分类与分步计数原理
- 格式:doc
- 大小:53.00 KB
- 文档页数:2
分类计数原理与分步计数原理一、分类加法计数原理:完成一件事情可以有n 类办法,在第一类办法中有1m 种不同的方法,在第二类办法中有2m 种不同的方法,……,在第n 类办法中有n m 种不同的方法那么完成这件事共有12n N m m m =+++种不同的方法注:在分类计数原理中,n 类办法中相互独立,无论哪一类办法中的哪一种方法都能独立完成这件事. 例1. 一个书包内有7本不同的小说,另一个书包内有5本不同的教科书,从两个书包中任取一本书的取法有多少种?例2. 在所有的两位数中个位数字比十位数字大的两位数有多少个?(合理分类)二、分步乘法计数原理:完成一件事情需要n 个步骤,做第一步有m 1种不同的方法,做第二步有m 2种不同的办法……,做第n 步有m n 种不同的办法,那么完成这件事共有N 种不同的方法.N=n m m m ⨯⨯⨯ 21 注:分步计数原理各步骤相互依存,只有各步骤都完成才能做完这件事.例1. 用0,1,2,3,4排成可以重复的5位数,若中间的三位数字各不相同,首末两位数字相同,这样的5位数共有多少个?例2. (1)8本不同的书,任选3本分给3个同学,每人一本有多少种不同的分法?(2)若将4封信投入3个邮筒,有多少种不同的投法?若3位旅客到4个旅馆住宿,又是多少种住宿方法? 例3. 将红、黄、绿、黑四种颜色涂入图中的五个区域,要求相邻的区域不同色,问有多少种不同的涂色方法?变式训练:1、如图,用6种不同的颜色把图中A 、B 、C 、D 四块区域分开,若相邻区域 不能涂同一种颜色,则不同的涂法共有多少种?2、如图,用4种不同的颜色涂入图中的矩形A ,B ,C ,D 中,要求相邻的矩形涂色不同,则不同的涂法有多少种?三、计数原理综合应用作用:计算做一件事完成它的所有不同的方法种数区别:一个与分类有关,一个与分步有关;加法原理是“分类完成”,乘法原理是“分步完成” 方法:(1)列举数数法:就是完成一件事方法不是很多,一一列举出来,然后一种一种地数,这种方法适用于:数目较少的问题.(2)字典排序法:把所有的字母或数字或其它,按照顺序依次排出来,所有的字母或数字或其它排完后结束.(3)模型法:根据题意构建相关的图形,利用图形构建两个原理的模型.AB C D典型例题分析(先分类再分步.)【例1】 一个口袋内装有5个小球,另一个口袋内装有4个小球,所有这些小球的颜色互不相同.(1)从两个口袋内任取一个小球,有多少种不同的取法?(2)从两个口袋内各取一个小球,有多少种不同的取法?变式训练1 在夏季,一个女孩有红、绿、黄、白4件上衣,红、绿、黄、白、黑5条裙子,3双不同鞋子,3双不同丝袜,这位女孩夏季某一天去学校上学,有多少种不同的穿法?变式训练2 有不同的中文书7本,不同的英文书5本,不同的法文书3本,若从中选出不属于同一种文字的2本书,共有多少种选法?【例2】 有四位同学参加三项不同的竞赛.(1)每位学生必须参加且只能参加一项竞赛,有多少种不同结果?(2)每项竞赛只许一位学生参加,有多少种不同结果?变式训练1 火车上有十名乘客,沿途有五个车站,乘客下车的可能方式有多少种?变式训练2 有4种不同溶液倒入5只不同的量杯,如果溶液足够多,每只量杯只能倒入一种溶液,有几种不同倒法?【例3】电视台在“欢乐今宵”节目中拿出两个信箱,其中存放着先后两次竞猜中成绩优秀的观众来信,甲信箱中有30封,乙信箱中有20封.现由主持人抽奖确定幸运观众,若先确定一名幸运之星,再从两信箱中各确定一名幸运伙伴,有多少种不同的结果?【例4】d c b a ,,,排成一行,其中a 不排第一,b 不排第二,c 不排第三,d 不排第四的不同排法共有多少种?【例5】 甲、乙、丙、丁4个人各写1张贺卡,放在一起,再各取1张不是自己所写的贺卡,共有多少种不同取法?变式训练1 甲、乙、丙、丁4个人各写1张贺卡,放在一起,各取1张,其中甲、乙、丙不能取自己所写的贺卡,共有多少种不同取法?变式训练2 设有编号①,②,③,④,⑤的5个球和编号为1,2,3,4,5的5个盒子,现将这5个球投入这5个盒子内,要求每个盒子内投入一个球,并且恰好有2个球的编号与盒子的编号相同,则这样的投放方法总数为多少【例6】某城市在中心广场建造一个花圃,花圃分为6个部分(如下图).现要栽种4种不同颜色的花,每部分栽种一种且相邻部分不能栽种同样颜色的花,不同的栽种方法有_____________种.(以数字作答) 654321四、课堂练习1.一个学生从3本不同的科技书、4本不同的文艺书、5本不同的外语书中任选一本阅读,不同的选法有_______________种.若是选取两本书且它们不相同则有_______________种2.一个乒乓球队里有男队员5人,女队员4人,从中选出男、女队员各一名组成混合双打,共有______种不同的选法.3.一商场有3个大门,商场内有2个楼梯,顾客从商场外到二楼的走法有__________种.4.从分别写有1,2,3,……,9的九张数字卡片中,抽出两张数字和为奇数的卡片,共有_______种不同的抽法.5.从0,1,2,…,9这十个数字中,任取两个不同的数字相加,其和为偶数的不同取法有______种。
加(*)号的知识点为了解内容,供学有余力的学生学习使用一.考纲目标两个计数原理的理解和应用;排列与组合的定义、计算公式,组合数的两个性质.二.知识梳理1 分类计数原理:做一件事情,完成它可以有n 类办法,在第一类办法中有1m 种不同的方法,在第二类办法中有2m 种不同的方法,……,在第n 类办法中有n m 种不同的方法那么完成这件事共有 12n N m m m =+++种不同的方法2分步计数原理:做一件事情,完成它需要分成n 个步骤,做第一步有1m 种不同的方法,做第二步有2m 种不同的方法,……,做第n 步有n m 种不同的方法,那么完成这件事有12n N m m m =⨯⨯⨯ 种不同的方法3两个基本原理的作用:计算做一件事完成它的所有不同的方法种数4两个基本原理的区别:一个与分类有关,一个与分步有关;加法原理是“分类完成”,乘法原理是“分步完成”5原理浅释分类计数原理(加法原理)中,“完成一件事,有n 类办法”,是说每种办法“互斥”,即每种方法都可以独立地完成这件事,同时他们之间没有重复也没有遗漏,进行分类时,要求各类办法彼此之间是相互排斥的,不论那一类办法中的哪一种方法,都能独立完成这件事,只有满足这个条件,才能直接用加法原理,否则不可以分步计数原理(乘法原理)中,“完成一件事,需要分成n 个步骤”,是说每个步骤都不足以完成这件事,这些步骤,彼此间也不能有重复和遗漏如果完成一件事需要分成几个步骤,各步骤都不可缺少,需要依次完成所有步骤才能完成这件事,而各步要求相互独立,即相对于前一步的每一种方法,下一步都有m 种不同的方法,那么完成这件事的方法数就可以直接用乘法原理可以看出“分”是它们共同的特征,但是,分法却大不相同.两个原理的公式是: 12n N m m m =+++, 12n N m m m =⨯⨯⨯6.排列的概念:从个不同元素中,任取(m n ≤)个元素(这里的被取元素各不相同)按照一定的顺序.....排成一列,叫做从个不同元素中取出个元素的一.个排列...7.排列数的定义:从个不同元素中,任取(m n ≤)个元素的所有排列的个数叫做从个元素中取出元素的排列数,用符号m n A 表示8.排列数公式:(1)(2)(1)m n A n n n n m =---+(,,m n N m n *∈≤)9.阶乘:!n 表示正整数1到的连乘积,叫做的阶乘规定0!1=.10.排列数的另一个计算公式:m n A =!()!n n m - 11.组合的概念:一般地,从个不同元素中取出()m n ≤个元素并成一组,叫做从个不同元素中取出个元素的一个组合12.组合数的概念:从个不同元素中取出()m n ≤个元素的所有组合的个数,叫做从个不同元素中取出个元素的组合数....用符号m n C 表示. 13.组合数公式:(1)(2)(1)!m mn n m m A n n n n m C A m ---+==或)!(!!m n m n C mn -=),,(n m N m n ≤∈*且 14.组合数的性质1:m n n m n C C -=.规定:10=n C ;15.组合数的性质2:m n C 1+=m n C +1-m nC 16.解排列组合问题,首先要弄清一件事是“分类”还是“分步”完成,对于元素之间的关系,还要考虑“是有序”的还是“无序的”,也就是会正确使用分类计数原理和分步计数原理、排列定义和组合定义,其次,对一些复杂的带有附加条件的问题,需掌握以下几种常用的解题方法:(1)特殊优先法:对于存在特殊元素或者特殊位置的排列组合问题,我们可以从这些特殊的东西入手,先解决特殊元素或特殊位置,再去解决其它元素或位置,这种解法叫做特殊优先法.例如:用0、1、2、3、4这5个数字,组成没有重复数字的三位数,其中偶数共有________个(答案:30个)(2)科学分类法:对于较复杂的排列组合问题,由于情况繁多,因此要对各种不同情况,进行科学分类,以便有条不紊地进行解答,避免重复或遗漏现象发生例如:从6台原装计算机和5台组装计算机中任取5台,其中至少有原装与组装计算机各两台,则不同的选取法有_______种(答案:350)分组(堆)问题的六个模型:①有序不等分;②有序等分;③有序局部等分;④无序不等分;⑤无序等分;⑥无序局部等分;(3)插空法:解决一些不相邻问题时,可以先排一些元素然后插入其余元素,使问题得以解决例如:7人站成一行,如果甲乙两人不相邻,则不同排法种数是______ (答案:3600)(4)捆绑法:相邻元素的排列,可以采用“整体到局部”的排法,即将相邻的元素当成“一个”元素进行排列,然后再局部排,例如:6名同学坐成一排,其中甲、乙必须坐在一起的不同坐法是________种(答案:240)(5)排除法:从总体中排除不符合条件的方法数,这是一种间接解题的方法b 、排列组合应用题往往和代数、三角、立体几何、平面解析几何的某些知识联系,从而增加了问题的综合性,解答这类应用题时,要注意使用相关知识对答案进行取舍.例如:从集合{0,1,2,3,5,7,11}中任取3个元素分别作为直线方程Ax+By+C=0中的A 、B 、C ,所得的经过坐标原点的直线有_________条(答案:30)(6)剪截法(隔板法):n 个 相同小球放入m(m ≤n)个盒子里,要求每个盒子里至少有一个小球的放法等价于n 个相同小球串成一串从间隙里选m-1个结点剪成m 段(插入m -1块隔板),有11--m n C 种方法.(7)错位法:编号为1至n 的n 个小球放入编号为1到 n 的n 个盒子里,每个盒子放一个小球.要求小球与盒子的编号都不同,这种排列称为错位排列.特别当n=2, 3,4,5时的错位数各为1,2,9,44.2个、3个、4个元素的错位排列容易计算。
分类计数原理与分步计数原理一、知识精讲分类计数原理与分步计数原理分类计数原理:做一件事,完成它可以有n 类办法,在第一类办法中有1m 种不同的方法 ,在第二类办法中有2m 种不同的方法,……,在第n 类办法中有n m 种不同的方法,那么完成这件事共有n m m m N +++= 21种不同的办法。
分步计数原理:做一件事,完成它需要分成n 个步骤,做第一步有1m 种不同的方法,做第二步有2m 种不同的方法,……,做第n 步有n m 种不同方法,那么完成这件事共有n m m m N ⋅⋅⋅= 21种不同的方法。
特别注意:两个原理的共同点是把一个原始事件分解成若干个分事件来完成。
不同点在于,一个与分类有关,一个与分步有关,如果完成一件事情共有n 类办法,这n 类办法彼此之间相互独立的,无论哪一类办法中的哪一种方法都能单独完成这件事情,求完成这件事情的方法种数,就用分类计数原理;如果完成一件事情需要分成n 个步骤,各个步骤都是不可缺少的,需要依次完成所有的步骤,才能完成这件事,而完成 每一个步骤各有若干种不同的方法,求完成这件事情的方法种数就用分步计数原理。
二、题型剖析例1、把一个圆分成3块扇形,现在用5种不同的颜色给3块扇形涂色,要求相邻扇形的颜色互不相同,问有多少钟不同的涂法?若分割成4块扇形呢?解:(1)不同涂色方法数是:60345=⨯⨯(种)(2)如右图所示,分别用a,b,c,d 记这四块,a 与c 可同色,也可不同色,先考虑给a,c 两块涂色,分两类(1) 给a,c 涂同种颜色共15C 种涂法,再给b 涂色有4种涂法,最后给d 涂色也有4种涂法,由乘法原理知,此时共有4415⨯⨯C 种涂法(2) 给a,c 涂不同颜色共有25A 种涂法,再给b 涂色有3种方法,最后给d 涂色也有3种,此时共有3325⨯⨯A 种涂法 故由分类计数原理知,共有4415⨯⨯C +3325⨯⨯A =260种涂法。
例2、(1)如图为一电路图,从A 到B 共有-___________条不同的线路可通电。
分类计数原理、分步计数原理授课难点:1.解决学生思考过程中对加法,分步计数原理理解产生的误区。
2.帮助学生找到“重”,“漏”产生的原因。
一、概念与规律1.分类计数原理:做一件事,完成它可以有n类办法。
在第一类办法中有m1种不同方法,在第二类办法中m2种不同的方法,……,第n类办法中有m n种不同方法。
那么完成这件事共有N=m1+m2+……+m n种不同的方法。
2.分步计数原理:做一件事,完成它需要分成n个步骤,做第一步有m1种不同的方法,做第二步有m2种不同的方法,……,做第n步有m n种不同的方法。
那么完成这件事共有N=m1·m2·……m n种不同的方法。
3.分类计数原理和分步计数原理的共同点是,它们都是研究完成一件事情,共有多少种不同的方法;不同点在于完成一件事情的方式不同,分类计数原理是在“分类完成”,即任何一类办法中任何一种方法都能独立完成这种事。
分步计数原理是在“分步完成”,即这些方法需要分步,各个步骤顺次相依,且每一步都完成了,才能完成这件事情。
二、例题讲解例1.一个口袋内装有5个小球,另一个口袋装有4个小球,所有这些小球的颜色互不相同。
(1)从两个口袋内任取1个小球,有多少种不同的取法?(2)从两个口袋内各取1个4球,有多少种不同的取法。
解:(1)从两个口袋中任取一个小球,有两类办法:第一类办法是从第一个口袋内任取1个小球,从5个小球中任取1个,有5种方法;第二类办法是从第二个口袋内任取1个,有4种方法,根据分类计数原理,得到不同的取法的种数是N=m1+m2=5+4=9(种)。
(2)从两个口袋内各取1个小球,可以分成两个步骤来完成:第一步从第一个口袋内取1个小球,有5种方法;第二步在第二个口袋内取1个小球,有4种方法。
根据分步计数原理,得到不同的取法种数是N=m1×m2=5×4=20(种)。
即:从两个口袋内任取1个小球,有9种不同的取法;从两个口袋内各取1个小球,有20种不同取法。
分类加法计数原理与分步乘法计数原理1.分类计数问题:要计算一些集合中满足其中一种条件的元素的数目。
可以将该集合分为若干个子集,分别计算每个子集中满足条件的元素的数目,然后将这些数目相加即可得到最终的结果。
例如,一些班级有30个学生,其中有10个男生和20个女生,要计算全班学生中身高超过1.7米的男生的人数。
可以将问题分解为两个部分,分别计算身高超过1.7米的男生和身高不超过1.7米的男生的人数,然后将这两个数目相加即可得到最终的结果。
2.多重条件计数问题:要计算满足多个条件的元素的数目。
可以将满足不同条件的元素分为不同的类别,然后计算每个类别中满足条件的元素的数目,最后将这些数目相加得到最终的结果。
例如,一些商店有3种颜色的衬衫(红色、蓝色和绿色),每种颜色的衬衫分别有5件、3件和4件。
要计算购买2件衬衫的方法数目,其中要求至少购买一件红色的衬衫。
可以将购买2件衬衫分为两种情况:一种是购买一件红色的衬衫和一件其他颜色的衬衫,另一种是购买两件红色的衬衫。
然后分别计算这两种情况下的购买方法数目,最后将这两个数目相加即可得到最终的结果。
分步乘法计数原理是指将一个计数问题分解为若干个步骤,每个步骤的计数独立进行,最后将每个步骤的计数结果相乘得到最终的结果。
该方法的基本思想是通过分步骤计数来简化问题,使得每个步骤的计数更加直观和容易。
分步乘法计数原理通常适用于以下两种情况:1.顺序计数问题:要计算一些事件发生的不同顺序的可能性。
可以将该事件分为若干个步骤,分别计算每个步骤的可能性,然后将这些可能性相乘得到最终的结果。
例如,一些球队有10名队员,要计算选择3名队员组成一支首发阵容的方法数目。
可以将选择队员分为三个步骤:先选择首发中锋(有10种选择),然后选择首发后卫(有9种选择),最后选择首发前锋(有8种选择)。
然后将这三个步骤的选择数目相乘即可得到最终的结果。
2.分步限制问题:要计算满足多个条件的元素的数目。
分类计数原理与分步计数原理的区别下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!本店铺为大家提供各种类型的实用资料,如教育随笔、日记赏析、句子摘抄、古诗大全、经典美文、话题作文、工作总结、词语解析、文案摘录、其他资料等等,想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you! In addition, this shop provides you with various types of practical materials, such as educational essays, diary appreciation, sentence excerpts, ancient poems, classic articles, topic composition, work summary, word parsing, copy excerpts, other materials and so on, want to know different data formats and writing methods, please pay attention!分类计数原理与分步计数原理的区别在组合数学中,分类计数原理和分步计数原理是解决计数问题的两种常用方法。
分类计数原理与分步计数原理
分类计数原理是指对一个问题进行分类并计数;分步计数原理是指将一个问题分解为若干个步骤,并对每个步骤进行计数,最后将步骤的计数结果相乘得出最终结果。
分类计数原理常用于解决计数问题,例如有n个元素构成的集合,要求将其分成k个子集,每个子集中至少有一个元素,可以使用分类计数原理。
首先将n 个元素分成k个子集,其中至少有一个子集为空,计数为C(n-1, k-1);然后将n 个元素分成k个子集,其中每个子集至少有一个元素,计数为k ×C(n-1, k-1)。
分步计数原理常用于解决复杂的计数问题,例如要求一个过程中多个步骤的可能性,可以使用分步计数原理。
将问题分解为若干个步骤,对每个步骤进行计数,然后将每个步骤的计数结果相乘得出最终结果。
例如要求从6个人中选出3个人组成一个委员会,委员会中的主席必须是其中的一个人,可以将问题分解为3个步骤:第一步从6个人中选出一个主席,有6种选择;第二步从剩下的5个人中选出2个人,有C(5, 2)种选择;第三步将每个步骤的计数结果相乘得到最终结果,即6 ×C(5, 2)。
分类与分步计数原理
一、选择题(每小题6分,共60分)
1. 已知x∈{1,2,3,4},y∈{5,6,7,8},则xy可表示不同值的个数为
()
A.2 B.4 C.8 D.15
2.现有4种不同颜色对如图所示的四个部分进行着色,要求有公共
边界的两块不能用同一种颜色,则不同的着色方法共有() A.24种B.30种C.36种D.48种
3. 甲、乙两人从4门课程中各选修2门,则甲、乙所选的课程中恰有1门相同的选法有( ).
A.6种 B.12种 C.24种 D.30种
4.4位同学从甲、乙、丙3门课程中选修1门,则恰有2人选修课程甲的不同选法有( ).
A.12种 B.24种 C.30种 D.36种
5. 某商场共有4个门,若从一个门进,另一个门出,不同走法的种数是().
.A10 .B11 .C12 .D13
6. 用1、2、3、4、5这5个数字,组成无重复数字的三位数,其中奇数有( )
A.12个B.24个C.36个D.48个7. .从6人中选4人分别到巴黎、伦敦、悉尼、莫斯科四个城市游览,要求每个城市有一人游览,每人只游览一个城市,且这6人中甲、乙两人不去巴黎游览,则不同的选择方案共有
()
.A300种.B240种.C144种.D96种
8. 同室4人各写一张贺年卡,先集中起来,然后每人从中拿1张别人送出的贺年卡,则4张贺年卡不同的分配方式有()
.A23种.B11种.C9种.D6种
9. 现有四件不同款式的上衣与三件不同颜色的长裤,如果一条长裤与一件上衣配成一套,则不同的选法数为().
.A7 .B64 .C12 .D81
10.将1,2,3填入3×3的方格中,要求每行、每列都没有重复数字,
如图是一种填法,则不同的填写方法共有()
A.6种B.12种C.24种D.48种
二、填空题(每题10分,共40分)
11.五个工程队承建某项工程的5个不同的子项目,每个工程队承建
1项,其中甲工程队不能承建1号子项目,则不同的承建方案有________种.
12.有10本不同的数学书,9本不同的语文书,8本不同的英语书,从中任取两本不同类的书,共有______种不同的取法.
13.某班从6名学生中选出4人分别参加数、理、化、生四科竞赛
且每科只有1人,其中甲、乙两人不能参加生物竞赛.则不同的选派方法共有________种.
14. 在所有两位数中,个位数字大于十位数字的两位数共有_个.
1D 2D 3C 4B 5C 6C 7B8C 9C 10B
11.96 12.242 13.240 14. 32。