第8章 假设检验
- 格式:ppt
- 大小:796.50 KB
- 文档页数:44
第八章假设检验作为统计推断的重要组成部分,假设检验也称为显著性检验,就是对所估计的总体先提出一个假设,然后再根据样本信息来检验对总体所做的假设是否成立。
假设检验可分为参数检验和非参数检验,对总体分布中未知参数的假设检验称为参数检验,而对未知分布函数的类型或其某些特征提出的假设称为非参数检验。
第一节假设检验概述在实际生活中,许多事例都可以归结为假设检验问题。
为了便于理解,下面我们结合具体实例来说明假设检验的思想方法。
例8.1 某厂生产中药地黄丸,药丸的重量服从正态分布N( , 2),按规定每丸的标准重量为10克。
根据以往经验得知,生产药丸的标准差为 3.2克。
现从一批药丸中随机抽取100个,其平均重量为9.6克,试问这批药丸重量是否符合标准?从直观上来看,这批药丸重量不符合标准,两者差异显著。
但能否仅凭100个药丸的平均重量比标准重量小0.4克,而立即得出这批药丸不符合标准的结论呢?从统计学上来看,这样得出的结论是不可靠的。
这是因为,差异可能是这批药丸品质所造成的,也可能是由于抽样的随机性所造成的。
如果我们再随机抽取100个药丸进行检测重量,又可得到一个样本资料。
由于抽样误差的随机性,样本平均数(100个药丸的平均重量)就不一定是9.6克。
那么,我们对样本进行分析时,必须判断样本的差异是抽样误差造成的,还是因本质不同而引起的。
如何区分两类性质的差异?怎样通过样本来推断总体?这正是假设检验要解决的问题。
在假设检验中,先要根据问题的需要建立检验假设,假设有两种,一种是原假设或零假设,用H0表示,通常就是将要进行检验的假设;另一种是备择假设- 1 -或对立假设,用H1表示,是原假设H0相对立的假设。
例8.1中,如果将该批药丸的重量记作总体X,该问题就是检验总体X的均值 的变化情况。
那么,可以设原假设H0: 10( 0),即认为这批药丸重量是符合标准的;而备择假设,即认为这批药丸重量是符合标准的 10( 0),即认为这批药丸重量不H1:10( 0)符合标准的。