行状态下可以启动ADAMS软件的仿真模块。
1.3.仿真过程当工作面从最初的范围逐渐移动时,一般最初的指的是停机状态下。
可以适当的对斗杆、铲斗液压缸进行调整,将其保持在全缩的状态中,逐渐对动臂液压缸拉伸,将其缩小到CD弧线上。
基于ADAMS的液压挖掘机铲斗机构优化液压挖掘机铲斗机构是挖掘机的重要组成部分,其性能直接影响挖掘机的作业效率和稳定性。
为了优化液压挖掘机铲斗机构的性能,可以基于ADAMS进行建模和优化。
首先,可以使用ADAMS对液压挖掘机铲斗机构进行三维建模。
ADAMS 具有强大的建模能力,能够准确地描述物体的运动学和动力学特性。
通过建模,可以获得液压挖掘机铲斗机构的运动学和动力学参数,包括关节的位置、速度、加速度等。
这些参数对于优化设计是非常重要的。
其次,可以利用ADAMS进行动力学分析。
通过对液压挖掘机铲斗机构的动力学分析,可以确定其在工作过程中的受力情况和更好地理解其工作原理。
动力学分析可以揭示铲斗在不同工况下的受力特点,帮助我们理解其结构强度和稳定性,并为优化设计提供依据。
然后,可以使用ADAMS进行逆向优化。
通过将液压挖掘机铲斗机构的性能指标设为目标函数,将设计变量(如关节长度、连接方式等)设为待优化的参数,利用ADAMS的优化算法进行和调整,以找到使目标函数最小化的最佳设计方案。
通过逆向优化,可以根据实际需求来优化液压挖掘机铲斗机构的设计,提高其工作效率和稳定性。
最后,可以利用ADAMS进行静态和动态仿真。
通过仿真,可以验证优化后的液压挖掘机铲斗机构的性能是否满足设计要求,并对其工作过程进行评估和预测。
静态仿真可以检验铲斗机构的稳定性和载荷承受能力,而动态仿真可以模拟实际工作环境下的挖掘机作业过程,进一步验证其性能和可靠性。
综上所述,基于ADAMS的液压挖掘机铲斗机构优化可以通过建模、动力学分析、逆向优化和仿真等步骤进行。
通过这一过程,可以得到性能更优的液压挖掘机铲斗机构设计,提高挖掘机的作业效率和稳定性。
基于ADAMS的装载机工作装置动力学分析ADAMS(Advanced Dynamic Analysis of Mechanical Systems)是一种广泛应用于机械系统设计和分析中的动力学仿真软件。
装载机是一种常见的工程机械设备,用于搬运和装载各种物料。
本文将利用ADAMS软件对装载机的工作装置进行动力学分析,以探讨其运动规律和性能特点。
首先,我们需要建立装载机的运动学模型。
在ADAMS软件中,可以通过建立连接杆、关节等模型元素来描述装载机的结构,然后设置运动参数和约束条件。
特别是对于装载机的工作装置,需要考虑到各种关闭与打开装置的动作以及与装载机主体的协调运动。
接着,我们进行动力学仿真分析。
通过在ADAMS中添加质量、惯性力、弹簧、阻尼等物理特性模型元素来描述工作装置的动力学特性。
然后通过设定力学学习模型的参数,如质量、摩擦系数等,以模拟不同工作条件下的装载机运动行为。
在动力学仿真过程中,我们可以对工作装置的运动轨迹、速度、加速度等参数进行监测和分析。
通过观察工作装置在装载过程中的受力情况,可以评估其受载能力和运动稳定性。
同时,我们还可以根据仿真结果对工作装置的结构和工艺进行优化设计,以提高其工作效率和操作性。
另外,我们还可以利用ADAMS软件进行多体动力学分析,通过建立装载机和工作装置的多体模型,细化系统的结构和运动特性。
在多体动力学仿真中,我们可以模拟装载机在复杂道路条件下的运动行为,进一步评估其动态稳定性和操控性。
综上所述,基于ADAMS的装载机工作装置动力学分析可以帮助工程师深入理解装载机的运动规律和性能特点,为装载机的设计和优化提供有力支持。
通过仿真分析,可以有效减少实验测试的时间和费用,提高装载机的设计效率和性能表现。
希望本文的内容能够为相关领域的研究和应用人员提供参考和启发。