行为金融综述
- 格式:pdf
- 大小:667.02 KB
- 文档页数:36
行为金融学研究综述行为金融学研究综述引言行为金融学是一门相对较新的学科领域,它通过关注人们在金融决策中的行为模式和倾向,揭示了金融市场中的很多现象和问题。
本文旨在对行为金融学的研究进行综述,从理论基础、主要研究领域、方法论及对金融市场的影响等方面进行分析和总结。
一、理论基础行为金融学的理论基础主要源于心理学和经济学的交叉研究,尤其是关于人们决策行为的相关理论和观点。
在心理学领域中,行为金融学主要借鉴了认知心理学和实验心理学的研究成果。
其中,认知心理学关注人们决策过程中的认知偏差和限制,实验心理学则通过实验证据揭示人们在特定条件下的行为倾向。
经济学对行为金融学的理论构建和分析也起到了重要作用。
传统的经济学理论通常假设理性决策者在面对信息不完全和风险时,能够做出最佳的经济决策。
然而,行为金融学的出现质疑了这种假设,认为人们在实际决策过程中往往受到情绪、心理偏差和社会因素的影响,从而导致非理性的决策。
二、主要研究领域行为金融学的研究范围广泛,主要包括以下几个领域:1. 决策心理学:研究人们决策的认知过程、心理偏差和风险态度。
其中,前景理论和期望效用理论是行为金融学中的两个重要理论模型。
前景理论认为人们在面对风险时,存在着风险规避和风险寻求的不对称行为。
期望效用理论则主要研究人们决策时对效用的感知与评估。
2. 资产定价:研究资本市场中价格波动的原因和特征。
传统的资产定价模型通常基于理性投资者的假设,认为市场价格会自动回归到公允价值。
然而,行为金融学认为投资者情绪和心理偏差会导致市场价格与真实价值之间的偏离,并产生价格泡沫和过度买卖等现象。
3. 市场行为:研究投资者的行为动机、交易行为和市场交易的影响因素。
行为金融学研究发现,投资者情绪和心理偏差往往会影响他们对市场中的股票或资产的决策和操作行为,从而导致市场交易的不稳定和非理性。
4. 金融风险管理:研究金融市场中的风险管理策略和决策行为。
行为金融学认为,投资者往往根据过去的经验和情绪倾向来评估风险和制定风险管理策略,而不仅仅是基于理性的决策。
《行为金融学研究综述》篇一一、引言行为金融学是一门结合心理学、行为科学和金融学的交叉学科,它致力于研究金融市场中投资者行为及其对资产定价、市场波动和投资决策的影响。
随着金融市场的日益复杂化和投资者行为的多样化,行为金融学逐渐成为金融学领域的研究热点。
本文将对行为金融学的研究进行综述,以期为未来的研究提供参考。
二、行为金融学的基本理论行为金融学基于心理学和行为科学的理论,提出了与传统金融学不同的观点。
它认为,投资者的决策过程并非完全理性,而是受到心理、情感、认知等因素的影响。
因此,行为金融学强调研究投资者行为、市场情绪、心理偏差等因素对金融市场的影响。
三、行为金融学的主要研究领域1. 投资者行为研究:这是行为金融学最核心的研究领域,主要探讨投资者的心理特征、决策过程以及这些因素如何影响投资者的投资行为。
2. 资产定价与市场波动:研究心理偏差和市场情绪如何影响资产定价和市场的波动性,为投资者提供更为准确的投资策略。
3. 金融市场异象:针对金融市场中的一些异常现象,如封闭式基金折价、IPO溢价等,探讨其背后的行为因素。
4. 行为资产组合理论:研究投资者在投资组合选择过程中的心理和行为特征,以及这些特征如何影响投资者的资产配置。
四、行为金融学的研究方法行为金融学的研究方法主要包括实验法、调查法和实证分析法。
实验法通过设计实验环境,观察投资者在特定情境下的行为;调查法则是通过收集和分析数据来研究投资者行为的规律;实证分析法则通过运用统计分析等手段来检验理论和模型的有效性。
五、行为金融学的研究成果自行为金融学诞生以来,其在金融领域取得了丰富的研究成果。
首先,许多学者对投资者的心理偏差进行了深入研究,如过度自信、损失厌恶、锚定效应等。
这些研究揭示了投资者在决策过程中的心理特征和行为模式。
其次,行为金融学对资产定价和市场波动的解释也得到了越来越多的实证支持。
此外,行为金融学还为金融市场监管提供了新的思路和方法。
Behavioral Corporate Finance: A Survey∗Malcolm BakerHarvard Business School and NBERmbaker@Richard S. RubackHarvard Business Schoolrruback@Jeffrey WurglerNYU Stern School of Business and NBERjwurgler@October 9, 2004AbstractResearch in behavioral corporate finance takes two distinct approaches. The first emphasizes that investors are less than fully rational. It views managerial financing and investment decisions as rational responses to securities market mispricing. The second approach emphasizes that managers are less than fully rational. It studies the effect of nonstandard preferences and judgmental biases on managerial decisions. This survey reviews the theory, empirical challenges, and current evidence pertaining to each approach. Overall, the behavioral approaches help to explain a number of important financing and investment patterns. The survey closes with a list of open questions.∗ This article will appear in the Handbook in Corporate Finance: Empirical Corporate Finance, which is edited by Espen Eckbo. The authors are grateful to Heitor Almeida, Nick Barberis, Zahi Ben-David, Espen Eckbo, Xavier Gabaix, Dirk Jenter, Augustin Landier, Alexander Ljungqvist, Hersh Shefrin, Andrei Shleifer, Meir Statman, and Theo Vermaelen for helpful comments. Baker and Ruback gratefully acknowledge financial support from the Division of Research of the Harvard Business School.Table of ContentsI. Introduction (1)II. The irrational investors approach (4)A. Theoretical framework (6)B. Empirical challenges (10)C. Investment policy (13)C.1. Real investment (14)C.2. Mergers and acquisitions (16)C.3. Diversification and focus (18)D. Financial policy (19)D.1. Equity issues (19)D.2. Repurchases (23)D.3. Debt issues (24)D.4. Cross-border issues (26)D.5. Capital structure (27)E. Other corporate decisions (28)E.1. Dividends (29)E.2. Firm names (31)E.3. Earnings management (32)E.4. Executive compensation (33)III. The irrational managers approach (34)A. Theoretical framework (36)B. Empirical challenges (39)C. Investment policy (40)C.1. Real investment (40)C.2. Mergers and acquisitions (42)D. Financial policy (43)D.1. Capital structure (43)D.2. Financial contracting (44)E. Other behavioral patterns (44)E.1. Bounded rationality (45)E.2. Reference-point preferences (46)IV. Conclusion (48)References (51)I. IntroductionCorporate finance aims to explain the financial contracts and the real investment behavior that emerge from the interaction of managers and investors. Thus, a complete explanation of financing and investment patterns requires an understanding of the beliefs and preferences of these two sets of agents. The majority of research in corporate finance assumes a broad rationality. Agents are supposed to develop unbiased forecasts about future events and use these to make decisions that best serve their own interests. As a practical matter, this means that managers can take for granted that capital markets are efficient, with prices rationally reflecting public information about fundamental values. Likewise, investors can take for granted that managers will act in their self-interest, rationally responding to incentives shaped by compensation contracts, the market for corporate control, and other governance mechanisms.This paper surveys research in behavioral corporate finance. This research replaces the traditional rationality assumptions with potentially more realistic behavioral assumptions. The literature is divided into two general approaches, and we organize the survey around them. Roughly speaking, the first approach emphasizes the effect of investor behavior that is less than fully rational, and the second considers managerial behavior that is less than fully rational. For each line of research, we review the basic theoretical frameworks, the main empirical challenges, and the empirical evidence. Of course, in practice, both channels of irrationality may operate at the same time; our taxonomy is meant to fit the existing literature, but it does suggest some structure for how one might, in the future, go about combining the two approaches.The “irrational investors approach” assumes that securities market arbitrage is imperfect, and thus that prices can be too high or too low. Rational managers are assumed to perceive mispricings, and to make decisions that may encourage or respond to mispricing. While theirdecisions may maximize the short-run value of the firm, they may also result in lower long-run values as prices correct. In the simple theoretical framework we outline, managers balance three objectives: fundamental value, catering, and market timing. Maximizing fundamental value has the usual ingredients. Catering refers to any actions intended to boost share prices above fundamental value. Market timing refers specifically to financing decisions intended to capitalize on temporary mispricings, generally via the issuance of overvalued securities and the repurchase of undervalued ones.Empirical tests of the irrational investors model face a significant challenge: measuring mispricing. We discuss how this issue has been tackled and the ambiguities that remain. Overall, despite some unresolved questions, the evidence suggests that the irrational investors approach has a considerable degree of descriptive power. We review studies on investment behavior, merger activity, the clustering and timing of corporate security offerings, capital structure, corporate name changes, dividend policy, earnings management, and other managerial decisions. We also identify some disparities between the theory and the evidence. For example, while catering to fads has potential to reduce long-run value, the literature has yet to clearly document significant long-term value losses.The second approach to behavioral corporate finance, the “irrational managers approach,” is less developed at this point. It assumes that managers have behavioral biases, but retains the rationality of investors, albeit limiting the governance mechanisms they can employ to constrain managers. Following the emphasis of the current literature, our discussion centers on the biases of optimism and overconfidence. A simple model shows how these biases, in leading managers to believe their firms are undervalued, encourage overinvestment from internal resources, and a preference for internal to external finance, especially internal equity. We note that the predictionsof the optimism and overconfidence models typically look very much like those of agency and asymmetric information models.In this approach, the main obstacles for empirical tests include distinguishing predictions from standard, non-behavioral models, as well as empirically measuring managerial biases. Again, however, creative solutions have been proposed. The effects of optimism and overconfidence have been empirically studied in the context of merger activity, corporate investment-cash flow relationships, entrepreneurial financing and investment decisions, and the structure of financial contracts. Separately, we discuss the potential of a few other behavioral patterns that have received some attention in corporate finance, including bounded rationality and reference-point preferences. As in the case of investor irrationality, the real economic losses associated with managerial irrationality have yet to be clearly quantified, but some evidence suggests that they are very significant.Taking a step back, it is important to note that the two approaches take very different views about the role and quality of managers, and have very different normative implications as a result. That is, when the primary source of irrationality is on the investor side, long-term value maximization and economic efficiency requires insulating managers from short-term share price pressures. Managers need to be insulated to achieve the flexibility necessary to make decisions that may be unpopular in the marketplace. This may imply benefits from internal capital markets, barriers to takeovers, and so forth. On the other hand, if the main source of irrationality is on the managerial side, efficiency requires reducing discretion and obligating managers to respond to market price signals. The stark contrast between the normative implications of these two approaches to behavioral corporate finance is one reason why the area is fascinating, and why more work in the area is needed.Overall, our survey suggests that the behavioral approaches can help to explain a range of financing and investment patterns, while at the same time depend on a relatively small set of realistic assumptions. Moreover, there is much room to grow before the field reaches maturity. In an effort to stimulate that growth, we close the survey with a short list of open questions.II. The irrational investors approachWe start with one extreme, in which rational managers coexist with irrational investors. There are two key building blocks here. First, irrational investors must influence securities prices. This requires limits on arbitrage. Second, managers must be smart in the sense of being able to distinguish market prices and fundamental value.The literature on market inefficiency is far too large to survey here. It includes such phenomena as the January effect; the effect of trading hours on price volatility; post-earnings-announcement drift; momentum; delayed reaction to news announcements; positive autocorrelation in earnings announcement effects; Siamese twin securities that have identical cash flows but trade at different prices, negative “stub” values; closed-end fund pricing patterns; bubbles and crashes in growth stocks; related evidence of mispricing in options, bond, and foreign exchange markets; and so on. These patterns, and the associated literature on arbitrage costs and risks, for instance short-sales constraints, that facilitate mispricings, are surveyed by Barberis and Thaler (2003) and Shleifer (2000). In the interest of space, we refer the reader to these excellent sources, and for the discussion of this section we simply take as given that mispricings can and do occur.But even if capital markets are inefficient, why assume that corporate managers are “smart” in the sense of being able to identify mispricing? One can offer several justifications.First, corporate managers have superior information about their own firm. This is underscored by the evidence that managers earn abnormally high returns on their own trades, as in Muelbroek (1992), Seyhun (1992), or Jenter (2004). Managers can also create an information advantage by managing earnings, a topic to which we will return, or with the help of conflicted analysts, as for example in Bradshaw, Richardson, and Sloan (2003).Second, corporate managers also have fewer constraints than equally “smart” money managers. Consider two well-known models of limited arbitrage: DeLong, Shleifer, Summers, and Waldmann (1990) is built on short horizons and Miller (1977) on short-sales constraints. CFOs tend to be judged on longer horizon results than are money managers, allowing them to take a view on market valuations in a way that money managers cannot.1 Also, short-sales constraints prevent money managers from mimicking CFOs. When a firm or a sector becomes overvalued, corporations are the natural candidates to expand the supply of shares. Money managers are not.Third and finally, managers might just follow intuitive rules of thumb that allow them to identify mispricing even without a real information advantage. In Baker and Stein (2004), one such successful rule of thumb is to issue equity when the market is particularly liquid, in the sense of a small price impact upon the issue announcement. In the presence of short-sales constraints, unusually high liquidity is a symptom of the fact that the market is dominated by irrational investors, and hence is overvalued.1 For example, suppose a manager issues equity at $50 per share. Now if those shares subsequently double, the manager might regret not delaying the issue, but he will surely not be fired, having presided over a rise in the stock price. In contrast, imagine a money manager sells (short) the same stock at $50. This might lead to considerable losses, an outflow of funds, and, if the bet is large enough, perhaps the end of a career.A. Theoretical frameworkWe use the assumptions of inefficient markets and smart managers to develop a simple theoretical framework for the irrational investors approach. The framework has roots in Fischer and Merton (1984), De Long, Shleifer, Summers, and Waldmann (1989), Morck, Shleifer, and Vishny (1990b), and Blanchard, Rhee, and Summers (1993), but our particular derivation borrows most from Stein (1996).In the irrational investors approach, the manager balances three conflicting goals. The first is to maximize fundamental value. This means selecting and financing investment projects to increase the rationally risk-adjusted present value of future cash flows. To simplify the analysis, we do not explicitly model taxes, costs of financial distress, agency problems or asymmetric information. Instead, we specify fundamental value as()Kf−⋅,,Kwhere f is increasing and concave in new investment K. To the extent that any of the usual market imperfections leads the Modigliani-Miller (1958) theorem to fail, financing may enter f alongside investment.The second goal is to maximize the current share price of the firm’s securities. In perfect capital markets, the first two objectives are the same, since the definition of market efficiency is that prices equal fundamental value. But once one relaxes the assumption of investor rationality, this need not be true, and the second objective is distinct. In particular, the second goal is to “cater” to short-term investor demands via particular investment projects or otherwise packaging the firm and its securities in a way that maximizes appeal to investors. Through such catering activities, managers influence the temporary mispricing, which we represent by the function ()⋅δ,where the arguments of δ depend on the nature of investor sentiment. The arguments might include investing in a particular technology, assuming a conglomerate or single-segment structure, changing the corporate name, managing earnings, initiating a dividend, and so on. In practice, the determinants of mispricing may well vary over time.The third goal is to exploit the current mispricing for the benefit of existing, long-run investors. This is done by a “market timing” financing policy whereby managers supply securities that are temporarily overvalued and repurchase those that are undervalued. Such a policy transfers value from the new or the outgoing investors to the ongoing, long-run investors; the transfer is realized as prices correct in the long run.2 For simplicity, we focus here on temporary mispricing in the equity markets, and so δ refers to the difference between the current price and the fundamental value of equity. More generally, each of the firm’s securities may be mispriced to some degree. By selling a fraction of the firm e, long run shareholders gain ()⋅δe.We leave out the budget constraint, lumping together the sale of new and existing shares. Instead of explicitly modeling the flow of funds and any potential financial constraints, we will consider the reduced form impact of e on fundamental value.It is worth noting that other capital market imperfections can lead to a sort of catering behavior. For example, reputation models in the spirit of Holmstrom (1982) can lead to earnings management, inefficient investment, and excessive swings in corporate strategy even when the capital markets are not fooled in equilibrium.3 Viewed in this light, the framework here is2 Of course, we are also using the market inefficiency assumption here in assuming that managerial efforts to capturea mispricing do not completely destroy it in the process, as they would in the rational expectations world of Myers and Majluf (1984). In other words, investors underreact to corporate decisions designed to exploit mispricing. This leads to some testable implications, as we discuss below.3 For examples, see Stein (1989) and Scharfstein and Stein (1990). For a comparison of rational expectations and inefficient markets in this framework, see Aghion and Stein (2004).relaxing the assumptions of rational expectations in Holmstrom, in the case of catering, and Myers and Majluf (1984), in the case of market timing.Putting the goals of fundamental value, catering, and market timing into one objective function, the irrational investors approach has the manager choosing investment and financing to()()[]()()⋅−+⋅+−⋅δλδλ1,max ,e K K f eK , where λ, between zero and one, specifies the manager’s horizon. When λ equals one, the manager cares only about creating value for existing, long-run shareholders, the last term drops out, and there is no distinct impact of catering. However, even an extreme long-horizon manager cares about short-term mispricing for the purposes of market timing, and thus may cater to short-term mispricing to further this objective. With a shorter horizon, maximizing the stock price becomes an objective in its own right, even without any concomitant equity issues.We take the managerial horizon as given, exogenously set by personal characteristics, career concerns, and the compensation contract. If the manager plans to sell equity or exercise options in the near term, his portfolio considerations may lower λ. However, managerial horizon may also be endogenous. For instance, consider a venture capitalist who recognizes a bubble. He might offer a startup manager a contract that loads heavily on options and short-term incentives, since he cares less about valuations that prevail beyond the IPO lock-up period. Career concerns and the market for corporate control can also combine to shorten horizons, since if the manager does not maximize short-run prices, the firm may be acquired and the manager fired.Differentiating with respect to K and e gives the optimal investment and financial policy of a rational manager operating in inefficient capital markets:()()()⋅+−=⋅−K K e K f δλλ11,, and ()()()()⋅++⋅=⋅−−e e e K f δδλλ1,.In words, the first condition is about investment policy. The marginal value created from investment is weighed against the standard cost of capital, normalized to be one here, net of the impact that this incremental investment has on mispricing, and hence its effect through mispricing on catering and market timing gains. The second condition is about financing. The marginal value lost from shifting the firm’s current capital structure toward equity is weighed against the direct market timing gains and the impact that this incremental equity issuance has on mispricing, and hence its effect on catering and market timing gains. This is a lot to swallow at once, so we consider some special cases.Investment policy. Investment and financing are separable if both δK and f e are equal to zero. Then the investment decision reduces to the familiar perfect markets condition of f K equal to unity. Real consequences of mispricing for investment thus arise in two ways. In Stein (1996) and Baker, Stein, and Wurgler (2003), f e is not equal to zero. There is an optimal capital structure, or at least an upper bound on debt capacity. The benefits of issuing or repurchasing equity in response to mispricing are balanced against the reduction in fundamental value that arises from too much (or possibly too little) leverage. In Polk and Sapienza (2004) and Gilchrist, Himmelberg, and Huberman (2004), there is no optimal capital structure, but δK is not equal to zero: mispricing is itself a function of investment. Polk and Sapienza focus on catering effects and do not consider financing (e equal to zero in this setup), while Gilchrist et al. model the market timing decisions of managers with long horizons (λ equal to one).Financial policy. The demand curve for a firm’s equity slopes down under the natural assumption that δe is negative, e.g., issuing shares partly corrects mispricing.4 When investment and financing are separable, managers act like monopolists. This is easiest to see when managers 4 Gilchrist et al. (2004) model this explicitly with heterogeneous investor beliefs and short-sales constraints.have long horizons, and they sell down the demand curve until marginal revenue δ is equal to marginal cost –e δe . Note that price remains above fundamental value even after the issue: “corporate arbitrage” moves the market toward, but not all the way to, market efficiency.5 Managers sell less equity when they care about short-run stock price (λ less than one, here). For example, in Ljungqvist, Nanda, and Singh (2004), managers expect to sell their own shares soon after the IPO and so issue less as a result. Managers also sell less equity when there are costs of suboptimal leverage.Other corporate decisions. Managers do more than simply invest and issue equity, and this framework can be expanded to accommodate other decisions. Consider dividend policy. Increasing or initiating a dividend may simultaneously affect both fundamental value, through taxes, and the degree of mispricing, if investors categorize stocks according to payout policy as they do in Baker and Wurgler (2004a). The tradeoff is()()()⋅+=⋅−−d d e K f δλλ1,, where the left-hand side is the tax cost of dividends, for example, and the right-hand side is the market timing gain, if the firm is simultaneously issuing equity, plus the catering gain, if the manager has short horizons. In principle, a similar tradeoff governs the earnings management decision or corporate name changes; however, in the latter case, the fundamental costs of catering would presumably be small.B. Empirical challengesThe framework outlined above suggests a role for securities mispricing in investment, financing, and other corporate decisions. The main challenge for empirical tests in this area is 5 Total market timing gains may be even higher in a dynamic model where managers can sell in small increments down the demand curve.measuring mispricing, which by its nature is hard to pin down. Researchers have found several ways to operationalize empirical tests, but none of them is perfect.Ex ante misvaluation. One option is to take an ex ante measure of mispricing, for instance a scaled-price ratio in which a market value in the numerator is related to some measure of fundamental value in the denominator. Perhaps the most common choice is the market-to-book ratio: A high market-to-book suggests that the firm may be overvalued. Consistent with this idea, and the presumption that mispricing corrects in the long run, market-to-book is found to be inversely related to future stock returns in the cross-section by Fama and French (1992) and in the time-series by Kothari and Shanken (1997) and Pontiff and Schall (1998). Also, extreme values of market-to-book are connected to extreme investor expectations by Lakonishok, Shleifer and Vishny (1994), La Porta (1996), and La Porta, Lakonishok, Shleifer, and Vishny (1997).One difficulty that arises with this approach is that the market-to-book ratio or another ex ante measure of mispricing may be correlated with an array of firm characteristics. Book value is not a precise estimate of fundamental value, but rather a summary of past accounting performance. Thus, firms with excellent growth prospects tend to have high market-to-book ratios, and those with agency problems might have low ratios—and perhaps these considerations, rather than mispricing, drive investment and financing decisions. Dong, Hirshleifer, Richardson, and Teoh (2003) and Ang and Cheng (2003) discount analyst earnings forecasts to construct an arguably less problematic measure of fundamentals than book value.Another factor that limits this approach is that a precise ex ante measure of mispricing would represent a profitable trading rule. There must be limits to arbitrage that prevent rational investors from fully exploiting such rules and trading away the information they contain about mispricing. But on a more positive note, the same intuition suggests that variables like market-to-book are likely to be a more reliable mispricing metric in regions of the data where short-sales constraints and other (measurable) arbitrage costs and risks are most severe. This observation has been exploited as an identification strategy.Ex post misvaluation. A second option is to use the information in future returns. The idea is that if stock prices routinely decline after a corporate event, one might infer that they were inflated at the time of the event. However, as detailed in Fama (1998) and Mitchell and Stafford (2000), this approach is also subject to several critiques.The most basic critique is the joint hypothesis problem: a predictable “abnormal” return might mean there was misvaluation ex ante, or simply that the definition of “normal” expected return (e.g., CAPM) is wrong. Perhaps the corporate event systematically coincides with changes in risk, and hence the return required in an efficient capital market. Another simple but important critique regards economic significance. Market value-weighting or focusing on NYSE/AMEX firms may reduce abnormal returns or cause them to disappear altogether.There are also statistical issues. For instance, corporate events are often clustered in time and by industry—IPOs are an example considered in Brav (2000)—and thus abnormal returns may not be independent. Barber and Lyon (1997) and Barber, Lyon, and Tsai (1999) show that inference with buy-and-hold returns (for each event) is challenging. Calendar-time portfolios, which consist of an equal- or value-weighted average of all firms making a given decision, have fewer problems here, but the changing composition of these portfolios adds another complication to standard tests. Loughran and Ritter (2000) also argue that such an approach is a less powerful test of mispricing, since the clustered events have the worst subsequent performance. A final statistical problem is that many studies cover only a short sample period. Schultz (2003) showsthat this can lead to a small sample bias if managers engage in “pseudo” market timing, making decisions in response to past rather than future price changes.Analyzing aggregate time series resolves some of these problems. Like the calendar time portfolios, time series returns are more independent. There are also established time-series techniques, e.g. Stambaugh (1999), to deal with small-sample biases. Nonetheless, the joint hypothesis problem remains, since rationally required returns may vary over time.But even when these econometric issues can be solved, interpretational issues may remain. For instance, suppose investors have a tendency to overprice firms that have genuinely good growth opportunities. If so, even investment that is followed by low returns need not be ex ante inefficient. Investment may have been responding to omitted measures of investment opportunities, not to the misvaluation itself.Cross-sectional interactions. Another identification strategy is to exploit the finer cross-sectional predictions of the theory. In this spirit, Baker, Stein, and Wurgler (2003) consider the prediction that if f e is positive, mispricing should be more relevant for financially constrained firms. More generally, managerial horizons or the fundamental costs of catering to sentiment may vary across firms in a measurable way. Of course, even in this approach, one still has to proxy for mispricing with an ex ante or ex post method. To the extent that the hypothesized cross-sectional pattern appears strongly in the data, however, objections about the measure of mispricing lose some steam.C. Investment policyOf paramount importance are the real consequences of market inefficiency. It is one thing to say that investor irrationality has an impact on capital market prices, or even financing policy,。
行为金融学综述行为金融学(behavioral finance,BF)作为新兴的金融学分支与占据金融学统治地位已经有三十年之久的有效市场假说(efficient market hypothesis,EMH),对金融学的基础——套利,投资人理性以及自1980年代以来涌现出来的大量异常现象进行了达二十年之长的争论,双方此消彼长,加深了人们对金融市场的理解,促进了金融学向更广更深的方向发展。
一、介绍在传统金融学的范式中,“理性”意味着两个方面:首先,代理人的信仰是正确的:他们用于预测未知变量未来实现的主观分布就是那些被抽取实现的分布。
其次,给定他们的信仰,在与Savage的主观期望效用(SEU)概念相一致的意义上,代理人做出正常可接受的选择。
BF是一种研究金融市场崭新方法,至少部分地以对传统范例面临的困难做出反应的面貌出现的。
广义上,BF认为通过使用某些代理人不是完全理性的模型,可以更好的理解某些金融现象。
在某些行为金融学模型中,代理人的信仰不完全正确,大都是因为不恰当的应用贝叶斯法则。
在另一些模型中,代理人的信仰是正确的但做出的选择通常是有疑问的,与SEU不相容。
BF最大的成功之一是一系列理论文章表明在理性交易者和非理性交易者相互影响的经济体中,非理性对价格的影响是实质性的和长期的。
文献称之为“套利限制(limits of arbitrage)”,这构成了BF的两大块之一。
(见第二部分)为了做出清晰的预测,行为模型常需要指定代理人的非理性形式。
人们究竟怎样误用贝叶斯法则或偏离SEU呢?在此引导下,行为经济学家们典型地求助于认知心理学家汇编的大量实验证据,这些都是关于人们形成信仰时潜在的偏误,和人们的偏好或给定信仰后怎样做出决策的。
因此心理学构成了BF的第二大块。
(见第三部分)我们考虑BF的特殊应用:理解整个股市,平均回报的横截面情况,封闭式基金定价;理解投资者特殊群体怎样选择其资产组合和跨时交易;理解证券发行,资本结构和公司的股利政策。
文献综述行为金融理论综述(一)(苟宇刘菲菲刘正王磊)(西南财经大学中国金融研究中心 610074)摘要:传统金融理论在以“理性人”和有效市场为其理论假设的基础上,发展了现代资产组合理论(MPT),资本资产定价理论(CAPM),套利定价理论(APT)、期权定价理论(OPT)等一系列经典理论,它承袭了经济学“理性范式”的研究思路,取得了重大成功。
但从另外一方面来看,它忽视了对投资者实际决策行为的研究。
随着行为金融学的发展,行为经济学家和实验经济学家提出了许多悖论,如“股权风险溢价难题”、“羊群效应”、“阿莱斯悖论”等。
传统的“理性人”假定已经无法解释现实人的经济生活与行为,预期效用理论也遭到怀疑。
虽然部分经济学家开始修补经典理论,修改效用函数、技术和市场信息结构等,但迄今为止没有满意的答案。
行为金融理论的兴起突破了传统金融理论的基本假设,以心理学研究成果为依据,从投资者的实际决策心理出发,对投资者行为进行了研究,并获得一定的成功。
本文对行为金融学的发展及其主要理论进行了回顾和总结。
第一部分,现代经典金融学的缺陷与行为金融学的产生。
从现代经典金融学的起源和发展入手,介绍有效市场假说的发展、理论基础和经验检验。
现代经典金融学是建立在理性和有效市场基础上的,本节主要从有效市场假说分析了现代经典金融理论的缺陷。
在此基础上,介绍了行为金融学的起源和发展。
第二部分,行为金融学心理学基础。
根据心理学分支的划分,从认知心理学、社会心理学、情感心理学和实验心理学的大量研究成果,分析了行为金融学的心理学基础,为后续理论与模型奠定基础。
第三部分,行为金融学的理论核心—--期望理论。
行为金融学发展至今,其中最有影响为学术界所公认的理论就是期望理论了,期望理论研究的主要是金融理论的模块之一的“偏好与决策问题”,但是它是目前应用于经济研究的最为重要的行为决策理论之一。
本节在回顾预期效用理论的基础上,介绍了期望理论的主要内容以及其相关研究,并对两者进行了比较。
行为金融学文献综述行为金融学,就是将心理学尤其是行为科学的理论融入到金融学中,从微观个体行为以及产生这种行为的更深层次的心理、社会等动因来解释、研究和预测资本市场的现象和问题。
自1980年代以来,随着金融市场的发展和研究的深入,人们发现了金融市场中存在很多不能被传统金融学所解释的现象,比如股权滋价之谜、波动率之谜、封闭式基金之谜、股利之谜、小公司现象、一月份效应、价格反转、反应过度和羊群行为等等。
学者们将这些违背有效市场假说,传统金融学理论无法给出合理解释的现象称之为“异象”或“未解之谜”。
金融市场中存在的大“异象”对传统金融学产生了巨大冲击,尤其向有效市场假说提出严峻挑战。
因此,人们开始重新审视“完美的”传统金融学理论。
传统金融学理论把人看作是理性人,即人们在从事经济活动时总是理性的,追求收益最大化和成本最小化人们的估计是无偏的,满足贝叶斯过程。
因为人的假设与现实中人的决策行为有一定差异,所以人们开始关注人类行为及心理在决策中的作用,运用心理学的研究方法来研究金融问题,行为金融学应运而生。
从而金融学的研究焦点开始从“市场”研究转向“人类行为”研究。
心理因素在投资决策中的作用方面的研究可以追溯至1936年凯恩斯的“空中楼阁理论”,该理论认为投资者是非理性的,证券的价格取决于投资者共同的心理预期。
然而,真正意义上的行为金融学是由美国奥瑞格大学教授Burrel和Bauman(1951年)提出来的。
他们认为在对投资者的决策研究仅仅依赖于化的模型是不够的,还应该考虑投资者的某些相对固定的行为模式对决策的影响。
心理学Slovic(1972)教授从行为学角度研究了投资者的投资决策过程。
随后,Tversky 和Kahneman在1974年和1979年分别对投资者的决策行为进行了行为金融学研究,分别讨论了直觉驱动偏差和框架依赖的问题,从而奠定了行为金融学研究的基础。
20世纪80年代,金融市场中的大量“异象”被发现,推动了行为金融学的发展。
行为金融理论评述摘要:行为金融学作为发展中的新兴研究领域,并没有严格的定义。
本文将对行为金融理论的主要内容、理论基础进行介绍,并进一步讨论行为金融与有效市场理论争论之所在。
关键字:行为金融有效市场理性预期行为金融理论最早由 Burrel 和Bauman教授于1951年提出,他们认为,在衡量投资者的投资收益时,不仅应建立和应用量化的投资模型,而且还应对投资者传统的投资模式进行研究。
在20世纪80年代后期,随着金融市场上与有效市场理论相违背的异象实证结果的积累,试验心理学为行为金融理论的发展提供了心理学基础,行为金融学进入繁荣时期。
一、行为金融理论的主要内容行为金融理论是在对现代金融理论,尤其是在对有效市场假设和资产定价模型挑战和质疑背景下形成的,运用心理学、试验经济学等学科的分析方法手段对市场中的现象和投资者的行为进行研究。
1.通过对金融市场数据的利用和挖掘,发现与传统金融理论不符合,甚至传统金融理论无法解释的金融现象及其原因。
2.投资者的非理性行为研究。
行为金融学认为投资者并不满足理性人假设,他们在决策时并非遵循贝叶斯法则,而会产生易获性偏误、代表性偏误、过度自信、框架依赖等认知偏误,不能根据已知信息对证券价值做出正确评估。
3.投资者群体行为研究。
行为金融理论的研究结果表明,投资者的行为是相互影响的,投资者之间是相互学习模拟的,会产生从众心理偏差,出现“羊群效应”、“聚集行为”,这样证券价格就可能出现系统性偏差。
4.基于心理学和有限套利的资产定价研究。
行为金融的定价模型包括两个关键的假设:投资者并非是完美理性的;理性投资者抵消非理性投资者资产的愿望或能力有限,因此非理性投资者的行为或者预期会影响到金融资产的价格。
基于以上两个假设,行为金融学构造了噪音交易者模型、行为资本资产定价理论、行为资产组合理论研究资产定价问题。
二、行为金融理论1.投资者是有限理性的。
行为金融学从投资者决策的实际过程来看,认为投资者的决策行为会受到心理、情绪、知识和能力的影响和限制,从而偏离贝叶斯法则,会产生易获性偏误、代表性偏误、过度自信产、框架依赖等认知偏误,因此不能根据己知信息对证券价值做出正确评估。
行为金融理论文献综述行为金融理论文献综述相对于现代金融理论,行为金融学的发展历史并不很长。
从20世纪90年代,学术界开始形成了研究行为金融的热潮,大量的学者投身于行为金融方面的研究。
行为金融定义的讨论行为金融作为一个新兴的研究领城,虽然己经有了20多年的发展历史,但至今还没有一个为学术界所公认的严格定义。
Thaler(1993)认为行为金融就是“思路开放式金融研究”(open-minded 'finance),只要是对现实世界关注,考虑经济系统中的人有可能不是完全理性的,就可以认为是研究行为金融。
Lintner(1998)把行为金融学研究定义为“研先人类如何解释以及根据信息、做出决策”。
Olsen(1998)声称“行为金融学并不是试图去定义‘理性’的行为或者把决策打上偏差或错误的标记;行为金融学是寻求理解并预测进行市场心理决策过程的系统含义”。
Statman(1999)则认为金融学从来就未离开过心理学,一切行为均是基于心理考虑的结果,行为金融学与标准金融学的不同在于对心理、行为的观点有所不同。
Sheinn(2000)认为,行为金融是将行为科学、心理学和认知科学上的成果运用到金融市场中产生的学科,其主要研究方法,是基于心理学实验结果提出投资者决策时的心理特征假设来研究投资者的实际投资决策行为。
Russell (2000)对行为金融是这样定义的:(1)行为金融理论是传统经济学、传统金融理论、心理学研究以及决策科学的综合体。
(2)行为金融理论试图解释实证研究发现的与传统金融理论不一致的异常之处。
(3)行为金融理论研究投资者在做出判断时是怎样出错的,或者说是研究投资者是如何在判断中发生系统性的错误的。
从上述行为金融学家定义的行为金融概念可以得出如下结论,行为金融研究考虑到了人的不完全理性的本性,其研究需要运用行为科学和心理学知识,其研究对象是金融领域的相关现象及其本质。
行为金融的发展历史通常把行为金融的研究历史划分为三个阶段:1.早期行为金融研究。
《行为金融学研究综述》篇一一、引言行为金融学,作为金融学与心理学的交叉学科,旨在研究投资者在金融市场中的实际决策过程及其影响因素。
它挑战了传统金融学中的理性人假设,提出了人的行为和心理因素在金融决策中的重要作用。
本文旨在全面梳理行为金融学的研究现状,对其发展历程、主要研究领域及成果进行综述。
二、行为金融学的发展历程行为金融学起源于20世纪50年代的心理学和金融学的交叉研究。
早期,心理学家通过实验研究人的决策过程,而经济学家则关注市场效率与价格形成机制。
随着研究的深入,人们发现传统金融学的理性人假设与现实存在较大差距,于是行为金融学逐渐兴起。
三、行为金融学的主要研究领域1. 投资者行为研究投资者行为研究是行为金融学的核心领域之一。
该领域主要研究投资者的心理偏差、认知误区、情感因素等如何影响其投资决策。
如过度自信、损失厌恶、锚定效应等心理现象均是该领域研究的重点。
2. 市场异象研究市场异象是指无法用传统金融学理论解释的金融市场现象。
行为金融学通过对这些异象进行研究,试图揭示其背后的心理和行为因素。
如股票溢价之谜、封闭式基金之谜等都是市场异象研究的典型案例。
3. 金融市场预测与风险管理行为金融学通过研究投资者的心理和行为,为金融市场预测和风险管理提供了新的思路和方法。
如投资者情绪指数的构建、市场泡沫的识别与防范等都是该领域的研究重点。
四、行为金融学的研究成果与影响行为金融学的研究成果丰富多样,对金融市场的理解和实践产生了深远影响。
首先,行为金融学挑战了传统金融学的理性人假设,提出了人的心理和行为在金融决策中的重要作用。
其次,行为金融学为金融市场预测和风险管理提供了新的思路和方法,有助于提高投资决策的准确性和有效性。
此外,行为金融学还为政策制定提供了依据,有助于提高金融市场的公平性和透明度。
五、未来展望尽管行为金融学已经取得了丰硕的成果,但仍有许多问题亟待解决。
未来,行为金融学的研究将更加注重跨学科交叉研究,结合心理学、神经科学等学科的知识和方法,深入探讨人的心理和行为在金融市场中的影响机制。
《行为金融学研究综述》篇一一、引言行为金融学,作为金融学与心理学的交叉学科,旨在研究投资者在金融市场中的实际决策过程及其影响因素。
它挑战了传统金融学中的理性人假设,转而关注人类的认知、情感以及社会影响因素在金融决策中的作用。
本文将对行为金融学的研究进行综述,分析其发展历程、主要理论、实证研究以及未来研究方向。
二、行为金融学的发展历程行为金融学的起源可以追溯到20世纪50年代,但直到80年代才逐渐形成独立的学科体系。
其发展主要经历了三个阶段:初步形成阶段、理论体系构建阶段和实证研究阶段。
初步形成阶段,学者们开始关注投资者在金融市场中的非理性行为,如过度自信、过度反应等。
这些非理性行为导致市场出现异常现象,如股票溢价之谜等。
理论体系构建阶段,行为金融学开始借鉴心理学、社会学等学科的理论和方法,逐步建立起自己的理论体系。
其中,最具代表性的是卡尼曼和特沃斯基的预期理论,他们提出了人类决策中的心理账户和框架效应等概念。
实证研究阶段,学者们运用大量实证数据验证了行为金融学理论的正确性,进一步推动了行为金融学的发展。
三、行为金融学的主要理论行为金融学的主要理论包括过度自信、损失厌恶、心理账户、框架效应等。
这些理论解释了投资者在金融市场中的非理性行为和决策过程。
过度自信是指投资者对自己的判断和决策过于自信,忽视潜在的风险。
损失厌恶则是指投资者对损失的敏感度高于对同等收益的敏感度。
心理账户则是指人们在心理上将财富划分为不同的账户,对不同账户的财富进行不同的评估和决策。
框架效应则是指人们在不同的问题框架下会做出不同的决策。
四、行为金融学的实证研究行为金融学的实证研究主要集中在以下几个方面:投资者行为、市场异常现象和资产定价等。
在投资者行为方面,学者们通过调查和实验等方法研究了投资者的决策过程和心理因素。
例如,研究发现投资者在投资过程中存在过度自信、损失厌恶等非理性行为。
这些非理性行为导致市场出现异常现象,如股票溢价之谜等。
行为金融学文献综述安徽大学08金融刘秀达学号:I00814009导言:在传统的经典金融理论中,理性人假设是所有理论的基石。
在这一假设下的投资者具有理性预期和效用最大化的特点。
然而,随着金融市场突飞猛进的发展,大量的实证研究和观察结果表明,金融市场上存在着投资者行为“异常”与价格偏离现象,这些现象无法用理性人假说和已有的定价模型来解释,被称为“异象”,如“股利之谜”、“股权溢价之谜”、“波动率之谜”、“周末效应”等等。
在对学科进行审视和反思的过程中,发端于20世纪50年代,并在20世纪80年代以后迅速发展起来的行为金融学成为了学术界的关注点,并开始动摇经典金融理论的权威地位。
基于此,本文对行为金融学的理论进行系统阐述,并总结目前行为金融学的研究现状及其不足,在此基础上探讨行为金融学的发展前景以及对我国的借鉴意义。
关键字:行为金融,投资者,偏好一、行为金融学的概念和理论框架行为金融学, 就是将心理学尤其是行为科学的理论融入到金融学中,从微观个体行为以及产生这种行为的更深层次的心理、社会等动因来解释、研究和预测资本市场的现象和问题,是运用心理学、行为学和社会学等研究成果与研究方式来分析金融活动中人们决策行为的一门新兴学科。
行为金融学以真实市场中普通的正常的投资者为理论基石代替经典金融理论的理性人原则,其基本观点是: 第一,投资者不是完美理性人,而是普通的正常人。
由于投资者在信息处理时存在认知偏差, 因而他们对市场的未来不可能做出无偏差估计;第二,投资者不具有同质期望性。
投资者由于个体认知方式及情感判断的不同, 导致偏好与行为方式不同,因而对未来的估计也有所不同;第三, 投资者不是风险回避型的,而是损失回避型的。
投资者面临确定性收益时表现为风险回避,而面临确定性损失时则表现为风险追求;第四,投资者在不同选择环境下,面对不同资产的效用判断是不一致的,其风险偏好倾向于多样化,并且随着选择的框架的改变而改变。
行为金融学研究综述——行为金融学对传统金融学的扬弃摘要:本文通过对行为金融学的深入研究,探索并归纳出了行为金融学与传统金融学金融市场中的投资理论、投资方式以及投资人行为的区别进行了系统的阐述。
关键词:传统金融学;行为金融学;理性行为行为金融学就是将心理学融入到金融学的研究之中,从微观个体行为以及产生这种行为的心理等动因来解释、研究和预测金融市场的发展。
这一研究视角主要是通过分析金融市场主体在市场行为中的偏差和反常,来寻求不同市场主体在不同环境下的经营理念及决策行为特征,力求建立一种能正确反映市场主体实际决策行为和市场运行状况的描述性模型。
一、行为金融学与传统金融学的联系(一)金融研究理论相同传统金融学的研究理论主要以有效市场假说为研究依据,有效市场假说表现为在金融市场中,证券的价格会根据相关信息的变化而改变,而相关信息并不能在同一时间传递给金融市场中的每个投资者,价格的变化没有任何的经济规律,而是进行随机的、无秩序的变化。
传统金融学提出了理想的市场行为理论,并通过运用数学公式,为金融决策提供了科学准确的数据参考,但并不能解释金融市场中投资者的特殊投资行为。
行为金融学的研究理论在传统金融学研究的理论基础上,将心理学理论融入到了金融市场中各个投资者的行为中,通过分析投资人的心理变化,对其特殊投资行为进行深入了解[1]。
(二)风险管理理论相同传统的风险管理理论是以传统资产组合理论为研究基础,传统的资产组合理论具体表现为金融市场上,投资者最关注的问题是预期投资收益率和预期风险。
行为金融学风险管理理论是在传统金融学风险管理理论的研究基础上逐渐发展而来的,并未完全脱离传统风险管理理论,而是对其缺陷和不足进行有效补充,例如,行为金融理论认为人既有理性的一面,也有非理性的一面,在进行投资过程中,大多数投资者会理性地选择风险和收益适宜的金融产品进行投资,但是面对高风险、高收益的金融产品时,部分投资者也会为了赢得更多的收益而甘愿承担较高的风险,显现出了投资者非理性的一面。
行为金融论文范文精选3篇1文献综述一般认为,行为金融学的产生以1951年Burrel教授发表《投资战略的实验方法的可能性研究》一文为标志,该文首次将行为心理学结合在经济学中来解释金融现象。
1972年,Slovic 教授和Bumn教授合写了《人类决策的心理学研究》,为行为金融学理论作出了开创性的贡献。
1979年DnielKhnemn教授和mosTversky教授发表了《预期理论:风险决策分析》,正是提出了行为金融学中的预期理论。
中南大学的饶育蕾和刘达锋著的《行为金融学》是我国第一本系统阐述行为金融学理论的著作。
吴世农、俞乔、王庆石和刘颖等早在ZG证券市场初建时就对ZG股市调查并进行取样分析,得出ZG市场为非有效市场,其主要论文有:吴世农、韦绍永的《股市投资组合规模和风险关系的实证研究》,陈旭、刘勇的《对我国股票市场有效性的实证分析及队策建议》。
国内对这一理论的研究相对不足,对投资策略的涉足更是有限。
本文主要是借鉴了两位美国学者的思路进行论证。
美国学者彼得L伯恩斯坦和阿斯瓦斯达摩达兰著的《投资治理》总结了美国比较有影响力的观点,对行为金融学理论在投资领域的应用进行了进展,对投资行为进行了全面剖析,其对投资策略的研究更具有独到之处,这种在行为金融学下投资策略的研究对我国证券业的进展将有十分重要的借鉴意义。
罗伯特泰戈特著《投资治理-保证有效投资的25歌法则》以其简单而明了的笔法描绘了行为金融学下投资方法的选择应具备的条件和原则,指导我们的实践。
BrighmEhrhrot著的《财务治理理论与实务》中也不乏对行为金融学的应用,比如:选择权的应用等。
2行为金融学概述行为金融学是将行为学、心理学和认知学成果运用到金融市场上产生的一种新理论,是基于心理学实验结果提出投资者决策时的心理特征假设来研究投资者实际投资决策行为的一门学科。
行为金融学有两个研究主题:一是市场并非有效,主要探讨金融噪声理论;二是投资者并非是理性的,主要探讨投资者会发生的各种认知和行为偏差问题。
Չࣁ୍Ꮲ: Ўӣ៝ᆶఈ*Behavioral Finance: A Literature Reviewڬᇯ*ԣ౺ဖڬ߷تᠭ܃ᓄ୯ҥύѧεᏢ୍ߎᑼسᄔाҁЎӣ៝Չࣁ୍ᏢޑЎǴхࡴఈፕᆶځд࣬ᜢፕޑวǶԜѦǴҁЎϩձவՉࣁ୍Ꮲᆶ୍ፕޑفࡋǴӚᅿൔၿёႣෳ܄ޑԋӢǶᜢᗖӷǺఈፕǵၸࡋԾߞǵཞѨᖿᗉǵਣࢎ࣬٩ǵЈЊǵൔၿёႣෳ܄ǶAbstractIn this paper, we review the behavioral finance literature, including the development of prospect theory and other relevant theories. In addition, we discuss the explanations for return predictability from both the viewpoints of traditional and behavioral finance theories.Key Words: prospect theory; overconfidence; loss aversion; framing dependence; mental accounting; return predictability.*ݺଚტᒳΕԲۯೳټᐉԳΕፖഏمխ؇ՕᖂΕഏمႆࣥઝݾՕᖂΕցཕՕᖂઔಘᄎፖᄎृऱޅေፖਐإΖ൘ǵ!قӵ୍݀ᔮᏢ(financial economics)ёаຎࣁࢂᔮᏢޑঁЍࢴǴٗሶՉࣁ୍Ꮲ(behavioral finance)Ψᔈ၀ёаຎࣁࢂՉࣁᔮᏢ(behavioral economics)ޑЍࢴǶԶӵ݀ךॺעՉࣁᏢࢴ(behaviorism)ຎࣁЈᏢޑЍǴٗሶՉࣁ୍ᏢΨᔈёаຎࣁЈ୍Ꮲ(psychological finance)ޑЍǴӕኬΞёຎࣁЈᔮᏢ(psychological economics)ޑϩЍ1ǶԿܭࣴز࣬ᜢୢᚒޑᏢޣᔈᆀࣁЈᔮᏢৎ(psychological economists)܈ࢂᔮЈᏢৎ(economic psychologists)ǴᝄԶقᔈࢂԖձޑǹޣᙖҗЈᏢޑፕ၂܈ှ،ᔮᏢ܌ᜢЈޑᚒǴԶࡕޣ߾ࢂख़ӧᆶࣴزঁᡏӧᔮᡏسύޑՉࣁᆶ࣬ᜢЈຝǶՠךॺаࣁǴ೭ኬޑձ٠คϼεޑཀကǶӕኬޑǴЎΨόѐڅཀϩՖޣࣁՉࣁ୍ᏢޑϣǴ܈ՖޣࣁЈ୍ᏢޑϣǶᙁౣԶقǴȨՉࣁ୍Ꮲȩ߯аЈᏢޑวࣁ୷ᘵǴᇶаޗᏢځдޗࣽᏢޑᢀᗺǴ၂ှញคݤࣁ୍ᔮፕ܌ှញޑӚᅿᆶ౦தຝǶ೭٤౦தຝхࡴǺၸଯޑިሽݢ܄ᆶҬܰໆǴԶЪި౻ൔၿόፕӧᐉᘐय़܈ਔ໔ׇӈǴӸӧ࣬ޑёႣෳ܄ǶٯӵǴӧᐉᘐय़Бय़ǴჴЎว܌ᒏޑೕኳྈၿ(size premiumǴջλϦљೕኳਏ݀)ᆶሽॶྈၿ(value premiumǴҭջय़ѱॶКਏ݀)ǴԶЪޑۓሽፕȐхࡴCAPMǴAPTǴᆶCCAPMȑΨคݤӝޑှញၗౢ໔ޑᐉᘐय़ൔၿৡ౦Ƕӧਔ໔ׇӈБय़ǴନΑຼ҃ਏᔈǵДਏᔈǵଷВਏᔈຝѦǴިሽόፕӧอය܈ߏයΨӸӧ࣬ޑԾך࣬ᜢǶvan Raaij (1981)ගрޑȨᔮЈᏢȩޑኳࠠᔈёᔅշךॺᕕှՉࣁ୍Ꮲᆶ୍ፕޑৡ౦ȐـკȑǶᡉฅǴᏃᆅᔮᕉნϸᔈᔮރݩޑׯᡂǴՠঁᡏӢࣁঁΓӢનޑৡ౦ǴԶჹᔮݩԖόӕޑᇡޕᆶགڙǴуঁΓЬᢀޑሽॶղᘐǴᝩԶၸՉࣁ߄Զᆶᔮᕉნౢғፄᚇޑϕᜢ߯ǶඤقϐǴঁᡏ໔ჹѱ܈ᔮᡏޑރݩԖ܈ӕ܈౦ޑȨᇡޕ(perception)ȩǴၸՉࣁᆶ۶Ԝ໔ϕԶӆϸࢀӧѱ܈ᔮύǶҭջǴѱ܈ᔮޑރݩࢂဂᡏȨ(projection)ȩޑ่݀Ƕѱ܈ᔮޑᄽǴࢂೱՍᇡޕᆶޑၸำǹᡉฅӧ೭ၸำύǴȨΓȩתᄽΑനख़ाޑفՅǶаި౻ሽޑ،ۓࣁٯǴިሽޑᡂёૈٰԾϦљҁيሽॶޑׯᡂ(ϸᔈᔮᕉნޑᡂ)ǴΨёૈϸࢀၗΓӢঁΓȐЈȑӢનԶჹځຑሽޑׯᡂǴ܈ޣΒޣࣣฅǶᔮȐ୍ȑፕஒΓຎࣁ܄ǴӢԜሽᡂЬाٰԾܭ୷ҁय़ӢનȋхࡴᔮᕉნޑᡂǵϦљᔼၮރݩޑׯᡂȋԶঁᡏᆶဂᡏޑ،ၸำ߾൳Яֹӄ۹ຎǹȨΓȩޑᡂኧӧፕύޑख़ा܄फ़ډനեǶ࣬ϸޑǴՉ1ՉࣁᏢࢴࣁJohn B. Watson (1878-1958)ܭ1912ԃගрǶWatson ڙډPavlovޑȨڋऊᏢಞፕȐtheory of conditioningȑȩޑ௴วǴЬЈᏢᔈаࣽᏢჴᡍޑБԄࣴزȨᢀჸޑډޑՉࣁȩǴԶόࢂаϣ࣪ޑБԄࡘ࣮όډޑȨཀȩǶԖᑫ፪ޑ᠐ޣёୖԵTvede (1999)Ƕࣁ୍Ꮲ߾ȨගϲȩΓޑӦՏǴԶᔮᡂኧޑख़ा܄߾࣬ჹफ़եǶᏃᆅӧ1980ԃжࡕයω໒ۈڙډख़ຎǴՠՉࣁ୍Ꮲӧӭख़ाୢᚒǴςԖ࣬ޑǶόၸǴّϞϝ҂ԖҺՖᜪ՟ၗҁၗౢۓሽፕȐcapital asset pricing model, CAPMȑ܈ճۓሽፕ(arbitrage pricing theory, APT)ቶࣁௗڙޑፕගрǶӧЎӣ៝Бय़ǴEdwards (1995)ǵRabin (1998)ǵShiller (1999)ǵKahneman and Riepe (1998)ǵShleifer (2000)ǵTvede (1999)ǵShefrin (2000)ǵHirshleifer (2001)ΓමଞჹՉࣁ୍ᏢύӭቹៜၗΓՉࣁޑЈӢનуаϩǵ٠ගрཥޑགྷݤǶEdwards (1995)аఈፕޑวࣁЬືǴჹ࣬ᜢޑЎբΑᙁౣޑӣ៝ǶShiller (1999)வЈᏢǵޗᏢϷΓᜪᏢفࡋჹՉࣁ୍ᏢதЇҔޑȸՉࣁচ(behavioral principles)ȹΑ࣬ቶݱޑӣ៝ǴMullainathn and Thaler (2000)ޑอЎ߾வΓޑԖज़܄(bounded rationality)ǴԖज़ཀדΚ(bounded willpower)ǴᆶԖज़Ծճ(bounded self-interest)ΟঁفࡋՉࣁᔮᏢᆶՉࣁ୍ᏢǶShleifer (2000) வᏢೌޑفࡋჹ൳ঁᒧ܄ޑୢᚒǴхࡴፕᆶՉࣁ୍Ꮲϐৡ౦ǵ҂ٰࣴزБӛǴΑుΕޑǶShefrin (2000)ᆶTvede (1999)߾வၨჴ୍ޑفࡋ࣬ᜢޑᚒǶҁЎ၂வၨቶޑຎഁǴჹՉࣁ୍ᏢޑวϷځᆶ୍ፕϐৡ౦ǴၨֹޑϟಏǴಃΒፕ୍ፕӧၸѐΒΜԃٰ܌य़ᖏޑࡷᏯᆶץຑǴಃΟӣ៝Չࣁ୍ᏢޑፕࢎᄬǴϣЬाፕఈፕаϷҗځ़ғрٰޑ࣬ᜢፕǴќѦᗋԖځдЈᏢᜢܭၗΓ،ၸำޑวǹಃѤаFama (1991)ჹȨൔၿёႣෳ܄ȩޑፕࣁϩЬືǴϩձ൩୍ᔮᆶՉࣁ୍ᏢޑفࡋǴፕдॺჹӚᅿȸ౦தຝȹޑှញǶനࡕࣁ่ፕᆶ҂୍ٰࣴزёૈޑวБӛǶკǺᔮЈᏢޑኳࠠ(ٰྍǺvan Raaij, 1981, Journal of EconomicPsychology, V ol. 1, No. 1, 1-24.)ມǵ!߈ж୍ፕ܌य़ᖏޑࡷᏯHaugen (1999)ஒ୍ፕޑวϩԋ൳ঁ໘ࢤǺȨᙑਔж୍ (old finance)ȩǵȨж୍(modern finance)ȩᆶȨཥਔж୍(new finance)ȩǶȨᙑਔж୍ȩж߄ޑࢂ1960ԃжаǴаीаϷ୍ൔ߄ϩࣁЬޑࣴزǴȨж୍ȩǴ܈ࢂᆀࣁ܌ᒏޑȨྗ୍(standard finance)ȩǴ߯аԾ1960ԃжଆᑫଆޑ୍ᔮᏢࣁЬाፕǴࣴزЬᚒࣁ܄ଷΠޑຑሽǶԶȨཥਔж୍ȩ߾ёаԾ1980ԃжࡕයଆᅌڙډݙཀޑՉࣁ୍Ꮲࣁж߄ǴࣴزЬᚒࣁȨคਏѱȩǶԐයޑ୍ᆶीޑࣴزؒԖϼεޑϩഁǴӢࣁਔۘؒԖၨᝄᙣޑБݤፕىа٬ள୍܈ीޑࣴزԋࣁȸࣽᏢȹǶȨ୍ȩԋࣁঁᐱҥޑᏢೌሦୱǴाޔډ1960ԃжࡕCAPMǵAPTǵᒧۓሽፕаᔮᏢȨ܄ՉࣁȩࣁБݤፕޑፕޑගрǶӕਔǴҗܭӄౚᔮޑวǴаϷႝတᆶႝηၗޑදϷǴڈᐟΑж୍ፕᆶჴࣴزޑጲࠁวǴΨ٬ள୍ԋࣁ܌ԖޗࣽᏢ܌༭֪ᆶခኀޑঁᏢࣽǶԶȨж୍ȩനமԶԖΚޑፕǴεཷाаਏѱଷᇥȐefficient market hypothesis, EMHȑࣁж߄ǶEMHёаᇥࢂ܄Չࣁޑཱུठ߄Ƕ୷ҁǴਏѱଷᇥᇡࣁިሽϸᔈ܌Ԗޑ࣬ᜢၗૻǴջ٬ިሽୃᚆ୷ҁሽॶǴΨࢂӢࣁၗૻޑόჹᆀ܈ၗૻޑှ᠐อਔ໔ϣޑৡ౦܌ठǶόፕӵՖǴᒿਔ໔ޑၸǴၗΓჹၗૻޑڗளຫٰຫֹӄȐϦ໒ૻ৲ȑǴЪၗΓΨᙖҗᏢಞԶ҅ዴޑှ᠐࣬ᜢၗૻǴӢԜިሽѸۓӣᘜ୷ҁሽॶǴ܌аሽޑୃᚆࢂอයޑຝǶShleifer (2000)ࡰрǴਏѱଷᇥࡌҥӧаΠޑΟঁଷΠǺ() ၗޣࢂ܄ޑǴӢԜૈ܄ӦຑچޑሽǶ(Β) ջ٬Ԗ٤ၗޣࢂό܄ޑǴՠҗܭдॺޑҬܰࢂᒿᐒޑǴ܌аૈܢ۶ԜჹሽޑቹៜǶ(Ο) ऩϩၗޣԖ࣬ӕޑό܄ՉࣁǴѱϝёճҔȬճȭᐒڋ٬ሽӣൺ܄ሽǶ1970ԃжᏢೌࣚჹਏѱଷᇥޑئёаᇥډၲΑᜬঢ়Ǵӭፕکჴ่݀ޑЍǴ٬ளਏѱଷᇥ៳ฅԋࣁઓဃόёߟҍޑǶޔډ80ԃжǴࣴزഌុว٤ၴϸۓሽፕȐӵCAPMᆶAPTȑکਏѱଷᇥޑჴ่݀Ƕᒿຫٰຫӭޑ౦தຝวǴᏢޣ໒ۈჹޑ୍Ꮲӧچሽޑ،ۓӸᅪǴᙯԶ൨ځдሦୱޑှញǶ೭ਔаЈᏢჹၗΓ،ၸำޑࣴزԋ݀ࣁ୷ᘵǴख़ཥᔠຎᡏѱሽՉࣁޑՉࣁ୍Ꮲߡᕇளख़ຎǶќঁ٬Չࣁ୍ᏢጲࠁวޑচӢࢂKahneman and Tverskey (1979)ගрఈፕ(prospect theory)2ǴҔٰբࣁΓॺӧय़ჹόዴۓ܄Πவ٣،ޑኳࠠǴаှញႣයਏҔፕᆶჴ่݀ޑϩݔǶٯӵǴႣයਏҔፕόૈှញࣁϙሶঁΓӧࢌ٤ݩࢂ॥ᓀངӳޣǴӧࢌ٤ݩΞࢂ॥ᓀᖿᗉޣǶќѦঁΓӧ،ਔǴ٠όࢂӵ୍ፕଷ܄ޑঁΓǴჹ܌ԖޑёૈნϷёૈ܄၁ᅰޑϩǴԶࢂததόૈкҽᕕှډԾρ܌य़ჹރݩǴԖᇡޕޑୃᇤ(cognitive bias)Ǵதаᡍݤ߾܈ޔբࣁ،ޑ٩ᏵǴϸᔈӧၗՉࣁǴ߾Ԗၸࡋϸᔈ܈ϸᔈόىޑຝǶ܈ࢂঁΓӧᒧޑਔংǴததڙډୢᚒඔॊБԄޑቹៜԶԖόӕޑᒧǴ೭٤ᆶႣයਏҔፕ܌ଷޑ܄Չࣁ࣬ܢޑຝǴӧఈፕύёаᕇளှเǶՉࣁ୍Ꮲаఈፕࣁ୷ᘵǴуځдЈᏢᆶՉࣁᏢჹܭၗΓՉࣁኳԄޑวǴჹਏѱଷᇥޑΟঁଷගр፦ᅪ(Shleifer (2000))Ǻ() ߚ܄ՉࣁਏѱଷᇥനӃڙݾޑӦБ൩ࢂᜢܭ܄ՉࣁޑଷǶKahneman and Riepe (1998)ஒߦ٬Γॺคݤр಄ӝ܄،ኳࠠޑӢનǴрΑΟᗺޑᘜયǺ२Ӄࢂၗޣჹ॥ᓀޑᄊࡋǺঁΓय़ჹၗਔǴ٠όࢂӵਏҔፕ܌ଷޑԵቾനಖޑНྗǴԶࢂڗঁୖԵᗺ(reference point)ѐ࣮ࢂᕇճ܈ᖝཞǴ܌аёૈӢԛୖԵᗺޑᒧόӕǴ٬ளԛ،ӢݩόӕԶׯᡂǶځԛࣁߚنԄݤ߾ޑႣයԋǹKahneman and Tversky (1973)ࡰрǴঁΓӧჹόዴۓޑ่݀բႣයਔǴதၴϸنМݤ߾܈ځдᜢܭᐒޑፕǶനࡕࢂჹୢᚒޑਣࢎБԄቹៜ،ǺȬਣࢎȐframeȑȭ߯ࡰഋॊ،ୢᚒޑԄǴঁΓӧय़ჹόӕᒧਔǴ೯தڗ،ܭୢᚒӵՖևӧय़Ǵ܌аୢᚒޑਣࢎБԄࢂቹៜ،ޑǶ(Β) ၗΓޑߚ܄Չࣁ٠ߚᒿᐒวғޑEMHޑЍޣᇡࣁǴջ٬Ԗ٤ߚ܄ޑၗΓӸӧǴՠҗܭ೭٤ߚ܄ޑၗΓޑҬܰࢂᒿᐒޑǴ܌аԾฅԶฅޑΨ۶ԜܢǶՠय़ගډޑKahneman and Tversky (1979)ӧఈፕύࡰрǺߚ܄ၗޣޑ،٠όֹӄࢂᒿᐒޑǴததරӕঁБӛǴ܌аόـள۶ԜܢᎍǶShiller (1984)ዴᇡΑॊޑՉࣁ٠ࡰрǴ೭٤ߚ܄ޑၗޣޑՉࣁޗϯǴ܈εৎ᠋ߞ࣬ӕޑᖳقਔǴ೭ঁຝ׳уޑܴᡉǴၗΓޑᆣӢન٠ߚᒿᐒౢғޑᒱᇤǴԶࢂᅿࡐதـޑղᘐᒱᇤǶ2ӧ೭ེǴprospectࡰޑࢂঁ።ֽ܈॥ᓀ܄ޑᒧǶځჴǴӧKT (1973)ว߄ఈፕϐǴচӃࢂаȨሽॶፕ(V alue Theory)ȩڮӜ(ፎୖԵThaler (1991), ।xiv) ǶBernstein (1996)ӧAgainst the Gods ਜමගډǴдමӳڻࣁՖఈፕޑӜᆀکЬᚒόࢂߚத࣬ᜢ? KahnemanှញᇥдॺѝࢂाפঁܰЇΓݙཀޑӜӷǶᏃᆅԖϩޑၗΓࢂߚ܄ޑǴՠਏѱଷᇥᇡࣁၗΓӧᐕ൳ԛ࣬ӕޑᒱᇤᡍࡕǴᙖҗȬᏢಞȭёаᏢ҅ዴޑຑሽǶόၸǴMullainathan and Thaler (2000)ჹԜගр፦ᅪǴдॺᇡࣁҗܭᏢಞޑᐒԋҁёૈଯၸၗΓ܌ᜫཀॄᏼޑжሽǴᏢಞ҅ዴޑຑሽ܌ሡޑਔ໔ёૈߚதߏǴЪԖ٤،٠ؒԖࡐӭޑᏢಞᐒǴ܌аȬᏢಞȭਏ݀٠ؒԖࡐֹ๓ޑᏵޑЍǶ(Ο) ճڙ٤చҹޑज़ڋǴ٬ځόૈวචႣයύޑΚໆਏѱଷᇥࡰрᙖҗճޑΚໆϝёᡣѱࡠൺਏǴ܌аሽޑୃᚆࢂอයޑຝǹShleifer and Vishny (1997)کThaler (1999)߾ࡰрΑჴ୍ճঅ҅ሽޑΚໆڙډΑ٤చҹޑज़ڋǶаঁᙁൂޑٯηբᇥܴǴଷӵѱԖٿᜪޑၗΓǺಃᜪࢂ܄ၗΓȐӵӕፕଷޑȑǴќᜪ߾ࢂଷ܄ޑ܄ၗΓȐquasi-rationalȑǴ೭ᜪޑၗΓոΚӳၗ،Ǵࠅதҍࢌ٤،ᒱᇤȐӵӕၗΓȑǴ܄ၗΓགྷวචճޑΚໆѸӃڀഢ൳ঁచҹǶ२ӃǴ൩ᕴԶقǴଷ܄ޑ܄ၗΓόૈϼӭǴց߾дॺஒёЍଛȐdominateȑѱǴ܄ၗΓΨ൩คΚ٬ሽӣډ֡ᑽНྗǶಃΒǵѱѸϢեԋҁޑܫޜǴԶЪ܄ၗΓёаܫޜǴց߾ଷ܄܄ၗΓஒёᙖҗܫޜ٬ଷୃᚆǶಃΟǵၸࢤਔ໔ࡕၗౢޑ҅ሽॶѸࣁΓ܌ޕǴց߾ଷ܄܄ၗΓӵ҂ཀډдॺჹިሽޑຑሽᒱᇤǴஒόፓдॺޑՉࣁǴୃᚆޑΨុΠѐǶॊ೭٤చҹᡉฅࡐᜤᅈىǴShleifer and Vishny (1997) ஒԜᆀࣁȬճޑཱུज़Ȑlimits of arbitrageȑȭǶճନΑڙॊచҹޑज़ڋǴ٬ځόૈวචႣයޑቹៜΚѦǴճҁيΨόᅰฅࢂֹӄค॥ᓀޑǶMullainathan and Thaler (2000)ࡰрჴ୍ȬճȭҁيᗋࢂڀԖ॥ᓀǴճޑ॥ᓀЬाٰԾܭٿБय़Ǻ२ӃࢂֹऍޑඹжࠔࢂցӸӧǺճޑౢғനख़ाޑࢂाԖֹऍޑඹжࠔǴჹܭࢌ٤ߎᑼࠔȐٯӵය܈ᒧȑֹऍޑඹжࠔࡐӳڗளǴ܌аճޑՉࣁၨܰౢғǴՠჹεϩި౻ԶقǴֹऍඹжࠔޑᒧ൩֚ᜤޑӭΑǴനӭѝૈᒧ࣬߈ޑඹжࠔǴӵԜٰճԾฅ൩Ӹӧ॥ᓀǶќѦБय़߾ࢂၗයज़ޑߏอǺҗܭ҂ٰޑሽࢂόёႣෳޑǴ܌аࡐԖёૈሽӧӣൺډፕሽϐǴӃᚆፕሽ׳ᇻǴ܌аၗයज़ޑߏอᡂԋճࢂցૈԋфޑᜢᗖǴӵ݀ӧሽӣൺډፕሽϐȐΨ൩ࢂᕇڗճޑႣයൔၿȑၗಔӝय़ᖏᡂޑݩਔǴճΨय़ᖏᖝཞǶനԖӜޑٯη൩ࢂ1998ԃߏයၗҁᆅ(Long Term Capital Management, LTCM)Ϧљ٣ҹ(ـShefrin (2000) ᆶShleifer (2000, pp.107-111) ޑᇥܴ)Ƕҗܭճϝय़ᖏॊޑ॥ᓀǴ܌аճޑΚໆࢂԖज़ڋޑǶᡏٰᇥǴճ٠ؒԖԋфޑऊ״ި౻ᆶچѱޑሽНྗǴ٬ځ಄ӝਏѱଷᇥޑႣයǶՉࣁ୍ᏢৎᆶਏѱଷᇥޑЍޣଞჹॊޑଷςݾΑ߈ΒΜԃǴҁЎЬाҞޑ൩ӧܭᙖҗՉࣁ୍ᏢၸѐޑЎǴᙶమځፕࢎᄬǴයఈᙖҗՉࣁ୍ᏢჹၗΓჴՉࣁޑᢀჸǴᙦϞࡕ୍ࣴزޑϣ఼ǶୖǵՉࣁ୍ᏢޑፕࢎᄬԾ1980ԃжаٰǴՉࣁ୍Ꮲᅌڙډख़ຎǴԜࣴزሦୱ࣬ᜢፕޑଆྍԖΒǺБय़ࢂӢࣁӭჴࣴزวፕคݤှញޑ౦தຝǹќБय़߾ࢂکKahneman and Tverskey (1979ǴаΠᙁᆀࣁKT)܌ว߄ޑఈፕԖᜢǶҁЎаΠଞჹఈፕᆶځд࣬ᜢፕ၁ᅰޑϟಏǶǵ ఈፕ() ፕวKT (1979) ࡰрႣයਏҔፕคݤֹӄඔॊঁΓӧόዴۓݩΠޑ،ՉࣁǶдॺаεᏢ௲کᏢғࣁ୷ᘵՉୢڔፓǴวεҽڙೖޣޑӣเᡉҢӭୃӳၴϸႣයਏҔፕޑຝǴ٠ᏵԜගрќᅿᔮՉࣁޑኳࠠǴᆀࣁఈፕǶKT ஒ೭٤ၴϸፕޑҽᘜયрΠӈΟঁਏٰ݀ᇥܴǺ(1)ዴۓਏ݀(certainty effect)Ԝਏ݀ࢂࡰ࣬ჹܭόዴۓޑрຝ(outcome)ٰᇥǴঁΓჹܭ่݀ዴۓޑрຝၸࡋख़ຎǶKT ीΑٿঁୢᚒٰᇥܴዴۓਏ݀ǶಃঁୢᚒࢂǴଷԖٿঁ።ֽǺಃঁ።ֽԖ33%ޑᐒளډ2,500ϡǴ66%ޑᐒளډ2,400ϡǴќѦ1%ޑᐒϙሶΨؒԖǴಃΒঁ።ֽࢂዴۓளډ2,400ϡǴୢڔޑ่݀ᡉҢԖ82%ޑڙೖޣᒧಃΒঁ።ֽǶಃΒঁୢᚒΨଷԖٿঁ።ֽǺಃঁ።ֽԖ33%ޑᐒளډ2,500ϡǴ67%ޑᐒϙሶΨؒԖǶಃΒঁ።ֽԖ34%ޑᐒளډ2,400ϡǴ66%ޑᐒϙሶΨؒԖǶୢڔޑ่݀ᡉҢԖ83%ޑڙೖޣᒧಃঁ።ֽǶКၨаٿঁୢᚒёޕǴਥᏵႣයਏҔፕǴಃঁୢᚒޑୃӳࣁ)400,2(66.0)500,2(33.0)400,2(u u u +>܈)500,2(33.0)400,2(34.0u u >Ǵځύ(.)u ࣁਏҔڄኧǶಃΒঁୢᚒޑୃӳࠅࢂ)500,2(33.0)400,2(34.0u u <Ǵ೭ܴᡉӦၴϸႣයਏҔፕǶ(2)ϸਏ݀(reflection effect)ऩԵቾॄޑрຝǴջཞѨ(loss)ǴёวঁΓჹճளکཞѨޑୃӳখӳ࣬ϸǴᆀࣁϸਏ݀ǶঁΓӧय़ჹཞѨਔǴԖ॥ᓀངӳ(risk seeking)ޑӛǴჹܭճள߾Ԗ॥ᓀᖿᗉ(risk aversion)ޑӛǶ೭کႣයਏҔፕ٠όठǴёа࣮рঁΓݙख़ޑࢂ࣬ჹܭࢌঁୖԵᗺ(reference point)ޑᡂԶόࢂനಖՏޑႣයਏҔǶKT ीΑঁୢᚒٰᇥܴϸਏ݀ǶଷԖٿঁ።ֽǺಃঁ።ֽԖ80%ޑᐒளډ4,000ϡǴಃΒঁ።ֽࢂዴۓளډ3,000ϡǴୢڔޑ่݀ᡉҢԖ80%ޑڙೖޣᒧಃΒঁ።ֽǶऩஒрຝׯԋॄޑǴջಃঁ።ֽԖ80%ޑᐒཞѨ4,000ϡǴಃΒঁ።ֽࢂዴۓཞѨ3,000ϡǴୢڔޑ่݀ᡉҢԖ92%ޑڙೖޣᒧಃঁ።ֽǶ(3)ϩᚆਏ݀(isolation effect)ऩಔprospects ёаҔόѝᅿБݤϩှԋӅӕکόӕޑӢηǴ߾όӕޑϩှБԄёૈԋόӕޑୃӳǴ೭൩ࢂϩᚆਏ݀ǶKT ीΑঁٿ໘ࢤޑ።ֽٰᇥܴϩᚆਏ݀Ƕӧ።ֽޑಃঁ໘ࢤǴঁΓԖ75%ޑᐒόளډҺՖዛࠔԶрֽǴѝԖ25%ޑᐒёаΕಃΒ໘ࢤǶډΑಃΒ໘ࢤΞԖٿঁᒧǺঁᒧࢂԖ80%ޑᐒளډ 4,000ϡǴќѦঁᒧࢂዴۓளډ 3,000ϡǶவঁ።ֽٰ࣮ǴঁΓԖ20% (25%×80%)ޑᐒளډ 4,000ϡǴԖ25%ޑᐒளډ 3,000ϡǶჹܭ೭ঁΒ໘ࢤ።ֽޑୢᚒǴԖ78%ޑڙೖޣᒧளډ3,000ϡǶՠKT ऩୢڙೖޣќঁୢᚒǺȨٿঁᒧǺ20%ޑᐒள4,000ϡک25%ޑᐒளډ3,000ϡȩǴεҽޑΓᒧޣǶҗԜёޕǴӧٿ໘ࢤޑ።ֽύǴঁΓ۹ౣಃঁ໘ࢤѝԵቾډಃΒঁ໘ࢤޑᒧǴջࢂԖอຎ(myopia)ޑຝǶӧ೭ᅿݩǴঁΓय़ᖏޑࢂঁόዴۓޑprospect کঁዴۓޑprospect ǶऩѝԵቾനࡕޑ่݀کᐒǴঁΓय़ᖏޑࢂٿঁόዴۓޑprospects Ƕᗨฅ೭ٿᅿݩޑႣයॶ࣬ӕǴՠࢂҗܭঁΓόӕޑϩှБԄǴளډόӕޑୃӳǶҗԜёޕǴऩаႣයਏҔፕޑᢀᗺٰ࣮Ǵ೭ٿঁ።ֽࢂ࣬ӕޑǴঁΓޑᒧᔈ၀࣬ӕǶՠࢂჴሞࠅόࢂӵԜǴঁΓӢࣁୢᚒඔॊБԄޑόӕԶԖόӕޑᒧǴ೭൩ࢂ܌ᒏਣࢎ࣬٩ޑຝǶନΑճҔୢڔٰᇥܴϐѦǴKT ΨගрፕኳٰࠠᇥܴঁΓޑᒧୢᚒǶдॺճҔٿᅿڄኧٰඔॊঁΓޑᒧՉࣁǺᅿࢂሽॶڄኧ(value function) )(x v Ƕќᅿࢂ،ኧڄኧ(decision weighting function) )(p πǶځύሽॶڄኧڗжΑޑႣයਏҔፕύޑਏҔڄኧǴ،ኧڄኧஒႣයਏҔڄኧޑᐒᙯඤԋ،ኧǶKT ۓကঁprospect ࣁঁ።ֽǴ߄Ңࣁ(q y p x ,;,)Ǵ೭ঁ።ֽനӭѝԖٿঁߚ႟ޑрຝǶӧ೭ঁ።ֽύǴঁΓளډx ޑᐒࣁp Ǵளډy ޑᐒࣁq ǴќѦঁΓԖq p −−1ޑᐒளόډҺՖܿՋǴӢԜ1≤+q p Ƕऩ።ֽύ܌Ԗޑрຝࣣࣁ҅ǴΨ൩ࢂ0,>y x Ъ1=+q p Ǵ߾೭ᅿ።ֽᆀࣁ๊ჹࣁ҅(strictly positive)ǹऩ።ֽύ܌ԖޑрຝࣣࣁॄǴΨ൩ࢂ0,<y x Ъ1=+q p Ǵ߾೭ᅿ።ֽᆀࣁ๊ჹࣁॄ(strictly negative)ǹऩ።ֽύޑрຝόࢂ๊ჹࣁ҅Ψόࢂ๊ჹࣁॄǴΨ൩ࢂ1<+q p ܈y x ≥≥0܈y x ≤≤0Ǵ߾೭ᅿ።ֽᆀࣁதᄊ(regular)ǶঁΓӧբᒧޑਔংᐕٿঁ໘ࢤǺጓᒠ(editing phase)کຑሽ(evaluationphase) ǶጓᒠࢂࣁΑჹόӕޑprospects ᙁϯکख़ཥጓዸ(encode)Ǵጓᒠ໘ࢤЬाх֖ѤঁҽǺ(1) ጓዸ(coding)ǺঁΓ܌ᇡޕޑрຝࢂճளکཞѨǴԶόࢂය҃ՏǴճளکཞѨࢂ࣬ჹܭࢌঁୖԵᗺ܌،ۓޑǴ೯தୖԵᗺࢂਥᏵҞޑՏ܌،ۓǴՠࢂԖਔংୖԵᗺՏޑ،ۓࢂڙډҞय़ᖏޑprospects ޑݩک،ޣჹ҂ٰޑႣය܌ቹៜǶ(2) ӝٳ(combination)Ǻӝٳ࣬ӕрຝޑᐒǴёаᙁϯୢᚒǶ(3) ϩှ(segregation)Ǻஒprospects ϩှค॥ᓀӢηک॥ᓀ܄ӢηǴаΠӧຑሽޑҽஒԖޑᇥܴǶ(4) մନ(cancellation)ǺմନޑݩёૈԖٿᅿǺಃᅿࢂय़܌ගډޑϩᚆਏ݀ǴঁΓჹܭঁٿ໘ࢤޑ።ֽǴѝԵቾಃΒ໘ࢤޑҽǶќᅿݩࢂঁΓჹܭόӕ።ֽύޑ࣬ӕӢηόϒԵቾǶٯӵǴऩԖٿঁ።ֽёٮᒧǺ( 200, 0.2 ; 100 , 0.5 ; -50 , 0.3 )ک( 200 , 0.2 ; 150 , 0.5 ; -100 , 0.3 )ǶঁΓёૈஒ೭ٿᅿᒧύ࣬ӕޑӢη( 200 , 0.2 )մନǴ٬೭ٿᅿᒧᡂԋ( 100 , 0.5 ; -50 , 0.3 )ک( 150 , 0.5 ; -100 , 0.3 )ǴӆϒаຑሽǶӧఈፕύǴಃΒঁ໘ࢤࢂຑሽǴΨ൩ࢂଷ،ޣჹঁጓᒠၸޑprospects уаຑሽǴฅࡕᒧനଯሽॶޑprospect ǶਥᏵఈፕǴଷӵ።ֽࢂதᄊޑǴΨ൩ࢂ1<+q p ܈y x ≥≥0܈y x ≤≤0Ǵ߾prospect ޑሽॶࣁǺ)()()()(),;,(y v q x v p q y p x V ππ+= (1)ఈፕᇡࣁঁΓჹܭ๊ჹࣁ҅܈๊ჹࣁॄޑ።ֽޑຑሽচ߾ک(1)ԄόӕǶӧጓᒠޑ໘ࢤǴ೭ᅿ๊ჹࣁ҅܈๊ჹࣁॄޑprospects ёаϩှԋٿঁӢηǴঁӢηࢂค॥ᓀӢηǴӵዴۓᕇளޑനλճள܈ዴۓЍбޑനλཞѨǹќঁӢηࢂ॥ᓀ܄ӢηǴӵёૈޑวғޑճள܈ཞѨǶ೭ᅿprospects ޑຑሽёճҔΠԄᇥܴǺଷӵ1=+q p Ъ0>>y x ܈0<<y x Ǵ߾prospect ޑሽॶࣁǺ)]()()[()(),;,(y v x v p y v q y p x V −+=π (2)Ψ൩ࢂᇥǴ๊ჹࣁ҅ޑprospects ک๊ჹࣁॄޑprospects ޑሽॶܭค॥ᓀӢηޑሽॶурຝϐ໔ޑሽॶৡ౦४کКၨཱུᆄ(ᐒၨե)ޑрຝ࣬ᜢޑኧǶவ(2)Ԅё࣮р॥ᓀ܄Ӣηࢂ)()(y v x v −Ǵ)(y v ж߄ޑࢂค॥ᓀӢηǶ(2)Ԅޑѓᜐёϯԋ)()](1[)()(y v p x v p ππ−+ǶӢԜǴଷӵ1)1()(=−+p p ππǴ߾(2)Ԅёᙁϯԋ(1)ԄǶሽॶڄኧԖΠӈΟঁख़ाޑ܄(ـკΒ)Ǻ(1) ሽॶڄኧࢂۓကӧ࣬ჹܭࢌঁୖԵᗺޑճளکཞѨǴԶόࢂፕ܌ख़ຎޑය҃܈ǶୖԵᗺޑ،ۓ೯தࢂаҞޑНྗࣁ୷ྗǴՠࢂԖਔόۓࢂӵԜǶKT ᇡࣁୖԵᗺёૈӢࣁၗΓჹ҂ٰՏႣයޑόӕǴԶԖόӕޑԵቾǶӵঁჹܭཞѨόҒЈޑၗΓǴёૈௗڙдচٰόௗڙޑ።ֽǶ(2) ሽॶڄኧࣁS ࠠޑڄኧǶӧय़ჹճளਔࢂпڄኧ(concave Ǵ0)(<′′x v Ǵ0>x )ǴཞѨࢂсڄኧ(convex Ǵ0)(>′′x v Ǵ0<x )Ǵ೭߄ҢၗޣቚуൂՏޑճளǴځቚуޑਏҔեܭൂՏ܌ٰޑਏҔǴԶቚуൂՏޑཞѨǴځѨѐޑਏҔΨեܭൂՏ܌ѨѐޑਏҔǶ(3) ԜሽॶڄኧǴཞѨޑ௹Кճளޑ௹ଥǶջၗޣӧ࣬ჹᔈޑճளᆶཞѨΠǴځᜐሞཞѨКᜐሞճள௵གǶٯӵǺཞѨൂՏޑᜐሞภधεܭᕇڗൂՏޑᜐሞճዎǴΨ൩ࢂঁΓԖཞѨᖿᗉ(loss aversion)ޑӛǶThaler (1980)ஒ೭ᅿݩᆀϐࣁচ፟ਏ݀(endowment effect)ǶԖᜢܭচ፟ਏ݀ӧΠԖޑᇥܴǶ،ኧڄኧԖΠӈٿঁ܄(ـკΟ)Ǻ (1) ،ኧόࢂᐒǴπࢂp ޑሀቚڄኧǴѬ٠ό಄ӝᐒϦǴΨόᔈှញࣁঁΓႣයޑำࡋǶ(2) ჹܭᐒp ࡐλޑਔংǴp p >)(πǶ೭߄ҢঁΓჹܭᐒࡐλޑ٣ҹၸࡋख़ຎ(overweighted)Ǵՠࢂᐒ܈ᐒࡐεਔǴp p <)(πǶ೭ёᇥܴঁΓၸҽݙཀཱུᆄޑՠᐒࡐեޑ٣ҹǴࠅ۹ౣΑٯՉวғޑ٣ǶၗٰྍǺKahneman, Daniel, and Amos Tverskey . 1979. “Prospect Theory: An Analysis of Decision Under Risk. ” Econometrica 47 , no. 2.ၗٰྍǺKahneman, Daniel, and Amos Tverskey . 1979. “Prospect Theory: An Analysis of Decision under Risk. ” Econometrica 47 , no. 2.GainPKT ܌ፕޑЬाࢂൂ።ֽޑᒧǴՠࢂঁΓჴሞததࢂӕਔय़ჹӭঁ።ֽޑᒧǶӵǴၗޣӧວ፤ި౻ਔǴёૈӕਔວ܈፤рӭᅿόӕޑި౻ǶᏵԜǴTverskey and Kahneman (1981)ᇡࣁঁΓჹܭӭঁόӕ።ֽޑϸᔈǴѸຎࣁᅿЈЊ(mental account)ϐ߄ၲǶ܌ᒏЈЊǴջࢂࡰঁΓࣣਥᏵځԾيޑୖԵᗺǴुрঁ،ޑБਢǶٯӵǺόӕޑި౻ǴӧວਔߡԖόӕޑୖԵᗺǴԶၗΓय़ჹԜຝǴߡਥᏵځԾيϐЈЊբрനޑ،ǶঁΓӧӕਔय़ჹӭঁ።ֽਔǴाӵՖஒϐጓᒠ٠ຑሽګǻThaler (1985)аঁΓӧዴۓ܄ΠǴӕਔय़ჹٿঁόӕޑ።ֽࣁٯǶঁΓஒ೭ٿঁόӕޑ።ֽຎࣁᅿᖄӝрຝ),(y x ǴঁΓਥᏵЈЊޑᢀۺஒ೭ᅿᖄӝрຝаӝٳ)(y x v +܈ϩ໒)()(y v x v +ޑБԄٰጓᒠ3ǶԶقǴঁΓаᡣሽॶၲډനεޑচ߾ٰ،ۓाӝٳጓᒠ܈ࢂϩ໒ጓᒠǶThaler (1985)ගрঁᑽໆኳԄٰᇥܴঁΓёૈय़ᖏޑѤᅿёૈޑಔӝǺ(1) ӭख़ճள(multiple gains)ǺଷӵঁΓय़ᖏޑٿঁ።ֽሽॶࣁճளǴջ0>x ,0>y ǶӢࣁv ӧय़ჹճளਔࢂпڄኧǴ܌а)()()(y x v y v x v +>+ǴӢԜϩ໒ጓᒠჹঁΓԶقሽॶКၨεǶ(2) ӭख़ཞѨ(multiple losses)ǺଷӵঁΓय़ᖏޑٿঁ።ֽሽॶࣁཞѨǴջ0<x ,0<y ǶӢࣁv ӧय़ჹཞѨਔࢂсڄኧǴ܌а)()()(y x v y v x v +<+ǴӝٳጓᒠሽॶၨεǶ(3) షӝճள(mixed gain)ǺଷӵঁΓ܌य़ᖏޑٿঁ።ֽύǴঁሽॶࣁ҅ǴќঁࣁॄǴջ0>x , 0<y Ƕ೭ེଷ0>+y x Ǵ܌аࢂᡏԶقࢂృճளǴThaler ஒ೭ᅿݩᆀࣁషӝճளǶӢࣁཞѨڄኧၨճளڄኧࣁଥǴӢԜ)()(y v x v +ёૈࣁॄǴЪςଷ0>+y x Ǵ܌а)(y x v +ۓࣁ҅ǶҗԜёޕǴ)()()(y x v y v x v +<+ǴӝٳጓᒠሽॶၨεǶ(4) షӝཞѨ(mixed loss)ǺଷӵঁΓ܌य़ᖏޑٿঁ።ֽύǴঁሽॶࣁ҅ǴќঁࣁॄǴջ0>x , 0<y Ƕՠࢂ೭ེଷ0<+y x Ǵ܌аࢂᡏԶقࢂృཞѨǴThaler ஒ೭ᅿݩᆀࣁషӝཞѨǶӧ೭ᅿݩϐΠǴؒԖޑၗૻคݤղᘐবᅿጓᒠБԄКၨӳǶଷӵ)()()(y x v y v x v +<+Ǵ߾ӝٳጓᒠКၨӳǴ೭ᅿݩࢂճளکཞѨࡐௗ߈ޑਔং(ـკѤ)Ƕଷӵ)()()(y x v y v x v +>+Ǵ߾ϩ໒ጓᒠКၨӳǴ೭ᅿݩനԖёૈࢂঁεཞѨکঁλճள(ـკϖ)Ƕ3 ೭ེஒx , y ۓကࣁprospects Ǵ)(x v , )(y v ࣁprospects ޑሽॶǴ೭کय़KT ޑۓကόӕΖၗٰྍǺThaler, Richard. 1985. “Mental Accounting And Consumer Choice. ” Marketing Science 4,no 3.ၗٰྍǺThaler, Richard. 1985. “Mental Accounting And Consumer Choice. ” Marketing Science 4,no3.Gain V alue კѤGain V alue კϖନΑॊޑፕวϐѦǴTversky and Kahneman (1992)ᇡࣁఈፕၶډٿঁୢᚒǺ(1)όۓᅈىᒿᐒᓬ༈(stochastic dominance)4চ߾ǹ(2)คݤᘉкډԖኧҞࡐεޑрຝޑݩǶࣁΑှ،ॊୢᚒǴTversky and Kahneman (1992) ගрಕᑈఈፕ(cumulative prospect theory ǴаΠᙁᆀCPT) ٰլܺ࣬ᜢୢᚒǶCPT ᅈىᒿᐒᓬ༈ፕǴԶЪёၮҔܭҺՖኧໆޑрຝޑprospects ϐ໔ޑᒧǴаϷၮҔډೱុϩଛǴ٠ߥ੮ΑεҽఈፕޑፕᗺǶόၸǴಕᑈఈፕ՟Я҂ڙډᏢೌࣚޑख़ຎǴ೭ёૈࢂӢࣁѬѝࢂஒচۈޑఈፕፄᚇϯǴคݤගٮ׳ޑᔮཀ఼Ƕ(Β) ఈፕޑ࣬ᜢࣴزԾவఈፕӧ1979ԃрϐࡕǴ൩ԖӭᏢޣճҔఈፕှញӭ୍ᏢคݤှញޑຝǴ܈ࢂаఈፕࣁ୷ᘵᏤፕኳࠠϷჴࣴزǴҁଞჹख़ाޑ࣬ᜢࣴزԋ݀уаᇥܴǶ1. ᐒԋҁکচ፟ਏ݀ᔮᏢӧࢌ٤ݩࢂஒ܌ԖޑԋҁຎࣁᐒԋҁǶThaler (1980)ஒᐒԋҁۓကࣁᔈᖺԶ҂ᖺޑҽǶঁΓჹܭჴሞЍбޑҔکᐒԋҁޑᄊࡋᔈ၀࣬ӕǶՠࢂThaler (1980)ᇡࣁǴ࣬ჹܭჴሞЍбޑҔǴঁΓჹᐒԋҁததԖեޑݩǶдճҔఈፕٰှញ೭ᅿຝǶҗఈፕёޕǴሽॶڄኧޑ௹ӧཞѨޑҽКճளޑҽεǶ܌аऩஒჴሞЍбޑҔຎࣁཞѨǴஒᐒԋҁۓကࣁᔈᖺԶ҂ᖺޑճளǴ߾ሽॶڄኧޑ௹ᗦ֖ޣԖၨεޑኧǶќѦǴঁΓԖคচ፟ჹ،ՉࣁΨԖॊޑਏ݀ǶٯӵǴᅿݩࢂঁΓԖচ፟Ǵฅࡕவচ፟ύ৾ࢌኧໆޑǴќঁݩࢂঁΓচٰؒԖচ፟ǴՠуΕࢌኧໆޑ࣬ӕ(کᅿݩ৾ޑኧໆ࣬ӕ)Ǵ߾ޣԖচ፟ޑԖၨεޑຑሽǴ೭ࢂӢࣁޣຎࣁཞѨǴࡕޣຎࣁճளǶThaler (1980,1985)ஒ೭ᅿݩᆀࣁচ፟ਏ݀(endowment effect)ǴΨ൩ࢂঁΓѿᏱԖࢌނࠔǴ߾ჹ၀ނࠔޑຑሽК҂ᏱԖε൯ቚуǶҗܭঁΓԖᗉխѨѐচ፟ޑӛǴSamuelson and Zeckhauser (1988)ᇡࣁ೭ᅿӛ٬ঁΓౢғȬӼܭރޑୃᇤ(Status Quo Bias)ȭǶдॺޑჴᡍύଷୖᆶޣᕇளཀѦޑᒪౢǴځύх֖ύࡋ॥ᓀϦљǵଯࡋ॥ᓀϦљǵ୷ߎ౻چ܈ࡹ۬ϦѤᅿၗಔӝύޑᅿǴ٠ගٮځ׳ׯၗಔӝޑᒧǴჴᡍ่݀ᡉҢεϩୖᆶޣᒧᆢচރǶHershey, Johnson, Maszaros, and Robinson (1990)ଞ4 KT (1979)ࡰрǴኧ)(p π٠ߚᐒp ޑጕ܄ڄኧਔǴᒿᐒᓬ༈ёૈၴϸǶՠдॺᇡࣁΓॺӧጓᒠ໘ࢤǴջஒ።ֽύόڀᓬ༈(dominated)ޑϩуаմନǴӧԜଷΠǴॊୢᚒߡόวғǶTversky and Kahneman (1992)܌௦ҔޑCPT όሡाॊଷǴӢԜёᗉխᒿᐒᓬ༈চ߾ၴϸޑୢᚒǶჹNew Jersey ᆶPennsylvania ٿԀޑًؓߥᓀݤзޑڋۓՉࣴزǴٿԀ֡ගٮٿᅿࠠᄊޑߥᓀаٮנǴಃᅿၨߡەՠԖນޑज़ڋǹಃΒᅿၨܳԶคນޑज़ڋǶჴᡍ่݀ᡉҢǺNew Jersey ԀচԖޑًؓߥᓀݤзࣁಃᅿǴѝԖ23%ޑΓᒧׯࣁಃΒᅿǹԶPennsylvania ԀচԖޑًؓߥᓀݤзࣁಃΒᅿǴԖ53%ޑΓᒧރǶ೭٤ᏵᡉҢӼܭރޑୃᇤࢂӸӧޑǶ2. ؈ؒԋҁ(sunk cost)ਏ݀Thaler (1980)ஒ؈ؒԋҁਏ݀ۓကࣁȨࣁςЍбϐࠔ܈മ୍ǴԶቚу၀ࠔ܈മ୍ޑ٬Ҕᓎޑਏ݀ȩǶдаΠٯᇥܴǶଷۓࢌҘࣁΑाୖуࢌᆛౚॿǴЍб300ϡޑΕԃǶӧٿঁࢃයޑግಞϐࡕǴࢌҘόλЈளډΑᆛౚظǶՠࢂдᗋࢂהภុѺᆛౚǴӢࣁдόགྷੁ300ϡǶ300ϡޑΕԃࢂ؈ؒԋҁǴ୍ፕᇡࣁ؈ؒԋҁόቹៜঁΓޑ،ǶՠࢂǴ൩ٯٰᇥǴঁΓӧ،ਔǴࢂࡐёૈڙډ؈ؒԋҁޑቹៜǶThaler (1980)ਥᏵKT ఈፕჹܭ೭ᅿຝගрှញǶдଷۓࢌҘவѺᆛౚளډזޑሽॶࣁ)(g v Ǵՠӕਔ܌Ѹ܍ڙޑᆛౚظภधࣁ)(c v −ǶԜѦǴଷд܌ளډޑృਏҔ(܈ሽॶ))(g v ɠ)(c v −ɨ0Ǵ೭ࢂ߄ҢǴऩࢌҘуΕ၀ᆛౚॿࢂխޑǴӧளΑᆛౚظϐࡕǴдளѺᆛౚ܈όѺᆛౚؒԖৡ౦Ƕඤѡ၉ᇥǴऩࢌҘуΕ၀ᆛౚॿѸЍб300ϡޑΕԃǴٗሶд܌ளډޑృሽॶᡂࣁ)(g v ɠ)300(−−c v ǶਥᏵఈፕǴሽॶڄኧ)(⋅v ӧय़ჹཞѨਔࢂсڄኧǴ܌а)(g v +)300(−−c v ɧ)(g v +)(c v −ɠ)300(−v ɨ)300(−v Ǵҭջ)(g v +)300(−−c v ɧ)300(−v Ǵж߄ऩࢌҘуΕ၀ᆛౚॿЍбΑ300ϡޑΕԃǴӧளΑᆛౚظϐࡕǴдளѺᆛౚКόѺᆛౚᗋाٰளӳǶନΑThaler (1980)ϐѦǴArkes and Blumer (1985)ǵ Staw (1981) ǵLaughhunn and Payne (1984)ᇡࣁǴঁΓӧբ،ਔڙډᐕўک؈ؒԋҁޑቹៜǶஒ؈ؒԋҁਏ݀ၮҔӧި౻ѱǴёаҔٰှញࣁՖၗΓวғ҂ჴཞѨϐࡕǴᝩុჹ၀όԋфޑၗᝩុΕၗߎǶArkes and Blumer (1985)ᇡࣁঁΓӧ،ਔஒ؈ؒԋҁયΕԵໆޑচӢǴࢂӧܭঁΓ೯தόᜫཀѐௗڙӃ܌Εޑၗߎੁޑ٣ჴǶၗΓวғΑ҂ჴཞѨǴऩځόӆჹ၀όԋфޑၗᝩុΕၗߎޑ၉Ǵܭௗڙ၀ཞѨςวғޑ٣ჴǶLaughhunn and Payne (1984)ᔠᡍӧόዴۓޑݩΠǴ؈ؒԋҁک؈ؒճளჹ،ޑቹៜǶThaler and Johnson (1990)ۯុLaughhunn and Payne (1984)ޑᆒઓѐԛޑճளکཞѨӵՖቹៜᒧǶThaler and Johnson (1990)วǴӧࢌ٤ݩϐΠǴԛճளቚуঁΓୖу።ֽޑཀᜫǴ೭ᆀࣁد܊ᒲਏ݀(house money effect)ǶThaler Αঁჴᡍٰᇥܴ೭ঁਏ݀ǶдӃນࢌޑᏢғǴଷӵдॺখគள30ϡǴฅࡕдॺԖΠӈٿঁᒧǺಃঁᒧࢂҧል݈Ǵр҅य़߾គள9ϡǴрϸय़߾ᒡ9ϡǴಃΒঁᒧࢂόҧል݈Ƕ೭ਔԖ70%ޑᏢғᜫཀҧል݈ǶдӆჹќޑᏢғᇥǴଷӵдॺচٰؒԖគளҺՖߎᒲǴऩԖΠӈٿঁᒧǺಃঁᒧࢂҧል݈Ǵр҅य़߾គள39ϡǴрϸय़߾ளډ21ϡǴಃΒঁᒧࢂଭளډ30ϡǶՠ೭ԛѝԖ43%ޑΓᜫཀҧል݈Ƕ೭ٿޑᏢғय़ᖏޑᒧځჴࢂኬޑǴӧޑႣයਏҔፕΠǴٿޑᏢғޑᒧᔈ၀࣬ӕǶՠࢂჴᡍޑ่݀ࠅόठǴ೭ࢂӢࣁঁΓӧբ،ਔڙډԛճளޑቹៜǴ೭٬ளখគᒲޑᏢғᒧ።റǴԶؒԖគᒲޑᏢғᗉխ።റǶ3. ࡕ৷(regret)کೀҽਏ݀(disposition effect)Thaler (1980)ගрΑঁୢᚒٰᇥܴࡕ৷ჹΓॺᒧԖՖቹៜǶA Ӄғ҅ӧᔍଣ௨໗ວ౻ǶډΑວ౻ืαǴᔍଣԴ݈ჹA Ӄғᇥдࢂಃ100,000ঁ៝࠼Ǵёளډ100ϡǶB Ӄғ҅ӧќѦঁᔍଣ௨໗ວ౻ǶډΑວ౻ืαǴ௨ӧB Ӄғޑঁ៝࠼ࢂ၀ᔍଣಃ1,000,000ঁ៝࠼Ǵёளډ1,000ϡǴԶB Ӄғளډ150ϡǶڙೖޣ၌ୢ׆ఈԾρࢂA ӃғᗋࢂB Ӄғǻ೭ঁୢᚒύǴεҽޑڙೖޣᇡࣁA ӃғளКၨଯᑫǴԶB ӃғჹܭѨѐளډ1,000ϡޑᐒԶགډף๙Ƕ೭൩ࢂࡕ৷ჹঁΓ،ޑቹៜǶ ӧఈፕύǴёаճҔঁΓୖԵᗺޑᡂϯჹࡕ৷ᇥܴǶӧॊޑୢᚒύǴA Ӄғѝளډճள100ϡ܈)100(v ǴB Ӄғளډޑ)000,1()150(−+v v Ǵ೭ࢂନΑ150ϡޑճளϐѦǴдᗋ܍ڙΑჹ1,000ϡѨϐҬᖉޑภधǶ Thaler (1980)ᇡࣁΓॺӢࣁࡕ৷Ծρޑ،ǴԶளԾρᔈ၀ࣁᒱ٣ॄೢǶճҔKT ޑఈፕύޑሽॶڄኧёаᇥܴ೭ᗺǶᇡࣁԾρᔈ၀ॄೢޑ،ޣǴдޑሽॶڄኧޑ௹КচٰޑाଥǶΨ൩ࢂΠफ़ൂՏޑճள܌Πफ़ޑਏҔஒεܭচٰޑރݩǴԶቚуൂՏޑཞѨ܌Πफ़ޑਏҔΨஒεܭচٰޑރݩǶKahneman and Tversky (1982)ᇡࣁǴࡕ৷ࢂΓॺวӢࣁϼఁ،ۓǴԶ٬ளԾρ഼ѨচҁԖКၨӳ่݀ޑภधǶдॺΨวǴᗨฅჴঁڀԖճளޑި౻ౢғᠠགǴՠᒿჴޑި౻ځިሽុޑᅍǴၗޣޑᠠགΠफ़Ǵ٠ౢғჴϼԐޑᒪᏬǶҁЎय़මගډǴ࣬ჹܭჴሞЍбޑҔǴঁΓჹᐒԋҁததեǶKahneman and Riepe (1998)ᇡࣁࡕ৷کॊݩԖᜢǴεҽޑΓॺჹܭԖޑ٣Кؒޑ٣གډࡕ৷ǶShefrin and Statman (1985)ᇡࣁၗΓࣁΑᗉխࡕ৷ǴӛᝩុԖၗҁཞѨޑި౻ǴԶѐჴڀԖၗҁճளޑި౻ϐރݩǶдॺஒ೭ᅿຝڮӜࣁೀҽਏ݀Ǵ٠ᖐΑঁٯηٰᇥܴ೭ঁਏ݀ǶଷࢌၗΓӧঁДа50ϡວࢌި౻ǴډΑϞВǴ၀ި౻ޑѱሽࣁ40ϡǴԜਔၗΓा،ۓډۭࢂ፤р܈ᝩុԖ၀ި౻ǶќѦଷ҂ٰԜި౻όࢂᅍ10ϡ൩ࢂΠຳ10ϡǶShefrin and Statman (1985)ᇡࣁၗΓஒԜ،ጓᒠԋаΠٿঁ።ֽޑᒧǺȨঁࢂҥڅ፤၀ި౻Ǵଭჴ10ϡޑཞѨǶќঁࢂᝩុԖ၀ި౻Ǵ೭ኬٰǴԖ50%ޑᐒӆཞѨ10ϡǴќѦԖ50%ޑᐒёаளډ10ϡǴஒҞΠຳޑҽצѳ(breaking even)ǶȩਥᏵఈፕǴሽॶڄኧӧय़ჹཞѨਔࢂсڄኧǴԜਔၗΓࣁ॥ᓀངӳޣǴShefrin and Statman (1985)ᇡࣁԜਔၗΓόᜫཀჴዴۓޑཞѨǴԶ၂ёૈޑצѳᐒǴ܌аၗΓᝩុԖၗҁཞѨޑި౻ǶऩިሽҞೀܭᕇճޑ໘ࢤǴၗΓा،ۓډۭࢂ፤р܈ᝩុԖ၀ި౻ޑ،ΨёаҔሽॶڄኧٰϩǴӢࣁሽॶڄኧӧय़ჹճளࢂпڄኧǴԜਔၗΓࣁ॥ᓀᖿᗉޣǴၗΓӛჴዴۓޑճளǴӢԜ፤рڀԖၗҁճளޑި౻ǶBarber and Odean (1999)ΨճҔఈፕٰᇥܴೀҽਏ݀ǴдॺᇡࣁၗΓаວሽୖԵᗺǴٰ،ۓࢂցाᝩុԖ܈፤рި౻ǶӵǴଷঁၗΓᖼວި౻Ǵдᇡࣁ၀ި౻ޑႣයൔၿଯډىаᡣд܍ᏼ॥ᓀǶдճҔວሽୖԵᗺǴӵ݀ިሽᅍǴԖճளౢғǴԜਔሽॶڄኧࢂпڄኧǴଷӵၗΓᇡࣁ၀ި౻ޑႣයൔၿΠफ़Ǵдஒӛ፤၀ި౻ǶଷӵިሽΠຳǴ߾ౢғཞѨǴԜਔሽॶڄኧࣁсڄኧǴӧ೭ᅿݩǴջ٬ၗΓᇡࣁ၀ި౻ޑႣයൔၿஒեډคݤ܍ᏼচٰޑ॥ᓀǴдᗋࢂӛᝩុԖ၀ި౻ǶBarber and Odean (1999)ஒೀҽਏ݀ၮҔډၗΓӕਔԖٿᅿި౻ޑݩǴଷ೭ٿᅿި౻ҞᅍຳǶၗΓԜਔऩय़ᖏډࢬ܄ޑሡǴԶЪ೭ٿᅿި౻ΨؒԖཥޑၗૻޑቹៜǴ߾дКၨԖёૈ፤рᅍޑި౻ǶBarber and Odean (1999)ନΑଷၗΓޑୖԵᗺࢂਥᏵວሽٰ،ۓϐѦǴдॺᇡࣁሽ҂ٰޑو༈ΨёૈቹៜୖԵᗺޑ،ۓǶٯӵǴଷԖΓӧ܊Ӧౢඳ҅ाᕷᄪϐа100,000ϡວΑෂ܊ηǴӧ܊Ӧౢඳᕷᄪϐࡕຑ၀܊ηԖ200,000ϡޑሽॶǶԜਔऩाдаচວሽ100,000ϡ፤р(ӆу፤ࡂޑҸϟҔ)ǴдёૈόԖצѳޑགǴӢࣁୖԵᗺςᡂԋ200,000ϡǴ܌адόᜫཀаচວሽ100,000ϡ፤рǶ4. ၠය።ֽޑᒧԶقǴঁΓӧ،ਔόՠԵቾҞޑߎࢬໆΨԵቾ҂ٰޑߎࢬໆǶLoewenstein (1988)ीΟঁჴᡍٰᇥܴၠයᒧᆶୖԵᗺϐ໔ޑᜢ߯ǶӧঁჴᡍύǴڙೖޣाӧҞޑک҂ٰޑϐ໔ঁᒧǶ่݀วǴჹܭڙೖޣٰᇥǴऩаۯᒨޑБԄрǴჹڙೖޣޑቹៜܴᡉεܭаගԐޑБԄрǶٯӵځύঁჴᡍࢂڙೖޣޕёளډঁ7ϡޑᘶނǶ೭٤ڙೖޣႣۓளډᘶނޑਔ໔ёૈࢂຼࡕǵѤຼࡕ܈ࢂΖຼࡕǶฅࡕ೭٤ΓԖٿঁᒧǺځύঁᒧࢂᆢচٰႣۓளډᘶނޑਔ໔ǴќঁᒧࢂёаගԐளډᘶނՠࢂᘶނޑሽॶᡂλ܈ࢂۯࡕளډᘶނՠࢂᘶނޑሽॶᡂεǶ่݀วǴऩаচٰႣۓளډᘶނޑਔ໔ࣁୖԵᗺǴΓॺჹܭᒧۯᒨளډᘶނ܌ሡቚуޑᘶނሽॶܴᡉεܭගԐளډᘶނԶᜫཀ෧ϿޑᘶނሽॶǶӵǴऩচҁຼࡕёளډᘶނޑΓکচҁѤຼࡕёளډᘶނޑΓҬඤǴۯᒨளډᘶނޣाᘶނቚу1.09ϡޑሽॶǴԶගԐளډᘶނޑΓѝᜫཀ෧Ͽ0.25ϡޑሽॶǹځдόӕޑҬඤಔӝΨளډ࣬՟ޑ่݀ǶӧԜёаճҔKTఈፕٰှញॊຝǶӧఈፕύǴঁΓԖཞѨᖿᗉޑӛǴ܌аऩаচҁႣۓளډᘶނޑਔ໔ࣁୖԵᗺǴۯᒨளډᘶނޣ܌෧ϿޑਏҔکගԐளډᘶނޣ܌ቚуޑਏҔᔈ၀࣬Ǵ߾ۯᒨளډᘶނޣ܌ाቚуޑߎᚐଯܭගԐளډᘶނޣᜫཀ෧ϿޑߎᚐǶཞѨᖿᗉޑཷۺΨૈҔٰှញঁΓᒿਔ໔ᡂޑࠠᄊǶਥᏵၠයፕύޑғڮຼයଷᇥ(life-cycle hypothesis)ǴঁΓғޑϷ܌ளޑᕴໆࣣڰۓǴЪਔ໔ୃӳܭჴ፦ճਔǴයኬǶՠࢂLoewenstein and Prelec (1989)วऩаၸѐНྗୖԵᗺǴঁΓჹܭ҂ٰޑࠠᄊୃӳຫٰຫӭǴ೭߄ҢঁΓޑਔ໔ୃӳࣁॄǴ೭کғڮຼයଷᇥ٠όठǶՠࢂऩঁΓаၸѐޑࣁୖԵᗺٰຑሽҞޑਔǴཞѨᖿᗉޑགྷݤߦ٬ঁΓόᜫཀ෧ϿǴѝᜫཀቚуǶ5. ЈЊନΑTverskey and Kahneman (1981)کThaler (1985)ϐѦǴӭᏢޣΨᇡࣁঁΓӧ،ਔ٠όᆕᢀ܌ԖёૈวғޑрຝǴԶࢂஒ،ϩԋӳ൳ঁλҽٰ࣮Ǵջࢂϩԋӳ൳ঁЈЊǴჹܭόӕޑЈЊԖόӕޑӢᔈϐၰǶShefrin and Thaler (1988)ᇡࣁঁΓஒԾρޑ܌ளϩԋΟҽǺҞޑᖒၗ܌ளǵၗౢ܌ளک҂ٰ܌ளǴჹܭ೭Οᅿ܌ளঁΓޑᄊࡋ٠ό࣬ӕǴӵჹܭ҂ٰ܌ளঁΓᕴࢂόϼᜫཀѬǴջ٬೭܌ளࢂዴۓ܌ளǶShefrin and Statman (1994)ᇡࣁණЊஒԾρޑၗಔӝϩԋٿҽǴঁҽࢂե॥ᓀޑӼӄၗǴќҽࢂ॥ᓀ܄ၨଯයఈᡣԾρ׳ԖޑၗǶа೭٤ፕᇡࣁǴεҽޑၗΓགྷᗉխ೦ጁӕਔΞགྷाᡂளࡐԖǶԜਔǴၗΓעҞޑϩࣁٿঁЈЊǴࢂࣁΑᗉխ೦ጁǴќঁ߾ࢂགྷाδठǶKahneman and Lovallo (1993)ᇡࣁΓॺӛԛԵቾঁ،ǴҞޑୢᚒکځѬޑᒧϩ໒࣮ǶShefrin and Statman (2000)аLopes (1987)کKTޑఈፕࣁ୷ᘵǴวрՉࣁၗಔӝፕ(behavioral portfolio theoryǴаΠᆀࣁBPT)ǶдॺճҔൂЈЊ(single mental accountǴаΠᆀࣁBPT-SA)کӭঁЈЊ(multiple mental accountsǴаΠᆀࣁBPT-MA) ٰᄽBPTǶBPT-SAၗΓᜢЈၗಔӝύӚঁၗౢ໔ޑӅᡂ౦ኧǴ܌адॺஒၗಔӝঁܫӧӕঁЈЊύǶ࣬ϸޑBPT-MAၗΓஒၗಔӝϩᚆԋόӕޑЊǴ۹ຎӚঁЊϐ໔ޑӅᡂ౦ኧǴ܌адॺԖёૈӧࢌঁЊࢂܫޜچՠࢂӧќঁЊࠅວ࣬ӕޑچǶ೭ှញΑFriedman-Savage (1948)ϐᖮǺࣁՖΓॺӧວߥᓀޑӕਔΨᖼວறچǻΒǵՉࣁ୍ᏢޑځѬፕӵךॺӧقύ܌ගډޑǴЎ٠҂ᝄϩȨՉࣁ୍ᏢȩᆶȨЈ୍Ꮲȩޑৡ౦ǶቶݱԶقǴךॺаࣁȨЈ୍Ꮲȩᔈࢂၨ࡞ޑӜᆀǴԶȨՉࣁ୍ᏢȩᔈѝࢂаЈᏢύȨՉࣁᏢࢴȩޑፕࣁ୷ᘵǴᔈҔӧ୍ࣴزጝΑǶTvede (1999)ࡰрǴᆶЈ୍Ꮲ࣬ᜢޑЈᏢᏢࢴǴନΑȨՉࣁᏢࢴȩѦǴۘхࡴȨֹᏢࢴ(gestalt school)ȩǵȨᇡޕᏢࢴ(cognitive psychology school)ȩϷȨᆒઓϩᏢࢴ(psychoanalysis school)ȩǶٯӵǴTvede (1999) ஒఈፕᆶаΠஒϟಏޑȸઓڻ܄ޑࡘԵȹޑᢀۺٰԾՉࣁᏢࢴǴȸж߄܄ୃᇤȹٰԾֹᏢࢴǴԶځдӵࡕ৷ፕǵคᜢਏ݀ǵၸࡋԾߞǵࡕـϐܴǵЈЊޑᢀۺ߾ྍԾᇡޕᏢࢴǶځჴǴᏢࢴѝࢂਂਆ܈ှញΑϩޑȸჴ࣬(reality)ȹǴԶঁӝޑፕ܈ඔᛤᜢܭঁΓ܈ဂᡏЈᆶՉࣁޑֹȸკႽȹΨϝ҂рǶаΠךॺޑϩୖԵShefrin (2000)ޑϩᜪǶShefrin (2000) ӧȨBeyond Greed and FearȩਜύǴஒՉࣁ୍ᏢޑࣴزЬᚒϩԋΟᜪǴϩձࢂᡍݤ߾ୃᇤ(heuristic-driven bias)ǵਣࢎ࣬٩(framing dependence)کคਏѱ(inefficient markets)ǶȨคਏѱȩӧΠύԖᇥܴǴҁЬाࢂࢂଞჹᡍݤ߾ޑୃᇤᆶਣࢎ࣬٩ᇥܴǶ() ᡍݤ߾ୃᇤ1ǵܰᕇள܄ୃᇤ (availability heuristic)Kahneman and Tversky (1973)ᇡࣁܰзΓᖄགྷډޑ٣ҹᡣΓᇤаࣁ೭ঁ٣ҹததวғǴдॺஒ೭ᅿຝᆀࣁܰᕇள܄ޑୃᇤǶShiller (2000)൩ࡰрᆛၡ٬Ҕޣӛஒ1990ԃжࡕයޑިѱᄪඳᘜزܭᆛሞᆛၡޑวǶKahneman and Tversky (1973)ǵPennington and Hastie (1988)ᇡࣁԖܰᕇள܄ୃᇤࢂӢࣁঁΓόૈֹӄவᏫύᕇள܌Ԗ࣬ᜢޑၗૻǶFischhoff, Slovic and Lichtenstein (1977)ᇡࣁǴঁΓჹܭԾρόϼૈགྷႽޑ٣ҹǴեځวғޑёૈ܄Ǵ೭ёૈԋঁΓၸࡋԾߞکၸࡋϸᔈޑݩǶShiller (1984, 1987)ࡰрၗ॥کᐒ܄ၗౢޑሽݢ܄՟ЯဂޑݙཀΚ܌ѰѓǶၗΓჹၗಔӝޑᜢЈǴӵډۭाၗި౻ǵچ܈܊ӦౢǴ܈ࢂाၗ୯ϣ܈୯ѦǴڙډਔޗ॥܌ቹៜǴԶЪၗΓჹѱޑᜢݙᒿਔжӧׯᡂǶ2ǵж߄܄চ߾ୃᇤ(representativeness heuristic)܌ᒏж߄܄চ߾ୃᇤࡰޑࢂঁΓᕴࢂаၸѐڅ݈ӑຝղᘐǶDe Bondt and Thaler (1985)൩ᇡࣁၗΓჹܭၸѐިѱޑᒡৎၸࡋൿᢀǴၸѐޑគৎၸࡋᢀǴ่݀٬ިሽک୷ҁय़ሽॶৡ౦ࡐεǶGrether (1980)ǵKT (1973)ǵTversky and Kahneman (1971, 1974)ᇡࣁΓॺӛܭਥᏵၸѐ܈࣬ᜪ՟ޑݩǴჹ٣ҹуаϩᜪǴฅࡕӧຑᐒଯեਔǴၸࡋ࣬ߞᐕўख़ᄽޑёૈǶΨ൩ࢂӧຑࢌ٣ҹวғޑёૈ܄ਔǴததၸࡋ٩ᒘԾρ܌གڙډځд࣬՟٣ҹޑᡍࠅόख़ຎঁ҆ᡏޑރݩǴᇤаࣁλኬҁΨҔεኧݤ߾(law of large numbers)ǴᇤҔΑᘜԿѳ֡ኧ(regression to the mean)5೭ঁཷۺǴঁܴᡉޑٯη൩ࢂ።২ޑᙤᇤ(gambler’s fallacy)6ǶDe Bondt (1991)วިѱԖঁຝک።২ޑᙤᇤठǴӧ3ԃޑӭᓐѱϐࡕႣෳၸࡋൿᢀǴӧ3ԃޑޜᓐѱϐࡕႣෳၸࡋᢀǶDe Bondt (1998)ᇡࣁᅟຉޑϩৣӛҍΠ።২ޑᙤᇤǴததᇡࣁሽஒϸᙯǴԶණЊ߾ӛᇡࣁިѱᖿ༈ஒុǴ೭ٿޣڙज़ܭၸѐࡽԖޑགྷݤǶ3ǵၸࡋԾߞ(overconfidence)ȨၸࡋԾߞȩεཷࢂҔٰှញӚᅿՉࣁϷߎᑼຝനቶޑᢀۺϐǶDe Bondt and Thaler (1995)ࣗԿᇡࣁȬၸࡋԾߞεཷࢂᜢܭղᘐޑЈБय़നளଆԵᡍޑวȭǶჴᡍࣴزᡉҢǴΓॺதၸܭ࣬ߞԾρղᘐޑ҅ዴ܄ǶLichtenstein, Fischhoff and Philips (1982)ߡวǴ၌ୢڙೖޣ٤ୢᚒਔǴڙೖޣӛܭଯдॺเჹޑᐒǶջ٬ڙೖޣዴߞдॺ๊ჹเჹਔǴ೯தเᒱޑᐒϝଯၲ20%ǶShefrin and Statman (1994)ᇡࣁǴၗΓϐ܌аӢࣁၸࡋԾߞΑόӳޑၗࢂӢࣁдॺόޕၰԾρࢂၗૻόىޑǶOdean (1998a)ӧϩऍ୯ঁΓၗޣޑၗՉࣁਔǴวдॺӧᕇճΑ่ਔ٠ߚᏤӢܭࢬ܄ሡǵิॄཞѨᎍ୧ǵख़ཥፓၗಔӝ܈ࢂஒၗߎ౽۳ե॥ᓀޑި౻ǶԶЪ࣬ჹܭٗ٤р୧ޑި౻ԶقǴᝩុԖޑި౻ӧ҂ٰޑൔၿϸԶКၨեǴԜջࣁၗޣၸࡋԾߞޑᏵǶOdean (1999)วණЊӧ፤ި౻ϐࡕࡐזӦΞວќᅿި౻Ǵՠࢂѳٰ֡ᇥӧಃԃޑਔংǴջ٬ԌନҬܰԋҁǴдॺ፤ޑި౻Кдॺວޑި౻߄ाӳǶ೭ኬҬܰၸࡋᓎᕷёૈࢂӢࣁၗΓၸࡋԾߞǶ4ǵۓՏ(anchoring)کፓ(adjustment)Tversky and Kahneman (1974)ᇡࣁঁΓ᠘ࢌ٤٣ҹޑኧໆਔǴځଆۈॶޑۓǴΨ൩ࢂۓՏǴӢࣁୢᚒഋॊਔ܌ගډޑҺՖኧໆ܌ቹៜǴԶЪதத5ᘜԿѳ֡ኧ(regression to the mean)ࡰޑࢂ҂ٰޑݩௗ߈ᐕўѳ֡ኧǴԶόࢂࣁΑᅈىѳ֡ኧݤ߾(law of averages)Զեܭ܈ଯܭѳ֡ኧǶ6ऩᘊል݈ೱុӭԛр҅)ϸ*य़ǴΓॺᕴࢂᇡࣁΠԛᔈ၀рϸ)҅*य़Ǵ೭൩ࢂ።২ޑᙤᇤǶ٣ჴǴል݈ԛр҅)ϸ*य़ޑᐒࢂ61&ǶTverskey and Kahneman (1971)ஒ።২ޑᙤᇤຎࣁᅿλኧݤ߾(law of small numbers)ǶࢂόӦቹៜǶSlovic and Lichtenstein (1971)මࡰрǴঁΓӧჹܭόዴۓኧໆޑኧӷीਔǴவଆۈॶፓޑ൯ࡋ೯தόǶCutler, Poterba and Summers (1989)วख़ा৲วғਔǴި౻ѱሽ೯தѝԖ٤ޑᡂǴᒿࡕωӧؒԖϙሶε৲วғਔวғѮ൯ᡂǶCutler, Poterba and Summers (1991)Ψวอܭԃޑอයൔၿև҅Ծך࣬ᜢޑຝǴԜᅿ҅Ծך࣬ᜢޑຝཀᒏሽჹ৲໒ۈϸᔈόىǴฅࡕωᅌޑϸᔈрٰǶBernard and Thomas (1992)วϦљި౻ሽۯᒨϸᔈϦљࣦᎩޑ৲ǶLa Porta (1996)วϩৣႣයեࣦᎩԋߏޑϦљިሽӧࣦᎩ࠹ВඦϲǴՠࢂϩৣႣයଯࣦᎩԋߏޑϦљިሽӧࣦᎩ࠹ВΠຳǶځᇡࣁচӢӧܭϩৣ(ᆶѱ)ၸࡋਥᏵၸѐޑࣦᎩᡂϯٰႣෳǴԶЪࣦᎩޑ৲ౢғਔǴፓᒱᇤޑೲࡋࡐᄌǶShefrin (2000)ᇡࣁϩৣჹܭཥၗૻޑϸᔈۓՏளϼߥӺǴፓளόזǶӵࣦᎩ࠹ϐࡕǴϩৣᕴࢂӢۓՏϼߥӺǴԶჹ҅य़(ॄय़)ޑ࠹ᕴࢂᡣϩৣᡋǴԶΞӢࣁፓόىΞᏤठΠԛ҅य़(ॄय़)ޑᡋǶ5ǵࡕـϐܴ(hindsight)ࡕـϐܴᔅշঁΓࡌᄬঁჹၸѐ،՟Яࢂӝޑ٣ࡕݤ߾Ǵ٬ঁΓჹԾρޑ،ૈΚགډԾᇬǶKahneman and Riepe (1998)ᇡࣁࡕـϐܴӧٿБय़ࢂԖ্ޑǴಃঁБय़ࢂࡕـϐܴᡣΓౢғၸࡋԾߞǴӢࣁ೭շߏԾρᇤаࣁ٣ࢂёаႣෳޑᒱǶಃΒঁБय़߾ࢂၗΓӧި౻ΠຳϐࡕǴܰܭӢࡕـϐܴԶೢୢϩৣࣁՖ҂Ԑᗺࡌ፤ި౻ǹ೭ёૈԋچϩৣགڙډภधǴԶቹៜډځ،ޑ࠼ᢀ܄Ƕ6ǵኳጋᖿᗉ (ambiguity aversion)ঁΓϐ܌аᜫཀ።ঁόዴۓޑ٣ҹǴନΑ٩ൻޑόዴۓ܄ޑำࡋϐѦǴΨԵቾډѬޑٰྍǶEllsberg (1961)ᢀჸډঁΓ഻።х֖࣬ӕኧҞޑआౚکᆘౚޑ።ֽǴό഻።όޕၰٿᅿౚКޑ።ֽǶдஒ೭ᅿຝᆀϐࣁᖿᗉኳጋǴΨ൩ࢂঁΓӧߵᓀਔ഻৾ςޕޑᐒ(॥ᓀ܄)ਥᏵǴԶߚ҂ޕޑᐒ(όዴۓ܄)Ƕ೭٤ኳࠠύԖ٤ଷঁΓࢂൿᢀޑ(ঁΓόፕϙሶόዴۓ܄(Զόࢂ॥ᓀ܄)ޑ،Ǵᇡࣁࡕ݀ᡂᚯ)ǴᙖԜਂਆډᖿᗉόዴۓ܄(uncertainty aversion)೭ঁӢનǶCamerer (1995)ᇡࣁǴЇཥޑߎᑼࠔਔǴኳጋᖿᗉ٬ၗΓၸࡋӦቚу॥ᓀྈၿǴ೭ࢂӢࣁၗΓჹᔮᕉნک೭ߎᑼബཥ่݀όዴۓޑጔࡺǶ7ǵคᜢਏ݀(disjunction effect)คᜢਏ݀ࢂࡰঁΓԖډၗૻඟ៛ࡕωр،ޑӛǴջ٬၀ၗૻჹܭ၀،٠όख़ाǴ܈ࢂջ٬ӧдॺޕၰၗૻϐࡕǴᗋࢂр࣬ӕޑ،ǶTversky and Shafir (1992)ճҔჴᡍीวคᜢਏ݀ޑዴӸӧǶдॺӧڙೖޣჹࢌ٣Ѻ።ϐࡕǴӆ၌ୢࢂցᜫཀௗڙಃΒԛѺ።Ƕӵ݀೭٤ڙೖޣӧޕၰಃԛѺ።ޑᒡគ่݀ϐࡕǴόᆅдॺಃԛѺ።ࢂᒡࢂគǴεϩᜫཀௗڙಃΒԛѺ።ǹՠࢂӵ݀೭٤ڙೖޣᗋόޕၰಃԛѺ።ޑᒡគ่݀ޑ၉ǴεϩόᜫཀௗڙಃΒԛѺ።Ƕ೭ջࢂঁзΓ֚ൽޑ่݀ǺӢࣁࡽฅόᆅಃԛѺ።ࢂᒡࢂគǴௗڙಃΒԛѺ።ޑ၉Ǵж߄ಃԛѺ።ޑᒡគ่݀ၗૻჹܭڙೖޣ٠όख़ाǶՠࢂǴࣁՖჹಃԛѺ።ޑᒡគ่݀ޕၰᆶցǴε൯ቹៜࢂցௗڙಃΒԛѺ።ޑཀᜫګǻTversky and Shafir (1992)ᇡࣁёૈޑှញࢂǺڙೖޣޕၰಃԛѺ።ޑ่݀ࢂគޑ(ӵគΑ٤ᒲ)Ǵдॺளӆѐ።ԛΞՖ֫ǹڙೖޣޕၰಃԛѺ።ޑ่݀ࢂᒡޑ(ӵᒡΑ٤ᒲ)Ǵдॺளӆѐ።ԛωૈንҁǹՠࢂڙೖޣϙሶόޕၰਔǴдॺߡؒԖҺՖమཱޑҗѐௗڙಃΒԛѺ።ΑǶShiller (1999)ᇡࣁคᜢਏ݀ёૈёаҔٰှញӧၗૻඟ៛ਔǴᐒ܄ၗౢሽᆶҬܰໆޑᡂϯǶӵคᜢਏ݀ёаҔٰှញࣁՖϦљӧख़ा٣ҹ࠹թϐǴ၀Ϧљޑި౻ԖਔԖၨեޑݢ܄ᆶҬܰໆǴԶЪӧख़ा٣ҹ࠹թϐࡕǴԖၨଯޑݢ܄ᆶҬܰໆǶ8ǵઓڻԄޑࡘԵ(magical thinking)Skinner (1948)ගрঁߚதԖӜޑЈᏢჴᡍǶ೭ঁჴᡍࢂόᆅᗷηϙሶǴڰۓ15ࣾ๏ବᎧޑᗷηϿໆޑ१ނǶջ٬ᗯ१ޑբόڙᗷηޑՉࣁቹៜǴՠࢂᗷηॺ໒ۈుߞۓࢂдॺޑՉࣁύޑࢌ٤ܿՋᏤठΑ೭ᗯ१ޑౢғǶଫᗷηܴᡉӦעԾρڋऊԋؤѸࢌঁۓޑՉࣁωૈளډ१ނǴӕਔଫᗷηࡐӦ߄ؤ܌ᇡۓޑՉࣁǴᡂளคݤှନيޑڋऊǶ೭ᅿݩЈᏢৎᆀࣁઓڻԄޑࡘԵǶShiller (1999)ගډǴԖࡐӭᔮՉࣁΨёаҔаޑຝуаှញǶӵǴԖ٤Ϧљޑၗ܈ᆅ،খӳࢂӧᕮکճዎቚу܌ޑǴдॺ൩ᇡࣁ೭٤،൩ࢂ٬ᕮکճዎᡂӳޑচӢǴӢԜததӆޑр೭ᅿ،ǴԶЪӵ݀೭วғӧঁճዎϲޑਔය(ӵਔᔮ҅வ૰ଏ໒ۈൺผ)೭ᅿགྷݤ׳уமǶϦљ໔ޑགྷݤࡐᜪ՟Ъ࣬ϕᢀነჹБޑݤǴ܌а೭ᅿՉࣁёૈόࢂঁձǴԶࢂදၹޑຝǴӢԜౢғу४ޑਏ݀Ƕ9. ྗઓڻԄޑࡘԵ(quasi-magical thinking)ঁΓԖਔᇡࣁдёарࢌ٤ՉԶှନচӃޑ،ۓ܈ࢂׯᡂᐕўǶTversky and Shafir (1992)ᆀԜࣁȨྗઓڻԄޑࡘԵȩǶQuattrone and Tversky (1984)ஒڙ၂ޣϩԋڋಔکჴᡍಔǴฅࡕୢٿಔΓ࣮дॺёаעЋܫӧӇНེӭΦǶჴᡍಔޕǺԖம֧Ј᠌ޑΓёаהڙӇНၨΦǶ่݀วჴᡍಔޑΓעЋܫӧӇНޑਔ໔ၨΦǶ೭ࢂӢࣁӧჴᡍಔޑΓࣁΑܴдॺԖၨம֧ޑЈ᠌ǴԶஒЋܫӧӇНၨΦǴ೭൩ࢂྗઓڻԄޑࡘԵǶ೭٤ঁձޑჴᡍ่݀ёૈှញԋԾךුᜱޑਏ݀ǶӵӕځдޑჴᡍኬǴTversky and Shafir (1992)ᇡࣁঁΓޑ߄ӵӕдॺᇡࣁдॺёаׯᡂࡽۓޑ٣ჴǶ೭ᅿຝёаှញࣁՖ܄Չࣁคݤှញࢌ٤ᔮޑຝǴΨёаှញࣁՖঁΓѐ౻аϷިܿࣁՖՉ٬жޑຝǶӧεҽޑᒧᖐύǴঁΓۓޕၰдॺૈ،ۓᒧᖐޑᐒࡐեǴ܌адॺ،ۓόѐ౻ǶՠԖྗઓڻԄࡘԵޑঁΓѐ౻ǴӢࣁдॺᇡࣁ೭ኬቚуঁӳޗ܈ӳϦљޑёૈ܄ǶShefrin and Statman (1985)ஒၗΓӛᝩុԖၗҁཞѨޑި౻ǴԶѐჴڀԖၗҁճளޑި౻ϐރݩǴᆀࣁೀҽਏ݀ǶShiller (1999)ᇡࣁྗઓڻԄࡘԵёаှញೀҽਏ݀ǹঁΓளӧࢌᅿำࡋߥ੮ཞѨޑܿՋёаסᙯдॺςཞѨޑ٣ჴǶި౻ςܴᡉޑଯਔǴၗεჹި౻ޑሡёૈΨԖྗઓڻԄޑࡘԵǴᇡࣁӵ݀ԾρᝩុԖǴ߾ި౻ុᅍǶ9ǵЎϯکޗᇡޕO’Barr and Conley (1992)٬ҔΓೖୢکΓᜪᏢޑБݤѐࣴزଏҶ୷ߎᆅޣޑՉࣁǶдॺޑ่ፕࢂঁଏҶ୷ߎԖԾρᐱޑЎϯǶ೯தᆶдॺԾρϦљޑਸЎϯԖᜢǶଏҶ୷ߎޑၗౣڙډಔᙃЎϯޑӢનቹៜǴ೭ёૈࢂӢࣁঁΓදၹ׆ఈஒၗޑೢҺᙯ౽๏ϦљǴ܈ࢂሡाᆶϦљߥΓሞᜢ߯Ƕ(Β) ਣࢎ࣬٩ਣࢎ࣬٩ޑࢂၗΓӢࣁნکୢᚒޑഋॊᆶ߄ၲόӕԶԖόӕޑᒧǶఈፕύගډঁΓਥᏵԾيୖԵᗺٰբ،൩ࢂਣࢎ࣬٩ޑຝǶਣࢎ࣬٩ϩࣁ൳ᅿݩǺᖿᗉཞѨǵЈЊǵೀҽਏ݀ǵد܊ᒲਏ݀ǵচ፟ਏ݀ǵԾךڋ(self control)ǵᇡޕᒱᇤѨፓ(cognitive dissonance)کჾЄ(money illusion)ǶҽᢀۺӧςԖ၁ಒፕǴ೭ེӆଞჹࡕ৷کᇡޕѨፓǵჾЄǵԾךڋ೭൳ᇥܴǶ1ǵᇡޕѨፓᆶᘜӢፕ(attribution theory)ᇡޕѨፓࢂঁΓჹ܌य़ᖏޑݩکдॺЈύޑགྷݤکଷόӕਔǴ܌ౢғޑᅿЈޑፂँǶFestinger (1957)ᇡࣁঁΓёૈ௦ڗՉफ़եᇡޕѨፓǴӵёૈᗉխཥၗૻ܈ࢂཱུΚࣁԾρᒱᇤޑགྷݤ៏ៈǶ೭ঁᢀۺΨᆶȨࡕ৷ȩ࣬ᜢǶӭᏢޣᇡࣁঁΓӧ،ਔӢࣁࡕ৷ԶภधǶLoomes and Sugden (1982)ᇡࣁঁΓଓঅ҅ޑႣයਏҔڄኧཱུεϯǶ೭ঁঅ҅ޑਏҔڄኧନΑԵቾঁΓޑനࡕޑᒧϐѦǴᗋѸԵቾҁٰёаޑќঁᒧǶShefrin (2000)ගډǴࡕ৷ჹঁΓٰᇥǴࢂᅿନΑཞѨϐѦǴᗋԾᇡѸჹཞѨाॄೢޑགڙǶӢԜࡕ৷ჹܭঁΓٰᇥКཞѨᗋाགډภधǶࡕ৷ёૈቹៜঁΓޑ،ǴࣁΑᗉխࡕ৷ǴঁΓКၨؒԖமਗ਼ޑᐒѐׯᡂǴёૈ٩ൻၸѐޑচ߾ǴҞޑ൩ࢂࣁΑ٬҂ٰࡕ৷ޑёૈ܄फ़ډനեǶ೭ΨᏤठࢌ٤ၗΓ٬ҔިճԶόࢂ፤ި౻ٰڗள܌ሡޑҔǴӢࣁ্܂፤Αި౻ϐࡕӢѨѐᖺၗҁճளޑᐒԶགډࡕ৷ǶGoetzmann and Peles (1993)ᇡࣁᇡޕѨፓёаҔٰှញΠӈᢀჸډޑຝǺၗߎࢬΕᕮਏཱུӳޑ୷ߎޑೲࡋᇻКၗߎவᕮਏཱུৡޑ୷ߎࢬрޑೲࡋाזளӭǴ೭ࢂӢࣁԖᕮਏόӳ୷ߎޑၗΓόᜫཀय़ჹдॺςᎁډཞѨޑ٣ჴǶќѦঁԖᜢޑᢀۺࢂBem (1965)ޑȨᘜӢፕȩǺᇡࣁঁᡏעᡍځՉޑ٣ҹᘜӢܭځૈΚǴԶעόӵགྷޑ٣ҹ่݀ᘜگܭѦӧυᘋӢનǶDaniel, Hirshleifer and Subrahmanyam (1998) ճҔၸࡋԾߞᆶᘜӢፕٰှញѱޑၸࡋϸᔈᆶϸᔈόىǶךॺӧัࡕӆᇥܴǶ2ǵჾЄ(money illusion)ჾЄࢂਣࢎ࣬٩ঁࡐӳޑٯηǶKahneman, Knetsch and Thaler (1986)วӧπၗǴঁΓᜢݙޑࢂӜҞޑᡂԶόࢂჴ፦ޑᡂǶӵǴӜҞπၗቚу5%ǴԶӕঁਔය೯ᑩࣁ12%Ǵ೭ᅿݩᡣঁΓόܺޑำࡋեܭ෧ᖒ7%ǴؒԖ೯ᑩǶٰᇥǴঁΓჹჴ፦πၗԖКၨӭޑϸᔈࢂӜҞπၗΨफ़եޑਔংǶԶЪջ٬ࢂჴ፦ሽؒԖҺՖׯᡂǴՠࢂঁΓჹӜҞሽޑቚуԖॄय़ޑϸᔈǶShafir, Diamond and Tversky (1997)ᇡࣁঁΓᗨฅޕၰाӵՖፓ೯ᑩǴՠࢂჴሞдॺаӜҞ܌ளٰࡘԵǶӢԜঁΓޑགӜҞ܌ள܌Ǵջ٬ܴޕၰ೯ᑩ٬ჴ፦܌ளफ़եǴՠঁΓӢӜҞ܌ளޑගଯԶགډᡂޑၨԖǶ3ǵԾךڋ܌ᒏޑԾךڋࡰޑࢂڋᆣǶӸӧԾךڋޑୢᚒਔǴ٬ளঁΓคݤ٩Ᏽ܄ٰ،ǶٯӵǴShefrin and Stateman (1984)ᇡࣁঁΓຎިճࣁ܌ள(income)ǴԶόࢂၗҁ(capital)Ǵ൩ࢂঁڂࠠޑਣࢎ࣬٩ޑٯηǶКၨԃߏޑၗΓǴձࢂଏҶޣǴߚதᏼЈౢளϼזǴдॺ্܂ѨѐڋǴӢԜдॺुΠೕંߔЗԾρၸࡋǶၗΓऩעިճຎࣁ܌ளԶόࢂၗҁǴ൩ளҔިճғࢲόࢂԾρޑౢǴόҔ፤ި౻ԶҔިճғࢲჹдॺٰᇥགډКၨЈӼளǴ܌аԖࡐӭၗΓ഻ᖼວวܫଯިճޑި౻ǶစǵՉࣁ୍ᏢᆶൔၿёႣෳ܄ᏃᆅၸѐЎςวፏӭόܰࣁፕ܌ှញޑຝǴՠЍਏѱଷᇥޑȸତᔼȹჹӚᅿȸ౦தȹຝԾԖพᇥຒǶ౦தຝ܈ࢂӚᅿൔၿёႣෳࠠᄊ(predictable patterns)ץຑࣁၗࡩ(data mining)ޑ่݀ǶԶᆢៈEMH നԖΚޑǴεཷाаFama ࣁനǶFama (1998) ᇡࣁЎวၸࡋϸᔈᆶϸᔈόىޑჴޑКٯௗ߈Ǵىـၸࡋϸᔈکϸᔈόىޑрࢂᒿᐒޑ่݀(chance result)ǶԜѦǴ FamaȐ1998ȑᇡࣁ౦தൔၿޑीჹ܌٬ҔޑࣴزБݤ࣬௵གǹ౦தൔၿࡐܰӢόӕޑኳࠠ܈όӕޑीБݤԶѨǶShefrin (2000, p87)߾ჹॊޑᇥݤගр፦ᅪǴҗܭࡐܴᡉޑϸᔈόىޑຝวғӧอයȐϤډΜΒঁДȑǴԶၸࡋϸᔈޑຝวғӧߏයȐΟډϖԃаȑǴ܌а೭٤౦தຝޑวғ٠όӄฅࢂᒿᐒޑǶᗨฅՉࣁ୍Ꮲ՟ЯჹӚᅿຝԖၨӝޑᇥܴǴՠाղۓՖޣࣁǴ৮܂ᗋा٤ਔВǴӢࣁഖޗࣽᏢޑၗȐኬҁȑٰԾჴǴԶคݤӧჴᡍ࠻ύख़ፄᡍǶज़ܭጇ൯Ǵҁϩձ൩ፕᆶՉࣁ୍ᏢޑᢀᗺǴፕൔၿёႣෳ܄ޑԋӢǶаΠךॺϩձ൩ਔ໔ׇӈᆶᐉᘐय़ޑൔၿёႣෳ܄ٿБय़ٰǶ4.1 ᐉᘐय़ൔၿёႣෳ܄(return predictability)߈ԃٰЎύനᜤаှញޑຝ൩ࢂ܌ᒏޑλϦљೕኳਏ݀ᆶय़ѱॶК(ratio of book to market equity (BM))ਏ݀Ǵҭջၨλѱॶᆶၨଯय़ѱॶКޑި౻Ԗၨଯޑѳ֡ൔၿǴЪԜྈၿคݤࣁCAPM܌ှញǶԜΒਏ݀Ψϩձᆀࣁೕኳྈၿϐᖮ(size premium puzzle)ᆶሽॶྈၿϐᖮ(value premium puzzle)ǶፕຎШࣚࣁӭӢηޑШࣚǴӢԜԜΒਏ݀܌ਂਆޑࢂѱၗಔӝаѦޑ॥ᓀӢη(distressed risk factors)ǶBarberis and Huang (2001)аཞѨᖿᗉᆶЈЊޑཷۺٰှញঁձި౻ൔၿޑՉࣁǶдॺԵቾٿᅿݩǺಃঁݩࢂၗΓᜢЈঁձި౻Ǵჹܭঁձި౻ሽޑݢԖཞѨᖿᗉޑӛǴԶЪ،ڙډԛޑၗᕮਏ܌ቹៜǶдॺஒ೭ᅿݩᆀࣁঁձި౻ޑЈЊǶಃΒঁݩࢂၗΓᜢЈঁၗಔӝǴჹܭঁၗಔӝሽޑݢཞѨᖿᗉǴ،ڙډԛޑၗᕮਏ܌ቹៜǴдॺஒ೭ᅿݩᆀࣁၗಔӝޑЈЊǶBarberis and Huang (2001)ᇡࣁঁձި౻ޑשࢂި౻ၸѐޑᕮਏޑڄኧǴଷӵި౻ၸѐޑᕮਏࡐӳǴӢࣁد܊ᒲਏ݀ǴၗΓᇡࣁ೭ঁި౻॥ᓀၨեǴԶҔၨեޑשש҂ٰޑߎࢬໆǶӧ೭ᅿݩϐΠǴӢࣁၨեޑשϲሽިճКǴ܌аᏤठΠයޑൔၿၨեǴ೭Ψ٬ளި౻ൔၿݢᡂεǶќѦǴдॺᇡࣁǴԋߏިکεϦљި౻ӧၸѐ೯த߄ၨӳǴၗΓຎϐࣁե॥ᓀԶाၨեޑൔၿǶԶሽॶިکλϦљި౻ӧၸѐ೯தКၨৡǴၗΓຎϐࣁၨଯ॥ᓀǴӢԶाၨଯޑൔၿǶҗԜёޕǴঁձި౻ޑЈЊёаԖ。