最新人教版高中数学选修2-2课后习题参考答案
- 格式:doc
- 大小:2.27 MB
- 文档页数:40
第一章导数及其应用1.1变化率与导数导数的观点A 级基础稳固一、选择题1. y= x2在 x= 1 处的导数为 ()A. 2x B. 2 C. 2+ x D. 1分析:由于 f(x)= x2,x= 1,因此y= f(1+x)- f (1)= (1+x)2- 1= 2x+ (x)2,所以y=(2+x)= 2.x答案: B2.一物体运动知足曲线方程s=4t2+ 2t- 3,且 s′(5)= 42(m/s),其实质意义是 () A.物体 5 秒内共走过42 米B.物体每 5 秒钟运动42 米C.物体从开始运动到第 5 秒运动的均匀速度是42 米/秒D.物体以 t= 5 秒时的刹时速度运动的话,每经过一秒,物体运动的行程为42 米分析:由导数的物理意义知,s′ (5)= 42(m/s)表示物体在t= 5 秒时的刹时速度.答案: D3.设函数 f (x)在点 x0邻近有定义,且有 f(x0+x)- f(x0 )= a x+ b(x)2,(a,b 为常数 ),则 ()A. f′ (x)= a B. f′ (x)= bC. f′ (x0)= a D. f′ (x0)= b分析:由于 f′(x=f( x0+x)-f(x)=0)xa x+ b(x)2=(a+ b x)= a,因此 f′(xx0)=a.答案: C4.已知 y=x+ 4,则 y′|x1= ________.=555A. 2B. 10C. 5 D.-10分析:由题意知y=1+x+ 4- 1+ 4=5+x-5,y+-5+-5所以=5x1=5x=. 所以 y′|xx x=xx=5x ( 5+ x +5) 10.答案: B5.假如某物体做运动方程为s = 2(1- t 2)的直线运动 (s 的单位为 m , t 的单位为 s),那么 其在 1.2 s 末的刹时速度为 ()A .- 4.8 m/sB .- 0.88 m/sC . 0.88 m/sD . 4.8 m/s解 析 : 运 动 物 体 在1.2s 末 的 瞬 时 速 度 即 为 s 在 1.2 处 的 导数 , 所 以f ( 1.2+ t )- f ( 1.2)=t222[1-( 1.2+t ) ]- 2×( 1- 1.2 )=2(- 答案: A 二、填空题6.设函数t - 2.4)=- 4.8(m/s).f(x)知足f ( 1)- f ( 1- x )=- 1,则 f ′(1)= ________.x分析: f ( 1)- f ( 1- x ) = f ( 1- x )- f ( 1)= f ′(1)=- 1.x- x答案:- 17.函数 f(x)= x 2+ 1 在 x = 1 处可导,在求 f ′(1)的过程中,设自变量的增量为x ,则函数的增量y = ________.分析:y = f(1+ x)- f(1) =- (1 2+ 1)=2 x + ( x)2.答案: 2 x + (x)28.某物体做匀速直线运动,其运动方程是 s = vt ,则该物体在运动过程中其均匀速度与任何时辰的刹时速度的大小关系是________.s ( +t )- s ( t )分析: v 0== s t 0=ttv ( t 0+ t )- v ( t 0)=v tt= v.t答案:相等三、解答题19.利用导数的定义,求函数y = x 2+ 2 在点 x = 1 处的导数. 解:由于y = 1 2+2 - 1 =( x + x ) x 2+ 2- 2x x -(x ) 2,因此y =- 2x - x ,( x + x ) 2· x 2 x ( x + x ) 2· x 2因此 y ′=y = - 2x - x2=- 23,( x +2xx ) · xx因此 y ′|x =1=- 2.10.在自行车竞赛中,运动员的位移与竞赛时间t 存在关系 s(t)= 10t + 5t 2(s 的单位是 m ,t 的单位是 s).(1)求 t = 20,t = 0.1 时的s 与s ;t(2)求 t = 20 时的速度.解: (1) 当 t = 20, t = 0.1 时,s = s(20+ t)- s(20)= 10(20+ 0.1)+ 5(20+ 0.1)2- (10 ×20+ 5× 202)= 1+ 20+ 5×0.01=21.05.因此s 21.05 = 210.5.= 0.1ts( + t)+(+ t) 2- 10t - 5t 2(2)v ==10 t 5 t =tt5(t ) 2+ 10 t + 10tt(5 t + 10+ 10t)= 10+ 10t ,t=因此 t = 20 时的速度即为10+ 10×20= 210(m/s).B 级 能力提高1.某物体运动规律是 s = t 2 - 4t + 5,若此物体的刹时速度为 0,则 t = ()A .3B .2.5C .2D .1分析: s = (t + t)2- 4(t +t) + 5- ( t 2- 4t + 5)= 2t t + ( t)2- 4 t ,由于 v =st= 2t - 4= 0,因此 t = 2.答案: C2.婴儿从出生到第24 个月的体重变化如下图,第二年婴儿体重的均匀变化率为________kg/ 月.分析:第二年婴儿体重的均匀变化率为14.25- 11.25= 0.25(kg/月 ).24- 12答案: 0.253.若一物体运动方程是 (s 的单位是 m , t 的单位是 s)3t 2+ 2( t ≥3),s =29+ 3( t - 3) 2( 0≤t < 3) .求: (1) 物体在 t ∈内的均匀速度;(2) 物体的初速度v 0;(3) 物体在 t = 1 时的刹时速度.解: (1) 由于物体在 t ∈内的时间变化量为t = 5-3= 2,物体在 t ∈内的位移变化量为:= × 2+ 2- (3 ×32+ 2)= 3×(52- 32s 3 5 )= 48,因此物体在 t ∈上的均匀速度为 s 48 = 24(m/s).= 2t (2) 求物体的初速度 v 0 即求物体在 t = 0 时的刹时速度.由于物体在 t = 0 邻近的均匀变化率为s ( +)- ( ) == ftftt29+ 3[( 0+ t )- 3]2- 29- 3( 0- 3) 2= 3t - 18.t因此物体在 t = 0 处的刹时变化率为,s (3 t - 18)=- 18,t =即物体的初速度为- 18 m/s.(3)物体在 t = 1 时的刹时速度即为函数在 t = 1 处的刹时变化率.由于物体在 t = 1 邻近的均匀变化率为:s ( + )- ( )= f 1 t f 1 = tt29+ 3[( 1+ t )- 3]2- 29- 3( 1- 3) 2t - 12,= 3t因此物体在 t = 1 处的刹时变化率为:s = (3 t - 12)=- 12.t即物体在 t = 1 时的速度为- 12 m/s.。
3.2.1 复数代数形式的加、减运算及其几何意义课时演练·促提升A组1.已知z1=2+i,z2=1-2i,则复数z=z2-z1对应的点位于()A.第一象限B.第二象限C.第三象限D.第四象限解析:z=z2-z1=(1-2i)-(2+i)=-1-3i,故z对应的点为(-1,-3),在第三象限.答案:C2.已知复数z满足z+i-3=3-i,则z等于()A.0B.2iC.6D.6-2i解析:z=3-i-(i-3)=6-2i.答案:D3.若复数z1=a-i,z2=-4+b i,z1-z2=6+i,z1+z2+z3=1(a,b∈R),则z3为()A.-1-5iB.-1+5iC.3-4iD.3+3i解析:∵z1-z2=(a-i)-(-4+b i)=a+4-(1+b)i=6+i,∴a=2,b=-2,∴z3=1-z1-z2=1-2+i+4+2i=3+3i.故选D.答案:D4.若复平面上的▱ABCD中,对应复数6+8i,对应复数为-4+6i,则对应的复数是()A.-1-7iB.2+14iC.1+7iD.2-14i解析:设对应的复数分别为z1与z2,则有于是2z2=2+14i,z2=1+7i,故对应的复数是-1-7i.答案:A5.A,B分别是复数z1,z2在复平面内对应的点,O是原点,若|z1+z2|=|z1-z2|,则三角形AOB一定是()A.等腰三角形B.直角三角形C.等边三角形D.等腰直角三角形解析:根据复数加(减)法的几何意义知,以为邻边所作的平行四边形的对角线相等,则此平行四边形为矩形,故三角形OAB为直角三角形.答案:B6.计算(-1+2i)+(i+i2)-|1+2i|=.解析:原式=-1+2i+(i-1)-=-2+3i-=-(2+)+3i.答案:-(2+)+3i7.已知复数z1=(a2-2)+(a-4)i,z2=a-(a2-2)i(a∈R),且z1-z2为纯虚数,则a=.解析:z1-z2=(a2-a-2)+(a-4+a2-2)i=(a2-a-2)+(a2+a-6)i(a∈R)为纯虚数,所以解得a=-1.答案:-18.已知z1=(3x+y)+(y-4x)i,z2=(4y-2x)-(5x+3y)i(x,y∈R).若z1-z2=13-2i,求z1,z2.解:∵z1-z2=(3x+y)+(y-4x)i-[(4y-2x)-(5x+3y)i]=[(3x+y)-(4y-2x)]+[(y-4x)+(5x+3y)]i=(5x-3y)+(x+4y)i,又z1-z2=13-2i,∴(5x-3y)+(x+4y)i=13-2i.∴解得∴z1=(3×2-1)+(-1-4×2)i=5-9i,z2=[4×(-1)-2×2]-[5×2+3×(-1)]i=-8-7i.9.在复平面内A,B,C三点对应的复数分别为1,2+i,-1+2i.(1)求对应的复数;(2)判断△ABC的形状;(3)求△ABC的面积.解:(1)对应的复数为2+i-1=1+i,对应的复数为-1+2i-(2+i)=-3+i,对应的复数为-1+2i-1=-2+2i.(2)∵||=,||=,||==2,∴||2+||2=||2,∴△ABC为直角三角形.(3)S△ABC=×2=2.B组1.复数z=x+y i(x,y∈R)满足条件|z-4i|=|z+2|,则2x+4y的最小值为()A.2B.4C.4D.16解析:∵复数z=x+y i(x,y∈R)满足|z-4i|=|z+2|,∴|x+(y-4)i|=|(x+2)+y i|,化简得x+2y=3.∴2x+4y≥2=2=2=4,当且仅当x=2y=时,等号成立.答案:C2.△ABC的三个顶点所对应的复数分别为z1,z2,z3,复数z满足|z-z1|=|z-z2|=|z-z3|,则z对应的点是△ABC的()A.外心B.内心C.重心D.垂心解析:设复数z与复平面内的点Z相对应,由△ABC的三个顶点所对应的复数分别为z1,z2,z3及|z-z1|=|z-z2|=|z-z3|可知点Z到△ABC的三个顶点的距离相等,由三角形外心的定义可知,点Z即为△ABC的外心.答案:A3.设纯虚数z满足|z-1-i|=3,则z=.解析:∵z为纯虚数,∴设z=b i(b∈R,且b≠0).由|z-1-i|=3,得|-1+(b-1)i|=3.∴1+(b-1)2=9.∴b-1=±2.∴b=1±2.答案:(1±2)i4.已知复数z=x+y i(x,y∈R),且|z-2|=,则的最大值为.解析:∵z=x+y i(x,y∈R),且|z-2|=,∴(x-2)2+y2=3.由图可知.答案:5.已知复平面内的A,B对应的复数分别是z1=sin2θ+i,z2=-cos2θ+icos 2θ,其中θ∈(0,π),设对应的复数是z.(1)求复数z;(2)若复数z对应的点P在直线y=x上,求θ的值.解:(1)∵点A,B对应的复数分别是z1=sin2θ+i,z2=-cos2θ+icos 2θ,∴点A,B的坐标分别是A(sin2θ,1),B(-cos2θ,cos 2θ),∴=(-cos2θ,cos 2θ)-(sin2θ,1)=(-cos2θ-sin2θ,cos 2θ-1)= (-1,-2sin2θ).∴对应的复数z=-1+(-2sin2θ)i.(2)由(1)知点P的坐标是,代入y=x,得-2sin2θ=-,即sin2θ=,∴sin θ=±.又θ∈(0,π),∴sin θ=,∴θ=.6.若z∈C,且|z+2-2i|=1,求|z-2-2i|的最小值.解:设z=x+y i,x,y∈R,由|z+2-2i|=1,得|z-(-2+2i)|=1,表示以(-2,2)为圆心,1为半径的圆,如图所示,则|z-2-2i|=表示圆上的点与定点(2,2)的距离,由数形结合得|z-2-2i|的最小值为3.7.设z1=1+2a i,z2=a-i,a∈R,A={z||z-z1|<},B={z||z-z2|≤2},已知A∩B=⌀,求a的取值范围.解:因为z1=1+2a i,z2=a-i,|z-z1|<,即|z-(1+2a i)|<,|z-z2|≤2,即|z-(a-i)|≤2,由复数减法及模的几何意义知,集合A是以 (1,2a)为圆心,为半径的圆的内部的点对应的复数,集合B是以(a,-1)为圆心,2为半径的圆周及其内部的点所对应的复数,若A∩B=⌀,则两圆圆心距大于或等于半径和,即≥3,解得a≤-2或a≥.中国书法艺术说课教案今天我要说课的题目是中国书法艺术,下面我将从教材分析、教学方法、教学过程、课堂评价四个方面对这堂课进行设计。
§1.1.1函数的平均变化率导学案【学习要求】1.理解并掌握平均变化率的概念.2.会求函数在指定区间上的平均变化率.3.能利用平均变化率解决或说明生活中的一些实际问题.【学法指导】从山坡的平缓与陡峭程度理解函数的平均变化率,也可以从图象上数形结合看平均变化率的几何意义.【知识要点】1.函数的平均变化率:已知函数y =f (x ),x 0,x 1是其定义域内不同的两点,记Δx = ,Δy =y 1-y 0=f (x 1)-f (x 0)= ,则当Δx ≠0时,商xx f x x f ∆-∆+)()(00=____叫做函数y =f (x )在x 0到x 0+Δx 之间的 .2.函数y =f (x )的平均变化率的几何意义:ΔyΔx =__________表示函数y =f (x )图象上过两点(x 1,f (x 1)),(x 2,f (x 2))的割线的 .【问题探究】在爬山过程中,我们都有这样的感觉:当山坡平缓时,步履轻盈;当山坡陡峭时,气喘吁吁.怎样用数学反映山坡的平缓与陡峭程度呢?下面我们用函数变化的观点来研究这个问题. 探究点一 函数的平均变化率问题1 如何用数学反映曲线的“陡峭”程度?问题2 什么是平均变化率,平均变化率有何作用?例1 某婴儿从出生到第12个月的体重变化如图所示,试分别计算从出生到第3个月与第6个月到第12个月该婴儿体重的平均变化率. 问题3 平均变化率有什么几何意义?跟踪训练1 如图是函数y =f (x )的图象,则:(1)函数f (x )在区间[-1,1]上的平均变化率为________; (2)函数f (x )在区间[0,2]上的平均变化率为________.探究点二 求函数的平均变化率例2 已知函数f (x )=x 2,分别计算f (x )在下列区间上的平均变化率: (1)[1,3];(2)[1,2];(3)[1,1.1];(4)[1,1.001].跟踪训练2 分别求函数f (x )=1-3x 在自变量x 从0变到1和从m 变到n (m ≠n )时的平均变化率.问题 一次函数y =kx +b (k ≠0)在区间[m ,n ]上的平均变化率有什么特点?探究点三 平均变化率的应用例3 甲、乙两人走过的路程s 1(t ),s 2(t )与时间t 的关系如图,试比较两人的平均速度哪个大?跟踪训练3 甲用5年时间挣到10万元,乙用5个月时间挣到2万元,如何比较和评价甲、乙两人的经营成果?【当堂检测】1.函数f (x )=5-3x 2在区间[1,2]上的平均变化率为__________2.一物体的运动方程是s =3+2t ,则在[2,2.1]这段时间内的平均速度为________3.甲、乙两厂污水的排放量W 与时间t 的关系如图所示,治污效果较好的是________.【课堂小结】1.函数的平均变化率可以表示函数值在某个范围内变化的快慢;平均变化率的几何意义是曲线割线的斜率,在实际问题中表示事物变化的快慢. 2.求函数f (x )的平均变化率的步骤: (1)求函数值的增量Δy =f (x 2)-f (x 1); (2)计算平均变化率Δy Δx =1212)()(xx x f x f --.【拓展提高】1.设函数()y f x =,当自变量x 由0x 改变到0x x +∆时,函数的改变量y ∆为( ) A .0()f x x +∆ B .0()f x x +∆ C .0()f x x ∆ D .00()()f x x f x +∆- 2.质点运动动规律23s t =+,则在时间(3,3)t +∆中,相应的平均速度为( )A .6t +∆B .96t t+∆+∆ C .3t +∆ D .9t +∆【课后作业】一、基础过关1.当自变量从x 0变到x 1时,函数值的增量与相应自变量的增量之比是函数 ( )A .在[x 0,x 1]上的平均变化率B .在x 0处的变化率C .在x 1处的变化率D .以上都不对 2.函数f (x )=2x 2-x 在x =2附近的平均变化率是( ) A .7B .7+ΔxC .7+2ΔxD .7+2(Δx )23.某物体的运动规律是s =s (t ),则该物体在t 到t +Δt 这段时间内的平均速度是 ( ) A .v =s (t +Δt )-s (t )ΔtB .v =s (Δt )ΔtC .v =s (t )tD .v =s (t +Δt )-s (Δt )Δt4. 如图,函数y =f (x )在A ,B 两点间的平均变化率是 ( )A .1B .-1C .2D .-25.一物体的运动方程是s =3+t 2,则在[2,2.1]时间内的平均速度为 ( ) A .0.41B .3C .4D .4.16.过曲线y =f (x )=x 2+1上两点P (1,2)和Q (1+Δx,2+Δy )作曲线的割线, 当Δx =0.1时,割线的斜率k =________. 二、能力提升7.甲、乙二人跑步路程与时间关系如右图所示,则________跑得快. 8.将半径为R 的球加热,若半径从R =1到R =m 时球的体积膨胀 率为28π3,则m 的值为________.9.在x =1附近,取Δx =0.3,在四个函数①y =x ,②y =x 2,③y =x 3,④y =1x 中,平均变化率最大的是________.10.求函数y =sin x 在0到π6之间和π3到π2之间的平均变化率,并比较它们的大小.11.求函数y =-2x 2+5在区间[2,2+Δx ]内的平均变化率.12.已知气球的体积为V (单位:L )与半径r (单位:dm )之间的函数关系是V (r )=43πr 3.(1)求半径r 关于体积V 的函数r (V );(2)比较体积V 从0 L 增加到1 L 和从1 L 增加到2 L 半径r 的平均变化率;哪段半径变化较快(精确到0.01)?此结论可说明什么意义?三、探究与拓展13.巍巍泰山为我国的五岳之首,有“天下第一山”之美誉,登泰山在当地有“紧十八,慢十八,不紧不慢又十八”的俗语来形容爬十八盘的感受,下面是一段登山路线图.同样是登山,但是从A 处到B 处会感觉比较轻松,而从B 处到C 处会感觉比较吃力.想想看,为什么?你能用数学语言来量化BC 段曲线的陡峭程度吗?§1.1.2瞬时速度与导数导学案【学习要求】1.掌握用极限形式给出的瞬时速度及瞬时变化率的精确定义.2.会用瞬时速度及瞬时变化率定义求物体在某一时刻的瞬时速度及瞬时变化率. 3.理解并掌握导数的概念,掌握求函数在一点处的导数的方法. 4.理解并掌握开区间内的导数的概念,会求一个函数的导数.【学法指导】导数是研究函数的有力工具,要认真理解平均变化率和瞬时变化率的关系,体会无限逼近的思想;可以从物理意义,几何意义多角度理解导数.【知识要点】1.瞬时速度:我们把物体在某一时刻的速度称为 .设物体运动路程与时间的关系是s =s (t ),物体在t 0时刻的瞬时速度v 就是运动物体在t 0到t 0+Δt 这段时间内的平均变化率tt s t t s ∆-∆+)()(00,当Δt →0时的极限,即v =lim Δt →0 ΔsΔt =__________________2.瞬时变化率:一般地,函数y =f (x )在x 0处的瞬时变化率是lim Δx →0ΔyΔx=_________________. 3.导数的概念:一般地,函数y =f (x )在x 0处的瞬时变化率是_________________,我们称它为函数y =f (x )在x =x 0处的 ,记为 ,即f ′(x 0)=lim Δx →0 ΔyΔx =________________4.导函数:如果f (x )在开区间(a ,b )内每一点x 都是可导的,则称f (x )在区间(a ,b ) .这样,对开区间(a ,b )内每个值x ,都对应一个确定的导数)(x f ',于是在区间(a ,b )内,)(x f '构成一个新的函数,把这个函数称为函数y =f (x )的 .记为 或y ′(或y ′x ).导函数通常简称为【问题探究】探究点一 瞬时速度问题1 在高台跳水运动中,运动员相对于水面的高度h (单位:m )与起跳后的时间t (单位:s)存在函数关系h (t )=-4.9t 2+6.5t +10.如何用运动员在某些时间段内的平均速度v 粗略地描述其运动状态?问题2 物体的平均速度能否精确反映它的运动状态? 问题3 如何描述物体在某一时刻的运动状态?例1 火箭竖直向上发射.熄火时向上速度达到100 s m /.试问熄火后多长时间火箭向上速度为0? 问题4 火箭向上速度变为0,意味着什么?你能求出此火箭熄火后上升的最大高度吗?跟踪训练1 质点M 按规律s (t )=at 2+1做直线运动(位移单位:m ,时间单位:s ).若质点M 在t =2时的瞬时速度为8s m /,求常数a 的值.探究点二 导 数问题1 从平均速度当Δt →0时极限是瞬时速度,推广到一般的函数方面,我们可以得到什么结论? 问题2 导数和瞬时变化率是什么关系?导数有什么作用? 问题3 导函数和函数在一点处的导数有什么关系?例2 利用导数的定义求函数f (x )=-x 2+3x 在x =2处的导数. 跟踪训练2 已知y =f (x )=x +2,求f ′(2).探究点三 导数的实际应用例3 一正方形铁板在0℃时,边长为10cm ,加热后铁板会膨胀.当温度为C t 0时,边长变为10(1+at )cm ,a 为常数,试求铁板面积对温度的膨胀率. 跟踪训练3 将原油精炼为汽油、柴油、塑胶等各种不同产品,需要对原油进行冷却和加热.如果在第x h 时,原油的温度(单位:C 0)为y =f (x )=x 2-7x +15(0≤x ≤8).计算第2 h 和第6 h 时,原油温度的瞬时变化率,并说明它们的意义.【当堂检测】1.函数y =f (x )在x =x 0处的导数定义中,自变量x 在x 0处的增量Δx ( ) A .大于0 B .小于0 C .等于0 D .不等于02.一物体的运动方程是s =12at 2(a 为常数),则该物体在t =t 0时的瞬时速度是 ( )A .at 0B .-at 0C .12at 0D .2at 03.已知f (x )=-x 2+10,则f (x )在x =32处的瞬时变化率是 ( )A .3B .-3C .2D .-24.已知函数f (x )=1x,则)1(f '=________【课堂小结】1.瞬时速度是平均速度当Δt →0时的极限值;瞬时变化率是平均变化率当Δx →0时的极限值.2.利用导数定义求导数的步骤:(1)求函数的增量Δy =f (x 0+Δx )-f (x 0); (2)求平均变化率ΔyΔx ;(2)取极限得导数f ′(x 0)=lim Δx →0Δy Δx. 【拓展提高】1.()()()为则设hf h f f h 233lim ,430--='→( )A .-1B .-2C .-3D .12.一质点做直线运动,由始点起经过t s 后的距离为23416441t t t s +-=,则速度为零的时刻是 ( ) A .4s 末 B .8s 末 C .0s 与8s 末 D .0s ,4s ,8s 末【课后作业】一、基础过关1.一物体的运动方程是s =3+t 2,则在一小段时间[2,2.1]内相应的平均速度为 ( )A .0.41B .3C .4D .4.1 2.函数y =1在[2,2+Δx ]上的平均变化率是( )A .0B .1C .2D .Δx 3.设函数f (x )可导,则lim Δx →0 f (1+Δx )-f (1)3Δx等于( )A .f ′(1)B .3f ′(1)C .13f ′(1)D .f ′(3)4.一质点按规律s (t )=2t 3运动,则t =1时的瞬时速度为( ) A .4 B .6 C .24 D .48 5.函数y =3x 2在x =1处的导数为( )A .12B .6C .3D .26.甲、乙两厂污水的排放量W 与时间t 的关系如图所示,治污效果较好的是( )A .甲B .乙C .相同D .不确定7.函数f (x )=5-3x 2在区间[1,2]上的平均变化率为__________. 二、能力提升8.过曲线y =f (x )=x 2+1上两点P (1,2)和Q (1+Δx,2+Δy )作曲线的割线,当Δx =0.1时, 割线的斜率k =________.9.函数f (x )=1x 2+2在x =1处的导数f ′(1)=________.10.求函数y =-2x 2+5在区间[2,2+Δx ]内的平均变化率.11.求函数y =f (x )=2x 2+4x 在x =3处的导数.12.若函数f (x )=ax 2+c ,且f ′(1)=2,求a 的值.三、探究与拓展13.若一物体运动方程如下:(位移单位:m ,时间单位:s )s =⎩⎪⎨⎪⎧3t 2+2 (t ≥3) ①29+3(t -3)2 (0≤t <3) ② 求:(1)物体在t ∈[3,5]内的平均速度; (2)物体的初速度v 0; (3)物体在t =1时的瞬时速度.§1.1.3导数的几何意义导学案【学习要求】1.了解导函数的概念,理解导数的几何意义. 2.会求导函数.3.根据导数的几何意义,会求曲线上某点处的切线方程.【学法指导】前面通过导数的定义已体会到其中蕴涵的逼近思想,本节再利用数形结合思想进一步直观感受这种思想,并进一步体会另一种重要思想——以直代曲.【知识要点】1.导数的几何意义(1)割线斜率与切线斜率设函数y =f (x )的图象如图所示,AB 是过点A (x 0,f (x 0))与点B (x 0+Δx ,f (x 0+Δx )) 的一条割线,此割线的斜率是ΔyΔx=__________________.当点B 沿曲线趋近于点A 时,割线AB 绕点A 转动,它的最终位置为直线AD ,这条直线AD 叫做此曲线在点A 处的 .于是,当Δx →0时,割线AB 的斜率无限趋向于在点A 的切线AD 的斜率k ,即k = =___________________. (2)导数的几何意义函数y =f (x )在点x 0处的导数的几何意义是曲线y =f (x )在点P (x 0,f (x 0))处的切线的 .也就是说,曲线y =f (x )在点P (x 0,f (x 0))处的切线的斜率是 .相应地,切线方程为_______________________. 2.函数的导数当x =x 0时,f ′(x 0)是一个确定的数,则当x 变化时,)(x f '是x 的一个函数,称)(x f '是f (x )的导函数(简称导数).)(x f '也记作y ′,即)(x f '=y ′=_______________【问题探究】探究点一 导数的几何意义问题1 如图,当点P n (x n ,f (x n ))(n =1,2,3,4)沿着曲线f (x )趋近于点P (x 0,f (x 0))时,割线PP n 的变化趋势是什么?问题2 曲线的切线是不是一定和曲线只有一个交点?例1 如图,它表示跳水运动中高度随时间变化的函数h (t )=-4.9t 2+6.5t +10的图象.根据图象,请描述、比较曲线h (t )在t 0,t 1,t 2附近的变化情况.跟踪训练1 (1)根据例1的图象,描述函数h (t )在t 3和t 4附近增(减)以及增(减)快慢的情况.(2)若函数y =f (x )的导函数在区间[a ,b ]上是增函数,则函数y =f (x )在区间[a ,b ]上的图象可能是 ( )探究点二 求切线的方程问题1 怎样求曲线f (x )在点(x 0,f (x 0))处的切线方程?问题2 曲线f (x )在点(x 0,f (x 0))处的切线与曲线过某点(x 0,y 0)的切线有何不同? 例2 已知曲线y =x 2,求:(1)曲线在点P (1,1)处的切线方程; (2)曲线过点P (3,5)的切线方程. 跟踪训练2 已知曲线y =2x 2-7,求:(1)曲线上哪一点的切线平行于直线4x -y -2=0? (2)曲线过点P (3,9)的切线方程.【当堂检测】1.已知曲线f (x )=2x 2上一点A (2,8),则点A 处的切线斜率为 ( ) A .4 B .16 C .8 D .22.若曲线y =x 2+ax +b 在点(0,b )处的切线方程是x -y +1=0,则 ( )A .a =1,b =1B .a =-1,b =1C .a =1,b =-1D .a =-1,b =-1 3.已知曲线y =2x 2+4x 在点P 处的切线斜率为16,则P 点坐标为_______【课堂小结】1.导数f ′(x 0)的几何意义是曲线y =f (x )在点(x 0,f (x 0))处的切线的斜率,即k =lim Δx →0f (x 0+Δx )-f (x 0)Δx=f ′(x 0),物理意义是运动物体在某一时刻的瞬时速度.2.“函数f (x )在点x 0处的导数”是一个数值,不是变数,“导函数”是一个函数,二者有本质的区别,但又有密切关系,f ′(x 0)是其导数y =f ′(x )在x =x 0处的一个函数值.3.利用导数求曲线的切线方程,要注意已知点是否在曲线上.如果已知点在曲线上,则以该点为切点的切线方程为y -f (x 0)=f ′(x 0)(x -x 0);若已知点不在切线上,则设出切点(x 0,f (x 0)),表示出切线方程,然后求出切点.【拓展提高】1.已知函数()y f x =的图象在点(1(1))M f ,处的切线方程是122y x =+,则(1)(1)f f '+= 2.设P 为曲线C :223y x x =++上的点,且曲线C 在点P 处切线倾斜角的取值范围为04π⎡⎤⎢⎥⎣⎦,,则点P 横坐标的取值范围为【课后作业】一、基础过关 1.下列说法正确的是( )A .若f ′(x 0)不存在,则曲线y =f (x )在点(x 0,f (x 0))处就没有切线B .若曲线y =f (x )在点(x 0,f (x 0))处有切线,则f ′(x 0)必存在C .若f ′(x 0)不存在,则曲线y =f (x )在点(x 0,f (x 0))处的切线斜率不存在D .若曲线y =f (x )在点(x 0,f (x 0))处没有切线,则f ′(x 0)有可能存在 2.已知y =f (x )的图象如图所示,则f ′(x A )与f ′(x B )的大小关系是 ( ) A .f ′(x A )>f ′(x B ) B .f ′(x A )<f ′(x B ) C .f ′(x A )=f ′(x B ) D .不能确定3.在曲线y =x 2上切线倾斜角为π4的点是 ( )A .(0,0)B .(2,4)C .(14,116)D .(12,14)4.设曲线y =ax 2在点(1,a )处的切线与直线2x -y -6=0平行,则a 等于( )A .1B .12C .-12 D .-15.曲线y =-1x 在点(1,-1)处的切线方程为( ) A .y =x -2B .y =xC .y =x +2D .y =-x -26.已知函数y =f (x )的图象在点M (1,f (1))处的切线方程是y =12x +2,则f (1)+f ′(1)=________.二、能力提升7.设f (x )为可导函数,且满足lim x →0f (1)-f (1-x )x =-1,则曲线y =f (x )在点(1,f (1))处的切线的斜率是 ( ) A .1B .-1C .12D .-28.若曲线y =2x 2-4x +P 与直线y =1相切,则P =________.9.设P 为曲线C :y =x 2+2x +3上的点,且曲线C 在点P 处的切线倾斜角的范围为⎣⎡⎦⎤0,π4,则点P 横坐标的取值范围为________.10.求过点P (-1,2)且与曲线y =3x 2-4x +2在点M (1,1)处的切线平行的直线.11.已知抛物线y =x 2+4与直线y =x +10.求:(1)它们的交点;(2)抛物线在交点处的切线方程.12.设函数f (x )=x 3+ax 2-9x -1(a <0),若曲线y =f (x )的斜率最小的切线与直线12x +y =6平行,求a 的值.三、探究与拓展13.根据下面的文字描述,画出相应的路程s 关于时间t 的函数图象的大致形状:(1)小王骑车一路匀速行驶,只是在途中遇到一次交通堵塞,耽搁了一些时间; (2)小华早上从家出发后,为了赶时间开始加速; (3)小白早上从家出发后越走越累,速度就慢下来了§1.2.1 常数函数与幂函数的导数导学案 §1.2.2 导数公式表及数学软件的应用导学案【学习要求】1.能根据定义求函数y =c ,y =x ,y =x 2,y =1x的导数.2.能利用给出的基本初等函数的导数公式求简单函数的导数.【学法指导】1.利用导数的定义推导简单函数的导数公式,类推一般多项式函数的导数公式,体会由特殊到一般的思想.通过定义求导数的过程,培养归纳、探求规律的能力,提高学习兴趣. 2.本节公式是下面几节课的基础,记准公式是学好本章内容的关键.记公式时,要注意观察公式之间的联系.【知识要点】1原函数 导函数 f (x )=c f ′(x )=___ f (x )=x f ′(x )=___ f (x )=x 2 f ′(x )=___ f (x )=1xf ′(x )=_____ f (x )=xf ′(x )=_______2.基本初等函数的导数公式【问题探究】探究点一 求导函数问题1 怎样利用定义求函数y =f (x )的导数? 问题2 利用定义求下列常用函数的导数: (1)y =c ;(2)y =x ;(3)y =x 2;(4)y =1x;(5)y =x . 问题3 利用导数的定义可以求函数的导函数,但运算比较繁杂,有些函数式子在中学阶段无法变形,怎样解决这个问题?例1 求下列函数的导数:(1)y =sin π3;(2)y =5x ;(3)y =1x3;(4)y =4x 3;(5)y =log 3x .跟踪训练1 求下列函数的导数:(1)y =x 8;(2)y =(12)x ;(3)y =x x ;(4)x y 31log =探究点二 求某一点处的导数 例2 判断下列计算是否正确.求f (x )=cos x 在x =π3处的导数,过程如下:f ′⎝⎛⎭⎫π3=⎝⎛⎭⎫cos π3′=-sin π3=-32. 跟踪训练2 求函数f (x )=13x在x =1处的导数.探究点三 导数公式的综合应用例3 已知直线x -2y -4=0与抛物线y 2=x 相交于A 、B 两点,O 是坐标原点,试在抛物线的弧 上求一点P ,使△ABP 的面积最大.跟踪训练3 点P 是曲线y =e x 上任意一点,求点P 到直线y =x 的最小距离.【当堂检测】1.给出下列结论:①若y =1x 3,则y ′=-3x 4;②若y =3x ,则y ′=133x ;③若y =1x 2,则y ′=-2x -3;④若f (x )=3x ,则f ′(1)=3.其中正确的个数是 ( ) A .1 B .2C .3D .42.函数f (x )=x ,则f ′(3)等于 ( )A .36B .0C .12xD .323.设正弦曲线y =sin x 上一点P ,以点P 为切点的切线为直线l ,则直线l 的倾斜角的范围是 ( )A .[0,π4]∪[3π4,π)B .[0,π)C .[π4,3π4]D .[0,π4]∪[π2,3π4]4.曲线y =e x 在点(2,e 2)处的切线与坐标轴所围三角形的面积为________【课堂小结】1.利用常见函数的导数公式可以比较简捷的求出函数的导数,其关键是牢记和运用好导数公式.解题时,能认真观察函数的结构特征,积极地进行联想化归. 2.有些函数可先化简再应用公式求导.如求y =1-2sin 2x 2的导数.因为y =1-2sin 2x2=cos x ,所以y ′=(cos x )′=-sin x .3.对于正、余弦函数的导数,一是注意函数的变化,二是注意符号的变化.【拓展提高】1.若函数f (x )=e x cos x ,则此函数的图象在点(1,f (1))处的切线的倾斜角为( ) A .0° B .锐角C .直角 D .钝角2.曲线y =x 3+3x 2+6x -10的切线中,斜率最小的切线方程为___________【课后作业】一、基础过关1.下列结论中正确的个数为( )①y =ln 2,则y ′=12 ②y =1x 2,则y ′|x =3=-227③y =2x ,则y ′=2x ln 2 ④y =log 2x ,则y ′=1x ln 2A .0B .1C .2D .3 2.过曲线y =1x上一点P 的切线的斜率为-4,则点P 的坐标为( )A .⎝⎛⎭⎫12,2B .⎝⎛⎭⎫12,2或⎝⎛⎭⎫-12,-2C .⎝⎛⎭⎫-12,-2D .⎝⎛⎭⎫12,-2 3.已知f (x )=x a ,若f ′(-1)=-4,则a 的值等于 ( ) A .4 B .-4C .5D .-54.函数f (x )=x 3的斜率等于1的切线有( )A .1条B .2条C .3条D .不确定5.若曲线y =x -12在点(a ,a -12)处的切线与两个坐标轴围成的三角形的面积为18,则a 等于 ( )A .64B .32C .16D .86.若y =10x,则y ′|x =1=________.7.曲线y =14x 3在x =1处的切线的倾斜角的正切值为______.二、能力提升8.已知直线y =kx 是曲线y =e x 的切线,则实数k 的值为( )A .1eB .-1eC .-eD .e9.直线y =12x +b 是曲线y =ln x (x >0)的一条切线,则实数b =________.10.求下列函数的导数:(1)y =x x ;(2)y =1x4;(3)y =5x 3;(4)y =log 2x 2-log 2x ;(5)y =-2sin x2⎝⎛⎭⎫1-2cos 2x 4.11.求与曲线y =3x 2在点P (8,4)处的切线垂直于点P 的直线方程.12.已知抛物线y =x 2,直线x -y -2=0,求抛物线上的点到直线的最短距离.三、探究与拓展13.设f 0(x )=sin x ,f 1(x )=f ′0(x ),f 2(x )=f ′1(x ),…,f n +1(x )=f ′n (x ),n ∈N ,试求f 2 012(x ).§1.2.3导数的四则运算法则(一)导学案【学习要求】1.理解函数的和、差、积、商的求导法则.2.理解求导法则的证明过程,能够综合运用导数公式和导数运算法则求函数的导数.【学法指导】应用导数的四则运算法则和已学过的常用函数的导数公式可迅速解决一类简单函数的求导问题.要透彻理解函数求导法则的结构内涵,注意挖掘知识的内在联系及其规律,通过对知识的重新组合,达到巩固知识、提升能力的目的.【知识要点】导数的运算法则设两个可导函数分别为f (x )和g (x )【问题探究】探究点一 导数的运算法则问题1 我们已经会求f (x )=5和g (x )=1.05x 等基本初等函数的导数,那么怎样求f (x )与g (x )的和、差、积、商的导数呢?问题2 应用导数的运算法则求导数有哪些注意点? 例1 求下列函数的导数: (1)y =3x-lg x ;(2)y =(x 2+1)(x -1);(3)y =x 5+x 7+x 9x.跟踪训练1 求下列函数的导数:(1)f (x )=x ·tan x ; (2)f (x )=2-2sin 2x 2; (3)f (x )=x -1x +1; (4)f (x )=sin x1+sin x.探究点二 导数的应用例2 (1)曲线y =x e x +2x +1在点(0,1)处的切线方程为_______________(2)在平面直角坐标系xOy 中,点P 在曲线C :y =x 3-10x +3上,且在第二象限内,已知曲线C 在点P 处的切线斜率为2,则点P 的坐标为________(3)已知某运动着的物体的运动方程为s (t )=t -1t 2+2t 2(位移单位:m ,时间单位:s),求t =3 s 时物体的瞬时速度.跟踪训练2 (1)曲线y =sin x sin x +cos x -12在点M ⎝⎛⎭⎫π4,0处的切线的斜率为 ( ) A .-12B.12C .-22 D .22(2)设函数f (x )=13x 3-a2x 2+bx +c ,其中a >0,曲线y =f (x )在点P (0,f (0))处的切线方程为y =1,确定b 、c的值.【当堂检测】1.设y =-2e x sin x ,则y ′等于 ( )A .-2e x cos xB .-2e x sin xC .2e x sin xD .-2e x (sin x +cos x )2.曲线f (x )=xx +2在点(-1,-1)处的切线方程为( )A .y =2x +1B .y =2x -1C .y =-2x -3D .y =-2x +2 3.已知f (x )=ax 3+3x 2+2,若f ′(-1)=4,则a 的值是( ) A .193B .163C .133D .1034.已知f (x )=13x 3+3xf ′(0),则f ′(1)=_______5.已知抛物线y =ax 2+bx +c 过点(1,1),且在点(2,-1)处与直线y =x -3相切,求a 、b 、c 的值.【课堂小结】求函数的导数要准确把函数分割为基本函数的和、差、积、商,再利用运算法则求导数.在求导过程中,要仔细分析出函数解析式的结构特征,根据导数运算法则,联系基本函数的导数公式.对于不具备导数运算法则结构形式的要适当恒等变形,转化为较易求导的结构形式,再求导数,进而解决一些切线斜率、瞬时速度等问题.【课后作业】一、基础过关1.下列结论不正确的是( )A .若y =3,则y ′=0B .若f (x )=3x +1,则f ′(1)=3C .若y =-x +x ,则y ′=-12x+1 D .若y =sin x +cos x ,则y ′=cos x +sin x2.函数y =x1-cos x 的导数是 ( )A .1-cos x -x sin x 1-cos xB .1-cos x -x sin x (1-cos x )2C .1-cos x +sin x (1-cos x )2D .1-cos x +x sin x (1-cos x )23.若函数f (x )=ax 4+bx 2+c 满足f ′(1)=2,则f ′(-1)等于( )A .-1B .-2C .2D .04.设曲线y =x +1x -1在点(3,2)处的切线与直线ax +y +1=0垂直,则a 等于( )A .2B .12C .-12 D .-25.设函数f (x )=g (x )+x 2,曲线y =g (x )在点(1,g (1))处的切线方程为y =2x +1,则曲线y =f (x )在点(1,f处切线的斜率为( )A .4B .-14C .2D .-126.已知a 为实数,f (x )=(x 2-4)(x -a ),且f ′(-1)=0,则a =________. 7.若某物体做s =(1-t )2的直线运动,则其在t =1.2 s 时的瞬时速度为________. 二、能力提升8.设函数f (x )=sin θ3x 3+3cos θ2x 2+tan θ,其中θ∈[0,5π12],则导数f ′(1)的取值范围是( )A .[-2,2]B .[2,3]C .[3,2]D .[2,2]9.若函数f (x )=13x 3-f ′(-1)·x 2+x +5,则f ′(1)=________.10.求下列函数的导数:(1)y =(2x 2+3)(3x -1);(2)y =(x -2)2; (3)y =x -sin x 2cos x2.11.设y =f (x )是二次函数,方程f (x )=0有两个相等实根,且f ′(x )=2x +2,求f (x )的表达式.12.设函数f (x )=ax -bx ,曲线y =f (x )在点(2,f (2))处的切线方程为7x -4y -12=0.(1)求f (x )的解析式;(2)证明:曲线y =f (x )上任一点处的切线与直线x =0和直线y =x 所围成的三角形的面积为定值,并求此定值.三、探究与拓展13.已知曲线C 1:y =x 2与曲线C 2:y =-(x -2)2,直线l 与C 1和C 2都相切,求直线l 的方程.§1.2.3导数的四则运算法则(二)导学案【学习要求】1.了解复合函数的概念,掌握复合函数的求导法则.2.能够利用复合函数的求导法则,并结合已经学过的公式、法则进行一些复合函数的求导(仅限于形如f (ax +b )的导数).【学法指导】复合函数的求导将复杂的问题简单化,体现了转化思想;学习中要通过中间变量的引入理解函数的复合过程.【问题探究】探究点一 复合函数的定义问题1 观察函数y =2x cos x 及y =ln(x +2)的结构特点,说明它们分别是由哪些基本函数组成的? 问题2 对一个复合函数,怎样判断函数的复合关系?问题3 在复合函数中,内层函数的值域A 与外层函数的定义域B 有何关系? 例1 指出下列函数是怎样复合而成的:(1)y =(3+5x )2; (2)y =log 3(x 2-2x +5); (3)y =cos 3x . 跟踪训练1 指出下列函数由哪些函数复合而成:(1)y =ln x ; (2)y =e sin x ; (3)y =cos (3x +1).探究点二 复合函数的导数 问题 如何求复合函数的导数? 例2 求下列函数的导数:(1)y =(2x -1)4; (2)y =11-2x ; (3)y =sin(-2x +π3); (4)y =102x +3.跟踪训练2 求下列函数的导数.(1)y =ln 1x; (2)y =e 3x ; (3)y =5log 2(2x +1).探究点三 导数的应用 例3 求曲线y =e 2x+1在点(-12,1)处的切线方程.跟踪训练3 曲线y =e 2x cos 3x 在(0,1)处的切线与直线l 平行,且与l 的距离为5,求直线l 的方程.【当堂检测】1.函数y =(3x -2)2的导数为 ( )A .2(3x -2)B .6xC .6x (3x -2)D .6(3x -2) 2.若函数y =sin 2x ,则y ′等于 ( ) A .sin 2x B .2sin x C .sin x cos x D .cos 2x 3.若y =f (x 2),则y ′等于 ( ) A .2xf ′(x 2) B .2xf ′(x ) C .4x 2f (x ) D .f ′(x 2)4.设曲线y =e ax 在点(0,1)处的切线与直线x +2y +1=0垂直,则a =________.【课堂小结】求简单复合函数f (ax +b )的导数 求简单复合函数的导数,实质是运用整体思想,先把简单复合函数转化为常见函数y =f (u ),u =ax +b 的形式,然后再分别对y =f (u )与u =ax +b 分别求导,并把所得结果相乘.灵活应用整体思想把函数化为y =f (u ),u =ax +b 的形式是关键.【拓展提高】1 .已知函数2)1ln()(x x a x f -+=在区间)1,0(内任取两个实数q p ,,且q p ≠,不等式1)1()1(>-+-+qp q f p f 恒成立,则实数a 的取值范围为____________ 【课后作业】一、基础过关1.下列函数不是复合函数的是( )A .y =-x 3-1x +1B .y =cos(x +π4)C .y =1ln x D .y =(2x +3)42.函数y =1(3x -1)2的导数是( )A .6(3x -1)3B .6(3x -1)2C .-6(3x -1)3D .-6(3x -1)23.y =e x 2-1的导数是( )A .y ′=(x 2-1)e x 2-1B .y ′=2x e x 2-1C .y ′=(x 2-1)e xD .y ′=e x 2-1 4.函数y =x 2cos 2x的导数为( )A .y ′=2x cos 2x -x 2sin 2xB .y ′=2x cos 2x -2x 2sin 2xC .y ′=x 2cos 2x -2x sin 2xD .y ′=2x cos 2x +2x 2sin 2x5.函数y =(2 011-8x )3的导数y ′=________.6.曲线y =cos(2x +π6)在x =π6处切线的斜率为________.7.函数f (x )=x (1-ax )2(a >0),且f ′(2)=5,则实数a 的值为________. 二、能力提升8.已知直线y =x +1与曲线y =ln(x +a )相切,则a 的值为( )A .1B .2C .-1D .-29.曲线y =e 12x 在点(4,e 2)处的切线与坐标轴所围三角形的面积为( )A .92e 2B .4e 2C .2e 2D .e 210.求下列函数的导数:(1)y =(1+2x 2)8; (2)y =11-x 2; (3)y =sin 2x -cos 2x ; (4)y =cos x 2.11.已知a >0,f (x )=ax 2-2x +1+ln(x +1),l 是曲线y =f (x )在点P (0,f (0))处的切线.求切线l 的方程.12.有一把梯子贴靠在笔直的墙上,已知梯子上端下滑的距离s (单位:m )关于时间t (单位:s)的函数为s =s (t )=5-25-9t 2.求函数在t =715 s 时的导数,并解释它的实际意义.三、探究与拓展13.求证:可导的奇函数的导函数是偶函数.§1.3.1利用导数判断函数的单调性导学案【学习要求】1.结合实例,直观探索并掌握函数的单调性与导数的关系.2.能利用导数研究函数的单调性,并能够利用单调性证明一些简单的不等式. 3.会求函数的单调区间(其中多项式函数一般不超过三次).【学法指导】结合函数图象(几何直观)探讨归纳函数的单调性与导函数正负之间的关系,体会数形结合思想,以直代曲思想.【知识要点】一般地,在区间(a ,b )内函数的单调性与导数有如下关系:f′(x)>0单调递___f′(x)<0单调递____f′(x)=0常函数【问题探究】探究点一函数的单调性与导函数正负的关系问题1观察下面四个函数的图象,回答函数的单调性与其导函数的正负有何关系?问题2若函数f(x)在区间(a,b)内单调递增,那么f′(x)一定大于零吗?问题3(1)如果一个函数具有相同单调性的单调区间不止一个,那么如何表示这些区间?试写出问题1中(4)的单调区间.(2)函数的单调区间与其定义域满足什么关系?例1已知导函数f′(x)的下列信息:当1<x<4时,f′(x)>0;当x>4或x<1时,f′(x)<0;当x=4或x=1时,f′(x)=0.试画出函数f(x)图象的大致形状.跟踪训练1函数y=f(x)的图象如图所示,试画出导函数f′(x)图象的大致形状.例2求下列函数的单调区间:(1)f(x)=x3-4x2+x-1;(2)f(x)=2x(e x-1)-x2;(3)f(x)=3x2-2ln x.跟踪训练2求下列函数的单调区间:(1)f(x)=x2-ln x;(2)f(x)=e xx-2;(3)f(x)=sin x(1+cos x)(0≤x<2π).探究点二函数的变化快慢与导数的关系问题我们知道导数的符号反映函数y=f(x)的增减情况,怎样反映函数y=f(x)增减的快慢呢?你能否从导数的角度解释变化的快慢呢?例3如图,设有圆C和定点O,当l从l0开始在平面上绕O匀速旋转(旋转角度不超过90°)时,它扫过的圆内阴影部分的面积S是时间t的函数,它的图象大致是下图所示的四种情况中的哪一种?() 跟踪训练3(1)如图,水以常速(即单位时间内注入水的体积相同)注入下面四种底面积相同的容器中,请分别找出与各容器对应的水的高度h与时间t的函数关系图象.(2)已知f′(x)是f(x)的导函数,f′(x)的图象如图所示,则f(x)的图象只可能是()【当堂检测】1.函数f(x)=x+ln x在(0,6)上是()A.单调增函数B.单调减函数C.在⎝⎛⎭⎫0,1e上是减函数,在⎝⎛⎭⎫1e,6上是增函数D.在⎝⎛⎭⎫0,1e上是增函数,在⎝⎛⎭⎫1e,6上是减函数2.f′(x)是函数y=f(x)的导函数,若y=f′(x)的图象如图所示,则函数y=f(x)的图象可能是()。
新课标人教 A 高中数学选修2-2 同步练习选修 2-2 知识点及习题答案解析导数及其应用一 .导数概念的引入1.导数的物理意义:瞬时速率。
一般的,函数y f (x) 在x x0处的瞬时变化率是lim f ( x0x) f (x0 ),x0x我们称它为函数y f ( x) 在x x0处的导数,记作 f (x0 )或 y |x x,即f (x0x) f ( x0 )f ( x0 ) = limx 0x2.导数的几何意义:曲线的切线 .通过图像 ,我们可以看出当点P n趋近于 P 时,直线 PT 与曲线相切。
容易知道,割线PP n的斜率是k n f (x n )f ( x),当点Pn趋近于P时,函数y f (x) 在x x0处的导数就是切线PT 的斜率x n x0k,即k f ( x n ) f ( x0 ) f (x0 )lim xn x0x03.导函数:当 x 变化时,f( x) 便是x的一个函数,我们称它为 f ( x) 的导函数. y f ( x)的导函数有时也记作 y ,即f( x)lim f (x x) f (x)x 0x二.导数的计算基本初等函数的导数公式 :1若f (x) c (c为常数),则f(x)0 ;3若 f ( x)sin x ,则f ( x)cos x5若 f ( x) a x,则f ( x) a x ln a7若f ( x)log a x,则f (x)1x ln a导数的运算法则1.[ f ( x)g ( x)] f ( x)g ( x)[ f ( x)g ( x)]f ( x) g ( x) f ( x) g ( x )f ( x) f ( x)g (x) f ( x)g ( x)3.[][ g( x)]2g (x)2若f ( x)x,则f ( x)x 1;4若f ( x)cos x,则f (x )sin x ;6若f ( x)e x,则f (x) e x8若f ( x)ln x,则f ( x)1x2.复合函数求导y f (u) 和u g (x) ,称则y可以表示成为x 的函数,即y f ( g(x)) 为一个复合函数y f (g (x))g ( x)三 .导数在研究函数中的应用1.函数的单调性与导数:一般的 ,函数的单调性与其导数的正负有如下关系:在某个区间( a, b)内新课标人教 A 高中数学选修2-2 同步练习(1)如果f ( x ) 0,那么函数y f ( x)在这个区间单调递增;(2) 如果f (x)0 ,那么函数y f ( x) 在这个区间单调递减 .2.函数的极值与导数极值反映的是函数在某一点附近的大小情况.求函数y f ( x )的极值的方法是:(1)如果在 x0附近的左侧f( x) 0 ,右侧f (x ) 0,那么 f (x0 )是极大值(2)如果在 x0附近的左侧 f ( x) 0,右侧 f (x) 0,那么f(x0)是极小值 ;4.函数的最大 (小) 值与导数求函数y f (x ) 在[ a,b]上的最大值与最小值的步骤:(2)将函数y f ( x)的各极值与端点处的函数值是最小值 .(1)求函数y f ( x) 在(a,b)内的极值;f ( a) ,f (b)比较,其中最大的是一个最大值,最小的推理与证明考点一合情推理与类比推理根据一类事物的部分对象具有某种性质,退出这类事物的所有对象都具有这种性质的推理, 叫做归纳推理,归纳是从特殊到一般的过程, 它属于合情推理根据两类不同事物之间具有某些类似(或一致 )性 ,推测其中一类事物具有与另外一类事物类似的性质的推理 ,叫做类比推理 .类比推理的一般步骤:(1)找出两类事物的相似性或一致性;(2)用一类事物的性质去推测另一类事物的性质,得出一个明确的命题 (猜想 );(3)一般的 ,事物之间的各个性质并不是孤立存在的,而是相互制约的 .如果两个事物在某些性质上相同或相似 ,那么他们在另一写性质上也可能相同或类似,类比的结论可能是真的 .(4)一般情况下 ,如果类比的相似性越多 ,相似的性质与推测的性质之间越相关 ,那么类比得出的命题越可靠 .考点二演绎推理(俗称三段论)由一般性的命题推出特殊命题的过程,这种推理称为演绎推理.考点三数学归纳法1. 它是一个递推的数学论证方法.2. 步骤 :A.命题在 n=1(或n0)时成立,这是递推的基础; B.假设在 n=k 时命题成立; C.证明 n=k+1 时命题也成立 ,完成这两步 ,就可以断定对任何自然数(或 n>= n0,且n N )结论都成立。
高中数学选修2-2课后习题答案一、选择题(12×5′=60′)1.一物体的运动方程为21t t s +-=,其中s 单位是米,t 单位是秒,那么物体在3秒末的瞬时速度是( )。
A 7米/秒 B 6米/秒 C 5米/秒 D 8米/秒 2.复数),(R b a bi a ∈+为纯虚数的充分必要条件是 ( )。
A 0=ab B0=ba C0=ab D 022=+b a3.某同学类比平面内正三角形的“三边相等,三内角相等”的性质,推出正四面体的下列性质: ①各棱长相等,同一顶点上的任两条棱的夹角都相等;②各个面都是全等的正三角形,相邻两个面所成的二面角都相等;③各个面都是全等的正三角形,同一顶点上的任两条棱的夹角都相等。
你认为正确的是( )。
A .①B .①②C .①②③D .③4.按照导数的几何意义,可以求得函数24x y -=在1=x 处的导数是 ( )。
A. 3-B. 33-C. 33±D. 35.32()32f x ax x =++,若'(1)4f -=,则a 的值等于( )。
A319 B316 C313 D3106.与直线250x y -+=平行的抛物线2y x =的切线方程为( )。
A.210x y --=B.230x y --=C.210x y -+=D.230x y -+= 7.函数344+-=x x y 在区间[]2,3-上的最小值为( )。
A 72B 36C 12D 08.由直线20x y +-=,曲线3y x =以及x 轴围成的图形的面积为( )。
A.43B.54C.56D.349.函数3y x x =+的递增区间是( )。
A ),0(+∞B )1,(-∞C ),(+∞-∞D ),1(+∞10.在数列{}n a 中,若11a =,1110n n n a a a ++⋅++=,则2009a =( )。
A.2-B.1-C.0.5-D.111.设函数2()(0)f x ax c a =+≠,若100()()f x dx f x =⎰,001x ≤≤,则0x 的值为( )。
目录:数学选修2-2第一章 导数及其应用 [基础训练A 组] 第一章 导数及其应用 [综合训练B 组] 第一章 导数及其应用 [提高训练C 组] 第二章 推理与证明 [基础训练A 组] 第二章 推理与证明 [综合训练B 组]第二章 推理与证明 [提高训练C 组] 第三章 复数 [基础训练A 组] 第三章 复数 [综合训练B 组]第三章 复数 [提高训练C 组](数学选修2-2)第一章 导数及其应用[基础训练A 组]一、选择题1.若函数()y f x =在区间(,)a b 内可导,且0(,)x a b ∈则000()()limh f x h f x h h→+--的值为( )A .'0()f xB .'02()f xC .'02()f x - D .02.一个物体的运动方程为21t t s +-=其中s 的单位是米,t 的单位是秒, 那么物体在3秒末的瞬时速度是( ) A .7米/秒 B .6米/秒 C .5米/秒 D .8米/秒 3.函数3yx x 的递增区间是( )A .),0(+∞B .)1,(-∞C .),(+∞-∞D .),1(+∞4.32()32f x ax x =++,若'(1)4f -=,则a 的值等于( )A .319 B .316C .313 D .310 5.函数)(x f y =在一点的导数值为0是函数)(x f y =在这点取极值的( )A .充分条件B .必要条件C .充要条件D .必要非充分条件6.函数344+-=x x y 在区间[]2,3-上的最小值为( )A .72B .36C .12D .0二、填空题1.若3'0(),()3f x x f x ==,则0x 的值为_________________;2.曲线x x y 43-=在点(1,3)- 处的切线倾斜角为__________; 3.函数sin xy x=的导数为_________________; 4.曲线x y ln =在点(,1)M e 处的切线的斜率是_________,切线的方程为_______________; 5.函数5523--+=x x x y 的单调递增区间是___________________________。
2020年人教A版选修2-2课后练习(9)一、选择题(本大题共1小题,共5.0分)1.如图,直线l和圆C,当l从l0开始在平面上绕点O按逆时针方向匀速转动(转动角度不超过90°)时,它扫过的圆内阴影部分的面积S是时间t的函数,这个函数的图象大致是()A.B.C.D.二、解答题(本大题共11小题,共132.0分)2.已知点P和点Q是曲线y=x2−2x−3上的两点,且点P的横坐标是1,点Q的横坐标是4,求:(1)割线PQ的斜率;(2)点P处的切线方程.3.求下列函数的导数:(1)y=2xtanx;(2)y=(x−2)3(3x+1)2;(3)y=2x lnx;(4)y=x2.(2x+1)34.一个距地心距离为r,质量为m的人造卫星,与地球之间的万有引力F由公式F=GMm给出,其r2中M为地球质量,G为常量,求F对于r的瞬时变化率.5.一杯80℃得热红茶置于20℃的房间里,它得温度会逐渐下降,温度T(单位℃)与时间t(单位min)之间的关系由函数T=f(t)给出,请问(1)f′(t)的符号是什么?为什么?(2)f′(3)=−4得实际意义是什么?如果f(3)=65(℃),你能画出函数在点t=3时图象得大致形状吗?3的单调区间.6.求函数f(x)=√x27.已知函数f(x)=x2+px+q,试确定p,q的值,使得当x=1时,f(x)有最小值4.8.已知函数f(x)=x(x−c)2在x=2处有极大值,求c的值.9.如图,过点P(1,1)作直线AB,分别与x轴的正半轴、y轴的正半轴交于点A,B.当直线AB在什么位置时,△AOB的面积最小?最小面积是多少?10.用总长14.8m的钢条做一个长方体容器的框架.如果所做容器的底面的一边长比另一边长多0.5m,那么高是多少时容器的容积最大?并求出它的最大容积.11.某旅行社在暑假期间推出如下旅游团组团办法:达到100人的团体,每人收费1000元.如果团体的人数超过100人,那么每超过1人,每人平均收费降低5元,但团体人数不能超过180人,如何组团可使旅行社的收费最多?(不到100人不组团)12.打印纸型号设计原理如图,某种长方形打印纸的面积为623.7cm2,要求上、下页边距分别为3.17cm,左、右页边距分别为2.54cm.问宽与高分别为多少时可使其打印面积最大(精确到0.01cm)?(可使用计算器)请搜集一下各种型号打印纸的数据资料,并说明其中所蕴含的设计原理.-------- 答案与解析 --------1.答案:D解析:解:观察可知阴影部分的面积S变化情况为“一直增加,先慢后快,过圆心后又变慢”,对应的函数的图象是变化率先变大再变小,由此知选项D符合要求,故选:D.由图象可以看出,阴影部分的面积一开始增加得较慢,面积变化情况是先慢后快然后再变慢,由此规律找出正确选项本题考查直线与圆相交的性质,解答本题的关键是根据所给的图形得出直线扫过的阴影部分的面积变化规律,利用函数的思想找出正确答案,本题考查识图的能力以及根据实际问题选择函数模型的能力.2.答案:解:(1)∵y=x2−2x−3,当x=1时,y=−4,当x=4,y=5;∴P(1,−4),Q(4,5);∴割线PQ的斜率为k PQ=5−(−4)4−1=3;(2)∵y=x2−2x−3,∴y′=2x−2;当x=1时,k P=2×1−2=0;∴点P处的切线方程为y−(−4)=0,即y+4=0.解析:(1)根据函数的解析式求出P、Q的坐标,计算PQ的斜率;(2)利用导数求出P点的斜率,写出过点P的切线方程.本题考查了二次函数的图象与性质的应用问题,也考查了导数的概念与应用问题,是基础题目.3.答案:解:(1)y′=2tanx+2xsec2x;(2)y′=3(x−2)2(3x+1)2+6(x−2)3(3x+1)=3(x−2)2(3x+1)(5x−3);(3)y′=2x ln2⋅lnx+2xx;(4)y′=2x(2x+1)3−6x2(2x+1)2(2x+1)6=2x−2x2(2x+1)4.解析:根据基本初等函数、积的导数和商的导数的求导公式进行求导即可.本题考查了基本初等函数、积的导数和商的导数的求导公式,考查了计算能力,属于基础题.4.答案:解:F=GMmr2,∴F′=−2GMmr3.解析:根据导数的物理意义即可求出.本题考查了导数的物理意义,以及瞬时速度的问题,属于基础题.5.答案:解:(1)f′(t)<0,其意义为在t附近函数值的瞬时变化率,f′(t)为负数,说明f(t)的值在t附近递减,原因是红茶的温度在下降.(2)∵f′(3)=−4,∴f′(3)=−4的实际意义是:在3min附近红茶温度约以4℃/min的速率下降.∵f(3)=65(℃),f′(3)=−4,∴函数在t=3处为递减,可以作一个简单的图象.解析:(1)根据题意可得f′(t)的符号为负值.(2)根据导数的几何意义进行判断即可.本题主要考查导数的概念以及几何意义,比较基础.6.答案:解:∵f′(x)=23√x3,x>0时,f′(x)>0,x<0时,f′(x)<0,∴f(x)在(−∞,0)递减,在(0,+∞)递增.解析:通过求导得出f′(x)=23√x3,解不等式,从而得出函数的单调区间本题考查了函数的单调性,考查导数的应用,是一道基础题.7.答案:解:根据题意,函数f(x)=x2+px+q,其二次项系数为1;若当x=1时,f(x)有最小值4,则f(x)=(x−1)2+4=x2−2x+5,又由f(x)=x2+px+q,则p=−2,q=5.解析:根据题意,由二次函数的性质分析可得f(x)=(x−1)2+4=x2−2x+5,结合f(x)的解析式分析可得答案.本题考查二次函数的性质,注意配方法的使用,属于基础题.8.答案:解:∵f′(x)=(x−c)2+2x(x−c)=3x2−4cx+c2,且函数f(x)=x(x−c)2在x=2处有极大值,∴f′(2)=0,即c2−8c+12=0,解得c=6或2.经检验c=2时,函数f(x)在x=2处取得极小值,不符合题意,应舍去.故c=6.故答案为:6.解析:由已知函数f(x)=x(x−c)2在x=2处有极大值,则必有f′(2)=0,且在x=2的左侧附近f′(x)>0,右侧附近f′(x)<0,据此即可求出c的值.本题主要考查了函数在某点取得极值的条件,对函数求导,令导函数等于0即可解出c的值,由于本题明确指出在该点出取到极大值,故需对求出的c的值进行验证,如本题,c=2必需舍去,做题时要注意考虑周详.9.答案:解:,过点P(1,1)作直线AB,分别与x轴的正半轴、y轴的正半轴交于点A,B,设直线的斜率为k,则直线的方程为y−1=k(x−1),可得A(1−1k,0),B(0,1−k),k<0.故△AOB的面积为S=12(1−1k⋅)(1−k)=12(2−k−1k)≥1+2√(−k)⋅1(−k)=3,当期仅当k=−1时,等号成立,故当直线的斜率等于−1时,△AOB的面积最小,最小面积是3.解析:由题意求出直线在坐标轴上的截距,可得三角形的面积,再利用基本不等式,求出它的最小值.本题主要考查直线在坐标轴上的截距,基本不等式的应用,属于基础题.10.答案:解:设该容器底面的一边长为x m,则另一边长为(x+0.5)m,此容器的高为ℎ=14.84−x−(x+0.5)=3.2−2x(0<x<1.6).于是,此容器的容积为V(x)=x(x+0.5)(3.2−2x)=−2x3+2.2x2+1.6x,其中0<x<1.6.由V′(x)=−6x2+4.4x+1.6=0,得x=1或x=−415(舍去).因为V(x)在(0,1.6)内只有一个极值点,且x∈(0,1)时,V′(x)>0,函数V(x)单调递增;x∈(1,1.6)时,V′(x)<0,函数V(x)单调递减.所以,当x=1时,函数V(x)有最大值V(1)=1×(1+0.5)×(3.2−2×1)=1.8(m3),ℎ=3.2−2= 1.2(m).即当高为1.2m时,长方体容器的容积最大,最大容积为1.8m3.解析:设容器底面短边长为xm,利用长方体的体积公式求得其容积表达式,再利用导数研究它的单调性,进而得出此函数的最大值.本题主要考查应用所学导数的知识、思想和方法解决实际问题的能力,建立函数式、解方程、不等式、最大值等基础知识,是中档题.11.答案:解:设有x人参加旅行团,收费共y元,则由题意有:y=1000x−5(x−100)x,(100≤x≤180).整理函数关系式得:y=−5x2+1500x=−5(x−150)2+112500.所以当x=150人时,旅行社的收费最多为112500元.解析:设有x人参加旅行团,收费共y元,由题意有y=1000x−5(x−100)x,(100≤x≤180).由此能求出结果.本题考查函数在生产生活中的实际应用,是基础题,解题时要认真审题,注意函数性质的合理运用.12.答案:解:设打印纸的宽为x,则长为623.7x.所以打印面积为S(x)=(x−2×2.54)(623.7x−2×3.17)=655.9072−(6.34x+3168.396x).∵6.34x+3168.396x≥2√6.34x⋅3168.396x=283.46.当且仅当6.34x=3168.396x,即x=22.36时取等号,此时623.7x=27.89,最大打印面积为372.45cm2.故宽为22.36,长为27.89时打印面积最大.解析:可以先设宽分别为x,然后表示出打印部分的长和宽,进而表示出打印部分的面积,再利用基本不等式求最值即可.本题考查了基本不等式在实际问题中的应用,属于基础题.。
---------------------------------------------------------------最新资料推荐------------------------------------------------------ 高中数学选修2-2全套知识点和练习答案解析修选修 2-2 知识点及习题答案解析导数及其应用一一. 导数概念的引入 1. 导数的物理意义:瞬时速率。
一般的,函数 ( ) y f x 在0x x 处的瞬时变化率是0 00( ) ( )limxf x x f xx ,我们称它为函数 ( ) y f x 在0x x 处的导数,记作0( ) f x 或0| x x y,即0( ) f x =0 00( ) ( )limxf x x f xx 2. 导数的几何意义:曲线的切线.通过图像,我们可以看出当点nP 趋近于 P 时,直线 PT 与曲线相切。
容易知道,割线nPP 的斜率是 00( ) ( )nnnf x f xkx x,当点nP 趋近于 P 时,函数 ( ) y f x 在0x x 处的导数就是切线 PT 的斜率k,即0000( ) ( )lim ( )nxnf x f xk f xx x3. 导函数:当 x 变化时, ( ) f x 便是 x 的一个函数,我们称它为 ( ) f x 的导函数. ( ) y f x 的导函数有时也记作y ,即 0( ) ( )( ) limxf x x f xf xx 二二. 导数的计算基本初等函数的导数公式: 1 若 ( ) f x c (c 为常数),则 ( ) 0 f x ; 2 若 ( ) f x x ,则1( ) f x x ; 3 若 ( ) sin f x x ,则 ( ) cos f x x1/ 34 若 ( ) cos f x x ,则 ( ) sin f x x ;5 若 ( )xf x a ,则 ( ) lnxf x a a6 若 ( )xf x e ,则 ( )xf x e7 若 ( ) log xaf x ,则1( )lnf xx a8 若 ( ) ln f x x ,则1( ) f xx导数的运算法则 1. [ ( ) ( )] ( ) ( ) f x g x f x g x2. [ ( ) ( )] ( ) ( ) ( ) ( ) f x g x f x g x f x g x3. 2( ) ( ) ( ) ( ) ( )[ ]( ) [ ( )]f x f x g x f x g xg x g x复合函数求导 ( ) y f u 和 ( ) u g x ,称则 y 可以表示成为 x 的函数,即 ( ( )) y f g x 为一个复合函数( ( )) ( ) y f g x g x 三三. 导数在研究函数中的应用 1.函数的单调性与导数: 一般的,函数的单调性与其导数的正负有如下关系:在某个区间 ( , )a b 内 (1)如果( ) 0 f x ,那么函数( ) y f x 在这个区间单调递增;(2)如果 ( ) 0 f x ,那么函数( ) y f x 在这个区间单调递减. 2.函数的极值与导数极值反映的是函数在某一点附近的大小情况. 求函数( ) y f x 的极值的方法是:(1)如果在0x 附近的左侧 ( ) 0 f x ,右侧( ) 0 f x ,那么0( ) f x是极大值(2)如果在0x 附近的左侧 ( ) 0 f x ,右侧 ( ) 0 f x ,那么0( ) f x 是极小值; 4.函数的最大(小)值与导数求函数( ) y f x 在 [ , ]a b 上的最大值与最小值的步骤:---------------------------------------------------------------最新资料推荐------------------------------------------------------ (1)求函数 ( ) y f x 在 ( , )a b 内的...3/ 3。
新课程标准数学选修2—2第一章课后习题解答第一章导数及其应用3.1变化率与导数练习(P6)在第3 h 和5 h 时,原油温度的瞬时变化率分别为1和3. 它说明在第 3 h 附近,原油温度大约以 1 ℃/h 的速度下降;在第 5 h 时,原油温度大约以 3 ℃/h 的速率上升. 练习(P8)函数()h t 在3tt 附近单调递增,在4tt 附近单调递增. 并且,函数()h t 在4t 附近比在3t 附近增加得慢. 说明:体会“以直代曲”1的思想.练习(P9)函数33()4V r V (05)V的图象为根据图象,估算出(0.6)0.3r ,(1.2)0.2r .说明:如果没有信息技术,教师可以将此图直接提供给学生,然后让学生根据导数的几何意义估算两点处的导数. 习题1.1 A 组(P10)1、在0t 处,虽然1020()()W t W t ,然而10102020()()()()W t W t t W t W t t tt.所以,企业甲比企业乙治理的效率高.说明:平均变化率的应用,体会平均变化率的内涵.2、(1)(1)4.9 3.3h h t h t tt,所以,(1)3.3h .这说明运动员在1t s 附近以3.3 m /s 的速度下降.3、物体在第 5 s 的瞬时速度就是函数()s t 在5t时的导数.(5)(5)10s s t s t tt,所以,(5)10s .因此,物体在第 5 s 时的瞬时速度为10 m /s ,它在第 5 s 的动能213101502kE J.4、设车轮转动的角度为,时间为t ,则2(0)kt t. 由题意可知,当0.8t 时,2. 所以258k,于是2258t .车轮转动开始后第3.2 s 时的瞬时角速度就是函数()t 在 3.2t 时的导数.(3.2)(3.2)25208t t t t,所以(3.2)20.因此,车轮在开始转动后第 3.2 s 时的瞬时角速度为201s .说明:第2,3,4题是对了解导数定义及熟悉其符号表示的巩固.5、由图可知,函数()f x 在5x处切线的斜率大于零,所以函数在5x 附近单调递增. 同理可得,函数()f x 在4x ,2,0,2附近分别单调递增,几乎没有变化,单调递减,单调递减.说明:“以直代曲”思想的应用.6、第一个函数的图象是一条直线,其斜率是一个小于零的常数,因此,其导数()f x 的图象如图(1)所示;第二个函数的导数()f x 恒大于零,并且随着x 的增加,()f x 的值也在增加;对于第三个函数,当x 小于零时,()f x 小于零,当x 大于零时,()f x 大于零,并且随着x 的增加,()f x 的值也在增加. 以下给出了满足上述条件的导函数图象中的一种.说明:本题意在让学生将导数与曲线的切线斜率相联系.习题3.1 B 组(P11)1、高度关于时间的导数刻画的是运动变化的快慢,即速度;速度关于时间的导数刻画的是速度变化的快慢,根据物理知识,这个量就是加速度.2、说明:由给出的()v t 的信息获得()s t 的相关信息,并据此画出()s t 的图象的大致形状. 这个过程基于对导数内涵的了解,以及数与形之间的相互转换.3、由(1)的题意可知,函数()f x 的图象在点(1,5)处的切线斜率为1,所以此点附近曲线呈下降趋势. 首先画出切线的图象,然后再画出此点附近函数的图象. 同理可得(2)(3)某点处函数图象的大致形状. 下面是一种参考答案.说明:这是一个综合性问题,包含了对导数内涵、导数几何意义的了解,以及对以直代曲思想的领悟. 本题的答案不唯一. 1.2导数的计算练习(P18)1、()27f x x,所以,(2)3f ,(6)5f .2、(1)1ln 2y x ;(2)2xy e ;(3)4106y x x ;(4)3sin 4cos y x x ;(5)1sin33x y;(6)121yx .习题1.2 A 组(P18)1、()()2SS rr S r r r rr,所以,0()lim(2)2r S r r r r .2、()9.8 6.5h t t.3、3213()34r V V.4、(1)213ln 2y xx ;(2)1n xn xynxex e ;(3)2323sin cos cos sin x x x x xy x;(4)9899(1)y x ;(5)2x y e ;(6)2sin(25)4cos(25)y x x x.5、()822f x x . 由0()4f x 有04822x ,解得032x .6、(1)ln 1y x ;(2)1yx .7、1xy.8、(1)氨气的散发速度()500ln 0.8340.834tA t .(2)(7)25.5A ,它表示氨气在第7天左右时,以25.5克/天的速率减少.习题1.2 B 组(P19)1、(1)(2)当h 越来越小时,sin()sin x h xy h就越来越逼近函数cos y x .(3)sin y x 的导数为cos y x .2、当0y时,0x. 所以函数图象与x 轴交于点(0,0)P .xye ,所以01x y .所以,曲线在点P 处的切线的方程为yx .2、()4sin d t t . 所以,上午6:00时潮水的速度为0.42m /h ;上午9:00时潮水的速度为0.63m /h ;中午12:00时潮水的速度为0.83m /h ;下午6:00时潮水的速度为 1.24m /h.1.3导数在研究函数中的应用练习(P26)1、(1)因为2()24f x xx ,所以()22f x x . 当()0f x ,即1x 时,函数2()24f x xx单调递增;当()0f x ,即1x 时,函数2()24f x xx 单调递减.(2)因为()xf x ex ,所以()1xf x e. 当()0f x ,即0x 时,函数()xf x e x 单调递增;当()0f x ,即0x 时,函数()xf x ex 单调递减.(3)因为3()3f x xx ,所以2()33f x x .当()0f x ,即11x 时,函数3()3f x xx 单调递增;当()0f x ,即1x 或1x 时,函数3()3f x xx 单调递减.(4)因为32()f x xx x ,所以2()321f x xx .当()0f x ,即13x 或1x 时,函数32()f x x xx 单调递增;当()0f x ,即113x时,函数32()f x xxx 单调递减.2、3、因为2()(0)f x ax bx c a ,所以()2f x ax b .(1)当0a 时,()0f x ,即2b x a 时,函数2()(0)f x ax bx c a 单调递增;()0f x ,即2b xa 时,函数2()(0)f x axbxc a单调递减.(2)当0a 时,()0f x ,即2b x a 时,函数2()(0)f x ax bx c a 单调递增;()0f x ,即2b xa时,函数2()(0)f x axbxc a 单调递减. 4、证明:因为32()267f x x x,所以2()612f x xx.当(0,2)x时,2()6120f x x x,因此函数32()267f x xx在(0,2)内是减函数.练习(P29)1、24,x x 是函数()yf x 的极值点,注:图象形状不唯一.其中2xx 是函数()y f x 的极大值点,4x x 是函数()y f x 的极小值点.2、(1)因为2()62f x xx ,所以()121f x x .令()1210f x x ,得112x.当112x时,()0f x ,()f x 单调递增;当112x时,()0f x ,()f x 单调递减.所以,当112x时,()f x 有极小值,并且极小值为211149()6()212121224f . (2)因为3()27f x x x ,所以2()327f x x.令2()3270f x x,得3x.下面分两种情况讨论:①当()0f x ,即3x或3x 时;②当()0f x ,即33x 时.当x 变化时,()f x ,()f x 变化情况如下表:x (,3)3(3,3) 3 (3,)()f x +0 -0+()f x 单调递增54单调递减54单调递增因此,当3x 时,()f x 有极大值,并且极大值为54;当3x时,()f x 有极小值,并且极小值为54.(3)因为3()612f x x x ,所以2()123f x x .令2()1230f x x,得2x.下面分两种情况讨论:①当()0f x ,即22x 时;②当()0f x ,即2x 或2x 时.当x 变化时,()f x ,()f x 变化情况如下表:x(,2)2(2,2)2(2,)()f x -0 +0 -()f x 单调递减10单调递增22单调递减因此,当2x 时,()f x 有极小值,并且极小值为10;当2x时,()f x 有极大值,并且极大值为22 (4)因为3()3f x x x ,所以2()33f x x .令2()330f x x,得1x.下面分两种情况讨论:①当()0f x ,即11x 时;②当()0f x ,即1x 或1x 时.当x 变化时,()f x ,()f x 变化情况如下表:x (,1)1(1,1) 1 (1,)()f x -0+0 -()f x 单调递减2单调递增2单调递减因此,当1x 时,()f x 有极小值,并且极小值为2;当1x时,()f x 有极大值,并且极大值为2练习(P31)(1)在[0,2]上,当112x 时,2()62f x xx 有极小值,并且极小值为149()1224f .又由于(0)2f ,(2)20f . 因此,函数2()62f x xx在[0,2]上的最大值是20、最小值是4924. (2)在[4,4]上,当3x 时,3()27f x xx 有极大值,并且极大值为(3)54f ;当3x时,3()27f x xx 有极小值,并且极小值为(3)54f ;又由于(4)44f ,(4)44f .因此,函数3()27f x xx 在[4,4]上的最大值是54、最小值是54.(3)在1[,3]3上,当2x 时,3()612f x xx 有极大值,并且极大值为(2)22f .又由于155()327f ,(3)15f . 因此,函数3()612f x xx 在1[,3]3上的最大值是22、最小值是5527.(4)在[2,3]上,函数3()3f x xx 无极值.因为(2)2f ,(3)18f .因此,函数3()3f x xx 在[2,3]上的最大值是2、最小值是18.习题1.3 A 组(P31)1、(1)因为()21f x x ,所以()20f x .因此,函数()21f x x 是单调递减函数.(2)因为()cos f x xx ,(0,)2x,所以()1sin 0f x x,(0,)2x.因此,函数()cos f x xx 在(0,)2上是单调递增函数. (3)因为()24f x x ,所以()20f x .因此,函数()24f x x是单调递减函数.(4)因为3()24f x xx ,所以2()640f x x.因此,函数3()24f x x x 是单调递增函数.2、(1)因为2()24f x xx,所以()22f x x . 当()0f x ,即1x 时,函数2()24f x x x 单调递增. 当()0f x ,即1x 时,函数2()24f x x x 单调递减.(2)因为2()233f x xx ,所以()43f x x .当()0f x ,即34x 时,函数2()233f x x x 单调递增. 当()0f x ,即34x 时,函数2()233f x xx单调递减.(3)因为3()3f x xx ,所以2()330f x x .因此,函数3()3f x xx 是单调递增函数.(4)因为32()f x xxx ,所以2()321f x xx .当()0f x ,即1x 或13x时,函数32()f x x xx 单调递增.当()0f x ,即113x时,函数32()f x xxx 单调递减.3、(1)图略. (2)加速度等于0.4、(1)在2x x 处,导函数()y f x 有极大值;(2)在1x x 和4xx 处,导函数()yf x 有极小值;(3)在3x x 处,函数()y f x 有极大值;(4)在5xx 处,函数()yf x 有极小值. 5、(1)因为2()62f x xx,所以()121f x x .令()1210f x x ,得112x.当112x 时,()0f x ,()f x 单调递增;当112x时,()0f x ,()f x 单调递减.所以,112x时,()f x 有极小值,并且极小值为211149()6()212121224f .(2)因为3()12f x xx ,所以2()312f x x.令2()3120f x x,得2x.下面分两种情况讨论:①当()0f x ,即2x或2x时;②当()0f x ,即22x 时.当x 变化时,()f x ,()f x 变化情况如下表:x (,2)2(2,2) 2 (2,)()f x +0 -0+()f x 单调递增16单调递减16单调递增因此,当2x时,()f x 有极大值,并且极大值为16;当2x 时,()f x 有极小值,并且极小值为16.(3)因为3()612f x x x ,所以2()123f x x .令2()1230f x x,得2x.下面分两种情况讨论:①当()0f x ,即2x或2x时;②当()0f x ,即22x 时.当x 变化时,()f x ,()f x 变化情况如下表:x (,2)2(2,2) 2 (2,)()f x +0 -0+()f x 单调递增22单调递减10单调递增因此,当2x 时,()f x 有极大值,并且极大值为22;当2x时,()f x 有极小值,并且极小值为10.(4)因为3()48f x x x ,所以2()483f x x .令2()4830f x x,得4x.下面分两种情况讨论:①当()0f x ,即2x或2x 时;②当()0f x ,即22x 时.当x 变化时,()f x ,()f x 变化情况如下表:x (,4)4(4,4) 4 (4,)()f x -0+0 -()f x 单调递减128单调递增128单调递减因此,当4x 时,()f x 有极小值,并且极小值为128;当4x时,()f x 有极大值,并且极大值为128.6、(1)在[1,1]上,当112x 时,函数2()62f x xx有极小值,并且极小值为4724.由于(1)7f ,(1)9f ,所以,函数2()62f x xx在[1,1]上的最大值和最小值分别为9,4724.(2)在[3,3]上,当2x 时,函数3()12f x xx 有极大值,并且极大值为16;当2x时,函数3()12f x xx 有极小值,并且极小值为16.由于(3)9f ,(3)9f ,所以,函数3()12f x xx 在[3,3]上的最大值和最小值分别为16,16.(3)在1[,1]3上,函数3()612f x x x 在1[,1]3上无极值.由于1269()327f ,(1)5f ,所以,函数3()612f x xx 在1[,1]3上的最大值和最小值分别为26927,5.(4)当4x时,()f x 有极大值,并且极大值为128..由于(3)117f ,(5)115f ,所以,函数3()48f x xx 在[3,5]上的最大值和最小值分别为128,117.习题3.3 B 组(P32)1、(1)证明:设()sin f x x x ,(0,)x .因为()cos 10f x x ,(0,)x 所以()sin f x x x 在(0,)内单调递减因此()sin (0)0f x xxf ,(0,)x,即sin xx ,(0,)x. 图略(2)证明:设2()f x xx ,(0,1)x. 因为()12f x x ,(0,1)x所以,当1(0,)2x时,()120f x x,()f x 单调递增,2()(0)0f x xxf ;当1(,1)2x时,()120f x x,()f x 单调递减,2()(1)0f x xxf ;又11()024f . 因此,20x x,(0,1)x . 图略(3)证明:设()1xf x ex ,0x . 因为()1xf x e,0x所以,当0x时,()10xf x e,()f x 单调递增,()1(0)0xf x ex f ;当0x时,()10xf x e,()f x 单调递减,()1(0)0xf x ex f ;综上,1xex ,0x . 图略(4)证明:设()ln f x xx ,0x. 因为1()1f x x,0x所以,当01x 时,1()10f x x,()f x 单调递增,()ln (1)10f x xxf ;当1x时,1()10f x x,()f x 单调递减,()ln (1)10f x xxf ;当1x时,显然ln11. 因此,ln xx .由(3)可知,1xex x ,0x ..综上,ln xxx e ,0x 图略2、(1)函数32()f x axbxcxd 的图象大致是个“双峰”图象,类似“”或“”的形状. 若有极值,则在整个定义域上有且仅有一个极大值和一个极小值,从图象上能大致估计它的单调区间.(2)因为32()f x ax bx cx d ,所以2()32f x axbx c .下面分类讨论:当0a 时,分0a 和0a两种情形:①当0a,且230b ac时,设方程2()320f x axbx c的两根分别为12,x x ,且12x x ,当2()320f x ax bxc,即1x x 或2xx 时,函数32()f x axbxcxd 单调递增;当2()320f x axbx c,即12x xx 时,函数32()f x axbxcx d 单调递减. 当0a,且230b ac 时,此时2()320f x axbx c,函数32()f x axbxcxd 单调递增.②当0a,且230bac时,设方程2()320f x axbx c的两根分别为12,x x ,且12x x ,当2()320f x ax bx c,即12x xx 时,函数32()f x axbxcx d 单调递增;当2()320f x axbx c,即1x x 或2x x 时,函数32()f x axbxcxd 单调递减. 当0a,且230bac时,此时2()320f x ax bx c,函数32()f x axbxcx d 单调递减1.4生活中的优化问题举例习题1.4 A 组(P37)1、设两段铁丝的长度分别为x ,lx ,则这两个正方形的边长分别为4x ,4l x,两个正方形的面积和为22221()()()(22)4416x l xS f x x lx l ,0x l .令()0f x ,即420x l,2l x. 当(0,)2lx时,()0f x ;当(,)2lx l 时,()0f x . 因此,2lx 是函数()f x 的极小值点,也是最小值点.所以,当两段铁丝的长度分别是2l时,两个正方形的面积和最小.2、如图所示,由于在边长为a 的正方形铁片的四角截去x四个边长为x 的小正方形,做成一个无盖方盒,所以无盖方盒的底面为正方形,且边长为2a x ,高为x . (1)无盖方盒的容积2()(2)V x ax x ,02a x.(2)因为322()44V x xaxa x ,所以22()128V x x ax a . 令()0V x ,得2a x (舍去),或6a x.当(0,)6ax时,()0V x ;当(,)62a ax时,()0V x . 因此,6ax 是函数()V x 的极大值点,也是最大值点.所以,当6ax 时,无盖方盒的容积最大.3、如图,设圆柱的高为h ,底半径为R ,则表面积222S Rh R 由2VR h ,得2V hR.因此,2222()222V V S R R RR RR,0R .令2()40V S R RR,解得32V R.当3(0,)2V R 时,()0S R ;当3(,)2V R时,()0S R .因此,32V R是函数()S R 的极小值点,也是最小值点. 此时,32222V V hR R .所以,当罐高与底面直径相等时,所用材料最省. 4、证明:由于211()()ni i f x x a n,所以12()()ni i f x xa n.令()0f x ,得11ni i xa n,Rh(第3题)可以得到,11ni i xa n是函数()f x 的极小值点,也是最小值点.这个结果说明,用n 个数据的平均值11ni i a n表示这个物体的长度是合理的,这就是最小二乘法的基本原理. 5、设矩形的底宽为x m ,则半圆的半径为2x m ,半圆的面积为28x 2m ,矩形的面积为28x a2m ,矩形的另一边长为()8a x x m因此铁丝的长为22()(1)244x a x a l x x xxx,80ax令22()104a l x x,得84ax(负值舍去). 当8(0,)4a x时,()0l x ;当88(,)4a a x时,()0l x .因此,84a x是函数()l x 的极小值点,也是最小值点.所以,当底宽为84a m 时,所用材料最省.6、利润L 等于收入R 减去成本C ,而收入R 等于产量乘单价. 由此可得出利润L 与产量q 的函数关系式,再用导数求最大利润.收入211(25)2588R q p q q qq ,利润2211(25)(1004)2110088LR Cq q q q q ,0200q.求导得1214L q 令0L ,即12104q ,84q.当(0,84)q时,0L ;当(84,200)q 时,0L;因此,84q是函数L 的极大值点,也是最大值点.所以,产量为84时,利润L 最大,习题1.4 B 组(P37)1、设每个房间每天的定价为x 元,那么宾馆利润21801()(50)(20)7013601010x L x x x x ,180680x .令1()7005L x x ,解得350x.当(180,350)x时,()0L x ;当(350,680)x 时,()0L x .因此,350x 是函数()L x 的极大值点,也是最大值点.所以,当每个房间每天的定价为350元时,宾馆利润最大.2、设销售价为x 元/件时,利润4()()(4)()(5)b x L x x a c c c x a x b b ,54ba x .令845()0c ac bc L x x b b ,解得458a bx. 当45(,)8a b x a 时,()0L x ;当455(,)84a b bx 时,()0L x .当458a b x 是函数()L x 的极大值点,也是最大值点.所以,销售价为458a b元/件时,可获得最大利润.1.5定积分的概念练习(P42)83.说明:进一步熟悉求曲边梯形面积的方法和步骤,体会“以直代曲”和“逼近”的思想.练习(P45)1、22112()[()2]()iii i i s s v t n nnn n n,1,2,,i n L .于是111()nnniii i iiss s v t n 2112[()]niinnn22211111()()()2n n n n n n n nL 2231[12]2n nL 31(1)(21)26n n n n111(1)(1)232nn取极值,得1111115lim[()]lim[(1)(1)2]323nnnnii isv nn nn说明:进一步体会“以不变代变”和“逼近”的思想.2、223km.说明:进一步体会“以不变代变”和“逼近”的思想,熟悉求变速直线运动物体路程的方法和步骤. 练习(P48)234x dx. 说明:进一步熟悉定积分的定义和几何意义.从几何上看,表示由曲线3yx 与直线0x,2x ,0y 所围成的曲边梯形的面积4S .习题1.5 A 组(P50)1、(1)10021111(1)[(1)1]0.495100100i i x dx;(2)50021111(1)[(1)1]0.499500500i i x dx;(3)100021111(1)[(1)1]0.499510001000i ix dx.说明:体会通过分割、近似替换、求和得到定积分的近似值的方法.2、距离的不足近似值为:18112171310140(m );距离的过剩近似值为:271181121713167(m ).3、证明:令()1f x . 用分点011iinax x x x x bLL将区间[,]a b 等分成n 个小区间,在每个小区间1[,]i i x x 上任取一点(1,2,,)ii n L 作和式11()nni i i b af xba n,从而11lim nb ani b adxba n ,说明:进一步熟悉定积分的概念.4、根据定积分的几何意义,121x dx 表示由直线0x,1x ,0y以及曲线21yx 所围成的曲边梯形的面积,即四分之一单位圆的面积,因此1214x dx.5、(1)3114x dx. 由于在区间[1,0]上30x ,所以定积分31x dx 表示由直线0x ,1x ,0y和曲线3yx 所围成的曲边梯形的面积的相反数.(2)根据定积分的性质,得113331111044x dx x dx x dx.由于在区间[1,0]上30x,在区间[0,1]上30x ,所以定积分131x dx 等于位于x 轴上方的曲边梯形面积减去位于x 轴下方的曲边梯形面积.(3)根据定积分的性质,得20233311115444x dxx dxx dx由于在区间[1,0]上30x,在区间[0,2]上30x ,所以定积分231x dx 等于位于x 轴上方的曲边梯形面积减去位于x 轴下方的曲边梯形面积.说明:在(3)中,由于3x 在区间[1,0]上是非正的,在区间[0,2]上是非负的,如果直接利用定义把区间[1,2]分成n 等份来求这个定积分,那么和式中既有正项又有负项,而且无法抵挡一些项,求和会非常麻烦. 利用性质3可以将定积分231x dx 化为02331x dxx dx ,这样,3x 在区间[1,0]和区间[0,2]上的符号都是不变的,再利用定积分的定义,容易求出031x dx ,23x dx ,进而得到定积分231x dx 的值. 由此可见,利用定积分的性质可以化简运算.在(2)(3)中,被积函数在积分区间上的函数值有正有负,通过练习进一步体会定积分的几何意义. 习题1.5 B 组(P50)1、该物体在0t 到6t (单位:s )之间走过的路程大约为145 m.说明:根据定积分的几何意义,通过估算曲边梯形内包含单位正方形的个数来估计物体走过的路程. 2、(1)9.81vt .(2)过剩近似值:8111899.819.8188.292242i i (m );不足近似值:81111879.819.8168.672242i i (m )(3)409.81tdt ;409.81d 78.48t t(m ).3、(1)分割在区间[0,]l 上等间隔地插入1n 个分点,将它分成n 个小区间:[0,]ln ,2[,]l l n n ,……,(2)[,]n ll n ,记第i 个区间为(1)[,]i l iln n(1,2,i n L ),其长度为(1)il i l l xnnn.把细棒在小段[0,]l n ,2[,]l ln n,……,(2)[,]nll n上质量分别记作:12,,,n m m m L ,则细棒的质量1ni i mm .(2)近似代替当n 很大,即x 很小时,在小区间(1)[,]i l il n n上,可以认为线密度2()x x的值变化很小,近似地等于一个常数,不妨认为它近似地等于任意一点(1)[,]ii l il n n 处的函数值2()i i . 于是,细棒在小段(1)[,]i l il n n上质量2()i i ilm x n(1,2,i n L ). (3)求和得细棒的质量2111()nnnii ii i i l mm xn.(4)取极限细棒的质量21limnini l m n,所以2l mx dx ..1.6微积分基本定理练习(P55)(1)50;(2)503;(3)42533;(4)24;(5)3ln 22;(6)12;(7)0;(8)2.说明:本题利用微积分基本定理和定积分的性质计算定积分.习题1.6 A 组(P55)1、(1)403;(2)13ln 22;(3)9ln 3ln 22;(4)176;(5)2318;(6)22ln 2ee . 说明:本题利用微积分基本定理和定积分的性质计算定积分.2、33sin [cos ]2xdx x .它表示位于x 轴上方的两个曲边梯形的面积与x 轴下方的曲边梯形的面积之差. 或表述为:位于x 轴上方的两个曲边梯形的面积(取正值)与x 轴下方的曲边梯形的面积(取负值)的代数和. 习题1.6 B 组(P55)1、(1)原式=22111[]222x ee ;(2)原式=46113[sin2]224x ;(3)原式=3126[]ln 2ln 2x.2、(1)cos 1sin [][cos cos()]0mx mxdx m m m m ;(2)sin 1cos [sin sin()]0mx mxdx m m m m ;(3)21cos2sin2sin []224mx x mx mxdx dx m ;(4)21cos2sin 2cos []224mx x mx mxdx dx m.3、(1)0.202220()(1)[]49245245t ktkt tkttg g g g g g s t e dt t e t e t ekk kk kk.(2)由题意得0.2492452455000tte .这是一个超越方程,为了解这个方程,我们首先估计t 的取值范围.根据指数函数的性质,当0t 时,0.201te,从而5000495245t,因此,500052454949t. 因此50000.2749245 3.3610e,52450.2749245 1.2410e,所以,70.271.2410245 3.3610te.从而,在解方程0.2492452455000tte 时,0.2245te可以忽略不计.因此,.492455000t ,解之得524549t(s ).说明:B 组中的习题涉及到被积函数是简单的复合函数的定积分,可视学生的具体情况选做,不要求掌握. 1.7定积分的简单应用练习(P58)(1)323;(2)1.说明:进一步熟悉应用定积分求平面图形的面积的方法与求解过程.练习(P59)1、52533(23)[3]22s tdt tt (m ).2、42403(34)[4]402Wx dx xx (J ).习题1.7 A 组(P60)1、(1)2;(2)92.2、2[]b b aaq qq q Wkdrk kkrrab.3、令()0v t ,即40100t. 解得4t. 即第4s 时物体达到最大高度.最大高度为4240(4010)[405]80ht dtt t (m ). 4、设t s 后两物体相遇,则2(31)105tt t dttdt ,解之得5t. 即,A B 两物体5s 后相遇.此时,物体A 离出发地的距离为5235(31)[]130tdt tt (m ).5、由Fkl ,得100.01k . 解之得1000k.所做的功为0.120.1010005005Wldl l(J ).6、(1)令55()501v t t t,解之得10t . 因此,火车经过10s 后完全停止. (2)10210551(5)[555ln(1)]55ln1112stdt tt t t(m ).习题1.7 B 组(P60)1、(1)22a aax dx 表示圆222xya 与x 轴所围成的上半圆的面积,因此2222a aa ax dx(2)12[1(1)]x x dx 表示圆22(1)1x y 与直线yxO1y x 所围成的图形(如图所示)的面积,因此,212111[1(1)]114242x x dx.2、证明:建立如图所示的平面直角坐标系,可设抛物线的方程为2y ax ,则2()2b h a ,所以24ha b .从而抛物线的方程为224h y x b.于是,抛物线拱的面积23220224422()2[]33bbh h S hx dxhxx bh bb.3、如图所示.解方程组223y x yx得曲线22yx 与曲线3yx 交点的横坐标11x ,22x . 于是,所求的面积为12221[(2)3][3(2)]1x x dx x x dx .4、证明:2[]()R h R h RRMm Mm Mmh WGdr GGrr R Rh .第一章复习参考题A 组(P65)1、(1)3;(2)4y.2、(1)22sin cos 2cos x xxyx;(2)23(2)(31)(53)yx x x;(3)22ln ln 2x xyx x;(4)2422(21)x xyx .3、32GMm Fr.4、(1)()0f t . 因为红茶的温度在下降.(2)(3)4f 表明在3℃附近时,红茶温度约以4℃/min 的速度下降.图略.5、因为32()f x x ,所以32()3f x x.当32()03f x x,即0x 时,()f x 单调递增;yxh b O(第2题)当32()03f x x ,即0x 时,()f x 单调递减.6、因为2()f x xpx q ,所以()2f x xp .当()20f x xp,即12p x 时,()f x 有最小值.由12p ,得2p. 又因为(1)124f q,所以5q.7、因为2322()()2f x x xc xcxc x ,所以22()34(3)()f x xcx c x c xc .当()0f x ,即3c x,或xc 时,函数2()()f x x xc 可能有极值.由题意当2x 时,函数2()()f x x x c 有极大值,所以0c.由于所以,当3c x时,函数2()()f x x x c 有极大值. 此时,23c ,6c.8、设当点A 的坐标为(,0)a 时,AOB 的面积最小.因为直线AB 过点(,0)A a ,(1,1)P ,所以直线AB 的方程为1y x ax a ,即1()1y x a a. 当0x时,1a ya ,即点B 的坐标是(0,)1a a . 因此,AOB 的面积21()212(1)AOBaaSS a aa a .令()0S a ,即2212()02(1)a aS a a .当0a ,或2a 时,()0S a ,0a不合题意舍去.x (,)3c3c (,)3cc c (,)c ()f x +0 -0 +()f x 单调递增极大值单调递减极小值单调递增x(0,2)2(2,)由于所以,当2a ,即直线AB 的倾斜角为135时,AOB 的面积最小,最小面积为2.9、D .10、设底面一边的长为x m ,另一边的长为(0.5)xm. 因为钢条长为14.8m.所以,长方体容器的高为14.844(0.5)12.88 3.2244xx xx .设容器的容积为V ,则32()(0.5)(3.22)2 2.2 1.6V V x x xx xxx ,0 1.6x .令()0V x ,即26 4.4 1.60x x .所以,415x (舍去),或1x.当(0,1)x时,()0V x ;当(1,1.6)x时,()0V x .因此,1x 是函数()V x 在(0,1.6)的极大值点,也是最大值点. 所以,当长方体容器的高为 1 m 时,容器最大,最大容器为1.8 m 3.11、设旅游团人数为100x 时,旅行社费用为2()(100)(10005)5500100000y f x x x x(080)x .令()0f x ,即105000x ,50x .又(0)100000f ,(80)108000f ,(50)112500f .所以,50x是函数()f x 的最大值点.所以,当旅游团人数为150时,可使旅行社收费最多. 12、设打印纸的长为x cm 时,可使其打印面积最大.因为打印纸的面积为623.7,长为x ,所以宽为623.7x,打印面积623.7()(2 2.54)(2 3.17)S x x x23168.396655.9072 6.34x x,5.0898.38x .()f x -0 +()f x 单调递减极小值单调递增令()0S x ,即23168.3966.340x,22.36x (负值舍去),623.727.8922.36.22.36x是函数()S x 在(5.08,98.38)内唯一极值点,且为极大值,从而是最大值点.所以,打印纸的长、宽分别约为27.89cm ,22.36cm 时,可使其打印面积最大.13、设每年养q 头猪时,总利润为y 元.则21()20000100300200002y R q qq q (0400,)q q N .令0y ,即3000q ,300q.当300q 时,25000y ;当400q 时,20000y .300q是函数()y p 在(0,400]内唯一极值点,且为极大值点,从而是最大值点.所以,每年养300头猪时,可使总利润最大,最大总利润为25000元.14、(1)232;(2)22e ;(3)1;(4)原式=2222200cos sin (cos sin )[sin cos ]0cos sin x x dxx x dx xx x x ;(5)原式=2201cos sin 2[]224xx x dx.15、略. 说明:利用函数图象的对称性、定积分的几何意义进行解释.16、22 2.17、由Fkl ,得0.0490.01k . 解之得 4.9k.所做的功为20.30.30.10.14.9 4.90.1962lWldl (J )第一章复习参考题B 组(P66)1、(1)43()10210b t t. 所以,细菌在5t与10t 时的瞬时速度分别为0和410. (2)当05t 时,()0b t ,所以细菌在增加;当5555t时,()0b t ,所以细菌在减少.2、设扇形的半径为r ,中心角为弧度时,扇形的面积为S .因为212Sr ,2lr r ,所以2l r.222111(2)(2)222l Srrlr r r,02l r.令0S ,即40l r ,4l r,此时为2弧度.4lr是函数()S r 在(0,)2l内唯一极值点,且是极大值点,从而是最大值点.所以,扇形的半径为4l、中心角为2弧度时,扇形的面积最大. 3、设圆锥的底面半径为r ,高为h ,体积为V ,那么222rhR .因此,222231111()3333Vr hRh hR hh ,0hR .令22103VRh ,解得33h R.容易知道,33hR 是函数()V h 的极大值点,也是最大值点.所以,当33h R 时,容积最大.把33hR 代入222rhR ,得63rR .由2R r ,得263.所以,圆心角为263时,容积最大. 4、由于28010k ,所以45k.设船速为x km /h 时,总费用为y ,则2420204805yx x x 960016xx,0x 令0y,即29600160x,24x .容易知道,24x 是函数y 的极小值点,也是最小值点.当24x时,960020(1624)()9412424(元/时)所以,船速约为24km /h 时,总费用最少,此时每小时费用约为941元. 5、设汽车以x km /h 行驶时,行车的总费用2390130(3)14360xyx x,50100x 令0y ,解得53x(km /h ). 此时,114y (元)容易得到,53x 是函数y 的极小值点,也是最小值点.因此,当53x 时,行车总费用最少.所以,最经济的车速约为53km /h ;如果不考虑其他费用,这次行车的总费用约是114元. 6、原式=4040442222[]2xxxx xe dxe dxe dxe eee.7、解方程组2y kx yx x得,直线y kx 与抛物线2yxx 交点的横坐标为0x,1k .抛物线与x 轴所围图形的面积231210111()[]23236x xS x x dx .由题设得1120()2k k S x x dxkxdx3122101()[]23k k k xxx kx dx x3(1)6k .又因为16S ,所以31(1)2k . 于是3412k. 说明:本题也可以由面积相等直接得到11122()()k k k xxkx dxkxdxxx dx ,由此求出k 的值. 但计算较为烦琐.新课程标准数学选修2—2第二章课后习题解答第二章推理与证明2.1合情推理与演绎推理练习(P77)1、由12341a a a a ,猜想1na .2、相邻两行数之间的关系是:每一行首尾的数都是1,其他的数都等于上一行中与之相邻的两个数的和.3、设111OPQ R V 和222OP Q R V 分别是四面体111OPQ R 和222OP Q R 的体积,则111222111222O PQ R OP Q R V OP OQ OR V OP OQ OR .练习(P81)1、略.2、因为通项公式为n a 的数列{}n a ,若1n na p a ,其中p 是非零常数,则{}n a 是等比数列;……………………大前提又因为0cq ,则0q ,则11n n nna cqq a cq;……………………………小前提所以,通项公式为(0)nn a cq cq的数列{}n a 是等比数列. ……………………结论3、由AD BD ,得到ACD BCD 的推理是错误的. 因为这个推理的大前提是“在同一个三角形中,大边对大角”,小前提是“AD BD ”,而AD 与BD 不在同一个三角形中. 习题2.1 A 组(P83)1、21n a n ()n N .2、2F V E .3、当6n 时,122(1)n n ;当7n时,122(1)n n ;当8n时,122(1)n n ()nN .4、212111(2)nnA A A n L L(2n ,且n N ).5、121217n n b b b b b b L L (17n ,且nN ).6、如图,作DE ∥AB 交BC 于E .因为两组对边分别平行的四边形是平行四边形,又因为AD ∥BE ,AB ∥DE .所以四边形ABED 是平行四边形.DEBAC(第6题)因为平行四边形的对边相等.又因为四边形ABED是平行四边形.所以AB DE.因为与同一条线段等长的两条线段的长度相等,又因为AB DE,AB DC, 所以DE DC因为等腰三角形的两底角是相等的.又因为△DEC是等腰三角形, 所以DEC C因为平行线的同位角相等又因为DEC与B是平行线AB和DE的同位角, 所以DEC B 因为等于同角的两个角是相等的,又因为DEC C,DEC B, 所以B C习题2.1 B组(P84)1、由12 3S,23 4S,34 5S,45 6S,56 7S,猜想12 nnSn.2、略.3、略.2.2直接证明与间接证明练习(P89)1、因为442222cos sin(cos sin)(cos sin)cos2,所以,命题得证.2、要证67225,只需证22(67)(225),即证1324213410,即证42210,只需要22(42)(210),即证4240,这是显然成立的. 所以,命题得证.3、因为222222222()()()(2sin)(2tan)16sin tana b a b a b,又因为sin(1cos)sin(1cos) 1616(tan sin)(tan sin)16cos cos ab22222222sin(1cos)sin sin161616sin tancos cos,从而222()16a b ab,所以,命题成立.说明:进一步熟悉运用综合法、分析法证明数学命题的思考过程与特点.练习(P91)1、假设B不是锐角,则90B. 因此9090180C B.这与三角形的内角和等于180°矛盾.所以,假设不成立. 从而,B一定是锐角.2、假设2,3,5成等差数列,则232 5.所以22(23)(25),化简得5210,从而225(210),即2540,这是不可能的. 所以,假设不成立.。
数学选修22课后习题答案数学选修22课后习题答案在学习数学选修22这门课程时,我们经常会遇到各种各样的习题。
这些习题是我们巩固知识、理解概念和培养解决问题能力的重要工具。
然而,有时候我们会遇到一些难题,不知道如何下手。
在这篇文章中,我将为大家提供数学选修22课后习题的答案,希望能够帮助大家更好地学习和理解数学知识。
第一章:函数的概念与性质1. 1. 函数的定义:函数是一个或多个自变量和一个因变量之间的关系,通常用符号f(x)表示。
函数的定义域是自变量的取值范围,值域是因变量的取值范围。
2. 2. 函数的性质:函数可以是奇函数或偶函数。
奇函数满足f(-x)=-f(x),偶函数满足f(-x)=f(x)。
函数的图像可以是对称的。
3. 3. 函数的图像:函数的图像可以通过绘制函数的曲线来表示。
在坐标系中,自变量表示横轴,因变量表示纵轴。
4. 4. 函数的极值:函数在某个区间内取得最大值或最小值的点称为极值点。
极大值点对应函数的最大值,极小值点对应函数的最小值。
第二章:函数的运算与初等函数1. 1. 函数的四则运算:函数可以进行加法、减法、乘法和除法运算。
两个函数相加得到的函数称为它们的和函数,两个函数相减得到的函数称为它们的差函数,两个函数相乘得到的函数称为它们的积函数,两个函数相除得到的函数称为它们的商函数。
2. 2. 初等函数:常见的初等函数包括幂函数、指数函数、对数函数、三角函数和反三角函数等。
这些函数在数学中具有重要的地位,广泛应用于各个领域。
3. 3. 函数的复合:复合函数是指将一个函数的输出作为另一个函数的输入。
复合函数可以通过将函数的表达式代入另一个函数来求得。
4. 4. 函数的逆运算:函数的逆运算是指将函数的自变量和因变量互换。
如果一个函数存在逆函数,那么它们的复合函数等于自变量。
第三章:导数与微分1. 1. 导数的定义:函数在某个点的导数表示函数在该点的变化率。
导数可以通过求函数的极限来定义。
新课程标准数学选修2—2第一章课后习题解答第一章 导数及其应用 3.1变化率与导数 练习(P6)在第3 h 和5 h 时,原油温度的瞬时变化率分别为1-和3. 它说明在第3 h 附近,原油温度大约以1 ℃/h 的速度下降;在第5 h 时,原油温度大约以3 ℃/h 的速率上升.练习(P8)函数()h t 在3t t =附近单调递增,在4t t =附近单调递增. 并且,函数()h t 在4t 附近比在3t 附近增加得慢. 说明:体会“以直代曲”1的思想. 练习(P9) 函数33()4Vr V π=(05)V ≤≤的图象为根据图象,估算出(0.6)0.3r '≈,(1.2)0.2r '≈.说明:如果没有信息技术,教师可以将此图直接提供给学生,然后让学生根据导数的几何意义估算两点处的导数. 习题1.1 A 组(P10)1、在0t 处,虽然1020()()W t W t =,然而10102020()()()()W t W t t W t W t t t t--∆--∆≥-∆-∆. 所以,企业甲比企业乙治理的效率高.说明:平均变化率的应用,体会平均变化率的内涵.2、(1)(1) 4.9 3.3h h t h t t t∆+∆-==-∆-∆∆,所以,(1) 3.3h '=-. 这说明运动员在1t =s 附近以3.3 m /s 的速度下降. 3、物体在第5 s 的瞬时速度就是函数()s t 在5t =时的导数.(5)(5)10s s t s t t t∆+∆-==∆+∆∆,所以,(5)10s '=.因此,物体在第 5 s 时的瞬时速度为10 m /s ,它在第 5 s 的动能213101502k E =⨯⨯= J.4、设车轮转动的角度为θ,时间为t ,则2(0)kt t θ=>. 由题意可知,当0.8t =时,2θπ=. 所以258k π=,于是2258t πθ=. 车轮转动开始后第3.2 s 时的瞬时角速度就是函数()t θ在 3.2t =时的导数.(3.2)(3.2)25208t t t t θθθππ∆+∆-==∆+∆∆,所以(3.2)20θπ'=. 因此,车轮在开始转动后第3.2 s 时的瞬时角速度为20π1s -. 说明:第2,3,4题是对了解导数定义及熟悉其符号表示的巩固.5、由图可知,函数()f x 在5x =-处切线的斜率大于零,所以函数在5x =-附近单调递增. 同理可得,函数()f x 在4x =-,2-,0,2附近分别单调递增,几乎没有变化,单调递减,单调递减. 说明:“以直代曲”思想的应用.6、第一个函数的图象是一条直线,其斜率是一个小于零的常数,因此,其导数()f x '的图象如图(1)所示;第二个函数的导数()f x '恒大于零,并且随着x 的增加,()f x '的值也在增加;对于第三个函数,当x 小于零时,()f x '小于零,当x 大于零时,()f x '大于零,并且随着x 的增加,()f x '的值也在增加. 以下给出了满足上述条件的导函数图象中的一种.说明:本题意在让学生将导数与曲线的切线斜率相联系. 习题3.1 B 组(P11)1、高度关于时间的导数刻画的是运动变化的快慢,即速度;速度关于时间的导数刻画的是速度变化的快慢,根据物理知识,这个量就是加速度.2、说明:由给出的()v t 的信息获得()s t 的相关信息,并据此画出()s t 的图象的大致形状. 这个过程基于对导数内涵的了解,以及数与形之间的相互转换.3、由(1)的题意可知,函数()f x 的图象在点(1,5)-处的切线斜率为1-,所以此点附近曲线呈下降趋势. 首先画出切线的图象,然后再画出此点附近函数的图象. 同理可得(2)(3)某点处函数图象的大致形状. 下面是一种参考答案.说明:这是一个综合性问题,包含了对导数内涵、导数几何意义的了解,以及对以直代曲思想的领悟. 本题的答案不唯一. 1.2导数的计算 练习(P18)1、()27f x x '=-,所以,(2)3f '=-,(6)5f '=.2、(1)1ln 2y x '=; (2)2x y e '=; (3)4106y x x '=-; (4)3sin 4cos y x x '=--;(5)1sin 33xy '=-; (6)21y x '=-.习题1.2 A 组(P18)1、()()2S S r r S r r r r r π∆+∆-==+∆∆∆,所以,0()lim(2)2r S r r r r ππ∆→'=+∆=. 2、()9.8 6.5h t t '=-+. 3、3213()34r V Vπ'=.4、(1)213ln 2y x x '=+; (2)1n x n x y nx e x e -'=+; (3)2323sin cos cos sin x x x x xy x-+'=; (4)9899(1)y x '=+; (5)2x y e -'=-; (6)2sin(25)4cos(25)y x x x '=+++. 5、()82f x x '=-+. 由0()4f x '=有 04822x =-+,解得032x =. 6、(1)ln 1y x '=+; (2)1y x =-. 7、1xy π=-+.8、(1)氨气的散发速度()500ln 0.8340.834t A t '=⨯⨯.(2)(7)25.5A '=-,它表示氨气在第7天左右时,以25.5克/天的速率减少. 习题1.2 B 组(P19) 1、(1)(2)当h 越来越小时,sin()sin x h xy h+-=就越来越逼近函数cos y x =.(3)sin y x =的导数为cos y x =.2、当0y =时,0x =. 所以函数图象与x 轴交于点(0,0)P . x y e '=-,所以01x y ='=-.所以,曲线在点P 处的切线的方程为y x =-.2、()4sin d t t '=-. 所以,上午6:00时潮水的速度为0.42-m /h ;上午9:00时潮水的速度为0.63-m /h ;中午12:00时潮水的速度为0.83-m /h ;下午6:00时潮水的速度为 1.24-m /h.1.3导数在研究函数中的应用 练习(P26)1、(1)因为2()24f x x x =-+,所以()22f x x '=-.当()0f x '>,即1x >时,函数2()24f x x x =-+单调递增;当()0f x '<,即1x <时,函数2()24f x x x =-+单调递减. (2)因为()x f x e x =-,所以()1x f x e '=-.当()0f x '>,即0x >时,函数()x f x e x =-单调递增; 当()0f x '<,即0x <时,函数()x f x e x =-单调递减. (3)因为3()3f x x x =-,所以2()33f x x '=-.当()0f x '>,即11x -<<时,函数3()3f x x x =-单调递增; 当()0f x '<,即1x <-或1x >时,函数3()3f x x x =-单调递减. (4)因为32()f x x x x =--,所以2()321f x x x '=--.当()0f x '>,即13x <-或1x >时,函数32()f x x x x =--单调递增;当()0f x '<,即113x -<<时,函数32()f x x x x =--单调递减.2、3、因为2()(0)f x ax bx c a =++≠,所以()2f x ax b '=+. (1)当0a >时,()0f x '>,即2bx a >-时,函数2()(0)f x ax bx c a =++≠单调递增; ()0f x '<,即2bx a<-时,函数2()(0)f x ax bx c a =++≠单调递减.(2)当0a <时,()0f x '>,即2bx a <-时,函数2()(0)f x ax bx c a =++≠单调递增;()0f x '<,即2bx a >-时,函数2()(0)f x ax bx c a =++≠单调递减.4、证明:因为32()267f x x x =-+,所以2()612f x x x '=-. 当(0,2)x ∈时,2()6120f x x x '=-<,因此函数32()267f x x x =-+在(0,2)内是减函数. 练习(P29)1、24,x x 是函数()y f x =的极值点,注:图象形状不唯一.其中2x x =是函数()y f x =的极大值点,4x x =是函数()y f x =的极小值点. 2、(1)因为2()62f x x x =--,所以()121f x x '=-. 令()1210f x x '=-=,得112x =. 当112x >时,()0f x '>,()f x 单调递增;当112x <时,()0f x '<,()f x 单调递减.所以,当112x =时,()f x 有极小值,并且极小值为211149()6()212121224f =⨯--=-. (2)因为3()27f x x x =-,所以2()327f x x '=-. 令2()3270f x x '=-=,得3x =±. 下面分两种情况讨论:①当()0f x '>,即3x <-或3x >时;②当()0f x '<,即33x -<<时. 当x 变化时,()f x ',()f x 变化情况如下表:因此,当3x =-时,()f x 有极大值,并且极大值为54; 当3x =时,()f x 有极小值,并且极小值为54-. (3)因为3()612f x x x =+-,所以2()123f x x '=-. 令2()1230f x x '=-=,得2x =±. 下面分两种情况讨论:①当()0f x '>,即22x -<<时;②当()0f x '<,即2x <-或2x >时. 当x 变化时,()f x ',()f x 变化情况如下表:因此,当2x =-时,()f x 有极小值,并且极小值为10-; 当2x =时,()f x 有极大值,并且极大值为22 (4)因为3()3f x x x =-,所以2()33f x x '=-. 令2()330f x x '=-=,得1x =±. 下面分两种情况讨论:①当()0f x '>,即11x -<<时;②当()0f x '<,即1x <-或1x >时. 当x 变化时,()f x ',()f x 变化情况如下表:因此,当1x =-时,()f x 有极小值,并且极小值为2-; 当1x =时,()f x 有极大值,并且极大值为2 练习(P31)(1)在[0,2]上,当112x =时,2()62f x x x =--有极小值,并且极小值为149()1224f =-. 又由于(0)2f =-,(2)20f =.因此,函数2()62f x x x =--在[0,2]上的最大值是20、最小值是4924-. (2)在[4,4]-上,当3x =-时,3()27f x x x =-有极大值,并且极大值为(3)54f -=; 当3x =时,3()27f x x x =-有极小值,并且极小值为(3)54f =-; 又由于(4)44f -=,(4)44f =-.因此,函数3()27f x x x =-在[4,4]-上的最大值是54、最小值是54-.(3)在1[,3]3-上,当2x =时,3()612f x x x =+-有极大值,并且极大值为(2)22f =.又由于155()327f -=,(3)15f =.因此,函数3()612f x x x =+-在1[,3]3-上的最大值是22、最小值是5527.(4)在[2,3]上,函数3()3f x x x =-无极值. 因为(2)2f =-,(3)18f =-.因此,函数3()3f x x x =-在[2,3]上的最大值是2-、最小值是18-. 习题1.3 A 组(P31)1、(1)因为()21f x x =-+,所以()20f x '=-<. 因此,函数()21f x x =-+是单调递减函数.(2)因为()cos f x x x =+,(0,)2x π∈,所以()1sin 0f x x '=->,(0,)2x π∈.因此,函数()cos f x x x =+在(0,)2π上是单调递增函数. (3)因为()24f x x =--,所以()20f x '=-<. 因此,函数()24f x x =-是单调递减函数. (4)因为3()24f x x x =+,所以2()640f x x '=+>. 因此,函数3()24f x x x =+是单调递增函数. 2、(1)因为2()24f x x x =+-,所以()22f x x '=+.当()0f x '>,即1x >-时,函数2()24f x x x =+-单调递增. 当()0f x '<,即1x <-时,函数2()24f x x x =+-单调递减. (2)因为2()233f x x x =-+,所以()43f x x '=-.当()0f x '>,即34x >时,函数2()233f x x x =-+单调递增. 当()0f x '<,即34x <时,函数2()233f x x x =-+单调递减.(3)因为3()3f x x x =+,所以2()330f x x '=+>. 因此,函数3()3f x x x =+是单调递增函数.(4)因为32()f x x x x =+-,所以2()321f x x x '=+-. 当()0f x '>,即1x <-或13x >时,函数32()f x x x x =+-单调递增. 当()0f x '<,即113x -<<时,函数32()f x x x x =+-单调递减.3、(1)图略. (2)加速度等于0.4、(1)在2x x =处,导函数()y f x '=有极大值; (2)在1x x =和4x x =处,导函数()y f x '=有极小值; (3)在3x x =处,函数()y f x =有极大值; (4)在5x x =处,函数()y f x =有极小值.5、(1)因为2()62f x x x =++,所以()121f x x '=+. 令()1210f x x '=+=,得112x =-. 当112x >-时,()0f x '>,()f x 单调递增; 当112x <-时,()0f x '<,()f x 单调递减.所以,112x =-时,()f x 有极小值,并且极小值为211149()6()212121224f -=⨯---=-.(2)因为3()12f x x x =-,所以2()312f x x '=-. 令2()3120f x x '=-=,得2x =±. 下面分两种情况讨论:①当()0f x '>,即2x <-或2x >时;②当()0f x '<,即22x -<<时. 当x 变化时,()f x ',()f x 变化情况如下表:因此,当2x =-时,()f x 有极大值,并且极大值为16;当2x =时,()f x 有极小值,并且极小值为16-. (3)因为3()612f x x x =-+,所以2()123f x x '=-+. 令2()1230f x x '=-+=,得2x =±. 下面分两种情况讨论:①当()0f x '>,即2x <-或2x >时;②当()0f x '<,即22x -<<时. 当x 变化时,()f x ',()f x 变化情况如下表:因此,当2x =-时,()f x 有极大值,并且极大值为22; 当2x =时,()f x 有极小值,并且极小值为10-. (4)因为3()48f x x x =-,所以2()483f x x '=-. 令2()4830f x x '=-=,得4x =±. 下面分两种情况讨论:①当()0f x '>,即2x <-或2x >时;②当()0f x '<,即22x -<<时. 当x 变化时,()f x ',()f x 变化情况如下表:因此,当4x =-时,()f x 有极小值,并且极小值为128-; 当4x =时,()f x 有极大值,并且极大值为128. 6、(1)在[1,1]-上,当112x =-时,函数2()62f x x x =++有极小值,并且极小值为4724.由于(1)7f -=,(1)9f =,所以,函数2()62f x x x =++在[1,1]-上的最大值和最小值分别为9,4724. (2)在[3,3]-上,当2x =-时,函数3()12f x x x =-有极大值,并且极大值为16; 当2x =时,函数3()12f x x x =-有极小值,并且极小值为16-. 由于(3)9f -=,(3)9f =-,所以,函数3()12f x x x =-在[3,3]-上的最大值和最小值分别为16,16-.(3)在1[,1]3-上,函数3()612f x x x =-+在1[,1]3-上无极值.由于1269()327f -=,(1)5f =-,所以,函数3()612f x x x =-+在1[,1]3-上的最大值和最小值分别为26927,5-.(4)当4x =时,()f x 有极大值,并且极大值为128.. 由于(3)117f -=-,(5)115f =,所以,函数3()48f x x x =-在[3,5]-上的最大值和最小值分别为128,117-. 习题3.3 B 组(P32)1、(1)证明:设()sin f x x x =-,(0,)x π∈. 因为()cos 10f x x '=-<,(0,)x π∈ 所以()sin f x x x =-在(0,)π内单调递减因此()sin (0)0f x x x f =-<=,(0,)x π∈,即sin x x <,(0,)x π∈. 图略(2)证明:设2()f x x x =-,(0,1)x ∈. 因为()12f x x '=-,(0,1)x ∈所以,当1(0,)2x ∈时,()120f x x '=->,()f x 单调递增,2()(0)0f x x x f =->=;当1(,1)2x ∈时,()120f x x '=-<,()f x 单调递减,2()(1)0f x x x f =->=;又11()024f =>. 因此,20x x ->,(0,1)x ∈. 图略(3)证明:设()1x f x e x =--,0x ≠. 因为()1x f x e '=-,0x ≠所以,当0x >时,()10x f x e '=->,()f x 单调递增,()1(0)0x f x e x f =-->=;当0x <时,()10x f x e '=-<,()f x 单调递减,()1(0)0x f x e x f =-->=;综上,1x e x ->,0x ≠. 图略 (4)证明:设()ln f x x x =-,0x >. 因为1()1f x x'=-,0x ≠ 所以,当01x <<时,1()10f x x'=->,()f x 单调递增, ()ln (1)10f x x x f =-<=-<; 当1x >时,1()10f x x'=-<,()f x 单调递减, ()ln (1)10f x x x f =-<=-<;当1x =时,显然ln11<. 因此,ln x x <. 由(3)可知,1x e x x >+>,0x >.. 综上,ln x x x e <<,0x > 图略2、(1)函数32()f x ax bx cx d =+++的图象大致是个“双峰”图象,类似“”或“”的形状. 若有极值,则在整个定义域上有且仅有一个极大值和一个极小值,从图象上能大致估计它的单调区间.(2)因为32()f x ax bx cx d =+++,所以2()32f x ax bx c '=++. 下面分类讨论:当0a ≠时,分0a >和0a <两种情形: ①当0a >,且230b ac ->时,设方程2()320f x ax bx c '=++=的两根分别为12,x x ,且12x x <,当2()320f x ax bx c '=++>,即1x x <或2x x >时,函数32()f x ax bx cx d =+++单调递增;当2()320f x ax bx c '=++<,即12x x x <<时,函数32()f x ax bx cx d =+++单调递减.当0a >,且230b ac -≤时,此时2()320f x ax bx c '=++≥,函数32()f x ax bx cx d =+++单调递增. ②当0a <,且230b ac ->时,设方程2()320f x ax bx c '=++=的两根分别为12,x x ,且12x x <,当2()320f x ax bx c '=++>,即12x x x <<时,函数32()f x ax bx cx d =+++单调递增;当2()320f x ax bx c '=++<,即1x x <或2x x >时,函数32()f x ax bx cx d =+++单调递减.当0a <,且230b ac -≤时,此时2()320f x ax bx c '=++≤,函数32()f x ax bx cx d =+++单调递减 1.4生活中的优化问题举例 习题1.4 A 组(P37)1、设两段铁丝的长度分别为x ,l x -,则这两个正方形的边长分别为4x ,4l x -,两个正方形的面积和为 22221()()()(22)4416x l x S f x x lx l -==+=-+,0x l <<.令()0f x '=,即420x l -=,2lx =.当(0,)2l x ∈时,()0f x '<;当(,)2lx l ∈时,()0f x '>.因此,2lx =是函数()f x 的极小值点,也是最小值点.所以,当两段铁丝的长度分别是2l时,两个正方形的面积和最小.2、如图所示,由于在边长为a 的正方形铁片的四角截去四个边长为x 的小正方形,做成一个无盖方盒,所以无 盖方盒的底面为正方形,且边长为2a x -,高为x .(1)无盖方盒的容积2()(2)V x a x x =-,02ax <<.(2)因为322()44V x x ax a x =-+, 所以22()128V x x ax a '=-+.令()0V x '=,得2a x =(舍去),或6a x =. 当(0,)6a x ∈时,()0V x '>;当(,)62a ax ∈时,()0V x '<.因此,6ax =是函数()V x 的极大值点,也是最大值点.所以,当6ax =时,无盖方盒的容积最大.3、如图,设圆柱的高为h ,底半径为R , 则表面积222S Rh R ππ=+由2V R h π=,得2V h R π=. 因此,2222()222V V S R R R R R R ππππ=+=+,0R >. 令2()40V S R R R π'=-+=,解得R =.当R ∈时,()0S R '<;当)R ∈+∞时,()0S R '>. 因此,R =是函数()S R 的极小值点,也是最小值点. 此时,22V h R R π===. 所以,当罐高与底面直径相等时,所用材料最省.4、证明:由于211()()n i i f x x a n ==-∑,所以12()()n i i f x x a n ='=-∑.令()0f x '=,得11ni i x a n ==∑,(第3题)可以得到,11ni i x a n ==∑是函数()f x 的极小值点,也是最小值点.这个结果说明,用n 个数据的平均值11ni i a n =∑表示这个物体的长度是合理的,这就是最小二乘法的基本原理.5、设矩形的底宽为x m ,则半圆的半径为2xm ,半圆的面积为28x π2m ,矩形的面积为28x a π-2m ,矩形的另一边长为()8a xx π-m 因此铁丝的长为22()(1)244xa x a l x x x x x πππ=++-=++,0x <<令22()104a l x x π'=+-=,得x =.当x ∈时,()0l x '<;当x ∈时,()0l x '>.因此,x ()l x 的极小值点,也是最小值点.时,所用材料最省. 6、利润L 等于收入R 减去成本C ,而收入R 等于产量乘单价. 由此可得出利润L 与产量q 的函数关系式,再用导数求最大利润.收入211(25)2588R q p q q q q =⋅=-=-,利润2211(25)(1004)2110088L R C q q q q q =-=--+=-+-,0200q <<.求导得1214L q '=-+令0L '=,即12104q -+=,84q =.当(0,84)q ∈时,0L '>;当(84,200)q ∈时,0L '<;因此,84q =是函数L 的极大值点,也是最大值点.所以,产量为84时,利润L 最大,习题1.4 B 组(P37)1、设每个房间每天的定价为x 元,那么宾馆利润21801()(50)(20)7013601010x L x x x x -=--=-+-,180680x <<.令1()7005L x x '=-+=,解得350x =.当(180,350)x ∈时,()0L x '>;当(350,680)x ∈时,()0L x '>. 因此,350x =是函数()L x 的极大值点,也是最大值点.所以,当每个房间每天的定价为350元时,宾馆利润最大. 2、设销售价为x 元/件时,利润4()()(4)()(5)b x L x x a c c c x a x b b-=-+⨯=--,54ba x <<.令845()0c ac bc L x x b b+'=-+=,解得458a bx +=. 当45(,)8a b x a +∈时,()0L x '>;当455(,)84a b bx +∈时,()0L x '<.当458a bx +=是函数()L x 的极大值点,也是最大值点.所以,销售价为458a b+元/件时,可获得最大利润.1.5定积分的概念 练习(P42) 83. 说明:进一步熟悉求曲边梯形面积的方法和步骤,体会“以直代曲”和“逼近”的思想.练习(P45)1、22112()[()2]()i i i i i s s v t n n n n n n'∆≈∆=∆=-+⋅=-⋅+⋅,1,2,,i n =.于是 111()n n ni i i i i is s s v t n ==='=∆≈∆=∆∑∑∑2112[()]ni i n n n ==-⋅+⋅∑22211111()()()2n n n n n n n n -=-⋅--⋅-⋅+2231[12]2n n=-++++31(1)(21)26n n n n ++=-⋅+111(1)(1)232n n =-+++取极值,得1111115lim [()]lim [(1)(1)2]323nnn n i i i s v n n n n →∞→∞====-+++=∑∑说明:进一步体会“以不变代变”和“逼近”的思想.2、223km.说明:进一步体会“以不变代变”和“逼近”的思想,熟悉求变速直线运动物体路程的方法和步骤. 练习(P48)2304x dx =⎰. 说明:进一步熟悉定积分的定义和几何意义.从几何上看,表示由曲线3y x =与直线0x =,2x =,0y =所围成的曲边梯形的面积4S =.习题1.5 A 组(P50) 1、(1)10021111(1)[(1)1]0.495100100i i x dx =--≈+-⨯=∑⎰; (2)50021111(1)[(1)1]0.499500500i i x dx =--≈+-⨯=∑⎰; (3)100021111(1)[(1)1]0.499510001000i i x dx =--≈+-⨯=∑⎰. 说明:体会通过分割、近似替换、求和得到定积分的近似值的方法.2、距离的不足近似值为:18112171310140⨯+⨯+⨯+⨯+⨯=(m ); 距离的过剩近似值为:271181121713167⨯+⨯+⨯+⨯+⨯=(m ).3、证明:令()1f x =. 用分点 011i i n a x x x x x b -=<<<<<<=将区间[,]a b 等分成n 个小区间,在每个小区间1[,]i i x x -上任取一点(1,2,,)i i n ξ=作和式11()nni i i b af x b a nξ==-∆==-∑∑, 从而11lim nban i b adx b a n→∞=-==-∑⎰, 说明:进一步熟悉定积分的概念.4、根据定积分的几何意义,0⎰表示由直线0x =,1x =,0y =以及曲线y =所围成的曲边梯形的面积,即四分之一单位圆的面积,因此4π=⎰.5、(1)03114x dx -=-⎰. 由于在区间[1,0]-上30x ≤,所以定积分031x dx -⎰表示由直线0x =,1x =-,0y =和曲线3y x =所围成的曲边梯形的面积的相反数.(2)根据定积分的性质,得1133311011044x dx x dx x dx --=+=-+=⎰⎰⎰.由于在区间[1,0]-上30x ≤,在区间[0,1]上30x ≥,所以定积分131x dx -⎰等于位于x 轴上方的曲边梯形面积减去位于x 轴下方的曲边梯形面积.(3)根据定积分的性质,得202333110115444x dx x dx x dx --=+=-+=⎰⎰⎰由于在区间[1,0]-上30x ≤,在区间[0,2]上30x ≥,所以定积分231x dx -⎰等于位于x 轴上方的曲边梯形面积减去位于x 轴下方的曲边梯形面积.说明:在(3)中,由于3x 在区间[1,0]-上是非正的,在区间[0,2]上是非负的,如果直接利用定义把区间[1,2]-分成n 等份来求这个定积分,那么和式中既有正项又有负项,而且无法抵挡一些项,求和会非常麻烦. 利用性质3可以将定积分231x dx -⎰化为02331x dx x dx -+⎰⎰,这样,3x 在区间[1,0]-和区间[0,2]上的符号都是不变的,再利用定积分的定义,容易求出031x dx -⎰,230x dx ⎰,进而得到定积分231x dx -⎰的值. 由此可见,利用定积分的性质可以化简运算.在(2)(3)中,被积函数在积分区间上的函数值有正有负,通过练习进一步体会定积分的几何意义.习题1.5 B 组(P50)1、该物体在0t =到6t =(单位:s )之间走过的路程大约为145 m.说明:根据定积分的几何意义,通过估算曲边梯形内包含单位正方形的个数来估计物体走过的路程. 2、(1)9.81v t =.(2)过剩近似值:8111899.819.8188.292242i i =⨯⨯⨯=⨯⨯=∑(m );不足近似值:81111879.819.8168.672242i i =-⨯⨯⨯=⨯⨯=∑(m ) (3)49.81tdt ⎰;49.81d 78.48t t =⎰(m ).3、(1)分割在区间[0,]l 上等间隔地插入1n -个分点,将它分成n 个小区间:[0,]l n ,2[,]l l n n ,……,(2)[,]n ll n -, 记第i 个区间为(1)[,]i l iln n-(1,2,i n =),其长度为 (1)il i l l x n n n-∆=-=.把细棒在小段[0,]l n ,2[,]l l n n ,……,(2)[,]n ll n-上质量分别记作: 12,,,n m m m ∆∆∆,则细棒的质量1ni i m m ==∆∑.(2)近似代替当n 很大,即x ∆很小时,在小区间(1)[,]i l iln n-上,可以认为线密度2()x x ρ=的值变化很小,近似地等于一个常数,不妨认为它近似地等于任意一点(1)[,]i i l il n nξ-∈处的函数值2()i i ρξξ=. 于是,细棒在小段(1)[,]i l iln n -上质量 2()i i i lm x nρξξ∆≈∆=(1,2,i n =).(3)求和得细棒的质量 2111()nnni i i i i i l m m x nρξξ====∆≈∆=∑∑∑. (4)取极限细棒的质量 21lim ni n i lm nξ→∞==∑,所以20l m x dx =⎰..1.6微积分基本定理练习(P55)(1)50; (2)503; (3)533-; (4)24; (5)3ln 22-; (6)12; (7)0; (8)2-.说明:本题利用微积分基本定理和定积分的性质计算定积分. 习题1.6 A 组(P55)1、(1)403; (2)13ln 22--; (3)9ln 3ln 22+-;(4)176-; (5)2318π+; (6)22ln 2e e --. 说明:本题利用微积分基本定理和定积分的性质计算定积分.2、3300sin [cos ]2xdx x ππ=-=⎰.它表示位于x 轴上方的两个曲边梯形的面积与x 轴下方的曲边梯形的面积之差. 或表述为:位于x 轴上方的两个曲边梯形的面积(取正值)与x 轴下方的曲边梯形的面积(取负值)的代数和. 习题1.6 B 组(P55)1、(1)原式=221011[]222x e e =-; (2)原式=4611[sin 2]22x ππ=; (3)原式=3126[]ln 2ln 2x =. 2、(1)cos 1sin [][cos cos()]0mx mxdx m m m m ππππππ--=-=---=⎰;(2)sin 1cos [sin sin()]0mx mxdx m m m m ππππππ--=|=--=⎰;(3)21cos 2sin 2sin []224mx x mx mxdx dx m πππππππ----==-=⎰⎰;(4)21cos 2sin 2cos []224mx x mx mxdx dx mπππππππ---+==+=⎰⎰.3、(1)0.202220()(1)[]49245245t kt kt t kt t g g g g g gs t e dt t e t e t e k k k k k k----=-=+=+-=+-⎰.(2)由题意得 0.2492452455000t t e -+-=.这是一个超越方程,为了解这个方程,我们首先估计t 的取值范围. 根据指数函数的性质,当0t >时,0.201t e -<<,从而 5000495245t <<, 因此,500052454949t <<. 因此50000.2749245 3.3610e-⨯-≈⨯,52450.2749245 1.2410e-⨯-≈⨯,所以,70.271.2410245 3.3610t e ---⨯<<⨯.从而,在解方程0.2492452455000t t e -+-=时,0.2245t e -可以忽略不计.因此,.492455000t -≈,解之得 524549t ≈(s ). 说明:B 组中的习题涉及到被积函数是简单的复合函数的定积分,可视学生的具体情况选做,不要求掌握. 1.7定积分的简单应用 练习(P58)(1)323; (2)1.说明:进一步熟悉应用定积分求平面图形的面积的方法与求解过程. 练习(P59)1、52533(23)[3]22s t dt t t =+=+=⎰(m ).2、424003(34)[4]402W x dx x x =+=+=⎰(J ).习题1.7 A 组(P60)1、(1)2; (2)92.2、2[]b b a a q q q qW k dr k k k r r a b==-=-⎰. 3、令()0v t =,即40100t -=. 解得4t =. 即第4s 时物体达到最大高度.最大高度为 4240(4010)[405]80h t dt t t =-=-=⎰(m ). 4、设t s 后两物体相遇,则20(31)105ttt dt tdt +=+⎰⎰,解之得5t =. 即,A B 两物体5s 后相遇. 此时,物体A 离出发地的距离为523500(31)[]130t dt t t +=+=⎰(m ).5、由F kl =,得100.01k =. 解之得1000k =. 所做的功为 0.120.10010005005W ldl l ==|=⎰(J ).6、(1)令55()501v t t t=-+=+,解之得10t =. 因此,火车经过10s 后完全停止. (2)1021000551(5)[555ln(1)]55ln1112s t dt t t t t =-+=-++=+⎰(m ). 习题1.7 B 组(P60)1、(1)a -⎰表示圆222x y a +=与x 轴所围成的上半圆的面积,因此22aa π-=⎰(2)1]x dx ⎰表示圆22(1)1x y -+=与直线y x =所围成的图形(如图所示)的面积,因此,2120111[1(1)]114242x x dx ππ⨯---=-⨯⨯=-⎰. 2、证明:建立如图所示的平面直角坐标系,可设抛物线的方程为2y ax =,则2()2b h a =⨯,所以24ha b =.从而抛物线的方程为 224hy x b =.于是,抛物线拱的面积232202204422()2[]33b bh h S h x dx hx x bh b b =-=-=⎰. 3、如图所示.解方程组223y x y x⎧=+⎨=⎩得曲线22y x =+与曲线3y x =交点的横坐标11x =,22x =. 于是,所求的面积为122201[(2)3][3(2)]1x x dx x x dx +-+-+=⎰⎰.4、证明:2[]()R hR h R RMm Mm MmhW Gdr G G r r R R h ++==-=+⎰. 第一章 复习参考题A 组(P65)1、(1)3; (2)4y =-.2、(1)22sin cos 2cos x x xy x+'=; (2)23(2)(31)(53)y x x x '=-+-; (3)22ln ln 2x xy x x '=+; (4)2422(21)x x y x -'=+. 3、32GMm F r '=-. 4、(1)()0f t '<. 因为红茶的温度在下降.(2)(3)4f '=-表明在3℃附近时,红茶温度约以4℃/min 的速度下降. 图略. 5、因为32()f x x =,所以32()3f x x'=.当32()03f x x'=>,即0x >时,()f x 单调递增;yxh b O(第2题)当()0f x '=<,即0x <时,()f x 单调递减.6、因为2()f x x px q =++,所以()2f x x p '=+. 当()20f x x p '=+=,即12px =-=时,()f x 有最小值. 由12p-=,得2p =-. 又因为(1)124f q =-+=,所以5q =. 7、因为2322()()2f x x x c x cx c x =-=-+, 所以22()34(3)()f x x cx c x c x c '=-+=--. 当()0f x '=,即3cx =,或x c =时,函数2()()f x x x c =-可能有极值. 由题意当2x =时,函数2()()f x x x c =-有极大值,所以0c >. 由于所以,当3c x =时,函数2()()f x x x c =-有极大值. 此时,23c=,6c =. 8、设当点A 的坐标为(,0)a 时,AOB ∆的面积最小. 因为直线AB 过点(,0)A a ,(1,1)P ,所以直线AB 的方程为001y x a x a --=--,即1()1y x a a =--.当0x =时,1a y a =-,即点B 的坐标是(0,)1aa -. 因此,AOB ∆的面积21()212(1)AOBa a S S a a a a ∆===--.令()0S a '=,即2212()02(1)a aS a a -'=⋅=-. 当0a =,或2a =时,()0S a '=,0a =不合题意舍去.由于所以,当2a =,即直线AB 的倾斜角为135︒时,AOB ∆的面积最小,最小面积为2.9、D .10、设底面一边的长为x m ,另一边的长为(0.5)x +m. 因为钢条长为14.8m. 所以,长方体容器的高为14.844(0.5)12.88 3.2244x x xx --+-==-.设容器的容积为V ,则32()(0.5)(3.22)2 2.2 1.6V V x x x x x x x ==+-=-++,0 1.6x <<.令()0V x '=,即26 4.4 1.60x x -++=. 所以,415x =-(舍去),或1x =. 当(0,1)x ∈时,()0V x '>;当(1,1.6)x ∈时,()0V x '<. 因此,1x =是函数()V x 在(0,1.6)的极大值点,也是最大值点. 所以,当长方体容器的高为1 m 时,容器最大,最大容器为1.8 m 3. 11、设旅游团人数为100x +时,旅行社费用为2()(100)(10005)5500100000y f x x x x ==+-=-++(080)x ≤≤. 令()0f x '=,即105000x -+=,50x =.又(0)100000f =,(80)108000f =,(50)112500f =. 所以,50x =是函数()f x 的最大值点.所以,当旅游团人数为150时,可使旅行社收费最多. 12、设打印纸的长为x cm 时,可使其打印面积最大.因为打印纸的面积为623.7,长为x ,所以宽为623.7x,打印面积623.7()(2 2.54)(2 3.17)S x x x=-⨯-⨯ 23168.396655.9072 6.34x x =--,5.0898.38x <<.令()0S x '=,即23168.3966.340x -=,22.36x ≈(负值舍去),623.727.8922.36≈. 22.36x =是函数()S x 在(5.08,98.38)内唯一极值点,且为极大值,从而是最大值点.所以,打印纸的长、宽分别约为27.89cm ,22.36cm 时,可使其打印面积最大. 13、设每年养q 头猪时,总利润为y 元.则 21()20000100300200002y R q q q q =--=-+-(0400,)q q N <≤∈.令0y '=,即3000q -+=,300q =.当300q =时,25000y =;当400q =时,20000y =.300q =是函数()y p 在(0,400]内唯一极值点,且为极大值点,从而是最大值点. 所以,每年养300头猪时,可使总利润最大,最大总利润为25000元.14、(1)2; (2)22e -; (3)1;(4)原式=22222000cos sin (cos sin )[sin cos ]0cos sin x xdx x x dx x x x xπππ-=-=+=+⎰⎰; (5)原式=22001cos sin 2[]224x x x dx πππ---==⎰. 15、略. 说明:利用函数图象的对称性、定积分的几何意义进行解释.16、2.17、由F kl =,得0.0490.01k =. 解之得 4.9k =.所做的功为 20.30.30.10.14.9 4.90.1962l W ldl ==⨯|=⎰(J )第一章 复习参考题B 组(P66)1、(1)43()10210b t t '=-⨯. 所以,细菌在5t =与10t =时的瞬时速度分别为0和410-.(2)当05t ≤<时,()0b t '>,所以细菌在增加;当55t <<+时,()0b t '<,所以细菌在减少.2、设扇形的半径为r ,中心角为α弧度时,扇形的面积为S .因为212S r α=,2l r r α-=,所以2lrα=-.222111(2)(2)222l S r r lr r r α==-=-,02l r <<.令0S '=,即40l r -=,4lr =,此时α为2弧度.4l r =是函数()S r 在(0,)2l内唯一极值点,且是极大值点,从而是最大值点.所以,扇形的半径为4l、中心角为2弧度时,扇形的面积最大.3、设圆锥的底面半径为r ,高为h ,体积为V ,那么222r h R +=.因此,222231111()3333V r h R h h R h h ππππ==-=-,0h R <<.令22103V R h ππ'=-=,解得h R =.容易知道,h R =是函数()V h 的极大值点,也是最大值点.所以,当h R =时,容积最大.把3h R =代入222r h R +=,得3r R =.由2R r απ=,得3α=.所以,圆心角为α=时,容积最大. 4、由于28010k =⨯,所以45k =. 设船速为x km /h 时,总费用为y ,则2420204805y x x x=⨯+⨯ 960016x x=+,0x >令0y '=,即29600160x-=,24x ≈.容易知道,24x =是函数y 的极小值点,也是最小值点. 当24x =时,960020(1624)()9412424⨯+÷≈(元/时)所以,船速约为24km /h 时,总费用最少,此时每小时费用约为941元.5、设汽车以x km /h 行驶时,行车的总费用2390130(3)14360x y x x =++⨯,50100x ≤≤ 令0y '=,解得53x ≈(km /h ). 此时,114y ≈(元) 容易得到,53x ≈是函数y 的极小值点,也是最小值点.因此,当53x ≈时,行车总费用最少.所以,最经济的车速约为53km /h ;如果不考虑其他费用,这次行车的总费用约是114元.6、原式=4404422022[]2xx x x x e dx e dx e dx e e e e -----=+=-+|=+-⎰⎰⎰.7、解方程组 2y kx y x x=⎧⎨=-⎩ 得,直线y kx =与抛物线2y x x =-交点的横坐标为0x =,1k -.抛物线与x 轴所围图形的面积2312100111()[]23236x x S x x dx =-=-=-=⎰.由题设得 1120()2k k S x x dx kxdx --=--⎰⎰31221001()[]23kkk x x x kx dx x ---=--=-⎰3(1)6k -=.又因为16S =,所以31(1)2k -=. 于是12k =-.说明:本题也可以由面积相等直接得到111220()()kk k x x kx dx kxdx x x dx -----=+-⎰⎰⎰,由此求出k 的值. 但计算较为烦琐.新课程标准数学选修2—2第二章课后习题解答第二章 推理与证明2.1合情推理与演绎推理练习(P77)1、由12341a a a a ====,猜想1n a =.2、相邻两行数之间的关系是:每一行首尾的数都是1,其他的数都等于上一行中与之相邻的两个数的和.3、设111O PQ R V -和222O P Q R V -分别是四面体111O PQ R -和222O P Q R -的体积, 则111222111222O PQR O P Q R V OP OQ OR V OP OQ OR --=⋅⋅. 练习(P81) 1、略.2、因为通项公式为n a 的数列{}n a , 若1n na p a +=,其中p 是非零常数,则{}n a 是等比数列; ……………………大前提 又因为0cq ≠,则0q ≠,则11n n nn a cq q a cq ++==; ……………………………小前提所以,通项公式为(0)n n a cq cq =≠的数列{}n a 是等比数列. ……………………结论3、由AD BD >,得到ACD BCD ∠>∠的推理是错误的. 因为这个推理的大前提是“在同一个三角形中,大边对大角”,小前提是“AD BD >”,而AD 与BD 不在同一个三角形中.习题2.1 A 组(P83)1、21n a n =+()n N *∈. 2、2F V E +=+.3、当6n ≤时,122(1)n n -<+;当7n =时,122(1)n n -=+;当8n =时,122(1)n n ->+()n N *∈.4、212111(2)n n A A A n π++≥-(2n >,且n N *∈). 5、121217n n b b b b b b -=(17n <,且n N *∈).6、如图,作DE ∥AB 交BC 于E .因为两组对边分别平行的四边形是平行四边形, 又因为AD ∥BE ,AB ∥DE . 所以四边形ABED 是平行四边形.(第6题)因为平行四边形的对边相等.又因为四边形ABED 是平行四边形. 所以AB DE =.因为与同一条线段等长的两条线段的长度相等,又因为AB DE =,AB DC =, 所以DE DC = 因为等腰三角形的两底角是相等的.又因为△DEC 是等腰三角形, 所以DEC C ∠=∠ 因为平行线的同位角相等又因为DEC ∠与B ∠是平行线AB 和DE 的同位角, 所以DEC B ∠=∠ 因为等于同角的两个角是相等的,又因为DEC C ∠=∠,DEC B ∠=∠, 所以B C ∠=∠ 习题2.1 B 组(P84)1、由123S =-,234S =-,345S =-,456S =-,567S =-,猜想12n n S n +=-+.2、略.3、略.2.2直接证明与间接证明 练习(P89)1、因为442222cos sin (cos sin )(cos sin )cos 2θθθθθθθ-=+-=,所以,命题得证.2>,只需证22>,即证1313+>+>,只需要22>,即证4240>,这是显然成立的. 所以,命题得证. 3、因为 222222222()()()(2sin )(2tan )16sin tan a b a b a b αααα-=-+==, 又因为 sin (1cos )sin (1cos )1616(tan sin )(tan sin )16cos cos ab αααααααααα+-=+-=⋅22222222sin (1cos )sin sin 161616sin tan cos cos αααααααα-===, 从而222()16a b ab -=,所以,命题成立.说明:进一步熟悉运用综合法、分析法证明数学命题的思考过程与特点.练习(P91)1、假设B ∠不是锐角,则90B ∠≥︒. 因此9090180C B ∠+∠≥︒+︒=︒. 这与三角形的内角和等于180°矛盾. 所以,假设不成立. 从而,B ∠一定是锐角.2成等差数列,则=所以22=,化简得5=225=,即2540=, 这是不可能的. 所以,假设不成立..说明:进一步熟悉运用反证法证明数学命题的思考过程与特点. 习题2.2 A 组(P91)1、由于0a ≠,因此方程至少有一个跟bx a=.假设方程不止一个根,则至少有两个根,不妨设12,x x 是它的两个不同的根,则 1ax b = ①2ax b = ②①-②得12()0a x x -=因为12x x ≠,所以120x x -≠,从而0a =,这与已知条件矛盾,故假设不成立. 2、因为 (1tan )(1tan )2A B ++=展开得 1tan tan tan tan 2A B A B +++=,即tan tan 1tan tan A B A B +=-. ①假设1tan tan 0A B -=,则cos cos sin sin 0cos cos A B A B A B -=,即cos()0cos cos A B A B += 所以cos()0A B +=.因为A ,B 都是锐角,所以0A B π<+<,从而2A B π+=,与已知矛盾.因此1tan tan 0A B -≠.①式变形得 tan tan 11tan tan A BA B +=-, 即tan()1A B +=.又因为0A B π<+<,所以4A B π+=.说明:本题也可以把综合法和分析法综合使用完成证明.3、因为 1tan 12tan αα-=+,所以12tan 0α+=,从而2sin cos 0αα+=.另一方面,要证 3sin 24cos2αα=-, 只要证226sin cos 4(cos sin )αααα=-- 即证 222sin 3sin cos 2cos 0αααα--=, 即证 (2sin cos )(sin 2cos )0αααα+-=由2sin cos 0αα+=可得,(2sin cos )(sin 2cos )0αααα+-=,于是命题得证. 说明:本题可以单独使用综合法或分析法进行证明,但把综合法和分析法结合使用进行证明的思路更清晰.4、因为,,a b c 的倒数成等差数列,所以211b a c=+. 假设2B π<不成立,即2B π≥,则B 是ABC ∆的最大内角,所以,b a b c >>(在三角形中,大角对大边), 从而11112a c b b b+>+=. 这与211b ac =+矛盾.所以,假设不成立,因此,2B π<.习题2.2 B 组(P91)1、要证2s a <,由于22s ab <,所以只需要2s s b<,即证b s <.因为1()2s a b c =++,所以只需要2b a b c <++,即证b a c <+. 由于,,a b c 为一个三角形的三条边,所以上式成立. 于是原命题成立. 2、由已知条件得 2b ac = ① 2x a b =+,2y b c =+ ② 要证2a cx y+=,只要证2ay cx xy +=,只要证224ay cx xy += 由①②,得 22()()2ay cx a b c c a b ab ac bc +=+++=++, 24()()2xy a b b c ab b ac bc ab ac bc =++=+++=++, 所以,224ay cx xy +=,于是命题得证. 3、由 tan()2tan αβα+= 得sin()2sin cos()cos αβααβα+=+,即sin()cos 2cos()sin αβααβα+=+. ……①要证 3sin sin(2)βαβ=+即证 3sin[()]sin[()]αβααβα+-=++即证 3[sin()cos cos()sin ]sin()cos cos()sin αβααβααβααβα+-+=+++ 化简得sin()cos 2cos()sin αβααβα+=+,这就是①式.。