平行线与相交线提高篇试题
- 格式:doc
- 大小:475.65 KB
- 文档页数:7
提高篇1.如图,∠ABC =∠ADC,BF 、DE 分别是∠ABC 、∠ ADC 的角平分线,∠1=∠2,求征DC ∥AB 。
321FE DCBA2.已知直线a 、b 、c 在同一平面内,a ∥b ,a 与c 相交于p ,那么b 与c 也一定相交,请说明理由3.如图,∠B =∠C ,B 、A 、D 三点在同一直线上,∠DAC =∠B +∠C ,AE 是∠DAC 的平分线,求征:AE ∥BC21ED CB A4.如图,已知直线AB 、CD 被直线EF 所截,如果∠BMN =∠D NF ,∠1=∠2,那么MQ ∥NP ,试写出推理PQMN 21FEDCB A5.如图,已知∠1与∠3互余,∠2与∠3的余角互补,问直线12,l l 平行吗?为什么? l 4l 3l 2l 13216.根据图填空.2条直线相交3条直线相交于一点4条直线相交于一点n条直线相交于一点对顶角有________对对顶角有________对对顶角共有________对对顶角共有________对(用含n的式子表示)7.同一平面内三条直线最多有m个交点,最少有n个交点,则m+n等于A.2B.3C.4D.58.小明将较大的一个三角尺按如图12所示的情形放置在课本上(平面图),此时他量得∠1=120°,则你认为∠2应是A.100°B.120°C.150°D.160°9.如图5—15,△ABC中,∠A=60°,∠ABC、∠ACB的平分线BD、CD交于点D,则∠BDC=_________.10.如图5—21,△ABC中,∠B=34°,∠ACB=104°,AD是BC边上的高AE是∠BAC的平分线,求∠DAE的度数.AE是∠BAC的平分线,求∠DAE的度数.11.已知DE∥BC,CD是∠ACB的角平分线,∠B=80°,∠ACB=50°。
试求∠EDC与∠BDC的度数。
平行线与相交线提高训练1.如图,直线a∥b,那么∠x的度数是.2.如图,AB∥CD,∠DCE的角平分线CG的反向延长线和∠ABE的角平分线BF交于点F,∠E﹣∠F=33°,则∠E=.3.如图,已知∠1+∠2=180°,∠3=∠B,求证:DE∥BC.4.已知:如图,∠1=∠2,∠3=∠4,∠5=∠6.求证:ED∥FB.5.已知:如图,B、C、E三点在同一直线上,A、F、E三点在同一直线上,∠1=∠2=∠E,∠3=∠4.求证:AB∥CD.6.已知,如图,AE∥BD,∠1=3∠2,∠2=26°,求∠C.7.直线l1∥l2,∠A=125°,∠B=105°,求∠1+∠2的度数(提示:要作辅助线哟!)8.已知:射线OP∥AE(1)如图1,∠AOP的角平分线交射线AE与点B,若∠BOP=58°,求∠A的度数.(2)如图2,若点C在射线AE上,OB平分∠AOC交AE于点B,OD平分∠COP交AE于点D,∠ADO=39°,求∠ABO﹣∠AOB的度数.(3)如图3,若∠A=m,依次作出∠AOP的角平分线OB,∠BOP的角平分线OB1,∠B1OP的角平分线OB2,∠B n﹣1OP的角平分线OB n,其中点B,B1,B2,…,B n﹣1,B n都在射线AE上,试求∠AB n O 的度数.9.数学思考:(1)如图1,已知AB∥CD,探究下面图形中∠APC和∠P AB、∠PCD的关系,并证明你的结论推广延伸:(2)①如图2,已知AA1∥BA1,请你猜想∠A1,∠B1,∠B2,∠A2、∠A3的关系,并证明你的猜想;②如图3,已知AA1∥BA n,直接写出∠A1,∠B1,∠B2,∠A2、…∠B n﹣1、∠A n的关系拓展应用:(3)①如图4所示,若AB∥EF,用含α,β,γ的式子表示x,应为A.180°+α+β﹣γB.180°﹣α﹣γ+βC.β+γ﹣αD.α+β+γ②如图5,AB∥CD,且∠AFE=40°,∠FGH=90°,∠HMN=30°,∠CNP=50°,请你根据上述结论直接写出∠GHM的度数是.10.已知,直线AB∥DC,点P为平面上一点,连接AP与CP.(1)如图1,点P在直线AB、CD之间,当∠BAP=60°,∠DCP=20°时,求∠APC.(2)如图2,点P在直线AB、CD之间,∠BAP与∠DCP的角平分线相交于点K,写出∠AKC与∠APC 之间的数量关系,并说明理由.(3)如图3,点P落在CD外,∠BAP与∠DCP的角平分线相交于点K,∠AKC与∠APC有何数量关系?并说明理由.11.如图,已知AM∥BN,∠A=80°,点P是射线AM上动点(与A不重合),BC、BD分别平分∠ABP 和∠PBN,交射线AM于C、D.(1)求∠CBD的度数;(2)当点P运动时,那么∠APB:∠ADB的度数比值是否随之发生变化?若不变,请求出这个比值;若变化,请找出变化规律;(3)当点P运动到使∠ACB=∠ABD时,求∠ABC的度数.12.如图1,AB∥CD,直线EF交AB于点E,交CD于点F,点G在CD上,点P在直线EF左侧、且在直线AB和CD之间,连接PE、PG.(1)求证:∠EPG=∠AEP+∠PGC;(2)连接EG,若EG平分∠PEF,∠AEP+∠PGE=110°,∠PGC=∠EFC,求∠AEP的度数;(3)如图2,若EF平分∠PEB,∠PGC的平分线所在的直线与EF相交于点H,则∠EPG与∠EHG 之间的数量关系为.13.已知E、D分别在∠AOB的边OA、OB上,C为平面内一点,DE、DF分别是∠CDO、∠CDB的平分线.(1)如图1,若点C在OA上,且FD∥AO,求证:DE⊥AO;(2)如图2,若点C在∠AOB的内部,且∠DEO=∠DEC,请猜想∠DCE、∠AEC、∠CDB之间的数量关系,并证明;(3)若点C在∠AOB的外部,且∠DEO=∠DEC,请根据图3、图4分别写出∠DCE、∠AEC、∠CDB 之间的数量关系(不需证明).14.已知,AB∥CD,点E为射线FG上一点.(1)如图1,若∠EAF=30°,∠EDG=40°,则∠AED=°;(2)如图2,当点E在FG延长线上时,此时CD与AE交于点H,则∠AED、∠EAF、∠EDG之间满足怎样的关系,请说明你的结论;(3)如图3,DI平分∠EDC,交AE于点K,交AI于点I,且∠EAI:∠BAI=1:2,∠AED=22°,∠I=20°,求∠EKD的度数.15.长江汛期即将来临,防汛指挥部在一危险地带两岸各安置了一探照灯,便于夜间查看江水及两岸河堤的情况.如图,灯A射线自AM顺时针旋转至AN便立即回转,灯B射线自BP顺时针旋转至BQ便立即回转,两灯不停交叉照射巡视.若灯A转动的速度是a°/秒,灯B转动的速度是b°/秒,且a、b满足|a﹣3b|+(a+b﹣4)2=0.假定这一带长江两岸河堤是平行的,即PQ∥MN,且∠BAN=45°(1)求a、b的值;(2)若灯B射线先转动20秒,灯A射线才开始转动,在灯B射线到达BQ之前,A灯转动几秒,两灯的光束互相平行?(3)如图,两灯同时转动,在灯A射线到达AN之前.若射出的光束交于点C,过C作CD⊥AC交PQ 于点D,则在转动过程中,∠BAC与∠BCD的数量关系是否发生变化?若不变,请求出其数量关系;若改变,请求出其取值范围.16.已知如图,∠COD=90°,直线AB与OC交于点B,与OD交于点A,射线OE与射线AF交于点G.(1)若OE平分∠BOA,AF平分∠BAD,∠OBA=42°,则∠OGA=;(2)若∠GOA=∠BOA,∠GAD=∠BAD,∠OBA=42°,则∠OGA=;(3)将(2)中的“∠OBA=42°”改为“∠OBA=α”,其它条件不变,求∠OGA的度数.(用含α的代数式表示)(4)若OE将∠BOA分成1:2两部分,AF平分∠BAD,∠ABO=α(30°<α<90°),求∠OGA的度数.(用含α的代数式表示)17.已知直线AB∥CD,E是直线AB的上方一点,连接AE、EC(1)如图1,求证:∠AEC+∠EAB=∠ECD(2)如图2,AF平分∠BAE,CF平分∠DCE,且∠AFC比∠AEC的倍少40°,直接写出∠AEC的度数18.直线MN与直线PQ相交于O,点A在射线OP上运动,点B在射线OM上运动.(1)如图1,若∠AOB=80°,已知AE、BE分别是∠BAO和∠ABO的角平分线,点A、B在运动的过程中,∠AEB的大小是否会发生变化?若发生变化,请说明变化的情况;若不发生变化,试求出∠AEB的大小.(2)如图2,若∠AOB=80°,已知AB不平行CD,AD、BC分别是∠BAP和∠ABM的角平分线,AD、BC的延长线交于点F,点A、B在运动的过程中,∠F=;DE、CE又分别是∠ADC和∠BCD 的角平分线,点A、B在运动的过程中,∠CED的大小也不发生变化,其大小为:∠CED=.(3)如图3,若∠AOB=90°,延长BA至G,已知∠BAO、∠OAG的角平分线与∠BOQ的角平分线及其延长线相交于E、F,则∠EAF=;(4)如图3,若AF,AE分别是∠GAO,∠BAO的角平分线,∠AOB=90°,在△AEF中,如果有一个角是另一个角的4倍,则∠ABO的度数=.20.如图,点D、点E分别在△ABC边AB,AC上,∠CBD=∠CDB,DE∥BC,∠CDE的平分线交AC 于F点.(1)求证:∠DBF+∠DFB=90°;(2)如图②,如果∠ACD的平分线与AB交于G点,∠BGC=50°,求∠DEC的度数.(3)如图③,如果H点是BC边上的一个动点(不与B、C重合),AH交DC于M点,∠CAH的平分线AI交DF于N点,当H点在BC上运动时,的值是否发生变化?如果变化,说明理由;如果不变,试求出其值.。
完整版)相交线和平行线提高题与常考题型和培优题(含解析)相交线和平行线是初中数学中重要的几何概念,涉及到很多考试题型,包括提高题和常考题,也是培优题的内容。
以下是一些选择题和填空题。
1.在图中,已知AB∥CD,CD⊥EF,且∠1=124°,则∠2=()A.56°B.66°C.24°D.34°2.如图,是婴儿车的平面示意图,其中AB∥CD,∠1=120°,∠3=40°,那么∠2的度数为()A.80°B.90°C.100°D.102°3.在图中,直线a∥b,若∠2=55°,∠3=100°,则∠1的度数为()A.35°B.45°C.50°D.55°4.在图中,△ABC的面积为2,将△ABC沿AC方向平移至△DFE,且AC=CD,则四边形AEFB的面积为()A.6B.8C.10D.125.在图中,点D、E、F分别在AB,BC,AC上,且EF∥AB,要使DF∥BC,只需再有条件()A.∠1=∠2B.∠1=∠DFEC.∠1=∠AFDD.∠2=∠AFD6.在图中,与∠1是同旁内角的是()A.∠2B.∠3C.∠4D.∠57.在图中,以下条件不能判定直线a与b平行的是()A.∠1=∠2 B.∠2=∠3 C.∠3=∠5 D.∠3+∠4=180°8.在图中,直线a、b被直线c所截,下列条件能使a∥b 的是()A.∠1=∠6 B.∠2=∠6 C.∠1=∠3 D.∠5=∠79.在图中,将一副三角板叠放在一起,使直角的顶点重合于点O,AB∥OC,DC与OB交于点E,则∠DEO的度数为()A.85°B.70°C.75°D.60°10.在图中,AB∥CD,AE平分∠CAB交CD于点E,若∠C=50°,则∠AED=()A.65°B.115°C.125°D.130°11.在图中,AB∥CD,DA⊥AC,垂足为A,若∠ADC=35°,则∠1的度数为()A.65°B.55°C.45°D.35°12.在图中,直线a∥b,∠1=85°,∠2=35°,则∠3=()A.85°B.60°C.50°D.35°13.在图中,已知BD∥AC,∠1=65°,∠A=40°,则∠2的大小是_______。
平行线与相交线提高训练1如图,直线a // b,那么/ x的度数是________________ .2.如图,AB// CD,/ DCE的角平分线CG的反向延长线和/ ABE的角平分线BF交于点F,/ E -/ F =3.如图,已知/ 1 + / 2= 180°,/ 3=/ B,求证: DE // BC.C/ 3 =/ 4,/ 5=/ 6.求证:ED // FB.5.已知:如图,B、C、E三点在同一直线上,A、F、E三点在同一直线上, / 1 = / 2 = / E, / 3=/ 4.求证:AB // CD .6.已知,如图, AE // BD ,/ 1 = 3/ 2,/ 2 = 26°,求一(3)如图3,若Z A = m ,依次作出Z AOP 的角平分线 OB , Z BOP 的角平分线 OB 1 ,Z B 1OP 的角平分 线OB 2,Z B n - 1OP 的角平分线 OB n ,其中点 B , B 1, B 2,…,B n -1, B n 都在射线AE 上,试求Z AB n O 的度数.,求/ 1 + / 2的度数(提示:要作辅助线哟!/ AOP 的角平分线交射线 AE 与点B ,若/ BOP = 58°,求/ A 的度数.(2)如图 2, 若点C 在射线AE 上,OB 平分/ AOC 交AE 于点B , OD 平分/ COP 交AE 于点D ,/ADO = 39° ,求/ ABO -Z AOB 的度数./ B = 105 (1)如图 1,9. 数学思考:(1)如图1,已知AB // CD ,探究下面图形中/ APC 和/ PAB 、/ PCD 的关系,并证明你的 结论推广延伸:(2)①如图2,已知AA i / BA 1,请你猜想/ A 1,/ B 1,/ B 2,/ A 2、/ A 3的关系,并证明你的猜想;②如图3,已知AA 1 / BA n ,直接写出/ A 1,/ B 1,/ B 2,/ A 2、…/ B n -1、/ A n 的关系拓展应用:(3)①如图4所示,若AB // EF ,用含a, 3, 丫的式子表示X ,应为 _________________A.180° + a + 3- YB.180 °_ a _ Y +3 C .供丫― a D . a + 3+ 丫②如图 5, AB / CD ,且/ AFE = 40°,/ FGH = 90°,/ HMN = 30°,/ CNP = 50°,请你根据上述结论直接写出/ GHM 的度数是(2) 如图2,点P 在直线AB 、CD 之间,/ BAP 与/ DCP 的角平分线相交于点之间的数量关系,并说明理由.(3) 如图3,点P 落在CD 夕卜,/ BAP 与/ DCP 的角平分线相交于点 K , / AKC 与/ APC 有何数量关 系?并说明理由.10. 已知,直线 AB / DC ,点P 为平面上一点,连接 AP 与 CP .(1) 如图1,点P 在直线AB 、CD 之间,当/BAP = 60°,/ DCP = 20° 时,求/ APC .K ,写出/ AKC 与/ APC11. 如图,已知 AM II BN ,/ A = 80。
①2121②12③12④相交线与平行线》提高题一、选择题:1.下列所示的四个图形中,1∠和2∠是同位角...的是( )A. ②③B. ①②③C. ①②④D. ①④2.如右图所示,点E 在AC 的延长线上,下列条件中能判断...CD AB //( )A. 43∠=∠B. 21∠=∠C. DCE D ∠=∠D. 180=∠+∠ACD D3.一学员练习驾驶汽车,两次拐弯后,行驶的方向与原来的方向相同,这两次拐弯的角度可能是( )A. 第一次向左拐 30,第二次向右拐 30B. 第一次向右拐 50,第二次向左拐130 C. 第一次向右拐50,第二次向右拐130 D. 第一次向左拐50,第二次向左拐130 4.两条平行直线被第三条直线所截,下列命题中正确..的是( ) A. 同位角相等,但内错角不相等 B. 同位角不相等,但同旁内角互补 C. 内错角相等,且同旁内角不互补 D. 同位角相等,且同旁内角互补 5.下列说法中错误..的个数是( ) (1)过一点有且只有一条直线与已知直线平行。
(2)过一点有且只有一条直线与已知直线垂直。
(3)在同一平面内,两条直线的位置关系只有相交、平行两种。
(4)不相交的两条直线叫做平行线。
(5)有公共顶点且有一条公共边的两个角互为邻补角。
A. 1个 B. 2个 C. 3个 D. 4个 6.下列说法中,正确..的是( ) A. 图形的平移是指把图形沿水平方向移动。
B. 平移前后图形的形状和大小都没有发生改变。
C. “相等的角是对顶角”是一个真命题。
D. “直角都相等”是一个假命题。
7.如右图,CD AB //,且25=∠A ,45=∠C ,则E ∠的度数是( ) A.60 B.70 C.110 D.80EDC BA4321EDCBA8.如右图所示,已知BC AC ⊥ ,AB CD ⊥,垂足分别是C 、D ,那 么以下线段大小的比较必定成立....的是( ) A. AD CD > B. BC AC < C. BD BC > D. BD CD <9.在一个平面内,任意四条直线相交,交点的个数最多有( )A. 7个B. 6个C. 5个D. 4个10. 如右图所示,BE 平分ABC ∠,BC DE //,图中相等的角共有( )A. 3对B. 4对C. 5对D. 6对二、填空题1.把命题“等角的余角相等”写成“如果……,那么……。
第五章相交线与平行线单元试卷(提升篇)(Word 版 含解析)一、选择题1.如图,∠1=20º,AO ⊥CO ,点B 、O 、D 在同一条直线上,则∠2的度数为( )A .70ºB .20ºC .110ºD .160º2.如图,在三角形ABC 中,90ACB ∠=︒,4AC =,点D 是线段BC 上任意一点,连接AD ,则线段AD 的长不可能...是( )A .3B .4C .5D .6 3.如果A ∠与B 的两边分别平行,A ∠比B 的3倍少36,则A ∠的度数是( )A .18B .126C .18或126D .以上都不对 4.如图,下列条件不能判定AB ∥CD 的是( )A .12∠∠=B .2E ∠∠=C .B E 180∠∠+=D .BAF C ∠∠=5.如图,AB ∥CD ,∠1=120°,则∠2=( )A .50°B .70°C .120°D .130°6.如图,//AB CD ,PF CD ⊥于F ,40AEP ∠=︒,则EPF ∠的度数是( )A .120︒B .130︒C .140︒D .150︒7.给出下列命题:①平分弦的直径垂直于弦,且平分弦所对的弧;②平面上任意三点能确定一个圆;③图形经过旋转所得的图形和原图形全等;④三角形的外心到三个顶点的距离相等;⑤经过圆心的直线是圆的对称轴.正确的命题为( )A .①③⑤B .②④⑤C .③④⑤D .①②⑤8.如图,已知AB ∥CD, EF ∥CD ,则下列结论中一定正确的是( )A .∠BCD= ∠DCE;B .∠ABC+∠BCE+∠CEF=360︒;C .∠BCE+∠DCE=∠ABC+∠BCD;D .∠ABC+∠BCE -∠CEF=180︒.9.如图,下列条件中,不能判断直线a ∥b 的是( )A .∠1=∠3B .∠2=∠3C .∠4=∠5D .∠2+∠4=180° 10.在下列命题中,为真命题的是( ) A .相等的角是对顶角B .平行于同一条直线的两条直线互相平行C .同旁内角互补D .垂直于同一条直线的两条直线互相垂直11.已知:如图,直线a ∥b ,∠1=50°,∠2=∠3,则∠2的度数为( )A .50°B .60°C .65°D .75°12.下列说法中不正确的个数为( ).①在同一平面内,两条直线的位置关系只有两种:相交和垂直.②有且只有一条直线垂直于已知直线.③如果两条直线都与第三条直线平行,那么这两条直线也互相平行.④从直线外一点到这条直线的垂线段,叫做这点到这条直线的距离.⑤过一点,有且只有一条直线与已知直线平行.A .2个B .3个C .4个D .5个二、填空题13.如图,△ABC 中,∠C =90︒,AC =5cm ,CB =12cm ,AB =13cm ,将△ABC 沿直线CB 向右平移3cm 得到△DEF ,DF 交AB 于点G ,则点C 到直线DE 的距离为______cm .14.如图, 已知//AB CF ,//CF DE , 90BCD ∠=︒,则D B ∠-∠=_________15.如图,Rt △AOB 和Rt △COD 中,∠AOB =∠COD =90°,∠B =40°,∠C =60°,点D 在边OA 上,将图中的△COD 绕点O 按每秒10°的速度沿顺时针方向旋转一周,在旋转的过程中,在第________秒时,边CD 恰好与边AB 平行.16.已知:如图放置的长方形ABCD 和等腰直角三角形EFG 中,∠F=90°,FE=FG=4cm ,AB=2cm ,AD=4cm ,且点F ,G ,D ,C 在同一直线上,点G 和点D 重合.现将△EFG 沿射线FC 向右平移,当点F 和点C 重合时停止移动.若△EFG 与长方形重叠部分的面积是4cm 2,则△EFG 向右平移了____cm .17.探究题:(1)如图1,两条水平的直线被一条竖直的直线所截,同位角有____对,内错角有_____对,同旁内角有_____对;(2)如图2,三条水平的直线被一条竖直的直线所截,同位角有____对,内错角有___对,同旁内角有___对;(3)根据以上探究的结果,n(n为大于1的整数)条水平直线被一条竖直直线所截,同位角有______对,内错角有_______对,同旁内角有______对.(用含n的式子表示)18.若∠A与∠B的两边分别平行,且∠A比∠B的3倍少40°,则∠B=_____度.19.如图,已知∠1=(3x+24)°,∠2=(5x+20)°,要使m∥n,那么∠1=_____(度).20.如图,CB∥OA,∠B=∠A=100°,E、F在CB上,且满足∠FOC=∠AOC,OE平分∠BOF,若平行移动AC,当∠OCA的度数为_____时,可以使∠OEB=∠OCA.三、解答题21.对于平面内的∠M和∠N,若存在一个常数k>0,使得∠M+k∠N=360°,则称∠N 为∠M的k系补周角.如若∠M=90°,∠N=45°,则∠N为∠M的6系补周角.(1)若∠H=120°,则∠H的4系补周角的度数为;(2)在平面内AB∥CD,点E是平面内一点,连接BE,DE.①如图1,∠D=60°,若∠B是∠E的3系补周角,求∠B的度数;②如图2,∠ABE和∠CDE均为钝角,点F在点E的右侧,且满足∠ABF=n∠ABE,∠CDF=n∠CDE(其中n为常数且n>1),点P是∠ABE角平分线BG上的一个动点,在P点运动过程中,请你确定一个点P 的位置,使得∠BPD 是∠F 的k 系补周角,并直接写出此时的k 值(用含n 的式子表示).22.如图,如图1,在平面直角坐标系中,已知点A (﹣4,﹣1)、B (﹣2,1),将线段AB 平移至线段CD ,使点A 的对应点C 在x 轴的正半轴上,点D 在第一象限. (1)若点C 的坐标(k ,0),求点D 的坐标(用含k 的式子表示);(2)连接BD 、BC ,若三角形BCD 的面积为5,求k 的值;(3)如图2,分别作∠ABC 和∠ADC 的平分线,它们交于点P ,请写出∠A 、和∠P 和∠BCD 之间的一个等量关系,并说明理由.23.已知,点、、A B C 不在同一条直线上,//AD BE(1)如图①,当,58118A B ︒︒∠=∠=时,求C ∠的度数;(2)如图②,,AQ BQ 分别为,DAC EBC ∠∠的平分线所在直线,试探究C ∠与AQB ∠的数量关系;(3)如图③,在(2)的前提下且//AC QB ,QP PB ⊥,直接写11,,DAC ACB CBE ∠∠∠的值24.问题情境:如图1,//AB CD ,128PAB ∠=︒,124PCD ∠=︒,求APC ∠的度数.小明的思路是过点P 作//PE AB ,通过平行线性质来求APC ∠.(1)按照小明的思路,写出推算过程,求APC ∠的度数.(2)问题迁移:如图2,//AB CD ,点P 在射线OM 上运动,记PAB α∠=,PCD β∠=,当点P 在B 、D 两点之间运动时,问APC ∠与α、β之间有何数量关系?请说明理由.(3)在(2)的条件下,当点P 在线段OB 上时,请直接写出APC ∠与α、β之间的数量关系.25.如图`,已知:直线AD BC ∥,且直线AB 、CD 与AD 、BC 分别交于A 、D 和B 、C 两点,点P 在直线AB 上.(1)如图1,当点P 在A 、B 两点之间时(点P 不与点A 、B 重合),探究ADP 、DPC ∠、BCP ∠之间的关系,并说明理由.(2)若点P 不在A 、B 两点之间,在备用图中画出图形,直接写出ADP 、DPC ∠、BCP ∠之间的关系,不需说理.26.将一副三角板中的两个直角顶点C 叠放在一起(如图①),其中30A ∠=︒,60B ∠=︒,45D E ∠=∠=︒.(1)猜想BCD ∠与ACE ∠的数量关系,并说明理由;(2)若3BCD ACE ∠=∠,求BCD ∠的度数;(3)若按住三角板ABC 不动,绕顶点C 转动三角DCE ,试探究BCD ∠等于多少度时//CE AB ,并简要说明理由.27.如图,已知直线//AB CD ,,M N 分别是直线,AB CD 上的点.(1)在图1中,判断,BME MEN ∠∠和DNE ∠之间的数量关系,并证明你的结论; (2)在图2中,请你直接写出,BME MEN ∠∠和DNE ∠之间的数量关系(不需要证明);(3)在图3中,MB 平分EMF ∠,NE 平分DNF ∠,且2180F E ∠+∠=,求FME ∠的度数.28.如图1,在四边形ABCD 中,A D BC ,A=C ∠∠.(1)求证:B=D ∠∠;(2)如图2,点E 在线段AD 上,点G 在线段AD 的延长线上,连接BG ,AEB=2G ∠∠,求证:BG 是EBC ∠的平分线;(3)如图3,在(2)的条件下,点E 在线段AD 的延长线上,EDC ∠的平分线DH 交BG 于点H ,若ABE=66∠︒.,求B HD ∠的度数.【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【分析】由AO ⊥CO 和∠1=20º求得∠BOC =70º,再由邻补角的定义求得∠2的度数.【详解】∵AO ⊥CO 和∠1=20º,∴∠BOC =90 º-20 º=70º,又∵∠2+∠BOC =180 º(邻补角互补),∴∠2=110º.故选:C .【点睛】考查了邻补角和垂直的定义,解题关键是利用角的度数之间的和差的关系求未知的角的度数.2.A解析:A【分析】根据垂线段最短即可判断.【详解】∵90ACB ∠=︒∴点A 到线段CB 最短的最短距离为AC=4∴AD 的长最短为4故选A .【点睛】本题考查了垂线段最短,直线外一点与直线上各点连接的所有线段中,垂线段最短.3.C解析:C【分析】由∠A 与∠B 的两边分别平行,即可得∠A 与∠B 相等或互补,然后分两种情况,分别从∠A 与∠B 相等或互补去分析,即可求得∠A 的度数.【详解】解:∵∠A 与∠B 的两边分别平行,∴∠A 与∠B 相等或互补.分两种情况:①如图1,当∠A+∠B=180°时,∠A=3∠B-36°,解得:∠A=126°;②如图2,当∠A=∠B,∠A=3∠B-36°,解得:∠A=18°.所以∠A=18°或126°.故选:C.【点睛】此题考查的是平行线的性质,如果两角的两边分别平行,则这两个角相等或互补.此题还考查了方程组的解法.解题要注意列出准确的方程组.4.B解析:B【分析】结合图形,根据平行线的判定方法对选项逐一进行分析即可得.【详解】A. ∠l=∠2,根据内错角相等,两直线平行,可得AB//CD,故不符合题意;B. ∠2=∠E,根据同位角相等,两直线平行,可得AD//BE,故符合题意;C. ∠B+∠E= 180°,根据同旁内角互补,两直线平行,可得AB//CD,故不符合题意;D. ∠BAF=∠C,根据同位角相等,两直线平行,可得AB//CD,故不符合题意,故选B.【点睛】本题考查了平行线的判定,熟练掌握平行线的判定方法是解题的关键.5.C解析:C【分析】由平行线性质和对顶角相等可以得到解答.【详解】解:如图,由对顶角相等可以得到∠3=∠1=120°又AB∥CD,∴∠2=∠3=120°.故选C.【点睛】本题考查平行线和对顶角的综合应用,由题意发现角的相等关系是解题关键.6.B解析:B【分析】过点P作MN∥AB,结合垂直的定义和平行线的性质求∠EPF的度数.【详解】解:如图,过点P作MN∥AB,∵∠AEP=40°,∴∠EPN=∠AEP=40°∵AB∥CD,PF⊥CD于F,∴PF⊥MN,∴∠NPF=90∴∠EPF=∠EPN+∠NPF=40°+90°=130°故答案为B【点睛】本题考查了平行线的判定定理和性质,作出辅助线构造平行线是解答本题的关键.7.C解析:C【分析】①垂径定理的逆定理,注意有否有缺少什么;②如果三点共线;③旋转的性质;④三角形的外心的性质;⑤圆的性质.【详解】①平分弦(不是直径)的直径垂直于弦,且平分弦所对的弧,原命题错误;②三点共线时不能确定一个圆,原命题错误;③由旋转的性质可知,原命题正确;④由三角形的外心的性质,原命题正确;⑤由圆的性质,原命题正确;本题的答案是:C.【点睛】考查垂径定理的逆定理、旋转的性质、三角形的外心的性质、圆的性质.8.D解析:D【解析】分析:根据平行线的性质,找出图形中的同旁内角、内错角即可判断.详解:延长DC到H∵AB∥CD,EF∥CD∴∠ABC+∠BCH=180°∠ABC=∠BCD∠CE+∠DCE=180°∠ECH=∠FEC∴∠ABC+∠BCE+∠CEF=180°+∠FEC∠ABC+∠BCE -∠CEF=∠ABC+∠BCH+∠ECH-∠CEF=180°.故选D.点睛:此题主要考查了平行线的性质,关键是熟记平行线的性质:两直线平行,内错角相等,同旁内角互补,同位角相等.9.B解析:B【分析】根据平行线的判定定理逐项判断即可.【详解】A、当∠1=∠3时,a∥b,内错角相等,两直线平行,故正确;B、∠2与∠3不是同位角,也不是内错角,无法判断,故错误;C、当∠4=∠5时,a∥b,同位角相等,两直线平行,故正确;D、当∠2+∠4=180°时,a∥b,同旁内角互补,两直线平行,故正确.故选:B.【点睛】本题考查了平行线的判定,熟记判定定理是解题的关键.10.B解析:B【分析】分别利用对顶角的性质以及平行线的性质和推论进而判断得出即可.【详解】解:A、相等的角不一定是对顶角,故此选项错误;B、平行于同一条直线的两条直线互相平行,正确;C、两直线平行,同旁内角互补,故此选项错误;D、垂直于同一条直线的两条直线互相平行,故此选项错误.故选B.【点睛】此题主要考查了命题与定理,熟练掌握平行线的性质与判定是解题关键.11.C解析:C【分析】根据平行线的性质,即可得到∠1+∠2+∠3=180°,再根据∠2=∠3,∠1=50°,即可得出∠2的度数.【详解】∵a∥b,∴∠1+∠2+∠3=180°,又∵∠2=∠3,∠1=50°,∴50°+2∠2=180°,∴∠2=65°,故选:C.【点睛】本题主要考查了平行线的性质,角平分线的定义,解题时注意:两直线平行,同旁内角互补.12.C解析:C【分析】根据在同一平面内,根据两条直线的位置关系、垂直的性质、平行线平行公理及推论、点到直线的距离等逐一进行判断即可.【详解】∵在同一平面内,两条直线的位置关系只有两种:相交和平行,故①不正确;∵过直线外一点有且只有一条直线垂直于已知直线.故②不正确;如果两条直线都与第三条直线平行,那么这两条直线也互相平行.故③正确;从直线外一点到这条直线的垂线段的长度,叫做这点到这条直线的距离.故④不正确;过直线外一点,有且只有一条直线与已知直线平行.故⑤不正确;∴不正确的有①②④⑤四个.故选:C .【点睛】本题考查了直线的知识;解题的关键是熟练掌握直线相交、直线垂直、直线平行以及垂线的性质,从而完成求解.二、填空题13.【分析】根据平移前后图形的大小和形状不变,添加辅助线构造梯形,利用面积相等来计算出答案.【详解】解:如图,连接AD 、CD ,作CH⊥DE 于H ,依题意可得AD=BE=3cm ,∵梯形ACED 解析:7513【分析】根据平移前后图形的大小和形状不变,添加辅助线构造梯形,利用面积相等来计算出答案.【详解】解:如图,连接AD 、CD ,作CH ⊥DE 于H ,依题意可得AD=BE=3cm ,∵梯形ACED 的面积()()2131235452S cm =⨯++⨯=, ∴()1153134522ADC DCE S S CH +=⨯⨯+⨯⋅=, 解得7513CH =; 故答案为:7513. 【点睛】本题考查的是图形的平移和点到直线的距离,注意图形平移前后的形状和大小不变,以及平移前后对应点的连线相等.14.90°【分析】根据AB∥CF,可得出∠B和∠BCF的关系,根据CF∥DE,可得出∠FED和∠D的关系,合并即可得出∠D―∠B的大小【详解】∵AB∥CF,∴∠B=∠BCF∵CF∥DE∴∠解析:90°【分析】根据AB∥CF,可得出∠B和∠BCF的关系,根据CF∥DE,可得出∠FED和∠D的关系,合并即可得出∠D―∠B的大小【详解】∵AB∥CF,∴∠B=∠BCF∵CF∥DE∴∠FCD+∠D=180°∴∠FCD+∠D-∠B=180°-∠BCF,化简得:∠D-∠B=180°-(∠BCF+∠FCD)∵∠BCD=90°,∴∠BCF+∠FCD=90°∴∠D―∠B=90°故答案为:90°【点睛】本题考查平行线的性质,解题关键是将∠BCD分为∠BCF和∠FCD,然后利用平行线的性质进行角度转换.15.10或28【解析】【分析】作出图形,分①两三角形在点O的同侧时,设CD与OB相交于点E,根据两直线平行,同位角相等可得∠CEO=∠B,根据三角形的一个外角等于与它不相邻的两个内角的和列式求出∠解析:10或28【解析】【分析】作出图形,分①两三角形在点O的同侧时,设CD与OB相交于点E,根据两直线平行,同位角相等可得∠CEO=∠B,根据三角形的一个外角等于与它不相邻的两个内角的和列式求出∠DOE,然后求出旋转角∠AOD,再根据每秒旋转10°列式计算即可得解;②两三角形在点O的异侧时,延长BO与CD相交于点E,根据两直线平行,内错角相等可得∠CEO=∠B,再根据三角形的一个外角等于与它不相邻的两个内角的和列式求出∠DOE,然后求出旋转角度数,再根据每秒旋转10°列式计算即可得解.【详解】解:①两三角形在点O的同侧时,如图1,设CD与OB相交于点E,∵AB∥CD,∴∠CEO=∠B=40°,∵∠C=60°,∠COD=90°,∴∠D=90°-60°=30°,∴∠DOE=∠CEO-∠D=40°-30°=10°,∴旋转角∠AOD=∠AOB+∠DOE=90°+10°=100°,∵每秒旋转10°,∴时间为100°÷10°=10秒;②两三角形在点O的异侧时,如图2,延长BO与CD相交于点E,∵AB∥CD,∴∠CEO=∠B=40°,∵∠C=60°,∠COD=90°,∴∠D=90°-60°=30°,∴∠DOE=∠CEO-∠D=40°-30°=10°,∴旋转角为270°+10°=280°,∵每秒旋转10°,∴时间为280°÷10°=28秒;综上所述,在第10或28秒时,边CD恰好与边AB平行.故答案为10或28.【点睛】本题考查了平行线的判定,平行线的性质,旋转变换的性质,难点在于分情况讨论,作出图形更形象直观.16.3或2+【解析】分析:分三种情况讨论:①如图1,由平移的性质得到△HDG是等腰直角三角形,重合部分为△HDG,则重合面积=DG2=4,解得DG=,而DC<,故这种情况不成立;②如图解析:3或2+22【解析】分析:分三种情况讨论:①如图1,由平移的性质得到△HDG是等腰直角三角形,重合部分为△HDG,则重合面积=12DG2=4,解得DG=22,而DC<22,故这种情况不成立;②如图2,由平移的性质得到△HDG、△CGI是等腰直角三角形,重合部分为梯形HDCI,则重合面积=S△HDG-S△CGI,把各部分面积表示出来,解方程即可;③如图3,由平移的性质得到△CGI是等腰直角三角形,重合部分为梯形EFCI,则重合面积=S△EFG-S△CGI,把各部分面积表示出来,解方程即可.详解:分三种情况讨论:①如图1.∵△EFG是等腰直角三角形,∴△HDG是等腰直角三角形,重合部分为△HDG,则重合面积=12DG2=4,解得:DG=22,而DC=2<22,故这种情况不成立;②如图2.∵△EFG是等腰直角三角形,∴△HDG、△CGI是等腰直角三角形,重合部分为梯形HDCI,则重合面积=S△HDG-S△CGI =12DG2-12CG2=4,即:12DG2-12(DG-2)2=4,解得:DG=3;③如图3.∵△EFG是等腰直角三角形,∴△CGI是等腰直角三角形,重合部分为梯形EFCI,则重合面积=S△EFG-S△CGI =12EF2-12CG2=4,即:12×42-12(DG-2)2=4,解得:DG=222+或222-(舍去).故答案为:3或222+.点睛:本题主要考查了平移的性质以及等腰三角形的知识,解题的关键是分三种情况作出图形,并表示出重合部分的面积.17.(1)4,2,2;(2)12,6,6;(3)2n(n-1),n(n-1),n(n-1)【解析】试题分析:根据同位角是两个角都在截线的同旁,又分别处在被截的两条直线同侧的位置的角,内错角是两个角都解析:(1)4,2,2;(2)12,6,6;(3)2n(n-1),n(n-1),n(n-1)【解析】试题分析:根据同位角是两个角都在截线的同旁,又分别处在被截的两条直线同侧的位置的角,内错角是两个角都在截线的两侧,又分别处在被截的两条直线中间的位置的角,根据同旁内角是两个角都在截线的同旁,又分别处在被截的两条直线中间的位置的角,可得答案.试题解析:(1)如图1,两条水平的直线被一条竖直的直线所截,同位角有4对,内错角有 2对,同旁内角有 2对.(2)如图2,三条水平的直线被一条竖直的直线所截,同位角有 12对,内错角有 6对,同旁内角有 6对.(3)根据以上探究的结果,n(n为大于1的整数)条水平直线被一条竖直直线所截,同位角有2n(n-1)对,内错角有 n(n-1)对,同旁内角有n(n-1)对,点睛:本题考查了同位角、内错角、同旁内角,解答此类题确定三线八角是关键,可直接从截线入手.对平面几何中概念的理解,一定要紧扣概念中的关键词语,要做到对它们正确理解,对不同的几何语言的表达要注意理解它们所包含的意义.18.55或20【分析】根据平行线性质得出∠A+∠B=180°①,∠A=∠B②,求出∠A=3∠B﹣40°③,把③分别代入①②求出即可.【详解】解:∵∠A与∠B的两边分别平行,∴∠A+∠B=180解析:55或20【分析】根据平行线性质得出∠A+∠B=180°①,∠A=∠B②,求出∠A=3∠B﹣40°③,把③分别代入①②求出即可.【详解】解:∵∠A与∠B的两边分别平行,∴∠A+∠B=180°①,∠A=∠B②,∵∠A比∠B的3倍少40°,∴∠A=3∠B﹣40°③,把③代入①得:3∠B﹣40°+∠B=180°,∠B=55°,把③代入②得:3∠B﹣40°=∠B,∠B=20°,故答案为:55或20.【点睛】本题考查平行线的性质,解题的关键是掌握由∠A和∠B的两边分别平行,即可得∠A =∠B或∠A+∠B=180°,注意分类讨论思想的应用.19.75【分析】直接利用邻补角的定义结合平行线的性质得出答案.【详解】如图所示:∠1+∠3=180°,∵m∥n,∴∠2=∠3,∴∠1+∠2=180°,∴3x+24+5x+20=180解析:75【分析】直接利用邻补角的定义结合平行线的性质得出答案.【详解】如图所示:∠1+∠3=180°,∵m∥n,∴∠2=∠3,∴∠1+∠2=180°,∴3x+24+5x+20=180,解得:x=17,则∠1=(3x+24)°=75°.故答案为75.【点睛】此题主要考查了平行线的判定与性质,正确得出∠1+∠2=180°是解题关键.20.60°【分析】设∠OCA=a,∠AOC=x,利用三角形外角,内角和定理,平行线定理即可解答. 【详解】解:设∠OCA=a,∠AOC=x,已知CB∥OA,∠B=∠A=100°,即a+x=80解析:60°【分析】设∠OCA=a,∠AOC=x,利用三角形外角,内角和定理,平行线定理即可解答.【详解】解:设∠OCA=a,∠AOC=x,已知CB∥OA,∠B=∠A=100°,即a+x=80°,又因为∠OEB=∠EOC+∠ECO=40°+x.当∠OEB=∠OCA,a=80°-x,40°+x=a,解得∠OCA=60°.【点睛】本题考查角度变换和平行线定理的综合运用,熟悉掌握是解题关键.三、解答题21.(1)60°;(2)①75°,②当BG上的动点P为∠CDG的角平分线与BG的交点时,满足∠BPD是∠F的k系补周角,此时k=2n,推导见解析.【分析】(1)直接利用k系补周角的定义列方程求解即可.(2)①依据k系补周角的定义及平行线的性质,建立∠B ED、∠B、∠D的关系式求解即可.②结合本题的构图特点,利用平行线的性质得到:∠ABF+∠CDF+∠F=360°,结合∠ABF=n∠ABE,∠CDF=n∠CDE(其中n为常数且n>1),又由于点P是∠ABE角平分线BG上的一个动点,通过构造相同特殊条件猜想出一个满足条件的P点,再通过推理论证得到k的值(含n的表达式),即说明点P即为所求.【详解】解:(1)设∠H的4系补周角的度数为x,则有120°+4x=360°,解得:x=60°∴∠H的4系补周角的度数为60°;(2)①如图,过点E 作EF//AB ,∵AB//EF,∴EF//CD ,∴∠B=∠1,∠D=∠2,∴∠1+∠2=∠B+∠D ,即∠B ED=∠B+∠D ,∵∠BED+3∠B=360°,∠D =60,∴360360B B ︒-∠=∠+︒,解得:∠B=75°,∴∠B=75°;②预备知识,基本构图:如图,AB//CD//EF,则∠ABE+∠BEG=180°,∠DCE+∠GEC=180°,∴∠ABE+∠BEG+∠DCE+∠GEC=360°,即∠ABE+∠DCG+∠BEC=360°如图:当BG 上的动点P 为∠CDG 的角平分线与BG 的交点时,满足∠BPD 是∠F 的k 系补周角,此时k=2n.理由如下:若∠BPD 是∠F 的k 系补周角,则∠F+k ∠BPD=360°,∴k ∠BPD=360°-∠F又由基本构图知:∠ABF+∠CDF=360°-∠F , ∴k ∠BPD=∠ABF+∠CDF ,又∵∠ABF =n ∠ABE ,∠CDF =n ∠CDE ,∴k ∠BPD= n ∠ABE+ n ∠CDE ,∵∠BPD=∠PHD+∠PDH,∵AB//CD ,PG 平分∠ABE ,PD 平分∠CDE ,∴∠PHD=∠ABH=12ABE ∠ ,∠PDH=12CDE ∠, ∴2k (ABE ∠+CDE ∠)=n(∠ABE+∠CDE), ∴k=2n.【点睛】本题主要考查平行线的基本性质及基本构图的应用.题型较新颖,发散性较强,理解题意,熟练掌握平行线的性质及其基本构图是解题的关键.22.(1)D (k +2,2);(2)k =2;(3)∠BPD =12∠BCD +12∠A ,理由详见解析 【分析】(1)由平移的性质可得出答案;(2)过点B 作BE ⊥x 轴于点E ,过点D 作DF ⊥x 轴于点F ,由四边形BEFD 的面积可得出答案;(3)过点P 作PE ∥AB 得出∠PBA =∠EPB ,由平移的性质得出AB ∥CD ,由平行线的性质得出PE ∥CD ,则∠EPD =∠PDC ,得出∠BPD =∠PBA +∠PDC ,由角平分线的性质得出∠PBA =12∠ABC ,∠PDC =12∠ADC ,即可得出结论. 【详解】 解:(1)∵点A (﹣4,﹣1)、B (﹣2,1),C (k ,0),将线段AB 平移至线段CD , ∴点B 向上平移一个单位,向右平移(k +4)个单位到点D ,∴D (k +2,2);(2)如图1,过点B 作BE ⊥x 轴于点E ,过点D 作DF ⊥x 轴于点F ,∵A(﹣4,﹣1)、B(﹣2,1),C(k,0),D(k+2,2),∴BE=1,CE=k+2,DF=2,EF=k+4,CF=2,∵S四边形BEFD=S△BEC+S△DCF+S△BCD,∴1(12)(k4)2⨯+⨯+=111(k2)22522⨯⨯++⨯⨯+,解得:k=2.(3)∠BPD=12∠BCD+12∠A;理由如下:过点P作PE∥AB,如图2所示:∴∠PBA=∠EPB,∵线段AB平移至线段CD,∴AB∥CD,∴PE∥CD,∠ADC=∠A,∠ABC=∠BCD,∴∠EPD=∠PDC,∴∠BPD=∠PBA+∠PDC,∵BP平分∠ABC,DP平分∠ADC,∴∠PBA=12∠ABC,∠PDC=12∠ADC,∴∠BPD=12∠ABC+12∠ADC=12∠BCD+12∠A.【点睛】本题考查了平移的综合问题,掌握平移的性质、平行线的性质、角平分线的性质是解题的关键.23.(1)120°;(2)2∠AQB+∠C=180°;(3)∠DAC=60°,∠ACB=120°,∠CBE=120°.【分析】(1)过点C作CF∥AD,则CF∥BE,根据平行线的性质可得出∠ACF=∠A、∠BCF=180°-∠B,将其代入∠ACB=∠ACF+∠BCF即可求出∠ACB的度数;(2)过点Q作QM∥AD,则QM∥BE,根据平行线的性质、角平分线的定义可得出∠AQB=12(∠CBE-∠CAD),结合(1)的结论可得出2∠AQB+∠C=180°;(3)由(2)的结论可得出∠CAD=12∠CBE①,由QP⊥PB可得出∠CAD+∠CBE=180°②,联立①②可求出∠CAD、∠CBE的度数,再结合(1)的结论可得出∠ACB的度数.【详解】解:(1)在图①中,过点C作CF∥AD,则CF∥BE.∵CF∥AD∥BE,∴∠ACF=∠A,∠BCF=180°-∠B,∴∠ACB=∠ACF+∠BCF=180°-(∠B-∠A)=180°-(118°-58°)=120°.(2)在图2中,过点Q作QM∥AD,则QM∥BE.∵QM∥AD,QM∥BE,∴∠AQM=∠NAD,∠BQM=∠EBQ.∵AQ平分∠CAD,BQ平分∠CBE,∴∠NAD=12∠CAD,∠EBQ=12∠CBE,∴∠AQB=∠BQM-∠AQM=12(∠CBE-∠CAD).∵∠C=180°-(∠CBE-∠CAD)=180°-2∠AQB,∴2∠AQB+∠C=180°.(3)∵AC∥QB,∴∠AQB=∠CAP=12∠CAD,∠ACP=∠PBQ=12∠CBE,∴∠ACB=180°-∠ACP=180°-12∠CBE.∵2∠AQB+∠ACB=180°,∴∠CAD=12∠CBE.又∵QP⊥PB,∴∠CAP+∠ACP=90°,即∠CAD+∠CBE=180°,∴∠CAD=60°,∠CBE=120°,∴∠ACB=180°-(∠CBE-∠CAD)=120°,故∠DAC=60°,∠ACB=120°,∠CBE=120°.【点睛】本题考查了平行线的性质、邻补角、角平分线以及垂线,解题的关键是:(1)根据平行线的性质结合角的计算找出∠ACB=180°-(∠B-∠A);(2)根据平行线的性质、角平分线的定义找出∠AQB=12(∠CBE-∠CAD);(3)由AC∥QB、QP⊥PB结合(1)(2)的结论分别求出∠DAC、∠ACB、∠CBE的度数.24.(1)108°;(2)∠APC=α+β,理由见解析;(3)∠APC=β-α.【分析】(1)过P作PE∥AB,先推出PE∥AB∥CD,再通过平行线性质可求出∠APC;(2)过P作PE∥AB交AC于E,先推出AB∥PE∥DC,然后根据平行线的性质得出α=∠APE,β=∠CPE,即可得出答案;(3)过点P作PE∥AB交OA于点E,同(2)中方法根据平行线的性质得出α=∠APE,β=∠CPE,即可得出答案.【详解】解:(1)过点P作PE∥AB,∵AB∥CD,∴PE∥AB∥CD,∴∠A+∠APE=180°,∠C+∠CPE=180°,∵∠PAB=128°,∠PCD=124°,∴∠APE=52°,∠CPE=56°,∴∠APC=∠APE+∠CPE=108°;(2)∠APC=α+β.理由如下:如图2,过P作PE∥AB交AC于E,∵AB∥CD,∴AB∥PE∥CD,∴α=∠APE,β=∠CPE,∴∠APC=∠APE+∠CPE=α+β;(3)∠APC=β-α.理由如下:过点P作PE∥AB交OA于点E,同(2)可得,α=∠APE,β=∠CPE,∴∠APC=∠CPE-∠APE=β-α.【点睛】本题主要考查了平行线的性质与平行公理,解题的关键是过拐点作平行线,利用平行线的性质解决问题.25.(1)∠ADP+∠BCP=∠DPC,理由见解析;(2)∠ADP=∠DPC+∠BCP,理由见解析【分析】(1)过P作直线PQ∥AD,交CD于点Q,根据平行线的性质进行推理;(2)过P作直线PQ∥AD,交CD于点Q,根据平行线的性质进行推理;【详解】解:(1)过P作直线PQ∥AD,交CD于点Q,∵AD∥BC,∴PQ∥AD∥BC,∴∠ADP=∠DPQ,∠BCP=∠CPQ,∴∠ADP+∠BCP=∠DPC;(2)∠ADP=∠DPC+∠BCP .过P 作直线PQ ∥AD ,交CD 于点Q ,∵AD ∥BC ,∴PQ ∥AD ∥BC ,∴∠ADP=∠DPQ=∠DPC+∠CPQ ,∠BCP=∠CPQ ,∴∠ADP=∠DPC+∠BCP .【点睛】本题考查了平行线的性质,利用平行线的性质得出角的和差关系是解题的关键.26.(1)180BCD ACE ∠+∠=︒,理由详见解析;(2)135°;(3)BCD ∠等于150︒或30时,//CE AB .【分析】(1)依据∠BCD=∠ACB+∠ACD=90°+∠ACD ,即可得到∠BCD+∠ACE 的度数;(2)设∠ACE=α,则∠BCD=3α,依据∠BCD+∠ACE=180°,即可得到∠BCD 的度数; (3)分两种情况讨论,依据平行线的性质,即可得到当∠BCD 等于150°或30°时,CE//4B.【详解】解:(1)180BCD ACE ∠+∠=︒,理由如下:90BCD ACB ACD ACD ∠=∠+∠=︒+∠,∴90BCD ACE ACD ACE ∠+∠=︒+∠+∠9090180=︒+︒=︒;(2)如图①,设ACE α∠=,则3BCD α∠=,由(1)可得180BCD ACE ∠+∠=︒,∴3180αα+=︒,∴45α=,∴3135BCD α∠==︒;(3)分两种情况:①如图1所示,当//AB CE 时,180120BCE B ∠=︒-∠=︒, 又90DCE ∠=︒,∴36012090150BCD ∠=︒-︒-︒=︒;②如图2所示,当//AB CE 时,60BCE B ∠=∠=︒, 又90DCE ∠=︒,∴906030BCD ∠=︒-︒=︒.综上所述,BCD ∠等于150︒或30时,//CE AB .【点睛】本题考查了平行线的判定:同位角相等,两直线平行;内错角相等,两直线平行;同旁内角互补,两直线平行.熟练掌握定理并且能够准确识图是解题的关键.27.(1)BME DNE MEN ∠+∠=∠,证明见析;(2)MEN BME DNE ∠=∠-∠;(3)120FME ∠=【解析】【分析】(1)如图,过点E 作直线//EF AB ,由平行线的性质得到BME MEF ∠=∠,FEN DNE ∠=∠,即可求得MEN BME DNE ∠=∠+∠;(2)如图,记AB 与NE 的交点为G ,由平行线的性质得∠EGM=∠DNE ,由三角形外角性质得∠BME=∠MEN+∠EGM ,由此即可得到结论;(3)由角平分线的定义设BMF BME β∠=∠=∠,设22DNF DNE α∠=∠=∠,由(1),得E αβ∠=∠+∠,由(2),得2F βα∠=∠-∠,再根据2180F E ∠+∠=,可求得60β∠=,继而可求得2120FME β∠=∠=.【详解】(1)BME DNE MEN ∠+∠=∠,证明如下:如图,过点E 作直线//EF AB ,∵//EF AB ,∴BME MEF ∠=∠,又∵//AB CD ,∴//EF CD ,∴FEN DNE ∠=∠,∴MEN MEF FEN BME DNE ∠=∠+∠=∠+∠;(2)MEN BME DNE ∠=∠-∠,理由如下:如图,记AB 与NE 的交点为G ,又∵AB//CD ,∴∠EGM=∠DNE ,∵∠BME 是△EMG 的外角,∴∠BME=∠MEN+∠EGM ,∴∠MEN=∠BME-∠DNE ;(3)∵MB 平分EMF ∠,∴设BMF BME β∠=∠=∠,∵NE 平分DNF ∠,∴设22DNF DNE α∠=∠=∠,由(1),得E BME DNE αβ∠=∠+∠=∠+∠,由(2),得2F BMF DNF βα∠=∠-∠=∠-∠,又∵2180F E ∠+∠=,∴22()180βααβ∠-∠+∠+∠=,∴3180β∠=,即60β∠=,∴2120FME β∠=∠=.【点睛】本题考查了平行线的判定与性质,三角形外角的性质,正确添加辅助线,熟练掌握和灵活运用相关知识是解题的关键.28.(1)见解析;(2)见解析;(3)57BHD ∠=︒.【解析】【分析】(1)由AD BC ∥可得180A B ∠+∠=︒,进而可证180C B ∠+∠=︒,从而AB CD ∥,180A D +=︒∠∠,根据等角的补角相等可证B D ∠=∠;(2)由AD BC ∥,可得CBG G ∠=∠,又2AEB G ∠=∠,可证EBG G ∠=∠,从而EBG CBG ∠=∠,可证BG 是EBC ∠的角平分线;(3)设GDH HDC α∠=∠=,EBG CBG β∠=∠=,由AB CD ∥,可得6622180βα︒++=︒,即57αβ+=︒.过点H 作HP AB ,可证CD HP ,所以DHP HDC α∠=∠=,180DHP BHD ABE GBE ∠+∠+∠∠=︒+,即66180BHD αβ+∠+︒+=︒,进而可求出57BHD ∠=︒. 【详解】解:(1)证明:∵AD BC ∥,∴180A B ∠+∠=︒,∵A C ∠=∠,∴180C B ∠+∠=︒,∴AB CD ∥,∴180A D +=︒∠∠,∴B D ∠=∠;(2)∵AD BC ∥,∴CBG G ∠=∠,∵2AEB G ∠=∠,∴2CBE G ∠=∠,∴2EBG CBG G ∠+∠=∠, ∴EBG G ∠=∠,∴EBG CBG ∠=∠,∴BG 是EBC ∠的角平分线; (3)∵DH 是GDC ∠的平分线, ∴GDH HDC ∠=∠,设GDH HDC α∠=∠=, ∵AD BC ∥,∴2BCD GDC α∠=∠=. 设EBG CBG β∠=∠=, ∵AB CD ∥,∴180ABC BCD ∠+∠=︒, ∴180ABE EBC BCD ∠+∠+∠=︒, ∵66ABE ∠=︒,∴6622180βα︒++=︒, ∴57αβ+=︒.过点H 作HP AB ,∴180PHB ABH ∠+∠=︒, ∵AB CD ∥,∴CD HP ,∴DHP HDC α∠=∠=, ∴180DHP BHD ABE GBE ∠+∠+∠∠=︒+, 即 66180BHD αβ+∠+︒+=︒, ∴57BHD ∠=︒.【点睛】本题主要考查了平行线的性质与判定的综合应用,熟练掌握平行线的性质与判定方法是解答本题的关键.解题时注意:平行线的判定是由角的数量关系判断两直线的位置关系,平行线的性质是由平行关系来寻找角的数量关系.。
2020-2021学年下学期七年级数学单元提升卷【人教版】第五章相交线与平行线(提高卷)姓名:__________________ 班级:______________ 得分:_________________注意事项:本试卷满分100分,考试时间90分钟,试题共23题.答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级等信息填写在试卷规定的位置.一、选择题(本大题共12小题,每小题2分,共24分)在每小题所给出的四个选项中,只有一项是符合题目要求的.1.下列各图中,∠1与∠2是对顶角的是()A.B.C.D.【答案】D【分析】根据对顶角的概念判断即可.【解答】解:A、∠1与∠2不是对顶角;B、∠1与∠2不是对顶角;C、∠1与∠2不是对顶角;D、∠1与∠2是对顶角;故选:D.【知识点】对顶角、邻补角2.如图,能判定DE∥AC的条件是()A.∠3=∠C B.∠1=∠3C.∠2=∠4D.∠1+∠2=180°【答案】A【分析】直接利用平行线的判定方法分别分析得出答案.【解答】解:A、当∠3=∠C时,DE∥AC,符合题意;B、当∠1=∠3时,EF∥BC,不符合题意;C、当∠2=∠4时,无法得到DE∥AC,不符合题意;D、当∠1+∠2=180°时,EF∥BC,不符合题意;故选:A.【知识点】平行线的判定3.如图,已知AB∥CD.直线EF分别交AB、CD于点E、F,EG平分∠AEF,若∠1=65°,则∠2的度数是()A.70°B.65°C.60°D.50°【答案】D【分析】根据平行线及角平分线的性质即可求解.【解答】解:∵AB∥CD,∴∠AEG=∠1(两直线平行,内错角相等),∵EG平分∠AEF,∴∠GEF=∠AEG=∠1,∵∠1=65°,∴∠GEF=∠1=65°,∴∠2=180°﹣∠GEF﹣∠1=180°﹣65°﹣65°=50°,故选:D.【知识点】平行线的性质4.如图,一个直角三角板的直角顶点落在直尺上的一条边上,若∠1=58°,则∠2的大小为()A.48°B.38°C.42°D.32°【答案】D【分析】根据对顶角相等和直角三角形的性质,可以得到∠2的度数.【解答】解:∵∠1=58°,∠1=∠3,∴∠3=58°,∵∠3+∠2=90°,∴∠2=32°,故选:D.【知识点】平行线的性质5.如图,已知AB∥CD,∠BAE=87°,∠DCE=121°,则∠E的度数为()A.28°B.34°C.56°D.46°【答案】B【分析】延长DC交AE于F,利用平行线的性质可得∠EFC的度数,然后再利用三角形外角的性质计算出∠E的度数即可.【解答】解:延长DC交AE于F,∵AB∥CD,∴∠A=∠EFC=87°,∵∠DCE=121°,∴∠E=121°﹣87°=34°,故选:B.【知识点】平行线的性质6.如图摆放的一副学生用直角三角板,∠F=30°,∠C=45°,AB与DE相交于点G,当EF∥BC时,∠EGB的度数是()A.135°B.120°C.115°D.105°【答案】D【分析】过点G作HG∥BC,则有∠HGB=∠B,∠HGE=∠E,又因为△DEF和△ABC都是特殊直角三角形,∠F=30°,∠C=45°,可以得到∠E=60°,∠B=45°,有∠EGB=∠HGE+∠HGB即可得出答案.【解答】解:过点G作HG∥BC,∵EF∥BC,∴GH∥BC∥EF,∴∠HGB=∠B,∠HGE=∠E,∵在Rt△DEF和Rt△ABC中,∠F=30°,∠C=45°∴∠E=60°,∠B=45°∴∠HGB=∠B=45°,∠HGE=∠E=60°∴∠EGB=∠HGE+∠HGB=60°+45°=105°故∠EGB的度数是105°,故选:D.【知识点】平行线的性质、三角形内角和定理7.如图,AB∥CD,∠BED=110°,BF平分∠ABE,DF平分∠CDE,则∠BFD=()A.130°B.115°C.110°D.125°【答案】D【分析】分别过E,F两点作AB∥ME,FN∥AB,根据平行线的性质可得∠BED+∠ABE+∠CDE=360°,∠BFD=∠ABF+∠CDF,再根据∠BED=110°,结合角平分线的定义可求解.【解答】解:分别过E,F两点作AB∥ME,FN∥AB,∴∠ABE+∠BEM=180°,∠ABF=∠BFN,∵AB∥CD,∴CD∥ME,FN∥CD,∴∠CDE+∠DEM=180°,∠CDF=∠DFN,∴∠BED+∠ABE+∠CDE=360°,∠BFD=∠ABF+∠CDF,∵∠BED=110°,∴∠ABE+∠CDE=250°,∵BF平分∠ABE,DF平分∠CDE,∴∠ABE=2∠ABF,∠CDE=2∠CDF,∴∠BFD=∠ABF+∠CDF=(∠ABE+∠CDE)=125°.故选:D.【知识点】平行线的性质8.下列说法正确的个数有()①不相交的两条直线叫做平行线;②过一点有且只有一条直线垂直于已知直线;③同一平面内,过一点有且只有一条直线与已知直线平行;④直线外一点到这条直线的垂线段叫做这点到这条直线的距离.A.0个B.1个C.2个D.3个【答案】A【分析】根据各个小题中的说法,可以判断各个小题中的说法是否正确,从而可以解答本题.【解答】解:在同一个平面内,不相交的两条直线叫做平行线,如果不在同一个平面内,不相交的两条直线不一定是平行线,故①错误;在同一个平面内,过一点有且只有一条直线垂直于已知直线,故②错误;同一平面内,过直线外一点有且只有一条直线与已知直线平行,故③错误;直线外一点到这条直线的垂线段的长度,叫做这点到这条直线的距离,故④错误;故选:A.【知识点】平行公理及推论、点到直线的距离、平行线、平行线的性质、垂线9.如图,平面内∠AOB=∠COD=90°,∠COE=∠BOE,OF平分∠AOD,则以下结论:①∠AOE=∠DOE;②∠AOD+∠COB=180°;③∠COB﹣∠AOD=90°;④∠COE+∠BOF=180°.其中正确结论的个数有()A.4个B.3个C.2个D.0个【答案】B【分析】由∠AOB=∠COD=90°根据等角的余角相等得到∠AOC=∠BOD,而∠COE=∠BOE,即可判断①正确;由∠AOD+∠COB=∠AOD+∠AOC+90°,而∠AOD+∠AOC=90°,即可判断,②确;由∠COB﹣∠AOD=∠AOC+90°﹣∠AOD,没有∠AOC≠∠AOD,即可判断③不正确;由OF平分∠AOD得∠AOF=∠DOF,由①得∠AOE=∠DOE,根据周角的定义得到∠AOF+∠AOE=∠DOF+∠DOE=180°,即点F、O、E共线,又∠COE=∠BOE,即可判断④正确.【解答】解:∵∠AOB=∠COD=90°,∴∠AOC=∠BOD,而∠COE=∠BOE,∴∠AOE=∠DOE,所以①正确;∠AOD+∠COB=∠AOD+∠AOC+90°=90°+90°=180°,所以②正确;∠COB﹣∠AOD=∠AOC+90°﹣∠AOD,而∠AOC≠∠AOD,所以③不正确;∵OF平分∠AOD,∴∠AOF=∠DOF,而∠AOE=∠DOE,∴∠AOF+∠AOE=∠DOF+∠DOE=180°,即点F、O、E共线,∵∠COE=∠BOE,∴∠COE+∠BOF=180°,所以④正确.故选:B.【知识点】垂线、角平分线的定义10.如图,直线AB∥CD,点F在直线AB上,点N在直线CD上,∠EF A=25°,∠FGH=90°,∠HMN=25°,∠CNP=30°,则∠GHM=()A.45°B.50°C.55°D.60°【答案】D【分析】延长HG交直线AB于点K,延长PM交直线AB于点S.利用平行线的性质求出∠KSM,利用邻补角求出∠SMH,利用三角形的外角与内角的关系,求出∠SKG,再利用四边形的内角和求出∠GHM.【解答】解:延长HG交直线AB于点K,延长PM交直线AB于点S.∵AB∥CD,∴∠KSM=∠CNP=30°.∵∠EF A=∠KFG=25°,∠KGF=180°﹣∠FGH=90°,∠SMH=180°﹣∠HMN=155°,∴∠SKH=∠KFG+∠KGF=25°+90°=115°.∵∠SKH+∠GHM+∠SMH+∠KSM=360°,∴∠GHM=360°﹣115°﹣155°﹣30°=60°.故选:D.【知识点】平行线的性质11.如图,△ABC中,C、C′关于AB对称,B、B′关于AC对称,D、E分别在AB、AC上,且C′D∥BC∥B′E,BE,CD交于点F,若∠BFD=α,∠A=β,则α与β之间的关系为()A.2β+α=180°B.α=2βC.α=D.α=180°﹣【答案】B【分析】利用四边形内角和定理,三角形内角和定理,平行线的性质解决问题即可.【解答】解:在△ABC中,∵∠A=β,∴∠ABC+∠ACB=180°﹣β,∵C′D∥BC∥B′E,∴∠ABC=∠C′DB,∠ACB=∠B′EC,∵C、C′关于AB对称,∴AB垂直平分线段CC′,∴∠C′DB=∠CDB,同理∠B′EC=∠BEC,∴∠CDB+∠BEC=180°﹣β,∵∠ADC+∠CDB=180°,∠AEB+∠BEC=180°,∴∠ADC+∠AEB=180°+β,∵∠ADE+∠A+∠AEB+∠DFE=360°,∠DFE=180°﹣α,∴180°+β+β+180°﹣α=360°,∴α=2β,故选:B.【知识点】轴对称的性质、平行线的性质12.如图,AD∥BC,∠D=∠ABC,点E是边DC上一点,连接AE交BC的延长线于点H.点F是边AB上一点.使得∠FBE=∠FEB,作∠FEH的角平分线EG交BH于点G,若∠DEH=100°,则∠BEG的度数为()A.30°B.40°C.50°D.60°【答案】B【分析】AD∥BC,∠D=∠ABC,则AB∥CD,则∠AEF=180°﹣∠AED﹣∠BEG=180°﹣2β,在△AEF 中,100°+2α+180°﹣2β=180°,故β﹣α=40°,即可求解.【解答】解:设FBE=∠FEB=α,则∠AFE=2α,∠FEH的角平分线为EG,设∠GEH=∠GEF=β,∵AD∥BC,∴∠ABC+∠BAD=180°,而∠D=∠ABC,∴∠D+∠BAD=180°,∴AB∥CD,∠DEH=100°,则∠CEG=∠F AE=100°,∠AEF=180°﹣∠AED﹣∠BEG=180°﹣2β,在△AEF中,100°+2α+180°﹣2β=180°,故β﹣α=40°,而∠BEG=∠FEG﹣∠FEB=β﹣α=40°,故选:B.【知识点】平行线的性质二、填空题(本大题共4小题,每小题2分,共8分.不需写出解答过程,请把答案直接填写在横线上)13.过平面上一点O作三条射线OA、OB和OC,已知OA⊥OB,∠AOC:∠AOB=1:2,则∠BOC=°.【答案】135或45【分析】根据题意画出图形,再结合垂直定义进行计算即可.【解答】解:∵OA⊥OB,∴∠AOB=90°,∵∠AOC:∠AOB=1:2,∴∠AOC=45°,如图1:∠BOC=90°+45°=135°,如图2:∠BOC=90°﹣45°=45°,故答案为:135或45.【知识点】垂线、角的计算14.如图,三角形ABC中,D是AB上一点,F是BC上一点,E,H是AC上的点,EF的延长线交AB的延长线于点G,连接DE,DH,DE∥BC.若∠CEF=∠CHD,∠EFC=∠ADH,∠CEF:∠EFC=5:2,∠C=47°,则∠ADE的度数为.【答案】76°【分析】根据平行线的性质和三角形的内角和解答即可.【解答】解:∵∠CEF=∠CHD,∴DH∥GE,∴∠ADH=∠G,∵∠EFC=∠ADH,∵∠BFG=∠EFC,∴∠G=∠BFG,∴∠ABC=∠G+∠BFG=2∠EFC,∵∠CEF:∠EFC=5:2,∠C=47°,∴∠EFC=38°,∴∠ABC=76°,∵DE∥BC,∴∠ADE=∠ABC=76°,故答案为:76°.【知识点】平行线的性质15.如图,直线MN分别与直线AB,CD相交于点E,F,EG平分∠BEF,交直线CD于点G,若∠MFD=∠BEF=62°,射线GP⊥EG于点G,则∠PGF的度数为度.【答案】59或121【分析】分两种情况:①当射线GP⊥EG于点G时,∠PGE=90°,②当射线GP′⊥EG于点G时,∠P′GE=90°,根据平行线的判定与性质和角平分线定义即可求出∠PGF的度数.【解答】解:如图,①当射线GP⊥EG于点G时,∠PGE=90°,∵∠MFD=∠BEF=62°,∴CD∥AB,∴∠GEB=∠FGE,∵EG平分∠BEF,∴∠GEB=∠GEF=BEF=31°,∴∠FGE=31°,∴∠PGF=∠PGE﹣∠FGE=90°﹣31°=59°;②当射线GP′⊥EG于点G时,∠P′GE=90°,同理:∠P′GF=∠PGE+∠FGE=90°+31°=121°.则∠PGF的度数为59或121度.故答案为:59或121.【知识点】平行线的判定与性质16.如图,在△ABC中,∠BAC和∠ABC的平分线相交于点O,过点O作EF∥AB交BC于点F,交AC于点E,过点O作OD⊥BC于D,下列四个结论:①∠AOB=90°+∠C;②AE+BF=EF;③当∠C=90°时,E、F分别是AC、BC的中点;④若OD=a,CE+CF=2b,则S△CEF=ab,其中正确的是.【答案】①②④【分析】根据角平分线的定义和三角形内角和定理判断①;根据角平分线的定义和平行线的性质判断②;根据三角形三边关系判断③;根据角平分线的性质判断④.【解答】解:∵∠BAC和∠ABC的平分线相交于点O,∴∠OBA=∠CBA,∠OAB=∠CAB,∴∠AOB=180°﹣∠OBA﹣∠OAB=180°﹣∠CBA﹣∠CAB=180°﹣(180°﹣∠C)=90°+∠C,①正确;∵EF∥AB,∴∠FOB=∠ABO,又∠ABO=∠FBO,∴∠FOB=∠FBO,∴FO=FB,同理EO=EA,∴AE+BF=EF,②正确;当∠C=90°时,AE+BF=EF<CF+CE,∴E,F不是AC,BC的中点,③错误;作OH⊥AC于H,∵∠BAC和∠ABC的平分线相交于点O,∴点O在∠C的平分线上,∴OD=OH,∴S△CEF=×CF×OD+×CE×OH=ab,④正确.故答案为①②④.【知识点】角平分线的性质、平行线的性质、等腰三角形的判定与性质三、解答题(本大题共7小题,共68分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤)17.如图,直线AB,CD相交于点O,射线OF⊥CD于点O,∠BOF=30°,求∠BOD,∠AOD的度数.【分析】利用垂直的定义可得∠DOF=90°,再结合条件∠BOF=30°,可求出∠BOD的度数,利用邻补角互补可得∠AOD的度数.【解答】解:∵OF⊥CD,∴∠DOF=90°,∵∠BOF=30°,∴∠BOD=60°,∴∠AOD=180°﹣60°=120°.【知识点】对顶角、邻补角、垂线18.如图,∠AGF=∠ABC,∠1+∠2=180°.(1)试判断BF与DE的位置关系,并说明理由;(2)若BF⊥AC,∠2=145°,求∠AFG的度数.【分析】(1)由于∠AGF=∠ABC,可判断GF∥BC,则∠1=∠3,由∠1+∠2=180°得出∠3+∠2=180°判断出BF∥DE;(2)由∠2=145°得出∠1=35°,得出∠AFG的度数.【解答】解:(1)BF∥DE.理由如下:∵∠AGF=∠ABC,∴GF∥BC,∴∠1=∠3,∵∠1+∠2=180°,∴∠3+∠2=180°,∴BF∥DE;(2)∵∠1+∠2=180°,∠2=145°,∴∠1=35°,∴∠AFG=90°﹣35°=55°.【知识点】平行线的判定与性质19.完成推理填空.填写推理理由:如图:EF∥AD,∠1=∠2,∠BAC=70°,把求∠AGD的过程填写完整.∵EF∥AD,∴∠2=,()又∵∠1=∠2,∴∠1=∠3,∴AB∥,()∴∠BAC+=180°,()又∵∠BAC=70°,∴∠AGD=110°.【答案】【第1空】∠3【第2空】两直线平行,同位角相等【第3空】DG【第4空】内错角相等,两直线平行【第5空】∠DGA【第6空】两直线平行,同旁内角互补【分析】根据平行线的性质和已知求出∠1=∠3,根据平行线的判定推出AB∥DG,根据平行线的性质推出∠BAC+∠DGA=180°即可.【解答】解:∵EF∥AD(已知),∴∠2=∠3(两直线平行,同位角相等),∵∠1=∠2,∴∠1=∠3,∴AB∥DG(内错角相等,两直线平行),∴∠BAC+∠DGA=180°(两直线平行,同旁内角互补),∵∠BAC=70°,∴∠AGD=110°,故答案为:∠3;两直线平行,同位角相等;DG;内错角相等,两直线平行;∠DGA;两直线平行,同旁内角互补.【知识点】平行线的判定与性质20.已知:直线GH分别与直线AB,CD交于点E,F.EM平分∠BEF,FN平分∠CFE,并且EM∥FN.(1)如图1,求证:AB∥CD;(2)如图2,∠AEF=2∠CFN,在不添加任何辅助线的情况下,请直接写出图2中四个角,使写出的每个角的度数都为135°.【分析】(1)根据平行线的判定与性质和角平分线定义即可证明;(2)根据平行线的判定与性质、角平分线定义和邻补角互补即可得结论.【解答】(1)证明:∵EM∥FN,∴∠EFN=∠FEM.∵EM平分∠BEF,FN平分∠CFE,∴∠CFE=2∠EFN,∠BEF=2∠FEM.∴∠CFE=∠BEF.∴AB∥CD.(2)∠AEM,∠GEM,∠DFN,∠HFN度数都为135°.理由如下:∵AB∥CD,∴∠AEF+∠CFE=180°,∵FN平分∠CFE,∴∠CFE=2∠CFN,∵∠AEF=2∠CFN,∴∠AEF=∠CFE=90°,∴∠CFN=∠EFN=45°,∴∠DFN=∠HFN=180°﹣45°=135°,同理:∠AEM=∠GEM=135°.∴∠AEM,∠GEM,∠DFN,∠HFN度数都为135°.【知识点】平行线的判定与性质21.(1)如图1,已知射线BC,MA⊥BC,DF⊥BC,垂足分别为E和F,若∠BAM+∠D=180°,请判断AB和CD的位置关系,并说明理由.(2)在(1)的条件下,连接DE,直接写出∠BAE,∠EDC,∠AED之间的数量关系.(3)如图2,AB∥CD,EF∥CG,若∠A=32°,∠E=60°,请求出∠C的度数.【分析】(1)根据平行线的判定定理和垂直的定义即可得到结论;(2)根据平行线的性质和三角形外角的性质即可得到结论;(3)根据平行线的判定和性质定理即可得到结论.【解答】解:(1)AB∥CD,理由如下:∵∠BAM+∠D=180°,又∵∠BAM+∠BAE=180°,∴∠D=∠BAE,∵MA⊥BC,DF⊥BC,∴∠AEB=∠DFC=90°,∴∠BAE+∠B=90°,∠D+∠DCF=90°,∴∠B=∠DCF,∴AB∥CD;(2)∵AB∥CD,∴∠DCF=∠B,∵∠DCF=∠DEC+∠EDC,∴∠B=∠DEC+∠EDC,∵∠AEB=∠AEC=90°,∴∠BAE=90°﹣∠B,∵∠DEC=90°﹣∠AED,∴90°﹣∠BAE=∠EDC+∠90°﹣∠AED,∴∠BAE+∠EDC=∠AED;(3)延长CD至点N交EF于点H,过E作EM∥CN,∵EM∥CN,∴∠MEF=∠EHC,∵AB∥CD,∴AB∥EM,∴∠A=∠AEM,∵∠AEF=∠AEM+∠MEF,∴∠AEF=∠A+∠EHC,∴∠EHC=60°﹣32°=28°,∵EF∥CG,∴∠C=∠EHC=28°.【知识点】平行线的判定与性质22.三角形ABC中,D是AB上一点,DE∥BC交AC于点E,点F是线段DE延长线上一点,连接FC,∠BCF+∠ADE=180°.(1)如图1,求证:CF∥AB;(2)如图2,连接BE,若∠ABE=40°,∠ACF=60°,求∠BEC的度数;(3)如图3,在(2)的条件下,点G是线段FC延长线上一点,若∠EBC:∠ECB=7:13,BE平分∠ABG,求∠CBG的度数.【分析】(1)根据平行线的判定与性质即可完成证明;(2)如图2,过点E作EK∥AB,可得CF∥AB∥EK,再根据平行线的性质即可得结论;(3)根据∠EBC:∠ECB=7:13,可以设∠EBC=7x°,则∠ECB=13x°,然后根据∠AED+∠DEB+∠BEC=180°,13x+7x+100=180,求出x的值,进而可得结果.【解答】(1)证明:∵DE∥BC,∴∠ADE=∠B,∵∠BCF+∠ADE=180°.∴∠BCF+∠B=180°.∴CF∥AB;(2)解:如图2,过点E作EK∥AB,∴∠BEK=∠ABE=40°,∵CF∥AB,∴CF∥EK,∴∠CEK=∠ACF=60°,∴∠BEC=∠BEK+∠CEK=40°+60°=100°;(3)∵BE平分∠ABG,∴∠EBG=∠ABE=40°,∵∠EBC:∠ECB=7:13,∴设∠EBC=7x°,则∠ECB=13x°,∵DE∥BC,∴∠DEB=∠EBC=7x°,∠AED=∠ECB=13x°,∵∠AED+∠DEB+∠BEC=180°,∴13x+7x+100=180,解得x=4,∴∠EBC=7x°=28°,∵∠EBG=∠EBC+∠CBG,∴∠CBG=∠EBG﹣∠EBC=40°﹣28°=12°.【知识点】平行线的判定与性质23.已知AB∥CD,点M在直线AB上,点N、Q在直线CD上,点P在直线AB、CD之间,∠AMP=∠PQN=α,PQ平分∠MPN.(1)如图①,求∠MPQ的度数(用含α的式子表示);(2)如图②,过点Q作QE∥PN交PM的延长线于点E,过E作EF平分∠PEQ交PQ于点F.请你判断EF与PQ的位置关系,并说明理由;(3)如图③,在(2)的条件下,连接EN,若NE平分∠PNQ,请你判断∠NEF与∠AMP的数量关系,并说明理由.【分析】(1)如图①,过点P作PR∥AB,可得AB∥CD∥PR,进而可得结论;(2)根据已知条件可得2∠EPQ+2∠PEF=180°,进而可得EF与PQ的位置关系;(3)结合(2)和已知条件可得∠QNE=∠QEN,根据三角形内角和定理可得∠QNE=(180°﹣∠NQE)=(180°﹣3α),可得∠NEF=180°﹣∠QEF﹣∠NQE﹣∠QNE,进而可得结论.【解答】解:(1)如图①,过点P作PR∥AB,∵AB∥CD,∴AB∥CD∥PR,∴∠AMP=∠MPR=α,∠PQN=∠RPQ=α,∴∠MPQ=∠MPR+∠RPQ=2α;(2)如图②,EF⊥PQ,理由如下:∵PQ平分∠MPN.∴∠MPQ=∠NPQ=2α,∵QE∥PN,∴∠EQP=∠NPQ=2α,∴∠EPQ=∠EQP=2α,∵EF平分∠PEQ,∴∠PEQ=2∠PEF=2∠QEF,∵∠EPQ+∠EQP+∠PEQ=180°,∴2∠EPQ+2∠PEF=180°,∴∠EPQ+∠PEF=90°,∴∠PFE=180°﹣90°=90°,∴EF⊥PQ;(3)如图③,∠NEF=∠AMP,理由如下:由(2)可知:∠EQP=2α,∠EFQ=90°,∴∠QEF=90°﹣2α,∵∠PQN=α,∴∠NQE=∠PQN+∠EQP=3α,∵NE平分∠PNQ,∴∠PNE=∠QNE,∵QE∥PN,∴∠QEN=∠PNE,∴∠QNE=∠QEN,∵∠NQE=3α,∴∠QNE=(180°﹣∠NQE)=(180°﹣3α),∴∠NEF=180°﹣∠QEF﹣∠NQE﹣∠QNE=180°﹣(90°﹣2α)﹣3α﹣(180°﹣3α)=180°﹣90°+2α﹣3α﹣90°+α=α=∠AMP.∴∠NEF=∠∠AMP.【知识点】平行线的判定与性质。
第五章相交线与平行线单元试卷(提升篇)(Word 版 含解析)一、选择题1.下列说法中错误的是( )A .一个锐角的补角一定是钝角;B .同角或等角的余角相等;C .两点间的距离是连结这两点的线段的长度;D .过直线l 上的一点有且只有一条直线垂直于l2.下列命题是真命题的是( )A .直角三角形中两个锐角互补B .相等的角是对顶角C .同旁内角互补,两直线平行D .若a b =,则a b = 3.已知直线12l l //,一块含60°角的直角三角板如图所示放置,125∠=︒,则2∠等于( )A .30°B .35°C .40°D .45°4.一辆行驶中的汽车经过两次拐弯后,仍向原方向行驶,则两次拐弯的角度可能是( ) A .先右转30,后左转60︒B .先右转30后左转60︒C .先右转30后左转150︒D .先右转30,后左转305.给出下列命题:①平分弦的直径垂直于弦,且平分弦所对的弧;②平面上任意三点能确定一个圆;③图形经过旋转所得的图形和原图形全等;④三角形的外心到三个顶点的距离相等;⑤经过圆心的直线是圆的对称轴.正确的命题为( )A .①③⑤B .②④⑤C .③④⑤D .①②⑤ 6.如图,AD 是△ABC 的角平分线,DE ⊥AC ,垂足为E ,BF ∥AC 交ED 的延长线于点F ,若BC 恰好平分∠ABF ,AE=2BF,给出下列四个结论:①DE=DF ;②DB=DC ;③AD ⊥BC ;④AC=3BF ,其中正确的结论共有( )A .4个B .3个C .2个D .1个7.已知∠A 的两边与∠B 的两边互相平行,且∠A=20°,则∠B 的度数为( ). A .20° B .80° C .160° D .20°或160°8.如图,直线l 1∥l 2∥l 3,等腰Rt △ABC 的三个顶点A ,B ,C 分别在l 1,l 2,l 3上,∠ ACB=90°,AC 交l 2于点D ,已知l 1与l 2的距离为1,l 2与l 3的距离为3,则AB:BD 的值为( )A .425B .34C .528D .32209.佳佳将坐标系中一图案横向拉长2倍,又向右平移2个单位长度,若想变回原来的图案,需要变化后的图案上各点坐标( )A .纵坐标不变,横坐标减2B .纵坐标不变,横坐标先除以2,再均减2C .纵坐标不变,横坐标除以2D .纵坐标不变,横坐标先减2,再均除以210.已知//DE FG ,三角尺ABC 按如图所示摆放,90C ∠=︒,若137∠=︒,则2∠的度数为( )A .57°B .53°C .51°D .37°11.如图,两个直角三角形重叠在一起,将其中一个三角形沿着点B 到点C 的方向平移到△DEF 的位置,∠B =90°,AB =8,DH =3,平移距离为4,求阴影部分的面积为( )A .20B .24C .25D .2612.已知:如图AB//EF ,BC CD ⊥,则α∠,β∠,γ∠之间的关系是( )A .βαγ∠∠∠=+B .αβγ180∠∠∠++=C .αβγ90∠∠∠+-=D .βγα90∠∠∠+-=二、填空题13.如图,已知AB∥CD,点E,F分别在直线AB,CD上点P在AB,CD之间且在EF的左侧.若将射线EA沿EP折叠,射线FC沿FP折叠,折叠后的两条射线互相垂直,则 EPF的度数为 _____.14.一副三角尺按如图所示叠放在一起,其中点,B D重合,若固定三角形AOB,将三角形ACD绕点A顺时针旋转一周,共有 _________次出现三角形ACD的一边与三角形AOB的某一边平行.15.如图,已知AB∥CD,CE、BE的交点为E,现作如下操作:第一次操作,分别作∠ABE和∠DCE的平分线,交点为E1,第二次操作,分别作∠ABE1和∠DCE1的平分线,交点为E2,第三次操作,分别作∠ABE2和∠DCE2的平分线,交点为E3,…,第n次操作,分别作∠ABE n﹣1和∠DCE n﹣1的平分线,交点为E n.若∠E n=1度,那∠BEC等于________度16.如图,已知EF∥GH,A、D为GH上的两点,M、B为EF上的两点,延长AM于点C,AB平分∠DAC,直线DB平分∠FBC,若∠ACB=100°,则∠DBA的度数为________.17.如图,AB∥CD,点P为CD上一点,∠EBA、∠EPC的角平分线于点F,已知∠F=40°,则∠E =_____度.18.如图,长方形ABCD 的周长为30,则图中虚线部分总长为____________.19.如图,直线l 1∥l 2∥l 3,等边△ABC 的顶点B 、C 分别在直线l 2、l 3上,若边BC 与直线l 3的夹角∠1=25°,则边AB 与直线l 1的夹角∠2=________.20.已知∠A 与∠B 的两边分别平行,其中∠A 为x °,∠B 的为(210﹣2x )°,则∠A =____度.三、解答题21.综合与探究综合与实践课上,同学们以“一个含30角的直角三角尺和两条平行线”为背景开展数学活动,如图,已知两直线a ,b ,且//a b ,三角形ABC 是直角三角形,90BCA ∠=︒,30BAC ∠=︒,60ABC ∠=︒操作发现:(1)如图1.148∠=︒,求2∠的度数;(2)如图2.创新小组的同学把直线a 向上平移,并把2∠的位置改变,发现21120∠-∠=︒,请说明理由.实践探究:(3)填密小组在创新小组发现的结论的基础上,将图2中的图形继续变化得到图3,AC 平分BAM ∠,此时发现1∠与2∠又存在新的数量关系,请写出1∠与2∠的数量关系并说明理由.22.已知:如图所示,直线MN ∥GH ,另一直线交GH 于A ,交MN 于B ,且∠MBA =80°,点C 为直线GH 上一动点,点D 为直线MN 上一动点,且∠GCD =50°.(1)如图1,当点C 在点A 右边且点D 在点B 左边时,∠DBA 的平分线交∠DCA 的平分线于点P ,求∠BPC 的度数;(2)如图2,当点C 在点A 右边且点D 在点B 右边时,∠DBA 的平分线交∠DCA 的平分线于点P ,求∠BPC 的度数;(3)当点C 在点A 左边且点D 在点B 左边时,∠DBA 的平分线交∠DCA 的平分线所在直线交于点P ,请直接写出∠BPC 的度数,不说明理由.23.钱塘江汛期即将来临,防汛指挥部在一危险地带两岸各安置了一探照灯,便于夜间查看江水及两岸河堤的情况.如图,灯A 射线自AM 顺时针旋转至AN 便立即回转,灯B 射线自BP 顺时针旋转至BQ 便立即回转,两灯不停交叉照射巡视.若灯A 转动的速度是a °/秒,灯B 转动的速度是b °/秒,且a 、b 满足|a ﹣3b|+(a+b ﹣4)2=0.假定这一带长江两岸河堤是平行的,即PQ ∥MN ,且∠BAN =45°.(1)求a 、b 的值;(2)若灯B 射线先转动30秒,灯A 射线才开始转动,在灯B 射线到达BQ 之前,A 灯转动几秒,两灯的光束互相平行?(3)如图,两灯同时转动,在灯A 射线到达AN 之前,若射出的光束交于点C ,过C 作CD ⊥AC 交PQ 于点D ,则在转动过程中,∠BAC 与∠BCD 的数量关系是否发生变化?若不变,请求出其数量关系;若改变,请求出其取值范围.24.AB ∥CD ,点P 为直线AB ,CD 所确定的平面内的一点.(1)如图1,写出∠APC 、∠A 、∠C 之间的数量关系,并证明;(2)如图2,写出∠APC 、∠A 、∠C 之间的数量关系,并证明;(3)如图3,点E 在射线BA 上,过点E 作EF ∥PC ,作∠PEG =∠PEF ,点G 在直线CD 上,作∠BEG 的平分线EH 交PC 于点H ,若∠APC =30°,∠PAB =140°,求∠PEH 的度数.25.问题情境:如图1,//AB CD ,128PAB ∠=︒,124PCD ∠=︒,求APC ∠的度数.小明的思路是过点P 作//PE AB ,通过平行线性质来求APC ∠.(1)按照小明的思路,写出推算过程,求APC ∠的度数.(2)问题迁移:如图2,//AB CD ,点P 在射线OM 上运动,记PAB α∠=,PCD β∠=,当点P 在B 、D 两点之间运动时,问APC ∠与α、β之间有何数量关系?请说明理由.(3)在(2)的条件下,当点P 在线段OB 上时,请直接写出APC ∠与α、β之间的数量关系.26.已知:∠1=∠2,EG 平分∠AEC .(1)如图1,∠MAE =50°,∠FEG =15°,∠NCE =80°.试判断 EF 与 CD 的位置关系,并说明理由.(2)如图2,∠MAE =135°,∠FEG =30°,当 AB ∥CD 时,求∠NCE 的度数;(3)如图2,试写出∠MAE 、∠FEG 、∠NCE 之间满足什么关系时,AB ∥CD .27.将一副三角板中的两个直角顶点C 叠放在一起(如图①),其中30A ∠=︒,60B ∠=︒,45D E ∠=∠=︒.(1)猜想BCD ∠与ACE ∠的数量关系,并说明理由;(2)若3BCD ACE ∠=∠,求BCD ∠的度数;(3)若按住三角板ABC 不动,绕顶点C 转动三角DCE ,试探究BCD ∠等于多少度时//CE AB ,并简要说明理由.28.如图1,已知直线PQ ∥MN ,点A 在直线PQ 上,点C 、D 在直线MN 上,连接AC 、AD ,∠PAC =50°,∠ADC =30°,AE 平分∠PAD ,CE 平分∠ACD ,AE 与CE 相交于E . (1)求∠AEC 的度数;(2)若将图1中的线段AD 沿MN 向右平移到A 1D 1如图2所示位置,此时A 1E 平分∠AA 1D 1,CE 平分∠ACD 1,A 1E 与CE 相交于E ,∠PAC =50°,∠A 1D 1C =30°,求∠A 1EC 的度数.(3)若将图1中的线段AD 沿MN 向左平移到A 1D 1如图3所示位置,其他条件与(2)相同,求此时∠A 1EC 的度数.【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【详解】解:D 选项中缺少先要条件,就是在同一平面内故选:D2.C解析:C【分析】分别利用直角三角形的性质、对顶角和平行线的判定方法以及绝对值的性质分析得出答案.【详解】解:A、直角三角形中两个锐角互余,故此选项错误;B、相等的角不一定是对顶角,故此选项错误;C、同旁内角互补,两直线平行,正确;D、若|a|=|b|,则a=±b,故此选项错误;故选C.【点睛】此题主要考查了命题与定理,正确把握相关性质是解题关键.3.B解析:B【分析】过C作CM∥直线l1,求出CM∥直线l1∥直线l2,根据平行线的性质得出∠1=∠MCB=25°,∠2=∠ACM,即可求出答案.【详解】过C作CM∥直线l1,∵直线l1∥l2,∴CM∥直线l1∥直线l2,∵∠ACB=60°,∠1=25°,∴∠1=∠MCB=25°,∴∠2=∠ACM=∠ACB-∠MCB=60°-25°=35°,故选:B.【点睛】本题考查了平行线的性质,能正确作出辅助线是解此题的关键.4.D解析:D【分析】根据平行线的性质分别判断即可.【详解】解:因为两次拐弯后,行驶的方向与原来的方向相同,所以两边拐弯的方向相反,形成的角是同位角,故选:D.【点睛】本题考查平行线的性质,利用两直线平行,同位角相等是解题的关键.5.C解析:C【分析】①垂径定理的逆定理,注意有否有缺少什么;②如果三点共线;③旋转的性质;④三角形的外心的性质;⑤圆的性质.【详解】①平分弦(不是直径)的直径垂直于弦,且平分弦所对的弧,原命题错误;②三点共线时不能确定一个圆,原命题错误;③由旋转的性质可知,原命题正确;④由三角形的外心的性质,原命题正确;⑤由圆的性质,原命题正确;本题的答案是:C.【点睛】考查垂径定理的逆定理、旋转的性质、三角形的外心的性质、圆的性质.6.A解析:A【详解】∵BF∥AC,∴∠C=∠CBF,∵BC平分∠ABF,∴∠ABC=∠CBF,∴∠C=∠ABC,∴AB=AC,∵AD是△ABC的角平分线,∴BD=CD,AD⊥BC,故②③正确,在△CDE与△DBF中,C CBFCD BDEDC BDF∠=∠⎧⎪=⎨⎪∠=∠⎩,∴△CDE≌△DBF,∴DE=DF,CE=BF,故①正确;∵AE=2BF,∴AC=3BF,故④正确.故选A.考点:1.全等三角形的判定与性质;2.角平分线的性质;3.全等三角形的判定与性质.7.D解析:D【解析】试题分析:如图,∵∠A=20°,∠A的两边分别和∠B的两边平行,∴∠B和∠A可能相等也可能互补,即∠B 的度数是20°或160°,故选:D.8.A解析:A 【解析】解:如图,作3BF l ⊥, 3AE l ⊥,∵090ACB ∠=,∴090BCF ACE ∠+∠=,∵090BCF CFB ∠+∠=,∴ACE CBF ∠=∠,在ACE ∆和CBF ∆中,{BFC CEACBF ACE BC AC∠=∠∠=∠=∴ACE CBF ∆≅∆,∴3,4CE BF CF AE ====,∵1l 与2l 的距离为1, 2l 与3l 的距离为3,∴1,7AG BG EF CF CE ===+=, ∴2252AB BG AG +=∵23//l l , ∴14DG AG CE AE ==, ∴1344DG CE ==, ∴325744BD BG DG =-=-=, ∴222554AB BD ==, 故选A .【点睛】本题考查了全等三角形的性质和判定,平行线分线段成比例定理等,构造全等三角形是解决本题的关键.解析:D【解析】图案横向拉长2倍就是纵坐标不变,横坐标乘以2,又向右平移2个单位长度,就是纵坐标不变,横坐标加2,应该利用逆向思维纵坐标不变,横坐标先减2,再均除以2.故选:D .点睛:此题主要考查了坐标与图形变化-平移,关键是掌握横坐标,右移加,左移减;纵坐标,上移加,下移减10.B解析:B【分析】作GH ∥FG ,推出GH ∥FG ∥DE ,得到∠1=∠3,∠2=∠4,由90C ∠=︒, 137∠=︒,即可求解.【详解】作GH ∥FG ,∵DE ∥FG ,∴GH ∥FG ∥DE ,∴∠1=∠3,∠2=∠4,∵90C ∠=︒, 137∠=︒,∴∠3+∠4=90︒,即37︒+∠2=90︒,∴∠2=53︒,故选:B .【点睛】本题考查了平行线的性质,根据题意作出辅助线,构造出平行线是解答此题的关键.11.D解析:D【解析】由平移的性质知,BE=4,DE=AB=8,可得HE=DE-DH=8-3=5,所以S 四边形HDFC =S 梯形ABEH=12(AB+EH )×BE=12(8+5)×4=26.故选D. 12.C【分析】分别过C 、D 作AB 的平行线CM 和DN ,由平行线的性质可得到∠α+∠β=∠C+∠γ,可求得答案.【详解】解:如图,分别过C 、D 作AB 的平行线CM 和DN ,AB//EF ,AB//CM //DN //EF ∴,αBCM ∠∠∴=,MCD NDC ∠∠=,NDE γ∠∠=,αβBCM CDN NDE BCM MCD γ∠∠∠∠∠∠∠∠∴+=++=++,又BC CD ⊥,BCD 90∠∴=,αβ90γ∠∠∠∴+=+,即αβγ90∠∠∠+-=,故选C .【点睛】本题主要考查平行线的性质,掌握平行线的判定和性质是解题的关键,即①两直线平行⇔同位角相等,②两直线平行⇔内错角相等,③两直线平行⇔同旁内角互补,④a//b ,b//c ⇒a//c .二、填空题13.45°或135°【分析】根据题意画出图形,然后利用平行线的性质得出∠EMF 与∠AEM 和∠CFM 的关系,然后可得答案.【详解】解:如图1,过作,,,,,,,同理可得,解析:45°或135°【分析】根据题意画出图形,然后利用平行线的性质得出∠EMF 与∠AEM 和∠CFM 的关系,然后可得答案.【详解】解:如图1,过M 作//MN AB ,//AB CD ,////AB CD NM ∴,AEM EMN ∴∠=∠,NMF MFC ∠=∠,90EMF ∠=︒,90AEM CFM ∴∠+∠=︒,同理可得P AEP CFP ∠=∠+∠, 由折叠可得:12AEP PEM AEM ∠=∠=∠,12PFC PFM CFM ∠=∠=∠, 1()452P AEM CFM ∴∠=∠+∠=︒, 如图2,过M 作//MN AB ,//AB CD , ////AB CD NM ∴,180AEM EMN ∴∠+∠=︒,180NMF MFC ∠+∠=︒,360AEM EMF CFM ∴∠+∠+∠=︒,90EMF ∠=︒,36090270AEM CFM ∴∠+∠=︒-︒=︒,由折叠可得:12AEP PEM AEM ∠=∠=∠,12PFC PFM CFM ∠=∠=∠, 12701352P ∴∠=︒⨯=︒, 综上所述:EPF ∠的度数为45︒或135︒,故答案为:45°或135°.【点睛】本题主要考查了平行线的性质,关键是正确画出图形,分两种情况分别计算出∠EPF 的度数.14.【分析】要分类讨论,不要漏掉任何一种情况,也可实际用三角板操作找到它们之间的关系,再计算.【详解】解:分8种情况讨论:(1)如图1,AD 边与OB 边平行时,∠BAD=45°;(2)如图2,解析:8【分析】要分类讨论,不要漏掉任何一种情况,也可实际用三角板操作找到它们之间的关系,再计算.【详解】解:分8种情况讨论:(1)如图1,AD 边与OB 边平行时,∠BAD =45°;(2)如图2,当AC 边与OB 平行时,∠BAD =90°+45°=135°;(3)如图3,DC 边与AB 边平行时,∠BAD =60°+90°=150°,(4)如图4,DC 边与OB 边平行时,∠BAD =135°+30°=165°,(5)如图5,DC 边与OB 边平行时,∠BAD =45°﹣30°=15°;(6)如图6,DC 边与AO 边平行时,∠BAD =15°+90°=105°(7)如图7,DC 边与AB 边平行时,∠BAD =30°,(8)如图8,DC 边与AO 边平行时,∠BAD =30°+45°=75°;综上所述:∠BAD 的所有可能的值为:15°,30°,45°,75°,105°,135°,150°,165°.故答案为:8.【点睛】本题考查了平行线的性质及判定,画出所有符合题意的示意图是解决本题的关键.15.2n .【解析】如图①,过E作EF∥AB,∵AB∥CD,∴AB∥EF∥CD,∴∠B=∠1,∠C=∠2,∵∠BEC=∠1+∠2,∴∠BEC=∠ABE+∠DCE;如图②,∵∠ABE和∠解析:2n .【解析】如图①,过E作EF∥AB,∵AB∥CD,∴AB∥EF∥CD,∴∠B=∠1,∠C=∠2,∵∠BEC=∠1+∠2,∴∠BEC=∠ABE+∠DCE;如图②,∵∠ABE和∠DCE的平分线交点为E1,∴∠CE1B=∠ABE1+∠DCE1=12∠ABE+12∠DCE=12∠BEC.∵∠ABE1和∠DCE1的平分线交点为E2,∴∠BE2C=∠ABE2+∠DCE2=12∠ABE1+12∠DCE1=12∠CE1B=14∠BEC;如图②,∵∠ABE2和∠DCE2的平分线,交点为E3,∴∠BE3C=∠ABE3+∠DCE3=12∠ABE2+12∠DCE2=12∠CE2B=18∠BEC;…以此类推,∠E n=12n∠BEC.∴当∠E n=1度时,∠BEC等于2n度.故答案为2n .点睛:本题主要考查了角平分线的定义以及平行线性质:两直线平行,内错角相等的运用.解决问题的关键是作平行线构造内错角,解题时注意:从一个角的顶点出发,把这个角分成相等的两个角的射线叫做这个角的平分线.16.50°【解析】解:如图,设∠DAB=∠BAC=x,即∠1=∠2=x.∵EF∥GH,∴∠2=∠3.在△ABC内,∠4=180°﹣∠ACB﹣∠1﹣∠3=180°﹣∠ACB﹣2x=80°﹣2x.∵直线解析:50°【解析】解:如图,设∠DAB=∠BAC=x,即∠1=∠2=x.∵EF∥GH,∴∠2=∠3.在△ABC内,∠4=180°﹣∠ACB﹣∠1﹣∠3=180°﹣∠ACB﹣2x=80°﹣2x.∵直线BD平分∠FBC,∴∠5=12(180°﹣∠4)=12(180°﹣80°+2x)=50°+x,∴∠DBA=180°﹣∠3﹣∠4﹣∠5=180°﹣x﹣(80°﹣2x)﹣(50°+x)=180°﹣x﹣80°+2x﹣50°﹣x=50°.故答案为50°.点睛:本题考查了平行线的性质,角平分线的定义,三角形的内角和定理,熟记性质并理清图中各角度之间的关系是解题的关键.17.80【解析】【详解】如图,根据角平分线的性质和平行线的性质,可知∠FMA=∠CPE=∠F+∠1,∠ANE=∠E+2∠1=∠CPE=2∠FMA,即∠E=2∠F=2×40°=80°.故答案为80解析:80【解析】【详解】如图,根据角平分线的性质和平行线的性质,可知∠FMA=12∠CPE=∠F+∠1,∠ANE=∠E+2∠1=∠CPE=2∠FMA,即∠E=2∠F=2×40°=80°.故答案为80.18.15【分析】由长方形的性质和平移的性质,即可求出答案.【详解】解:根据题意,虚线部分的总长为:.故答案为:15.【点睛】本题考查了长方形的性质,平移变换等知识,解题的关键是理解题意,解析:15【分析】由长方形的性质和平移的性质,即可求出答案.【详解】解:根据题意,虚线部分的总长为:130152AB BC+=⨯=.故答案为:15.【点睛】本题考查了长方形的性质,平移变换等知识,解题的关键是理解题意,灵活运用所学知识解决问题,属于中考常考题型.19.【解析】试题分析:如图:∵△ABC是等边三角形,∴∠ABC=60°,又∵直线l1∥l2∥l3,∠1=25°,∴∠1=∠3=25°.∴∠4=60°-25°=35°,∴∠2=∠4=35解析:035【解析】试题分析:如图:∵△ABC 是等边三角形,∴∠ABC=60°,又∵直线l 1∥l 2∥l 3,∠1=25°,∴∠1=∠3=25°.∴∠4=60°-25°=35°,∴∠2=∠4=35°.考点:1.平行线的性质;2.等边三角形的性质.20.70或30.【分析】分∠A=∠B 与∠A+∠B=180°两种情况进行讨论即可求解.【详解】解:根据题意,有两种情况:(1)当∠A=∠B ,可得:x=210﹣2x ,解得:x=70;(2)当解析:70或30.【分析】分∠A=∠B 与∠A+∠B=180°两种情况进行讨论即可求解.【详解】解:根据题意,有两种情况:(1)当∠A=∠B ,可得:x=210﹣2x ,解得:x=70;(2)当∠A+∠B=180°时,可得:x+210﹣2x=180,解得:x=30.故答案为:70或30.【点睛】本题考查的是平行线的性质,在解答此题时要注意分类讨论.三、解答题21.(1)242∠=︒;(2)理由见解析;(3)12∠=∠,理由见解析.【分析】(1)由平角定义求出∠3=42°,再由平行线的性质即可得出答案;(2)过点B 作BD ∥a .由平行线的性质得∠2+∠ABD =180°,∠1=∠DBC ,则∠ABD =∠ABC−∠DBC =60°−∠1,进而得出结论;(3)过点C 作CP ∥a ,由角平分线定义得∠CAM =∠BAC =30°,∠BAM =2∠BAC =60°,由平行线的性质得∠1=∠BAM =60°,∠PCA =∠CAM =30°,∠2=∠BCP =60°,即可得出结论.【详解】解:(1)如图1148∠=︒,90BCA ∠=︒,3180142BCA ∴∠=︒-∠-∠=︒,//a b ,2342∴∠=∠=︒;图1(2)理由如下:如图2. 过点B 作//BD a ,图22180ABD ∴∠+∠=︒,//a b ,//b BD ∴,1∴∠=∠DBC ,601ABD ABC DBC ∴∠=∠-∠=︒-∠,2601180∴∠+︒-∠=︒,21120∴∠-∠=︒;(3)12∠=∠,图3理由如下:如图3,过点C 作//CP a ,AC 平分BAM ∠,30CAM BAC ∴∠=∠=︒,260BAM BAC ∠=∠=︒,又//a b ,//CP b ∴,160BAM ∠=∠=︒,30PCA CAM ∴∠=∠=︒,903060BCP BCA PCA ∴∠=∠-∠=︒-︒=︒,又//CP a ,260BCP ∴∠=∠=︒,12∠∠∴=.【点睛】本题是三角形综合题目,考查了平移的性质、直角三角形的性质、平行线的判定与性质、角平分线定义、平角的定义等知识;本题综合性强,熟练掌握平移的性质和平行线的性质是解题的关键.22.(1)∠BPC =65°;(2)∠BPC =155°;(3)∠BPC =155°【分析】(1)如图1,过点P 作PE ∥MN ,根据题意结合平行线的性质和角平分线的性质可以得出:∠BPE=∠DBP=40°,1CPE PCA DCA 252︒∠=∠=∠=,据此进一步求解即可; (2)如图2,过点P 作PE ∥MN ,根据平角可得∠DBA =100°,再由角平分线和平行线的性质得∠BPE =130°,1PCA CPE DCA 252︒∠=∠=∠=,据此进一步求解即可; (3)如图3,过点P 作PE ∥MN ,根据角平分线性质得出∠DBP =∠PBA=40°,由此得出∠BPE =∠DBP =40°,然后根据题意得出1PCA DCA 652︒∠=∠=,由此再利用平行线性质得出∠CPE 度数,据此进一步求解即可.【详解】(1)如图1,过点P 作PE ∥MN .∵PB 平分∠DBA ,∴∠DBP=∠PBA=40°,∵PE ∥MN ,∴∠BPE=∠DBP=40°,同理可证:1CPE PCA DCA252︒∠=∠=∠=,∴∠BPC=40°+25°=65°;(2)如图2,过点P作PE∥MN.∵∠MBA=80°.∴∠DBA=180°−80°=100°.∵BP平分∠DBA.∴1DBP DBA502︒∠=∠=,∵MN∥PE,∴∠BPE=180°−∠DBP=130°,∵PC平分∠DCA.∴1PCA DCA252︒∠=∠=,∵MN∥PE,MN∥GH,∴PE∥GH,∴∠EPC=∠PCA=25°,∴∠BPC=130°+25°=155°;(3)如图3,过点P作PE∥MN.∵BP平分∠DBA.∴∠DBP=∠PBA=40°,∵PE∥MN,∴∠BPE=∠DBP=40°,∵CP平分∠DCA,∠DCA=180°−∠DCG=130°,∴1PCA DCA652︒∠=∠=,∵PE∥MN,MN∥GH,∴PE∥GH,∴∠CPE=180°−∠PCA=115°,∴∠BPC=40°+115°=155°.【点睛】本题主要考查了平行线性质与角平分线性质的综合运用,熟练掌握相关概念是解题关键. 23.(1)a=3,b=1;(2)当t=15秒或82.5秒时,两灯的光束互相平行;(3)∠BAC 与∠BCD的数量关系不发生变化,其大小比值为∠BCD:∠BAC=2:3.【分析】(1)利用绝对值和完全平方式的非负性即可解决问题.(2)分三种情况,利用平行线的性质列出方程即可解决.(3)将∠BAC和∠BCD分别用t的代数式表示,然后在进行运算即可.【详解】(1)∵|a﹣3b|+(a+b﹣4)2=0.又∵|a﹣3b|≥0,(a+b﹣4)2≥0.∴a=3,b=1;故答案为a=3,b=1.(2)设A灯转动t秒,两灯的光束互相平行,①当0<t<60时,3t=(30+t)×1,解得t=15;②当60<t<120时,3t﹣3×60+(30+t)×1=180,解得t=82.5;③当120<t<150时,3t﹣360=t+30,解得t=195>150(不合题意)综上所述,当t=15秒或82.5秒时,两灯的光束互相平行.故答案为:t=15秒或t=82.5秒.(3)设A灯转动时间为t秒,∵∠CAN=180°﹣3t,∴∠BAC=45°﹣(180°﹣3t)=3t﹣135°,又∵PQ∥MN,∴∠BCA=∠CBD+∠CAN=t+180°﹣3t=180°﹣2t,∵∠ACD=90°,∴∠BCD=90°﹣∠BCA=90°﹣(180°﹣2t)=2t﹣90°,∴∠BCD:∠BAC=2:3.故答案为:∠BAC与∠BCD的数量关系不发生变化,其大小比值为∠BCD:∠BAC=2:3.【点睛】本题考查了绝对值和完全平方式的非负性、平行线的性质、解方程等知识,读懂题目的意思,掌握好平行线的性质是解题的关键.24.(1)∠A+∠C+∠APC=360°,证明详见解析;(2)∠APC=∠A−∠C,证明详见解析;(3)55°.【分析】(1)首先过点P作PQ∥AB,结合题意得出AB∥PQ∥CD,然后由“两直线平行,同旁内角互补”进一步分析即可证得∠A+∠C+∠APC=360°;(2)作PQ∥AB,结合题意得出AB∥PQ∥CD,根据“两直线平行,内错角相等”进一步分析即可证得∠APC=∠A−∠C;(3)由(2)知,∠APC=∠PAB−∠PCD,先利用平行线性质得出∠BEF=∠PQB=110°,然后进一步得出∠PEG=12∠FEG,∠GEH=12∠BEG,最后根据∠PEH=∠PEG−∠GEH即可得出答案.【详解】(1)∠A+∠C+∠APC=360°,证明如下:如图1所示,过点P作PQ∥AB,∴∠A+∠APQ=180°,又∵AB∥CD,∴PQ∥CD,∴∠C+∠CPQ=180°,∴∠A+∠APQ+∠C+∠CPQ=360°,即∠A+∠C+∠APC=360°;(2)∠APC=∠A−∠C,证明如下:如图2所示,过点P作PQ∥AB,∴∠A=∠APQ,∵AB∥CD,∴PQ∥CD,∴∠C=∠CPQ,∵∠APC=∠APQ−∠CPQ,∴∠APC=∠A−∠C;(3)由(2)知,∠APC=∠PAB−∠PCD,∵∠APC=30°,∠PAB=140°,∴∠PCD=110°,∵AB∥CD,∴∠PQB=∠PCD=110°,∵EF∥PC,∴∠BEF=∠PQB=110°,∵∠PEG=∠PEF,∴∠PEG=12∠FEG,∵EH平分∠BEG,∴∠GEH=12∠BEG,∴∠PEH=∠PEG−∠GEH=12∠FEG−12∠BEG=12∠BEF=55°.【点睛】本题主要考查了利用平行线性质与角平分线性质求角度的综合运用,熟练掌握相关概念是解题关键.25.(1)108°;(2)∠APC=α+β,理由见解析;(3)∠APC=β-α.【分析】(1)过P作PE∥AB,先推出PE∥AB∥CD,再通过平行线性质可求出∠APC;(2)过P作PE∥AB交AC于E,先推出AB∥PE∥DC,然后根据平行线的性质得出α=∠APE,β=∠CPE,即可得出答案;(3)过点P作PE∥AB交OA于点E,同(2)中方法根据平行线的性质得出α=∠APE,β=∠CPE,即可得出答案.【详解】解:(1)过点P作PE∥AB,∵AB∥CD,∴PE∥AB∥CD,∴∠A+∠APE=180°,∠C+∠CPE=180°,∵∠PAB=128°,∠PCD=124°,∴∠APE=52°,∠CPE=56°,∴∠APC=∠APE+∠CPE=108°;(2)∠APC=α+β.理由如下:如图2,过P 作PE ∥AB 交AC 于E ,∵AB ∥CD ,∴AB ∥PE ∥CD ,∴α=∠APE ,β=∠CPE ,∴∠APC=∠APE+∠CPE=α+β;(3)∠APC=β-α.理由如下:过点P 作PE ∥AB 交OA 于点E ,同(2)可得,α=∠APE ,β=∠CPE ,∴∠APC=∠CPE-∠APE=β-α.【点睛】本题主要考查了平行线的性质与平行公理,解题的关键是过拐点作平行线,利用平行线的性质解决问题.26.(1)//EF CD ,证明见解析 (2)75° (3)2FEG NCE MAE +=∠∠∠,证明见解析【分析】(1)根据12∠=∠可得//MB EF ,根据角的和差关系和角平分线的性质可得80CEF NCE ==︒∠∠,从而得证//EF CD ;(2)根据12∠=∠可得//MB EF ,根据平行线的性质以及角平分线的性质可得18075NCE GEC FEG =︒--=︒∠∠∠;(3)根据12∠=∠可得//MB EF ,根据平行线的性质可得180AEG FEA FEG MAE FEG =+=︒-+∠∠∠∠∠,再根据角平分线的性质可得1802FEC MAE FEG =︒-+∠∠∠,再根据平行线的性质即可得2FEG NCE MAE +=∠∠∠.【详解】(1)//EF CD∵12∠=∠∴//MB EF∴50AEF MAE ==︒∠∠∴501565AEG AEF FEG =+=︒+︒=︒∠∠∠∵EG 平分∠AEC∴65CEG AEG ==︒∠∠∴651580CEF CEG FEG =+=︒+︒=︒∠∠∠∴80CEF NCE ==︒∠∠∴//EF CD ;(2)∵12∠=∠∴//MB EF∵∠MAE =135°∴18045AEF MAE =︒-=︒∠∠∵∠FEG =30°∴75AEG AEF FEG =+=︒∠∠∠∵EG 平分∠AEC∴75GEC =︒∠∵//AB CD∴18075NCE GEC FEG =︒--=︒∠∠∠;(3)2FEG NCE MAE +=∠∠∠∵12∠=∠∴//MB EF∴180MAE FEA +=︒∠∠∴180FEA MAE =︒-∠∠∴180AEG FEA FEG MAE FEG =+=︒-+∠∠∠∠∠∵EG 平分∠AEC∴GEC AEG =∠∠∴FEC GEC FEG =+∠∠∠∴180FEC MAE FEG FEG =︒-++∠∠∠∠∴1802FEC MAE FEG =︒-+∠∠∠∵//,//AB CD AB EF∴//EF CD∴180FEC NCE +=︒∠∠∴1802180MAE FEG NCE ︒-++=︒∠∠∠∴2FEG NCE MAE +=∠∠∠.【点睛】本题考查了平行线的综合问题,掌握平行线的性质以及判定定理、角平分线的性质、角的和差关系是解题的关键.27.(1)180BCD ACE ∠+∠=︒,理由详见解析;(2)135°;(3)BCD ∠等于150︒或30时,//CE AB .【分析】(1)依据∠BCD=∠ACB+∠ACD=90°+∠ACD ,即可得到∠BCD+∠ACE 的度数;(2)设∠ACE=α,则∠BCD=3α,依据∠BCD+∠ACE=180°,即可得到∠BCD 的度数; (3)分两种情况讨论,依据平行线的性质,即可得到当∠BCD 等于150°或30°时,CE//4B.【详解】解:(1)180BCD ACE ∠+∠=︒,理由如下:90BCD ACB ACD ACD ∠=∠+∠=︒+∠,∴90BCD ACE ACD ACE ∠+∠=︒+∠+∠9090180=︒+︒=︒;(2)如图①,设ACE α∠=,则3BCD α∠=,由(1)可得180BCD ACE ∠+∠=︒,∴3180αα+=︒,∴45α=,∴3135BCD α∠==︒;(3)分两种情况:①如图1所示,当//AB CE 时,180120BCE B ∠=︒-∠=︒, 又90DCE ∠=︒,∴36012090150BCD ∠=︒-︒-︒=︒;②如图2所示,当//AB CE 时,60BCE B ∠=∠=︒, 又90DCE ∠=︒,∴906030BCD ∠=︒-︒=︒.综上所述,BCD ∠等于150︒或30时,//CE AB .【点睛】本题考查了平行线的判定:同位角相等,两直线平行;内错角相等,两直线平行;同旁内角互补,两直线平行.熟练掌握定理并且能够准确识图是解题的关键.28.(1)∠AEC =130°;(2)∠A 1EC =130°;(3)∠A 1EC =40°.【解析】【分析】(1)由直线PQ ∥MN ,∠ADC=∠QAD=30°,可得∠PAD=150°,再求∠PAE=75°,可得∠CAE=25°;由∠PAC=∠ACN ,求得∠ECA=25°,故∠AEC=180°﹣25°﹣25°;(2)先求出∠QA 1D 1=30°,∠PA 1D 1=150°,再求出∠PA 1E=∠EA 1D 1=75°,再求出∠CAQ=130°,∠ACN=50°,根据平分线定义得∠ACE=25°,再利用四边形内角和性质可求∠CEA 1;(3)根据平行线性质和角平分线定义可求得∠QA 1E=∠2=15°,∠ACE=∠ECN=∠1=25°,再由∠CEA 1=∠1+∠2即可求得答案.【详解】(1)如图1所示:∵直线PQ ∥MN ,∠ADC =30°,∴∠ADC =∠QAD =30°,∴∠PAD=150°,∵∠PAC=50°,AE平分∠PAD,∴∠PAE=75°,∴∠CAE=25°,可得∠PAC=∠ACN=50°,∵CE平分∠ACD,∴∠ECA=25°,∴∠AEC=180°﹣25°﹣25°=130°;(2)如图2所示:∵∠A1D1C=30°,线段AD沿MN向右平移到A1D1,PQ∥MN,∴∠QA1D1=30°,∴∠PA1D1=150°,∵A1E平分∠AA1D1,∴∠PA1E=∠EA1D1=75°,∵∠PAC=50°,PQ∥MN,∴∠CAQ=130°,∠ACN=50°,∵CE平分∠ACD1,∴∠ACE=25°,∴∠CEA1=360°﹣25°﹣130°﹣75°=130°;(3)如图3所示:过点E作FE∥PQ,∵∠A1D1C=30°,线段AD沿MN向左平移到A1D1,PQ∥MN,∴∠QA1D1=30°,∵A1E平分∠AA1D1,∴∠QA1E=∠2=15°,∵∠PAC=50°,PQ∥MN,∴∠ACN=50°,∵CE平分∠ACD1,∴∠ACE=∠ECN=∠1=25°,∴∠CEA1=∠1+∠2=15°+25°=40°.【点睛】本题考查了平行线性质,角平分线定义,熟练运用平行线性质和角平分线定义推出角的度数是解题的关键.。
人教版七年级数学下册《第五章相交线与平行线》能力提升卷-附答案班级:___________________ 姓名:_________________ 得分:_______________注意事项:本试卷满分120分试题共23题其中选择10道、填空6道、解答7道.答卷前考生务必用0.5毫米黑色签字笔将自己的姓名、班级等信息填写在试卷规定的位置.一、选择题(本大题共10小题每小题3分共30分)在每小题所给出的四个选项中只有一项是符合题目要求的.1.(2022秋•唐河县期末)如图下列图形中的∠1和∠2不是同位角的是()A.B.C.D.【分析】根据同位角的意义逐项进行判断即可.【解答】解:选项A中的∠1与∠2 是直线AB、BC被直线EF所截的同位角因此选项A不符合题意;选项B中的∠1与∠2 是直线AB、MG被直线EM所截的同位角因此选项B不符合题意;选项C中的∠1与∠2 没有公共的截线因此不是同位角所以选项C符合题意;选项D中的∠1与∠2 是直线CD、EF被直线AB所截的同位角因此选项D不符合题意;故选:C.2.(2022秋•长春期末)如图测量运动员跳远成绩选取的是AB的长度其依据是()A.两点确定一条直线B.两点之间直线最短C.两点之间线段最短D.垂线段最短【分析】利用垂线段最短求解.【解答】解:该运动员跳远成绩的依据是:垂线段最短;故选:D.3.(2020秋•射洪市期末)如图所示下列结论中正确的是()A.∠1和∠2是同位角B.∠2和∠3是同旁内角C.∠1和∠4是内错角D.∠3和∠4是对顶角【分析】根据同位角内错角同旁内角以及对顶角的定义进行解答.【解答】解:A、∠1和∠2是同旁内角故本选项错误;B、∠2和∠3是同旁内角故本选项正确;C、∠1和∠4是同位角故本选项错误;D、∠3和∠4是邻补角故本选项错误;故选:B.4.(2018秋•龙岗区期末)下列四个命题中真命题是()A.两条直线被第三条直线所截内错角相等B.如果∠1和∠2是对顶角那么∠1=∠2C.三角形的一个外角大于任何一个内角D.如果x2>0 那么x>0【分析】利用平行线的性质、对顶角的性质、三角形的外角的性质分别判断后即可确定正确的选项.【解答】解:A、两条直线被第三条直线所截内错角相等错误为假命题;B、如果∠1和∠2是对顶角那么∠1=∠2 正确为真命题;C、三角形的一个外角大于任何一个内角错误为假命题;D、如果x2>0 那么x>0 错误为假命题故选:B.5.(2022秋•玉泉区期末)如图直线AB、CD相交于点O OA平分∠EOC∠EOC:∠EOD=1:2 则∠BOD等于()A.30°B.36°C.45°D.72°【分析】根据邻补角的定义求出∠EOC再根据角平分线的定义求出∠AOC然后根据对顶角相等解答.【解答】解:∵∠EOC:∠EOD=1:2∴∠EOC=180°×=60°∵OA平分∠EOC∴∠AOC=∠EOC=×60°=30°∴∠BOD=∠AOC=30°.故选:A.6.(2022秋•宛城区期末)如图下列能判定AB∥CD的条件有()个(1)∠1=∠2;(2)∠3=∠4;(3)∠B=∠5;(4)∠B+∠BCD=180°.A.1B.2C.3D.4【分析】根据平行线的判定方法对四个条件分别进行判断即可.【解答】解:(1)∵∠1=∠2∴AD∥BC;(2)∵∠3=∠4∴AB∥CD;(3)∵∠B=∠5∴AB∥CD;(4)∵∠B+∠BCD=180°∴AB∥CD.故选:C.7.(2022秋•卧龙区校级期末)如图所示下列推理正确的个数有()①若∠1=∠2 则AB∥CD②若AD∥BC则∠3+∠A=180°③若∠C+∠CDA=180°则AD∥BC④若AB∥CD则∠3=∠4.A.0个B.1个C.2个D.3个【分析】根据平行线的判定(内错角相等两直线平行同位角相等两直线平行同旁内角互补两直线平行)和平行线的性质(两直线平行内错角相等两直线平行同位角相等两直线平行同旁内角互补)判断即可.【解答】解:∵∠1=∠2∴AB∥DC∴①正确;∵AD∥BC∴∠CBA+∠A=180°∠3+∠A<180°∴②错误;∵∠C+∠CDA=180°∴AD∥BC∴③正确;由AD∥BC才能推出∠3=∠4 而由AB∥CD不能推出∠3=∠4 ∴④错误;正确的个数有2个故选:C.8.(2022秋•市中区校级期末)如图在下列给出的条件中不能判定AB∥CD的是()A.∠BAD+∠ADC=180°B.∠ABD=∠BDCC.∠ADB=∠DBC D.∠ABE=∠DCE【分析】在复杂的图形中具有相等关系或互补关系的两角首先要判断它们是否是同位角、内错角或同旁内角被判断平行的两直线是否由“三线八角”而产生的被截直线.【解答】解:A、正确∵∠BAD+∠ADC=180°∴AB∥CD(同旁内角互补两直线平行);B、正确∵∠ABD=∠BDC∴AB∥CD(内错角相等两直线平行);C、∠ADB=∠DBC判定的是AD∥BC所以不符合要求;D、正确∵∠ABE=∠DCE∴AB∥CD(同位角相等两直线平行);故选:C.9.(2022秋•兴宁区校级期中)如图某校区2号楼楼梯的示意图现在要在楼梯上铺一条地毯如果楼梯的宽度是1.8米那么地毯的面积为()A.(a+1.8)h m2B.(h+1.8)a m2C.1.8(h+a)m2D.1.8ah m2【分析】根据图形可得地毯长度为(a+h)米再根据长方形的面积公式解答即可.【解答】解:由题意得地毯的长度为(a+h)米故地毯的面积为:1.8(h+a)m2.故选:C.10.(2022秋•南岗区校级期中)如图AB∥CD∥EF则下列各式中正确的是()A.∠1+∠2+∠3=180°B.∠1+∠2=180°+∠3C.∠1+∠3=180°+∠2D.∠2+∠3=180°+∠1【分析】根据两直线平行同旁内角互补可得∠2+∠BDC=180°再根据两直线平行内错角相等可得∠3=∠CDE而∠CDE=∠1+∠BDC整理可得∠2+∠3﹣∠1=180°.【解答】解:∵AB∥CD∥EF∴∠2+∠BDC=180°∠3=∠CDE又∠BDC=∠CDE﹣∠1∴∠2+∠3﹣∠1=180°.故选:D.二、填空题(本大题共6小题每小题4分共24分)请把答案直接填写在横线上11.(2022•东阳市校级开学)如图所示图中用数字标出的角中∠2的内错角是∠6.【分析】两条直线被第三条直线所截形成的角中若两个角都在两直线的之间并且在第三条直线(截线)的两旁则这样一对角叫做内错角由此即可判断.【解答】解:图中用数字标出的角中∠2的内错角是∠6.故答案为:∠6.12.(2022秋•姜堰区期中)如图△ABC经过平移得到△A'B'C' 连接BB'、CC' 若BB'=1.2cm则CC'= 1.2cm.【分析】根据平移的性质即可得到结论.【解答】解:∵△ABC经过平移得到△A'B'C' 连接BB'、CC' BB'=1.2cm∴CC'=BB′=1.2cm故答案为:1.2.13.(2022春•和平区校级月考)如图CD⊥AD BE⊥AC AF⊥CF CD=2cm BE=1.5cm AF=4cm则点A到直线BC的距离是4cm点B到直线AC的距离是 1.5cm点C到直线AB的距离是2 cm.【分析】根据点到直线的距离:直线外一点到直线的垂线段的长度叫做点到直线的距离解答即可.【解答】解:∵CD⊥AD BE⊥AC AF⊥CF CD=2cm BE=1.5cm AF=4cm∴点A到直线BC的距离是4cm点B到直线AC的距离是1.5cm点C到直线AB的距离是2cm.故答案为:4、1.5、2.14.(2022春•新乐市校级月考)如图直线EF CD相交于点O OA⊥OB垂足为O且OC平分∠AOF.(1)若∠AOE=40°则∠DOE的度数为70°;(2)∠AOE与∠BOD的数量关系为∠AOE=2∠BOD.【分析】(1)利用邻补角的定义进行计算即可;(2)利用第一步的步骤和思路推理即可.【解答】解:(1)∵OA⊥OB∴∠AOB=90°∵∠AOF+∠AOE=180°∠AOE=40°∴∠AOF=140°∵OC平分∠AOF∴∠AOC=∠COF=70°∵∠BOD+∠AOB+∠AOC=180°∴∠DOE=∠COF=70°.故答案为:70°;(2)∵∠AOE+∠AOF=180°∠AOC=∠COF∴∠AOC=(180°﹣∠AOE)=90°﹣∠AOE∵∠BOD+∠AOB+∠AOC=180°∴∠BOD=180°﹣90°﹣∠AOC=90°﹣(90°﹣∠AOE)=﹣∠AOE∴∠AOE=2∠BOD.故答案为:∠AOE=2∠BOD.15.(2022秋•南岗区校级期中)已知两个角的两边分别互相平行其中一个角的度数比另一个角度数的多15°则这个角为20°或48°.【分析】由两个角的两边都平行可得此两角互补或相等然后设其中一个角为x°分别从两角相等或互补去分析由其中一个角的度数是另一个角的3倍少20°列方程求解即可求得答案.【解答】解:∵两个角的两边都平行∴此两角互补或相等设其中一个角为x°∵其中一个角的度数比另一个角度数的多15°∴①若两角相等则x=x+15 解得:x=20②若两角互补则x=(180﹣x)+15 解得:x=48∴两个角的度数分别是20°或48°.故答案为:20°或48.16.(2022秋•香坊区校级期中)如图已知AB∥CD∠P AQ=2∠BAQ∠PCD=3∠QCD∠P=75°则∠AQC=95°.【分析】先根据平行线的性质求出∠APC+∠P AB+∠PCD=360°由∠APC=75°求出∠P AB+∠PCD=285°根据∠P AQ=2∠BAQ可得∠P AB=3∠BAQ由∠PCD=3∠QCD可得∠BAQ+∠QCD=95°最后证∠AQC=∠BAQ+∠QCD即可得出答案.【解答】解:过点P作PE∥AB过点Q作QF∥AB如图:∵AB∥CD QF∥AB∴AB∥QF∥CD∴∠BAQ=∠AQF∠QCD=∠CQF∴∠BAQ+∠QCD=∠AQF+∠CQF即∠BAQ+∠QCD=∠AQC∵AB∥CD PE∥AB∴AB∥PE∥CD∴∠APE+∠P AB=180°∠CPE+∠PCD=180°∴∠APE+∠CPE+∠P AB+∠PCD=360°即∠APC+∠P AB+∠PCD=360°∵∠APC=75°∴∠P AB+∠PCD=285°∵∠P AQ=2∠BAQ∴∠P AB=3∠BAQ∵∠PCD=3∠QCD∴3∠BAQ+3∠QCD=285°∴∠BAQ+∠QCD=95°∴∠AQC=95°.故答案为:95°.三、解答题(本大题共7小题共66分.解答时应写出文字说明、证明过程或演算步骤)17.(2022春•金东区期末)如图△ABC△A1B1C1的顶点都在边长为1个单位长度的小正方形组成的网格线交点上.(1)将△ABC向右平移4个单位得到△A2B2C2请画出△A2B2C2.(2)试描述△A1B1C1经过怎样的平移可得到△A2B2C2.【分析】(1)利用平移的性质可画出△A2B2C2;(2)根据平移的特征可得答案.【解答】解:(1)如图△A2B2C2即为所求;(2)将△A1B1C1向左平移2个单位再向下平移4个单位可得到△A2B2C2.18.(2021春•新市区校级期末)如图点G在CD上已知∠BAG+∠AGD=180°EA平分∠BAG FG 平分∠AGC请说明AE∥GF的理由.解:因为∠BAG+∠AGD=180°(已知)∠AGC+∠AGD=180°(邻补角的定义)所以∠BAG=∠AGC(同角的补角相等).因为EA平分∠BAG所以∠1=∠BAG(角平分线的定义).因为FG平分∠AGC所以∠2=∠AGC得∠1=∠2(等量代换)所以AE∥GF(内错角相等两直线平行).【分析】根据邻补角的定义及题意得出∠BAG=∠AGC再根据角平分线的定义得到∠1=∠2 即可判定AE∥GF.【解答】解:因为∠BAG+∠AGD=180°(已知)∠AGC+∠AGD=180°(邻补角的定义)所以∠BAG=∠AGC(同角的补角相等)因为EA平分∠BAG所以∠1=∠BAG(角平分线的定义)因为FG平分∠AGC所以∠2=∠AGC得∠1=∠2(等量代换)所以AE∥GF(内错角相等两直线平行).故答案为:已知;邻补角的定义;同角的补角相等;∠BAG;角平分线的定义;∠AGC;等量代换;内错角相等两直线平行.19.判断下列命题是真命题还是假命题;如果是假命题举一个反例.(1)同旁内角互补;(2)如果a>b那么ac>bc;(3)两个锐角的和是钝角.【分析】(1)根据平行线的性质判断即可;(2)根据不等式的性质判断即可;(3)根据角的分类判断即可.【解答】解:(1)同旁内角互补是假命题如两直线不平行同旁内角不能互补;(2)如果a>b那么ac>bc是假命题如c=0时ac=bc;(3)两个锐角的和是钝角是假命题如30°+30°=60°.20.(2022秋•中山市期末)如图已知直线AB CD相交于点O OE平分∠BOD OF平分∠COB∠BOE =36°求∠AOF的度数.【分析】根据角平分线可得∠BOE=∠DOE根据邻补角可得∠BOC的度数根据角平分线的定义可得∠COF再根据对顶角及角的和差可得答案.【解答】解:∵直线AB CD相交于点O OE平分∠BOD OF平分∠COB∴∠BOE=∠DOE=36°∠BOF=∠COF∴∠BOD=∠AOC=2∠BOE=72°∴∠BOC=180°﹣∠BOD=108°∴∠COF==54°∴∠AOF=∠AOC+∠COF=72°+54°=126°.21.(2022秋•皇姑区校级期末)如图已知直线AB∥DF∠D+∠B=180°.(1)求证:DE∥BC;(2)如果∠AMD=70°求∠AGC的度数.【分析】(1)根据平行线的性质得出∠D+∠BHD=180°求出∠B=∠DHB根据平行线的判定得出即可;(2)根据平行线的性质求出∠AGB=∠AMD=75°根据邻补角的定义求出即可.【解答】(1)证明:∵AB∥DF∴∠D+∠BHD=180°∵∠D+∠B=180°∴∠B=∠DHB∴DE∥BC;(2)解:∵DE∥BC∠AMD=70°∴∠AGB=∠AMD=70°∴∠AGC=180°﹣∠AGB=180°﹣70°=110°.22.(2022秋•二道区校级期末)如图点O在直线AB上OC⊥OD∠D与∠1互余.(1)求证:ED∥AB;(2)OF平分∠AOD交DE于点F若∠OFD=65°补全图形并求∠1的度数.【分析】(1)根据垂直的定义、余角的概念推出∠D=∠DOB即可判定ED∥AB;(2)根据平行线的性质、角平分线的定义求出∠AOD=2∠AOF=130°根据角的和差即可求解.【解答】(1)证明:∵OC⊥OD∴∠COD=90°∴∠1+∠DOB=90°∵∠D与∠1互余∴∠D+∠1=90°∴∠D=∠DOB∴ED∥AB;(2)解:如图∵ED∥AB∠OFD=65°∴∠AOF=∠OFD=65°∵OF平分∠AOD∴∠AOD=2∠AOF=130°∵∠COD=90°∠AOD=∠1+∠COD∴∠1=40°.23.(2022秋•朝阳区校级期末)(1)问题发现:如图①直线AB∥CD连接BE CE可以发现∠B+∠C =∠BEC.请把下面的证明过程补充完整:证明:过点E作EF∥AB∵AB∥DC(已知)EF∥AB(辅助线的作法)∴EF∥DC(平行于同一直线的两直线平行).∴∠C=∠CEF.(两直线平行内错角相等).∵EF∥AB∴∠B=∠BEF(同理).∴∠B+∠C=∠BEF+∠CEF.即∠B+∠C=∠BEC.(2)拓展探究:如果点E运动到图②所示的位置其他条件不变说明:∠B+∠BEC+∠C=360°.(3)解决问题:如图③AB∥DC E、F、G是AB与CD之间的点直接写出∠1 ∠2 ∠3 ∠4 ∠5之间的数量关系∠1+∠3+∠5=∠2+∠4.【分析】(1)过点E作EF∥AB根据平行线的性质及角的和差求解即可;(2)过点E作EF∥AB根据平行线的性质及角的和差求解即可;(3)过点F作FM∥AB根据(1)求解即可.【解答】(1)证明:如图①过点E作EF∥AB∵AB∥DC(已知)EF∥AB(辅助线的作法)∴EF∥DC(平行于同一直线的两直线平行)∴∠C=∠CEF(两直线平行内错角相等)∵EF∥AB∴∠B=∠BEF(同理)∴∠B+∠C=∠BEF+∠CEF(等量代换)即∠B+∠C=∠BEC故答案为:平行于同一直线的两直线平行;两直线平行内错角相等;∠BEF+∠CEF;(2)解:如图②过点E作EF∥AB∵AB∥CD EF∥AB∴EF∥CD∴∠C+∠CEF=180°∠B+∠BEF=180°∴∠B+∠C+∠AEC=360°∴∠B+∠C=360°﹣(∠BEF+∠CEF)即∠B+∠C=360°﹣∠BEC;∠B+∠BEC+∠C=360°.(3)解:∠1+∠3+∠5=∠2+∠4 理由如下:如图过点F作FM∥AB则AB∥FM∥CD由(1)得∠1+∠3+∠5=∠2+∠4.故答案为:∠1+∠3+∠5=∠2+∠4.。
相交线与平行线综合复习题(能力提升卷)一.选择题(共10小题)1.如图,直线AB∥CD,AE⊥CE于点E,若∠EAB=120°,则∠ECD的度数是()A.120°B.100°C.150°D.160°2.如图摆放的一副学生用直角三角板,∠F=30°,∠C=45°,AB与DE相交于点G,当EF∥BC时,∠EGB的度数是()A.135°B.120°C.115°D.105°3.如图,工人师傅用角尺画出工件边缘AB的垂线a和b,得到a∥b.理由是()A.连接直线外一点与直线上各点的所有线段中,垂线段最短B.在同一平面内,垂直于同一条直线的两条直线互相平行C.在同一平面内,过一点有一条而且仅有一条直线垂直于已知直线D.经过直线外一点,有且只有一条直线与这条直线平行4.直线AB∥CD,在AB上任选一点E,将一直角三角板直角顶点放在E处,∠G=30°,当∠AEF=70°,此时∠CHF的大小是()A.5°B.10°C.15°D.20°5.将含30°角的直角三角尺如图摆放,直线a∥b,若∠1=65°,则∠2的度数为()A.45°B.50°C.55°D.60°6.三角板是我们学习数学的好帮手.将一对直角三角板如图放置,点C在FD的延长线上,点B在ED上,AB∥CF,∠F=∠ACB=90°,∠E=45°,∠A=60°,则∠CBD=()A.10°B.15°C.20°D.25°7.如图所示,将含有30°角的三角板(∠A=30°)的直角顶点放在相互平行的两条直线其中一条上,若∠1=39°,则∠2的度数()A.21°B.31°C.39°D.51°8.小明、小亮、小刚、小颖一起研究一道数学题.如图,已知EF⊥AB,CD⊥AB,小明说:“如果还知道∠CDG=∠BFE,则能得到∠AGD=∠ACB.”小亮说:“把小明的已知和结论倒过来,即由∠AGD=∠ACB,可得到∠CDG=∠BFE.”小刚说:“∠AGD一定大于∠BFE.”小颖说:“如果连接GF,则GF一定平行于AB.”他们四人中,有()个人的说法是正确的.A.1B.2C.3D.49.如图,AB∥CD,∠BAE=120°,∠DCE=30°,则∠AEC的大小为()A.70°B.150°C.90°D.100°10.如图是一款手推车的平面示意图,其中AB∥CD,∠1=26°,∠2=74°,那么∠3的度数为()A.100°B.132°C.142°D.154°二.填空题(共5小题)11.如图,直线AB,CD相交于点O,OE⊥AB,∠DOB=34°,则∠COE=°.12.如图,一副直角三角板如图放置,AB∥EF,∠B=30°,∠F=45°,则∠1=.13.如图,已知AB∥CD,AC与BD交于点E,BD⊥CD于点D,若∠1=50°,则∠2=.14.如图,已知直线l1∥l2,∠1=30°,则∠2+∠3=.15.如图,直线a∥b,一块含60°角的直角三角板如图放置,若∠2=44°,则∠1为.三.解答题(共5小题)16.如图1,E是直线AB,CD内部一点,AB∥CD,连接EA,ED.(1)探究猜想:①若∠A=30°,∠D=40°,则∠AED等于多少度?②若∠A=20°,∠D=60°,则∠AED等于多少度?③猜想图1中∠AED,∠EAB,∠EDC的关系并证明你的结论.(2)拓展应用:如图2,射线FE与矩形ABCD的边AB交于点E,与边CD交于点F,①②③④分别是被射线FE隔开的4个区域(不含边界,其中区域③、④位于直线AB上方),P是位于以上四个区域上的点,猜想:∠PEB,∠PFC,∠EPF的关系(不要求证明).17.探究:如图①,点A在直线MN上,点B在直线MN外,连接AB,过线段AB的中点P作PC∥MN,交∠MAB的平分线AD于点C,连接BC,求证:BC⊥AD.应用:如图②,点B在∠MAN内部,连接AB,过线段AB的中点P作PC∥AM,交∠MAB的平分线AD于点C;作PE∥AN,交∠NAB的平分线AF于点E,连接BC、BE.若∠MAN=150°,则∠CBE的大小为度.18.直线AB∥CD,直线EF分别交AB、CD于点A、C,CM是∠ACD的平分线,CM交AB于点N.(1)如图①,过点A作AC的垂线交CM于点M,若∠MCD=55°,求∠MAN的度数;(2)如图②,点G是CD上的一点,连接MA、MG,若MC平分∠AMG且∠AMG=36°,∠MGD+∠EAB=180°,求∠ACD的度数.19.(1)①如图1,已知AB∥CD,∠ABC=60°,根据可得∠BCD=°;②如图2,在①的条件下,如果CM平分∠BCD,则∠BCM=°;③如图3,在①、②的条件下,如果CN⊥CM,则∠BCN=°.(2)尝试解决下面问题:已知如图4,AB∥CD,∠B=40°,CN是∠BCE的平分线,CN⊥CM,求∠BCM的度数.20.如图,已知AB∥CD,BE平分∠ABD,DE平分∠BDC.(∠ABD的度数大于90°小于120°)(1)求证:∠BED=90°;(2)若点F为射线BE上一点,∠EDF=α,∠ABF的角平分线BG与∠CDF的角平分线DG交于点G,试用含α的式子表示∠BGD的大小;(3)延长BE交CD于点H,点F为线段BH上一动点,∠ABF邻补角的角平分线与∠CDF邻补角的角平分线DG交于点G,探究∠BGD与∠BFD之间的数量关系,请直接写出结论:.(题中所有的角都是大于0°小于180°的角)。
八年级上册数学第五章相交线与平行线单元试卷(提升篇)(Word 版 含解析)一、选择题1.如图,直线12//,,140l l αβ∠=∠∠=︒,则2∠等于( )A .140︒B .130︒C .120︒D .110︒2.如图所示,下列说法不正确的是( )A .∠1和∠2是同旁内角B .∠1和∠3是对顶角C .∠3和∠4是同位角D .∠1和∠4是内错角 3.如图,在ABC 中,//EF BC ,ED 平分BEF ∠,且70∠︒=DEF ,则B 的度数为( )A .70°B .60°C .50°D .40°4. 如图,a ∥b ,点A 在直线a 上,点B ,C 在直线b 上,AC ⊥b ,如果AB=5cm ,BC=3cm ,那么平行线a ,b 之间的距离为( )A .5cmB .4cmC .3cmD .不能确定5.如图,ABC 的角平分线CD 、BE 相交于F ,90A ∠=︒,//EG BC ,且CG EG ⊥于G ,下列结论:①2CEG DCB ∠=∠;②CA 平分BCG ∠;③ADC GCD ∠=∠;④12DFB CGE ∠=∠.其中正确的结论是( )A .①③④B .①②③C .②④D .①③6.如图所示,直线c 截直线a ,b ,给出下列以下条件:①48∠=∠;②17∠=∠;③26∠=∠;④47180∠+∠=︒.其中能够说明a ∥b 的条件有A .1个B .2个C .3个D .4个7.如图,直线AB 、CD 相交于点E ,DF ∥AB .若∠AEC=100°,则∠D 等于( )A .70°B .80°C .90°D .100°8.下列定理中,没有逆定题的是( )①内错角相等,两直线平行②等腰三角形两底角相等③对顶角相等④直角三角形的两个锐角互余.A .1个B .2个C .3个D .4个9.如图,BD 是△ABC 的角平分线,DE ∥BC ,DE 交AB 于E ,若AB =BC ,则下列结论中错误的是( )A .BD ⊥ACB .∠A =∠EDAC .2AD =BC D .BE =ED10.下列语句是命题的是 ( )(1)两点之间,线段最短;(2)如果两个角的和是180度,那么这两个角互补;(3)请画出两条互相平行的直线;(4)一个锐角与一个钝角互补吗?A .(1)(2)B .(3)(4)C .(2)(3)D .(1)(4)11.(2017•十堰)如图,AB ∥DE ,FG ⊥BC 于F ,∠CDE=40°,则∠FGB=( )A .40°B .50°C .60°D .70°12.已知:如图AB//EF ,BC CD ⊥,则α∠,β∠,γ∠之间的关系是( )A .βαγ∠∠∠=+B .αβγ180∠∠∠++=C .αβγ90∠∠∠+-=D .βγα90∠∠∠+-=二、填空题13.平面内不过同一点的n 条直线两两相交,它们交点个数记作n a ,并且规定10a =,则2a =__________,1n n a a --=____________.14.如图,有两个正方形夹在AB 与CD 中,且AB//CD,若∠FEC=10°,两个正方形临边夹角为150°,则∠1的度数为________度(正方形的每个内角为90°)15.一个七边形棋盘如图所示,7个顶点顺序从0到6编号,称为七个格子.一枚棋子放在0格,现在依逆时针移动这枚棋子,第一次移动1格,第二次移动2格,…,第n 次移动n 格.则不停留棋子的格子的编号有_____.16.如图,AB //CD BED 110BF ,,∠=平分ABE DF ∠,平分CDE ∠,则BFD ∠= ______ .17.如图,已知EF∥GH,A、D为GH上的两点,M、B为EF上的两点,延长AM于点C,AB平分∠DAC,直线DB平分∠FBC,若∠ACB=100°,则∠DBA的度数为________.18.若∠A与∠B的两边分别平行,且∠A比∠B的3倍少40°,则∠B=_____度.19.如图,AC⊥AB,AC⊥CD,垂足分别是点A、C,如果∠CDB=130°,那么直线AB与BD 的夹角是________度.20.如图,已知AB、CD相交于点O,OE⊥AB于O,∠EOC=28°,则∠AOD=_____度;三、解答题21.已知:如图所示,直线MN∥GH,另一直线交GH于A,交MN于B,且∠MBA=80°,点C为直线GH上一动点,点D为直线MN上一动点,且∠GCD=50°.(1)如图1,当点C在点A右边且点D在点B左边时,∠DBA的平分线交∠DCA的平分线于点P,求∠BPC的度数;(2)如图2,当点C在点A右边且点D在点B右边时,∠DBA的平分线交∠DCA的平分线于点P,求∠BPC的度数;(3)当点C在点A左边且点D在点B左边时,∠DBA的平分线交∠DCA的平分线所在直线交于点P ,请直接写出∠BPC 的度数,不说明理由.22.(感知)如图①,AB ∥CD ,点E 在直线AB 与CD 之间,连结AE 、BE ,试说明∠BAE+∠DCE=∠AEC ;(探究)当点E 在如图②的位置时,其他条件不变,试说明∠AEC+∠BAE+∠DCE=360°; (应用)点E 、F 、G 在直线AB 与CD 之间,连结AE 、EF 、FG 和CG ,其他条件不变,如图③,若∠EFG=36°,则∠BAE+∠AEF+∠FGC+∠DCG=______°.23.如图,已知//,60AM BN A ︒∠=,点P 是射线AM 上一动点(与点A 不重合),BC BD 、分别平分ABP ∠和PBN ∠,分别交射线AM 于点.C D 、()1CBD ∠=()2若点P 运动到某处时,恰有ACB ABD =∠∠,此时AB 与BD 有何位置关系?请说明理由.()3在点P 运动的过程中,APB ∠与ADB ∠之间的关系是否发生变化?若不变,请写出它们的关系并说明理由;若变化,请写出变化规律.24.(1)①如图1,//AB CD ,则B 、P ∠、D ∠之间的关系是 ;②如图2,//AB CD ,则A ∠、E ∠、C ∠之间的关系是 ;(2)①将图1中BA绕B点逆时针旋转一定角度交CD于Q (如图3).证明:BPD∠=∠+∠+∠123②将图2中AB绕点A顺时针旋转一定角度交CD于H (如图4)证明:∠+∠+∠+∠=︒E C CHA A360∠+∠+∠+∠+∠+∠+∠的度(3)利用(2)中的结论求图5中A B C D E F G ∠+∠+∠+∠+∠+∠+∠=数.A B C D E F G25.课题学习:平行线的“等角转化”功能.阅读理解:∠+∠+∠的度数.如图1,已知点A是BC外一点,连接AB,AC,求BAC B C(1)阅读并补充下面推理过程.∥解:过点A作ED BC∠=__________.∴∠=∠,CB EAB=︒__________180180B BAC C ∴∠+∠+∠=︒解题反思:从上面的推理过程中,我们发现平行线具有“等角转化”的功能,将BAC ∠,B ,C ∠“凑”在一起,得出角之间的关系,使问题得以解决.方法运用:(2)如图2,已知AB ED ,试说明:180D BCD B ∠+∠-∠=︒(提示:过点C 做CF AB ∥).深化拓展:(3)已知AB CD ∥,点C 在点D 的右侧,70ADC ∠=︒.BE 平分ABC ∠,DE 平分ADC ∠,BE ,DE 所在的直线交于点E ,点E 在AB 与CD 两条平行线之间. ①如图3,点B 在点A 的左侧,若60ABC ∠=︒,则BED ∠的度数为________. ②如图4,点B 在点A 的右侧,且<AB CD ,AD BC <.若ABC n ∠=︒,则BED ∠的度数为________.(用含n 的代数式表示)26.问题情境:我们知道,“两条平行线被第三条直线所截,同位角相等,内错角相等,同旁内角互补”,所以在某些探究性问题中通过“构造平行线”可以起到转化的作用.已知三角板ABC 中,60,30,90BAC B C ∠=∠=︒∠=︒︒,长方形DEFG 中,DE GF .问题初探:(1)如图(1),若将三角板ABC 的顶点A 放在长方形的边GF 上,BC 与DE 相交于点M ,AB DE ⊥于点N ,求EMC ∠的度数.分析:过点C 作CH GF ∥,则有CH DE ∥,从而得,CAF HCA EMC MCH ∠=∠∠=∠,从而可以求得EMC ∠的度数.由分析得,请你直接写出:CAF ∠的度数为____________,EMC ∠的度数为___________.类比再探:(2)若将三角板ABC 按图(2)所示方式摆放(AB 与DE 不垂直),请你猜想写出CAF ∠与EMC ∠的数量关系,并说明理由.27.如图,如图1,在平面直角坐标系中,已知点A (﹣4,﹣1)、B (﹣2,1),将线段AB 平移至线段CD ,使点A 的对应点C 在x 轴的正半轴上,点D 在第一象限. (1)若点C 的坐标(k ,0),求点D 的坐标(用含k 的式子表示);(2)连接BD、BC,若三角形BCD的面积为5,求k的值;(3)如图2,分别作∠ABC和∠ADC的平分线,它们交于点P,请写出∠A、和∠P和∠BCD之间的一个等量关系,并说明理由.28.阅读材料(1),并利用(1)的结论解决问题(2)和问题(3).(1)如图1,AB∥CD,E为形内一点,连结BE、DE得到∠BED,求证:∠E=∠B+∠D 悦悦是这样做的:过点E作EF∥AB.则有∠BEF=∠B.∵AB∥CD,∴EF∥CD.∴∠FED=∠D.∴∠BEF+∠FED=∠B+∠D.即∠BED=∠B+∠D.(2)如图2,画出∠BEF和∠EFD的平分线,两线交于点G,猜想∠G的度数,并证明你的猜想.(3)如图3,EG1和EG2为∠BEF内满足∠1=∠2的两条线,分别与∠EFD的平分线交于点G1和G2,求证:∠FG1E+∠G2=180°.【参考答案】***试卷处理标记,请不要删除一、选择题1.A解析:A【分析】作出如下图所示的辅助线,然后再利用平行线的性质即可求解.【详解】解:如图所示,作直线m∥n∥l1∥l2,此时有∠3=∠1=40°,∠6=180°-∠2,∠4=∠5,又∠α=∠3+∠4,∠β=∠5+∠6=∠5+(180°-∠2),且∠α=∠β,∴∠3+∠4=∠5+(180°-∠2),由于∠4=∠5,∴∠3=180°-∠2,代入数据:40°=180°-∠2,∴∠2=140°,故选:A.【点睛】本题考查了平行线的性质:两直线平行,同位角相等;两直线平行,同旁内角互补;两直线平行,内错角相等.熟记性质并作辅助线是解题的关键.2.A解析:A【分析】根据对顶角、邻补角、同位角、内错角定义判断即可.【详解】A. ∠1和∠2是邻补角,故此选项错误;B. ∠1和∠3是对顶角,此选项正确;C. ∠3和∠4是同位角,此选项正确;D. ∠1和∠4是内错角,此选项正确;故选A.【点睛】此题考查对顶角,邻补角,同位角,内错角,同旁内角,解题关键在于掌握各性质定义. 3.D解析:D【分析】由角平分线的定义求出∠BEF=140°,再根据平行线的性质“两直线平行,同旁内角互补”求出∠B 的度数即可.【详解】∵ED 平分BEF ∠,且70∠︒=DEF ,∴70DEB ∠=︒∴270140BEF ︒=∠=⨯︒∵//EF BC∴180B BEF ∠+∠=︒∴180********B BEF ∠=︒-∠=︒-︒=︒故选D【点睛】此题主要考查了平行线的性质和角平分的性质,此题难度不大,注意掌握相关性质的运用4.B解析:B【分析】从一条平行线上的任意一点到另一条直线作垂线,垂线段的长度叫两条平行线之间的距离,并由勾股定理可得出答案.【详解】解:∵AC ⊥b ,∴△ABC 是直角三角形,∵AB=5cm ,BC=3cm ,∴(cm ),∴平行线a 、b 之间的距离是:AC=4cm .故选:B .【点睛】本题考查了平行线之间的距离,以及勾股定理,关键是掌握平行线之间距离的定义,以及勾股定理的运用.5.A解析:A【分析】根据平行线、角平分线、垂直的性质及三角形内角和定理依次判断即可得出答案.【详解】解:①∵EG ∥BC ,∴∠CEG =∠ACB ,又∵CD 是△ABC 的角平分线,∴∠CEG =∠ACB =2∠DCB ,故本选项正确;②无法证明CA 平分∠BCG ,故本选项错误;③∵∠A =90°,∴∠ADC +∠ACD =90°,∵CD 平分∠ACB ,∴∠ACD =∠BCD ,∴∠ADC +∠BCD =90°.∵EG ∥BC ,且CG ⊥EG ,∴∠GCB =90°,即∠GCD +∠BCD =90°,∴∠ADC =∠GCD ,故本选项正确;④∵∠EBC +∠ACB =∠AEB ,∠DCB +∠ABC =∠ADC ,∴∠AEB +∠ADC =90°+12(∠ABC +∠ACB )=135°, ∴∠DFE =360°﹣135°﹣90°=135°,∴∠DFB =45°=12∠CGE ,故本选项正确. 故选:A .【点睛】本题考查的是三角形内角和定理,熟知直角三角形的两锐角互余是解答此题的关键.6.D解析:D【解析】根据平行线的判定,由题意知:①∵68∠=∠,48∠=∠,∴46∠=∠,∴a b ∥,故①对.②∵13∠=∠,17∠=∠,∴37∠=∠,∴a b ∥,故②对.③∵26∠=∠,∴a b ∥,故③对.④∵47180∠+∠=︒,34180∠+∠=︒,∴37∠=∠,∴a b ∥,故④对.故选D.点睛:此题主要考查了平行线的判定,关键是利用图形中的条件和已知的条件,构造两直线平行的条件.平行线的判定:同位角相等,两直线平行;内错角相等,两直线平行;同旁内角互补,两直线平行.7.B解析:B【解析】因为AB ∥DF ,所以∠D+∠DEB=180°,因为∠DEB 与∠AEC 是对顶角,所以∠DEB=100°,所以∠D=180°﹣∠DEB=80°.故选B.8.A解析:A【解析】试题分析:根据题意可知:①的逆命题是两直线平行,内错角相等,是真命题,是逆定理;②的逆命题是有两个角相等的三角形是等腰三角形,是真命题,是逆定理;③的逆命题是相等的两个角是对顶角,是假命题,不是逆定理;④的逆命题是有两个锐角互余的三角形是直角三角形,是真命题,是逆定理.只有一个不是逆定理.故选:A9.C解析:C【解析】试题分析:BD是△ABC的角平分线, AB=BC,则BD是AC边上的高及中线,所以∠ABD=∠DBC ,BD⊥AC,2AD=AC, ∠A=∠BCA;因为DE∥BC,所以∠EDA=∠BCA,∠EDB=∠DBC,所以∠A=∠EDA, ∠ABD=∠EDB,所以BE=ED。
第五章相交线与平行线单元试卷(提升篇)(Word 版 含解析)一、选择题1.如图,下列能判断AB ∥CD 的条件有 ( )①∠B +∠BCD =180° ②∠1 = ∠2 ③∠3 =∠4 ④∠B = ∠5A .1B .2C .3D .42.下列命题是真命题的是( )A .直角三角形中两个锐角互补B .相等的角是对顶角C .同旁内角互补,两直线平行D .若a b =,则a b = 3.如图,直线a ∥b ,将一个直角三角尺按如图所示的位置摆放,若∠1=58°,则∠2的度数为( )A .30°B .32°C .42°D .58°4.如图,直线12//,,140l l αβ∠=∠∠=︒,则2∠等于( )A .140︒B .130︒C .120︒D .110︒5.下列说法:①两点确定一条直线;②连接两点的线段叫做两点的距离;③两点之间,线段最短;④由两条射线组成的图形叫做角;⑤若AB =BC ,则点B 是线段AC 的中点.其中正确的有( )A .1个B .2个C .3个D .4个6.如下图,在下列条件中,能判定AB//CD 的是( )A .∠1=∠3B .∠2=∠3C .∠1=∠4D .∠3=∠47.如图,若180A ABC ∠+∠=︒,则下列结论正确的是( )A .12∠=∠B .24∠∠=C .13∠=∠D .23∠∠=8.如图,将直角边长为a (a >1)的等腰直角三角形ABC 沿BC 向右平移1个单位长度,得到三角形DEF ,则图中阴影部分面积为( )A .a -12B .a -1C .a +1D .a 2-19.已知//DE FG ,三角尺ABC 按如图所示摆放,90C ∠=︒,若137∠=︒,则2∠的度数为( )A .57°B .53°C .51°D .37° 10.下列命题中,属于真命题的是( ) A .相等的角是对顶角 B .一个角的补角大于这个角C .绝对值最小的数是0D .如果a b =,那么a=b 11.如图,直线12l l //,被直线3l 、4l 所截,并且34l l ⊥,144∠=,则2∠等于( )A .56°B .36°C .44°D .46°12.如图所示,将含有30°角的三角板的直角顶点放在相互平行的两条直线其中一条上,若∠1=35°,则∠2的度数为( )A .10°B .20°C .25°D .30°二、填空题13.如图,已知AB ∥CD,∠EAF =14∠EAB,∠ECF=14∠ECD ,则∠AFC 与∠AEC 之间的数量关系是_____________________________14.若∠A 与∠B 的两边分别平行,且∠A 比∠B 的3倍少40°,则∠B =_____度.15.如图,点A 、B 为定点,直线l ∥AB,P 是直线l 上一动点,对于下列各值:①线段AB 的长;②△PAB 的周长;③△PAB 的面积;④∠APB 的度数,其中不会随点P 的移动而变化的是(填写所有正确结论的序号)______________.16.如图,已知∠1=(3x +24)°,∠2=(5x +20)°,要使m ∥n ,那么∠1=_____(度).17.如图,//AB CD ,FN AB ⊥,垂足为点O ,EF 与CD 交于点G ,若130∠=︒,则2∠=______.18.已知∠A与∠B的两边分别平行,其中∠A为x°,∠B的为(210﹣2x)°,则∠A=____度.19.如图,AD∥BC,∠D=100°,CA平分∠BCD,则∠DAC=________度.20.跳格游戏:如图,人从格外只能进入第1格;在格中,每次可向前跳l格或2格,那么人从格外跳到第6格可以有_________种方法.三、解答题21.问题情境(1)如图1,已知AB∥CD,∠PBA=125°,∠PCD=155°,求∠BPC的度数.佩佩同学的思路:过点P作PG∥AB,进而PG∥CD,由平行线的性质来求∠BPC,求得∠BPC=问题迁移(2)图2.图3均是由一块三角板和一把直尺拼成的图形,三角板的两直角边与直尺的两边重合,∠ACB=90°,DF∥CG,AB与FD相交于点E,有一动点P在边BC上运动,连接PE,PA,记∠PED=∠α,∠PAC=∠β.①如图2,当点P在C,D两点之间运动时,请直接写出∠APE与∠α,∠β之间的数量关系;②如图3,当点P在B,D两点之间运动时,∠APE与∠α,∠β之间有何数量关系?请判断并说明理由;拓展延伸(3)当点P在C,D两点之间运动时,若∠PED,∠PAC的角平分线EN,AN相交于点N,请直接写出∠ANE与∠α,∠β之间的数量关系.22.已知:如图所示,直线MN∥GH,另一直线交GH于A,交MN于B,且∠MBA=80°,点C为直线GH上一动点,点D为直线MN上一动点,且∠GCD=50°.(1)如图1,当点C在点A右边且点D在点B左边时,∠DBA的平分线交∠DCA的平分线于点P,求∠BPC的度数;(2)如图2,当点C在点A右边且点D在点B右边时,∠DBA的平分线交∠DCA的平分线于点P,求∠BPC的度数;(3)当点C在点A左边且点D在点B左边时,∠DBA的平分线交∠DCA的平分线所在直线交于点P,请直接写出∠BPC的度数,不说明理由.23.如图,AD平分∠BAC交BC于点D,点F在BA的延长线上,点E在线段CD上,EF 与AC相交于点G,∠BDA+∠CEG=180°.(1)AD与EF平行吗?请说明理由;(2)若点H在FE的延长线上,且∠EDH=∠C,则∠F与∠H相等吗,请说明理由.24.为了探究n条直线能把平面最多分成几部分,我们从最简单的情形入手:①一条直线把平面分成2部分;②两条直线可把平面最多分成4部分;③三条直线可把平面最多分成7部分;④四条直线可把平面最多分成11部分;……把上述探究的结果进行整理,列表分析:直线条数把平面最多 分成的部分数 写成和的形式 12 1+1 24 1+1+2 37 1+1+2+3 411 1+1+2+3+4 … … …(1)当直线条数为5时,把平面最多分成____部分,写成和的形式:______;(2)当直线条数为10时,把平面最多分成____部分;(3)当直线条数为n 时,把平面最多分成多少部分?25.(1)问题发现如图①,直线AB ∥CD ,E 是AB 与AD 之间的一点,连接BE ,CE ,可以发现∠B +∠C =∠BEC .请把下面的证明过程补充完整:证明:过点E 作EF ∥AB ,∵AB ∥DC (已知),EF ∥AB (辅助线的作法),∴EF ∥DC ( )∴∠C =∠CEF .( )∵EF ∥AB ,∴∠B =∠BEF (同理),∴∠B +∠C = (等量代换)即∠B +∠C =∠BEC .(2)拓展探究如果点E 运动到图②所示的位置,其他条件不变,求证:∠B +∠C =360°﹣∠BEC . (3)解决问题如图③,AB ∥DC ,∠C =120°,∠AEC =80°,则∠A = .(之间写出结论,不用写计算过程)26.如图1,AB//CD ,在AB 、CD 内有一条折线EPF .(1)求证:AEP CFP EPF ∠∠∠+=.(2)如图2,已知BEP ∠的平分线与DFP ∠的平分线相交于点Q ,试探索EPF ∠与EQF ∠之间的关系;(3)如图3,已知BEQ ∠=1BEP 3∠,1DFQ DFP 3∠∠=,则P ∠与Q ∠有什么关系,请说明理由.27.问题情境:我们知道,“两条平行线被第三条直线所截,同位角相等,内错角相等,同旁内角互补”,所以在某些探究性问题中通过“构造平行线”可以起到转化的作用.已知三角板ABC 中,60,30,90BAC B C ∠=∠=︒∠=︒︒,长方形DEFG 中,DE GF .问题初探:(1)如图(1),若将三角板ABC 的顶点A 放在长方形的边GF 上,BC 与DE 相交于点M ,AB DE ⊥于点N ,求EMC ∠的度数.分析:过点C 作CH GF ∥,则有CH DE ∥,从而得,CAF HCA EMC MCH ∠=∠∠=∠,从而可以求得EMC ∠的度数.由分析得,请你直接写出:CAF ∠的度数为____________,EMC ∠的度数为___________.类比再探:(2)若将三角板ABC 按图(2)所示方式摆放(AB 与DE 不垂直),请你猜想写出CAF ∠与EMC ∠的数量关系,并说明理由.28.点C ,B 分别在直线MN ,PQ 上,点A 在直线MN ,PQ 之间,//MN PQ . (1)如图1,求证:A MCA PBA ∠=∠+∠;(2)如图2,过点C 作//CD AB ,点E 在PQ 上,ECM ACD ∠=∠,求证:A ECN ∠=∠;(3)在(2)的条件下,如图3,过点B 作PQ 的垂线交CE 于点F ,ABF ∠的平分线交AC于点G,若DCE ACE∠=∠,32CFB CGB∠=∠,求A∠的度数.【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【分析】判断平行的条件有:同位角相等、内错角相等、同旁内角互补,依次判断各选项是否符合.【详解】①∠B+∠BCD=180°,则同旁内角互补,可判断AB∥CD;②∠1 = ∠2,内错角相等,可判断AD∥BC,不可判断AB∥CD;③∠3 =∠4,内错角相等,可判断AB∥CD;④∠B = ∠5,同位角相等,可判断AB∥CD故选:C【点睛】本题考查平行的证明,注意②中,∠1和∠2虽然是内错角关系,但对应的不是AB与CD 这两条直线,故是错误的.2.C解析:C【分析】分别利用直角三角形的性质、对顶角和平行线的判定方法以及绝对值的性质分析得出答案.【详解】解:A、直角三角形中两个锐角互余,故此选项错误;B、相等的角不一定是对顶角,故此选项错误;C、同旁内角互补,两直线平行,正确;D、若|a|=|b|,则a=±b,故此选项错误;故选C.此题主要考查了命题与定理,正确把握相关性质是解题关键.3.B解析:B【解析】试题分析:如图,过点A作AB∥b,∴∠3=∠1=58°,∵∠3+∠4=90°,∴∠4=90°﹣∠3=32°,∵a∥b,AB∥B,∴AB∥b,∴∠2=∠4=32°,故选B.考点:平行线的性质.4.A解析:A【分析】作出如下图所示的辅助线,然后再利用平行线的性质即可求解.【详解】解:如图所示,作直线m∥n∥l1∥l2,此时有∠3=∠1=40°,∠6=180°-∠2,∠4=∠5,又∠α=∠3+∠4,∠β=∠5+∠6=∠5+(180°-∠2),且∠α=∠β,∴∠3+∠4=∠5+(180°-∠2),由于∠4=∠5,∴∠3=180°-∠2,代入数据:40°=180°-∠2,∴∠2=140°,故选:A.【点睛】本题考查了平行线的性质:两直线平行,同位角相等;两直线平行,同旁内角互补;两直线平行,内错角相等.熟记性质并作辅助线是解题的关键.5.B【解析】分析:根据直线公理对①进行判断;根据两点之间的距离的定义对②进行判断;根据线段公理对③进行判断;根据角的定义对④进行判断;根据线段的中点的定义对⑤进行判断.详解:根据直线公理:两点确定一条直线,所以①正确;连接两点的线段的长度叫做两点的距离,所以②错误;两点之间,线段最短,所以③正确;有一个公共端点的两条射线组成的图形叫做角,所以④错误;若AB =BC ,且B 点在AB 上,则点B 是AC 的中点,所以⑤错误.故选B .点睛:本题考查了命题与定理:判断一件事情的语句,叫做命题.许多命题都是由题设和结论两部分组成,题设是已知事项,结论是由已知事项推出的事项,一个命题可以写成“如果…那么…”形式.有些命题的正确性是用推理证实的,这样的真命题叫做定理.6.C解析:C【解析】根据平行线的判定,可由∠2=∠3,根据内错角相等,两直线平行,得到AD ∥BC ,由∠1=∠4,得到AB ∥CD.故选C.7.C解析:C【分析】由∠A+∠ABC=180°可得到AD ∥BC ,再根据平行线的性质判断即可得答案.【详解】∵180A ABC ∠+∠=︒,∴//AD BC (同旁内角互补,两直线平行),∴13∠=∠(两直线平行,内错角相等).故选:C .【点睛】本题考查的是平行线的判定与性质,同旁内角互补,两直线平行;两直线平行内错角相等;熟知平行线的判定定理是解答此题的关键.8.A解析:A【分析】直接根据平移的性质得到DE=AB=a ,EF=BC=a ,EC=a-1,结合三角形面积公式即可求解.【详解】解:根据平移的性质得,DE=AB=a ,EF=BC=a ,EC=a-1, ∴阴影部分的面积为:111(1)(1)222a a a a a ⨯--⨯-=-故选:A .【点睛】本题考查了平移的性质,比较简单,注意熟练掌握平移性质的内容.9.B解析:B【分析】作GH ∥FG ,推出GH ∥FG ∥DE ,得到∠1=∠3,∠2=∠4,由90C ∠=︒, 137∠=︒,即可求解.【详解】作GH ∥FG ,∵DE ∥FG ,∴GH ∥FG ∥DE ,∴∠1=∠3,∠2=∠4,∵90C ∠=︒, 137∠=︒,∴∠3+∠4=90︒,即37︒+∠2=90︒,∴∠2=53︒,故选:B .【点睛】本题考查了平行线的性质,根据题意作出辅助线,构造出平行线是解答此题的关键.10.C解析:C【分析】根据对顶角、补角、绝对值的定义与性质逐项判断即可得.【详解】A 、相等的角不一定是对顶角,此项是假命题;B 、一个角的补角不一定大于这个角,如这个角为130︒,其补角为50︒,小于这个角,此项是假命题;C 、由绝对值的非负性得:绝对值最小的数是0,此项是真命题;D 、如果a b =,那么a b =或=-a b ,此项是假命题;故选:C .【点睛】本题考查了对顶角、补角、绝对值、真命题与假命题,熟练掌握各定义与性质是解题关键.11.D解析:D【分析】依据l1∥l2,即可得到∠1=∠3=44°,再根据l3⊥l4,可得∠2=90°-44°=46°.【详解】解:如图,∵l1∥l2,∴∠1=∠3=44°,又∵l3⊥l4,∴∠2=90°-44°=46°,故选:D.【点睛】本题主要考查了平行线的性质,解题时注意:两直线平行,同位角相等.12.C解析:C【解析】分析:如图,延长AB交CF于E,∵∠ACB=90°,∠A=30°,∴∠ABC=60°.∵∠1=35°,∴∠AEC=∠ABC﹣∠1=25°.∵GH∥EF,∴∠2=∠AEC=25°.故选C.二、填空题13.4∠AFC=3∠AEC【解析】【分析】连接AC,设∠EAF=x°,∠ECF=y°,∠EAB=4x°,∠ECD=4y°,根据平行线性质得出∠BAC+∠ACD=180°,求出∠CAE+∠ACE=18解析:4∠AFC=3∠AEC【解析】【分析】连接AC,设∠EAF=x°,∠ECF=y°,∠EAB=4x°,∠ECD=4y°,根据平行线性质得出∠BAC+∠ACD=180°,求出∠CAE+∠ACE=180°-(4x°+4y°),求出∠AEC=4(x°+y°),∠AFC═3(x°+y°),即可得出答案.【详解】连接AC,设∠EAF=x°,∠ECF=y°,∠EAB=4x°,∠ECD=4y°,∵AB∥CD,∴∠BAC+∠ACD=180°,∴∠CAE+4x°+∠ACE+4y°=180°,∴∠CAE+∠ACE=180°-(4x°+4y°),∠FAC+∠FCA=180°-(3x°+3y°),∴∠AEC=180°-(∠CAE+∠ACE)=180°-[180°-(4x°+4y°)]=4x°+4y°=4(x°+y°),∠AFC=180°-(∠FAC+∠FCA)=180°-[180°-(3x°+3y°)]=3x°+3y°=3(x°+y°),∴∠AFC=34∠AEC,即:4∠AFC=3∠AEC,故正确答案为:4∠AFC=3∠AEC.【点睛】本题考查了平行线性质和三角形内角和定理的应用,注意:两直线平行,同旁内角互补.14.55或20【分析】根据平行线性质得出∠A+∠B=180°①,∠A=∠B②,求出∠A=3∠B﹣40°③,把③分别代入①②求出即可.【详解】解:∵∠A与∠B的两边分别平行,∴∠A+∠B=180解析:55或20【分析】根据平行线性质得出∠A+∠B=180°①,∠A=∠B②,求出∠A=3∠B﹣40°③,把③分别代入①②求出即可.【详解】解:∵∠A与∠B的两边分别平行,∴∠A+∠B=180°①,∠A=∠B②,∵∠A比∠B的3倍少40°,∴∠A=3∠B﹣40°③,把③代入①得:3∠B﹣40°+∠B=180°,∠B=55°,把③代入②得:3∠B﹣40°=∠B,∠B=20°,故答案为:55或20.【点睛】本题考查平行线的性质,解题的关键是掌握由∠A和∠B的两边分别平行,即可得∠A =∠B或∠A+∠B=180°,注意分类讨论思想的应用.15.①③【分析】求出AB长为定值,P到AB的距离为定值,再根据三角形的面积公式进行计算即可;根据运动得出PA+PB不断发生变化、∠APB的大小不断发生变化.【详解】解:∵A、B为定点,∴AB长解析:①③【分析】求出AB长为定值,P到AB的距离为定值,再根据三角形的面积公式进行计算即可;根据运动得出PA+PB不断发生变化、∠APB的大小不断发生变化.【详解】解:∵A、B为定点,∴AB长为定值,∴①正确;∵点A,B为定点,直线l∥AB,∴P到AB的距离为定值,故△APB的面积不变,∴③正确;当P点移动时,PA+PB的长发生变化,∴△PAB的周长发生变化,∴②错误;当P点移动时,∠APB发生变化,∴④错误;故选A.【点睛】本题考查了平行线的性质,等底等高的三角形的面积相等,平行线间的距离的运用,熟记定理是解题的关键.16.75【分析】直接利用邻补角的定义结合平行线的性质得出答案.【详解】如图所示:∠1+∠3=180°,∵m∥n,∴∠2=∠3,∴∠1+∠2=180°,∴3x+24+5x+20=180解析:75【分析】直接利用邻补角的定义结合平行线的性质得出答案.【详解】如图所示:∠1+∠3=180°,∵m∥n,∴∠2=∠3,∴∠1+∠2=180°,∴3x+24+5x+20=180,解得:x=17,则∠1=(3x+24)°=75°.故答案为75.【点睛】此题主要考查了平行线的判定与性质,正确得出∠1+∠2=180°是解题关键.17.120°【分析】过点F作PT//AB,则有PT//CD,根据平行线的性质可得∠GFP=30゜,∠OFP=90゜,从而可求出∠2的度数.【详解】过点F作PT//AB,如图,∴∠OFP=∠N解析:120°【分析】过点F作PT//AB,则有PT//CD,根据平行线的性质可得∠GFP=30゜,∠OFP=90゜,从而可求出∠2的度数.【详解】过点F作PT//AB,如图,∴∠OFP=∠NOA∵FN AB∴∠NOA=90゜∴∠OFP=90゜∵AB//CD∴CD//PT∴∠DGF=∠GFP∵∠DGF=∠1=30゜∴∠GFP=30゜∴∠2=∠OFP+∠GFP=90゜+30゜=120゜故答案为:120゜【点睛】此题主要考查了平行线的判定与性质,关键是掌握两直线平行,内错角相等,同位角相等.18.70或30.【分析】分∠A=∠B与∠A+∠B=180°两种情况进行讨论即可求解.【详解】解:根据题意,有两种情况:(1)当∠A=∠B,可得:x=210﹣2x,解得:x=70;(2)当解析:70或30.【分析】分∠A=∠B与∠A+∠B=180°两种情况进行讨论即可求解.【详解】解:根据题意,有两种情况:(1)当∠A=∠B,可得:x=210﹣2x,解得:x=70;(2)当∠A+∠B=180°时,可得:x+210﹣2x=180,解得:x=30.故答案为:70或30.【点睛】本题考查的是平行线的性质,在解答此题时要注意分类讨论.19.40°【分析】本题主要利用两直线平行,同旁内角互补、两直线平行,内错角相等以及角平分线的定义进行做题.【详解】∵AD∥BC,∴∠BCD=180°-∠D=80°,又∵CA平分∠BCD,∴解析:40°【分析】本题主要利用两直线平行,同旁内角互补、两直线平行,内错角相等以及角平分线的定义进行做题.【详解】∵AD∥BC,∴∠BCD=180°-∠D=80°,又∵CA平分∠BCD,∴∠ACB=12∠BCD=40°,∴∠DAC=∠ACB=40°.【点睛】本题重点考查了平行线的性质及角平分线的定义,是一道较为简单的题目.20.8【分析】理解已知条件是解答此题的关键,跳格总共有6格,第一次只能跳1格,后面的可以跳2格或者1格,当全部都是1格,或者部分1格部分2格,整理出所有的情况即可求出答案.【详解】当全部都只跳1解析:8【分析】理解已知条件是解答此题的关键,跳格总共有6格,第一次只能跳1格,后面的可以跳2格或者1格,当全部都是1格,或者部分1格部分2格,整理出所有的情况即可求出答案.【详解】当全部都只跳1格时,1种方法;当有1次跳2格,其他全部1格,有4种方法;当有2次跳2格时,其他全部1格,有3种方法;不存在3次或者更多跳2格的情况综上共有1+4+3=8种方法.【点睛】本题考查数列的递推式,实际上我们解题时抓住实际问题的本质,写出满足条件的数列,利用数列的递推式写出结果.三、解答题21.(1)80°;(2)①∠APE=∠α+∠β;②∠APE=∠β﹣∠α,理由见解析;(3)∠ANE=12(∠α+∠β)【分析】(1)过点P作PG∥AB,则PG∥CD,由平行线的性质可得∠BPC的度数;(2)①过点P作FD的平行线,依据平行线的性质可得∠APE与∠α,∠β之间的数量关系;②过P作PQ∥DF,依据平行线的性质可得∠β=∠QPA,∠α=∠QPE,即可得到∠APE=∠APQ﹣∠EPQ=∠β﹣∠α;(3)过P和N分别作FD的平行线,依据平行线的性质以及角平分线的定义,即可得到∠ANE与∠α,∠β之间的数量关系为∠ANE=12(∠α+∠β).【详解】解:(1)如图1,过点P作PG∥AB,则PG∥CD,由平行线的性质可得∠B+∠BPG=180°,∠C+∠CPG=180°,又∵∠PBA=125°,∠PCD=155°,∴∠BPC=360°﹣125°﹣155°=80°,故答案为:80°;(2)①如图2,∠APE与∠α,∠β之间的数量关系为∠APE=∠α+∠β;理由如下:作PQ∥DF,∵DF∥CG,∴PQ∥CG,∴∠β=∠QPA,∠α=∠QPE,∴∠APE=∠APQ+∠EPQ=∠β+∠α;②如图3,∠APE与∠α,∠β之间的数量关系为∠APE=∠β﹣∠α;理由如下:过P作PQ∥DF,∵DF∥CG,∴PQ∥CG,∴∠β=∠QPA,∠α=∠QPE,∴∠APE=∠APQ﹣∠EPQ=∠β﹣∠α;(3)如图4,∠ANE与∠α,∠β之间的数量关系为∠ANE=12(∠α+∠β).理由如下:作NQ∥DF,∵DF∥CG,∴NQ∥CG,∴∠DEN=∠QNE,∠CAN=∠QNA,∵EN平分∠DEP,AN平分∠CAP,∴∠DEN=12∠α,∠CAN=12∠β,∴∠QNE=12∠α,∠QNA=12∠β,∴∠ANE=∠QNE +∠QNA=12∠α+12∠β=12(∠α+∠β);【点睛】本题主要考查了平行线的判定和性质,解决问题的关键是过拐点作平行线,利用平行线的性质得出结论.22.(1)∠BPC=65°;(2)∠BPC=155°;(3)∠BPC=155°【分析】(1)如图1,过点P作PE∥MN,根据题意结合平行线的性质和角平分线的性质可以得出:∠BPE=∠DBP=40°,1CPE PCA DCA252︒∠=∠=∠=,据此进一步求解即可;(2)如图2,过点P作PE∥MN,根据平角可得∠DBA=100°,再由角平分线和平行线的性质得∠BPE=130°,1PCA CPE DCA252︒∠=∠=∠=,据此进一步求解即可;(3)如图3,过点P作PE∥MN,根据角平分线性质得出∠DBP=∠PBA=40°,由此得出∠BPE=∠DBP=40°,然后根据题意得出1PCA DCA652︒∠=∠=,由此再利用平行线性质得出∠CPE度数,据此进一步求解即可.【详解】(1)如图1,过点P作PE∥MN.∵PB平分∠DBA,∴∠DBP=∠PBA=40°,∵PE∥MN,∴∠BPE=∠DBP=40°,同理可证:1CPE PCA DCA252︒∠=∠=∠=,∴∠BPC=40°+25°=65°;(2)如图2,过点P作PE∥MN.∵∠MBA=80°.∴∠DBA=180°−80°=100°.∵BP平分∠DBA.∴1DBP DBA502︒∠=∠=,∵MN∥PE,∴∠BPE=180°−∠DBP=130°,∵PC平分∠DCA.∴1PCA DCA252︒∠=∠=,∵MN∥PE,MN∥GH,∴PE∥GH,∴∠EPC=∠PCA=25°,∴∠BPC=130°+25°=155°;(3)如图3,过点P作PE∥MN.∵BP平分∠DBA.∴∠DBP=∠PBA=40°,∵PE∥MN,∴∠BPE=∠DBP=40°,∵CP平分∠DCA,∠DCA=180°−∠DCG=130°,∴1PCA DCA652︒∠=∠=,∵PE∥MN,MN∥GH,∴PE∥GH,∴∠CPE=180°−∠PCA=115°,∴∠BPC=40°+115°=155°.【点睛】本题主要考查了平行线性质与角平分线性质的综合运用,熟练掌握相关概念是解题关键. 23.见解析【解析】分析:(1)求出∠ADE+∠FEB=180°,根据平行线的判定推出即可;(2)根据角平分线定义得出∠BAD=∠CAD,推出HD∥AC,根据平行线的性质得出∠H=∠CGH,∠CAD=∠CGH,推出∠BAD=∠F即可.详解:(1)AD∥EF.理由如下:∵∠BDA+∠CEG=180°,∠ADB+∠ADE=180°,∠FEB+∠CEF=180°∴∠ADE+∠FEB=180°,∴AD∥EF;(2)∠F=∠H,理由是:∵AD平分∠BAC,∴∠BAD=∠CAD.∵∠EDH=∠C,∴HD∥AC,∴∠H=∠CGH.∵AD∥EF,∴∠CAD=∠CGH,∴∠BAD=∠F,∴∠H=∠F.点睛:本题考查了平行线的性质和判定的应用,主要考查学生的推理能力,题目是一道比较好的题目,难度适中.24.(1) 16; (2) 56; (3)(1)12n n+⎡⎤+⎢⎥⎣⎦部分【分析】(1)根据已知探究的结果可以算出当直线条数为5时,把平面最多分成16部分;(2)通过已知探究结果,写出一般规律,当直线为n条时,把平面最多分成1+1+2+3+…+n,求和即可.【详解】(1)16;1+1+2+3+4+5.(2)56.根据表中规律知,当直线条数为10时,把平面最多分成56部分,即1+1+2+3+…+10=56.(3)当直线条数为n 时,把平面最多分成1+1+2+3+…+n=(1)12n n +⎡⎤+⎢⎥⎣⎦部分. 【点睛】本题考查了图形的变化,通过直线分平面探究其中的隐含规律,运用了从特殊到一般的数学思想,解决此题关键是写出和的形式.25.(1)平行于同一直线的两直线平行,两直线平行,内错角相等,∠BEF +∠CEF ;(2)证明见解析;(3)20°.【分析】(1)过点E 作//EF AB ,根据平行线的判定得出////AB CD EF ,根据平行线的性质得出即可;(2)过点E 作//EF AB ,根据平行线的判定得出////AB CD EF ,根据平行线的性质得出即可;(3)过点E 作//EF AB ,根据平行线的判定得出////AB CD EF ,根据平行线的性质得出即可.【详解】(1)证明:如图①,过点E 作EF ∥AB ,∵AB ∥DC (已知),EF ∥AB (辅助线的作法),∴EF ∥DC (平行于同一直线的两直线平行),∴∠C =∠CEF .(两直线平行,内错角相等),∵EF ∥AB ,∴∠B =∠BEF (同理),∴∠B +∠C =∠BEF +∠CEF (等量代换)即∠B +∠C =∠BEC ,故答案为:平行于同一直线的两直线平行,两直线平行,内错角相等,∠BEF +∠CEF ; (2)证明:如图②,过点E 作EF ∥AB ,∵AB ∥DC (已知),EF ∥AB (辅助线的作法),∴EF∥DC(平行于同一直线的两直线平行),∴∠C+∠CEF=180°,∠B+∠BEF=180°,∴∠B+∠C+∠AEC=360°,∴∠B+∠C=360°﹣∠BEC;(3)解:如图③,过点E作EF∥AB,∵AB∥DC(已知),EF∥AB(辅助线的作法),∴EF∥DC(平行于同一直线的两直线平行),∴∠C+∠CEF=180°,∠A=∠BEF,∵∠C=120°,∠AEC=80°,∴∠CEF=180°﹣120°=60°,∴∠BEF=80°﹣60°=20°,∴∠A=∠AEF=20°.故答案为:20°.【点睛】本题考查了平行线的性质和判定的应用,能正确作出辅助线是解此题的关键,注意:①两直线平行,内错角相等,②两直线平行,同位角相等,③两直线平行,同旁内角互补.26.(1)见解析;(2)∠EPF+2∠EQF=360°;(3)∠P+3∠Q=360°.【分析】(1)首先过点P作PG∥AB,然后根据AB∥CD,PG∥CD,可得∠AEP=∠1,∠CFP=∠2,据此判断出∠AEP+∠CFP=∠EPF即可.(2)首先由(1),可得∠EPF=∠AEP+CFP,∠EQF=∠BEQ+∠DFQ;然后根据∠BEP的平分线与∠DFP的平分线相交于点Q,推得∠EQF=1(360)2EPF⨯︒-∠,即可判断出∠EPF+2∠EQF=360°.(3)首先由(1),可得∠P=∠AEP+CFP,∠Q=∠BEQ+∠DFQ;然后根据∠BEQ=1 3∠BEP,∠DFQ=13∠DFP,推得∠Q=13×(360°﹣∠P),即可判断出∠P+3∠Q=360°.【详解】(1)证明:如图1,过点P作PG∥AB,∵AB∥CD,∴PG∥CD,∴∠AEP=∠1,∠CFP=∠2,又∵∠1+∠2=∠EPF,∴∠AEP+∠CFP=∠EPF.(2)如图2,,由(1),可得∠EPF=∠AEP+CFP,∠EQF=∠BEQ+∠DFQ,∵∠BEP的平分线与∠DFP的平分线相交于点Q,∴∠EQF=∠BEQ+∠DFQ=12(∠BEP+∠DFP)=1[360()] 2AEP CFP︒-∠+∠=1(360)2EPF⨯︒-∠,∴∠EPF+2∠EQF=360°.(3)如图3,,由(1),可得∠P=∠AEP+CFP,∠Q=∠BEQ+∠DFQ,∵∠BEQ=13∠BEP,∠DFQ=13∠DFP,∴∠Q=∠BEQ+∠DFQ=13(∠BEP+∠DFP)=13[360°﹣(∠AEP+∠CFP)]=13×(360°﹣∠P),∴∠P+3∠Q=360°.【点睛】此题主要考查了平行线的性质的应用,要熟练掌握,解答此题的关键是要明确:(1)定理1:两条平行线被第三条直线所截,同位角相等.简单说成:两直线平行,同位角相等.(2)定理2:两条平行线被地三条直线所截,同旁内角互补.简单说成:两直线平行,同旁内角互补.(3)定理3:两条平行线被第三条直线所截,内错角相等.简单说成:两直线平行,内错角相等.27.(1)30°,60°;(2)∠CAF+∠EMC=90°,理由见解析【分析】(1)利用∠CAF=∠BAF-∠BAC求出∠CAF度数,求∠EMC度数转化到∠MCH度数;(2)过点C作CH∥GF,得到CH∥DE,∠CAF与∠EMC转化到∠ACH和∠MCH中,从而发现∠CAF、∠EMC与∠ACB的数量关系.【详解】(1)过点C作CH∥GF,则有CH∥DE,所以∠CAF=∠HCA,∠EMC=∠MCH,∵∠BAF=90°,∴∠CAF=90°-60°=30°.∠MCH=90°-∠HCA=60°,∴∠EMC=60°.故答案为30°,60°.(2)∠CAF+∠EMC=90°,理由如下:过点C作CH∥GF,则∠CAF=∠ACH.∵DE∥GF,CH∥GF,∴CH∥DE.∴∠EMC=∠HCM.∴∠EMC+∠CAF=∠MCH+∠ACH=∠ACB=90°.【点睛】考查了平行线的判定和性质,解题关键是熟记并灵活运用其性质和判定.28.(1)证明见解析;(2)证明见解析;(3)∠A=72°.【分析】(1)根据题意过点A 作平行线AD//MN ,证出三条直线互相平行并由平行得出与ACM ∠和ABP ∠相等的角即可得出结论;(2)由题意利用垂直线定义以及三角形内角和为180°进行分析即可证得A ECN ∠=∠; (3)根据题意设MCA ACE ECD x ∠=∠=∠=,由(1)列出关系式2702CFB x ∠=︒-和11352CGB x ∠=︒-,解出方程进而得出结论. 【详解】证明:(1)过点A 作平行线AD//MN ,∵AD//MN ,//MN PQ ,∴AD//MN//PQ,∴,MCA DAC PBA DAB ∠=∠∠=∠,∴A DAC DAB MCA PBA ∠=∠+∠=∠+∠.(2)∵//CD AB∴180A ACD ∠+∠=︒∵180ECM ECN ∠+∠=︒又ECM ACD ∠=∠∴A ECN ∠=∠(3)证得MCA ACE ECD ∠=∠=∠ ABP NCD ∠=∠设MCA ACE ECD x ∠=∠=∠=由(1)可知CFB FCN FBQ ∠=∠+∠ 列出关系式2702CFB x ∠=︒-由(1)可知CGB MCG GBP ∠=∠+∠列出关系式11352CGB x ∠=︒-312702(135)22x x -=︒- 解得:54x =︒结论:72A ∠=︒【点睛】本题考查平行线的性质与判定,结合平行线的性质与判定运用数形结合思维分析是解题的关键.。
中考数学总复习《相交线与平行线》专项提升练习题-附答案学校:___________班级:___________姓名:___________考号:___________一、单选题1.已知∠α的两边分别与∠β的两边垂直,且∠α=20°,则∠β的度数为()A.20°B.160°C.20°或160°D.70°2.如图,直线a∥b,AC丄AB,AC交直线b于点C,∠1=65°,则∠2的度数是()A.65°B.50°C.35°D.25°3.如图,下列条件中,能判定AB∥CD的是()A.∠1=∠4B.∠4=∠6C.∠2+∠5=180°D.∠1+∠3=180°4.若将一副三角板按如图所示的方式放置,则下列结论不正确的是()A.∠1=∠3 B.如果∠2=30°,则有AC∥DEC.如果∠2=30°,则有BC∥AD D.如果∠2=30°,必有∠4=∠C5.如图,已知AB∥CD,∠2=135°,则∠1的度数是()A.35°B.45°C.55°D.65°6.如图,AB∥CD∥EF,AF∥CG,则图中与∠F(不包括∠F)相等的角有()A.1个B.2个C.3个D.4个7.如图,将三角形纸片ABC沿虚线剪掉两角得五边形CDEFG,若DE∥CG,FG∥CD根据所标数据,则∠A的度数为()A.54°B.64°C.66°D.72°8.把三角板ABC按如图所示的位置放置,已知∠CAB=30°,∠C=90°过三角板的顶点A、B分别作直线AD、BE,且AD//BE,∠DAE=120° .给出以下结论:(1)∠1+∠2=90°;(2)∠2=∠EAB;(3)CA平分∠DAB .其中正确结论有()A.0个B.1个C.2个D.3个二、填空题9.如图,AB∥CD,AE平分∠CAB交CD于点E,若∠C=48°,则∠AED为°.10.如图,AB∥CD,∠1=40°,MN平分∠EMB,则∠2的度数是.11.如图AB∥CD,∠CED=90°,∠AEC=37°,则∠D的度数为.12.如图,已知直线c与直线a,b分别交于点A,B,且∠2=65°,若直线a//b,则∠3的度数为.13.将一副直角三角板如图放置(其中∠A=60°,∠F=45°)点E在AC上ED//BC,则∠AEF的度数是.三、解答题14.如图所示,∠1=65°,∠2=65°,∠3=115°,试说明DE // BC,DF // AB.15.已知直线AB和CD相交于点O,射线OE⊥AB于O,射线OF⊥CD于O,且∠AOF=25°,求∠BOC与∠EOF 的度数.16.如图所示,已知AB//DC,AE平分∠BAD,CD与AE相交于点F,∠CFE=∠E试说明AD//BC .17.如图,网格中所有小正方形的边长都为1,A,B,C都在格点上.利用格点画图(不写作法):①过点C画直线AB的平行线CM;②过点A画直线BC的垂线,垂足为G;③过点A画直线AB的垂线,交BC于点H.18.如图,已知点E在直线DC上,射线EF平分∠AED,过E点作EB⊥EF,G为射线EC上一点,连结BG,且∠EBG+∠BEG=90°.(1)求证:∠DEF=∠EBG;(2)若∠EBG=∠A,试判断AB与EF的位置关系,并说明理由.答案1.C2.D3.B4.C5.B6.D7.B8.C9.11410.110°11.53°或53度12.115°13.165°14.解:∵∠1=65°,∠2=65°∴∠1=∠2∴DE∥BC∵∠1=∠4=65°,∠3=115°∴∠3+∠4=65°+115°=180°∴DF∥AB.15.解:∵OF⊥CD∴∠FOD=90°.∴∠AOD=∠AOF+∠FOD=25°+90°=115°.∴∠BOC=115°.∵OE⊥AB∴∠AOE=90°.∴∠EOF=90°﹣25°=65°.16.解:∵AB//CD∴∠BAE=∠CFE∵AE平分∠BAD∴∠BAE=∠DAF∴∠CFE=∠DAF∵∠CFE=∠E∴∠DAF=∠E∴AD//BC .17.解:①直线CD为所作;②线段AG为所作;③线段HA为所作;18.(1)证明:∵EB⊥EF∴∠FEB=90°∴∠DEF+∠BEG=180°-90°=90°,又∠EBG+∠BEG=90°∴∠DEF=∠EBG(2)解:AB∥EF,理由如下:∵EF平分∠AED∠AED∴∠AEF=∠DEF= 12∵∠EBG=∠A,∠DEF=∠EBG∴∠A=∠AEF∴AB∥EF。
八年级上册数学第五章相交线与平行线单元试卷(提升篇)(Word 版 含解析)一、选择题1.如图,AB ∥CD ∥EF ,AF ∥CG ,则图中与∠A (不包括∠A )相等的角有( )A .5个B .4个C .3个D .2个2.如图,给出下列条件:①∠3=∠4;②∠1=∠2;③∠5=∠B ;④AD ∥BE ,且∠D =∠B .其中能说明AB ∥DC 的条件有( )A .4个B .3个C .2个D .1个 3.如图,已知AD EF BC ,BD GF ∥,且BD 平分ADC ∠,则图中与1∠相等的角(1∠除外)共有( )A .4个B .5个C .6个D .7个4.如图,ABC 的角平分线CD 、BE 相交于F ,90A ∠=︒,//EG BC ,且CG EG ⊥于G ,下列结论:①2CEG DCB ∠=∠;②CA 平分BCG ∠;③ADC GCD ∠=∠;④12DFB CGE ∠=∠.其中正确的结论是( )A .①③④B .①②③C .②④D .①③ 5.如图,已知AB ∥CD ,BE 和DF 分别平分∠ABF 和∠CDE ,2∠E-∠F=48°,则∠CDE 的度数为( ).A .16°B .32°C .48°D .64°6.如图,直线//AB CD ,点E 在CD 上,点O 、点F 在AB 上,EOF ∠的角平分线OG 交CD 于点G ,过点F 作FH OE ⊥于点H ,已知148OGD ∠=︒,则OFH ∠的度数为( )A .26ºB .32ºC .36ºD .42º7.下列命题是假命题的有( )①邻补角相等;②对顶角相等;③同位角相等;④内错角相等.A .1个B .2个C .3个D .4个8.如图,////OP QR ST 下列各式中正确的是( )A .123180∠+∠+∠=B .12390∠+∠-∠=C .12390∠-∠+∠=D .231180∠+∠-∠= 9.下列命题中,是真命题的是( )A .对顶角相等B .两直线被第三条直线所截,截得的内错角相等C .等腰直角三角形都全等D .如果a b >,那么22a b >10.现有以下命题:①斜边中线和一个锐角分别对应相等的两个直角三角形全等;②一组对边平行,另一组对边相等的四边形是平行四边形;③在圆中,平分弦的直径垂直于弦;④平行于同一条直线的两直线互相平行.其中真命题的个数为( )A .1个B .2个C .3个D .4个11.已知:如图,直线a ∥b ,∠1=50°,∠2=∠3,则∠2的度数为( )A .50°B .60°C .65°D .75°12.下列四个说法:①两点之间,线段最短;②连接两点之间的线段叫做这两点间的距离;③经过直线外一点,有且只有一条直线与这条直线平行;④直线外一点与这条直线上各点连接的所有线段中,垂线段最短.其中正确的个数有( )A .1个B .2个C .3个D .4个二、填空题13.如果∠α与∠β的两边分别平行,∠α比∠β的3倍少40°,则∠α的度数为_______.14.如图,已知,∠ABG 为锐角,AH ∥BG ,点C 从点B (C 不与B 重合)出发,沿射线BG 的方向移动,CD ∥AB 交直线AH 于点D ,CE ⊥CD 交AB 于点E ,CF ⊥AD ,垂足为F (F 不与A 重合),若∠ECF =n°,则∠BAF 的度数为_____度.(用n 来表示)15.α∠与β∠的两边互相垂直,且o 50α∠=,则β∠的度数为_________.16.若∠A 与∠B 的两边分别平行,且∠A 比∠B 的3倍少40°,则∠B =_____度.17.如图,ABC ∆沿着由点B 到点E 的方向,平移到DEF ∆.若10BC =,6EC =,则平移的距离为__________.18.如图,//AB CD ,GF 与AB 相交于点H ,与CD 于F ,FE 平分HFD ∠,若50EHF ∠=︒,则HFE ∠的度数为______.19.观察下列图形:已知a b ,在第一个图中,可得∠1+∠2=180°,则按照以上规律:112n P P ∠+∠+∠++∠=…_________度.20.跳格游戏:如图,人从格外只能进入第1格;在格中,每次可向前跳l 格或2格,那么人从格外跳到第6格可以有_________种方法.三、解答题21.如图,两个形状,大小完全相同的含有30°、60°的三角板如图放置,PA 、PB 与直线MN 重合,且三角板PAC ,三角板PBD 均可以绕点P 逆时针旋转.(1)①如图1,∠DPC = 度.②我们规定,如果两个三角形只要有一组边平行,我们就称这两个三角形为“孪生三角形”,如图1,三角板BPD 不动,三角板PAC 从图示位置开始每秒10°逆时针旋转一周(0°<旋转<360°),问旋转时间t 为多少时,这两个三角形是“孪生三角形”.(2)如图3,若三角板PAC 的边PA 从PN 处开始绕点P 逆时针旋转,转速3°/秒,同时三角板PBD 的边PB 从PM 处开始绕点P 逆时针旋转,转速2°/秒,在两个三角板旋转过程中,(PC 转到与PM 重合时,两三角板都停止转动).设两个三角板旋转时间为t 秒,以下两个结论:①CPD BPN∠∠为定值;②∠BPN +∠CPD 为定值,请选择你认为对的结论加以证明.22.综合与探究综合与实践课上,同学们以“一个含30角的直角三角尺和两条平行线”为背景开展数学活动,如图,已知两直线a ,b ,且//a b ,三角形ABC 是直角三角形,90BCA ∠=︒,30BAC ∠=︒,60ABC ∠=︒操作发现:(1)如图1.148∠=︒,求2∠的度数;(2)如图2.创新小组的同学把直线a 向上平移,并把2∠的位置改变,发现21120∠-∠=︒,请说明理由.实践探究:(3)填密小组在创新小组发现的结论的基础上,将图2中的图形继续变化得到图3,AC 平分BAM ∠,此时发现1∠与2∠又存在新的数量关系,请写出1∠与2∠的数量关系并说明理由.23.对于平面内的∠M 和∠N ,若存在一个常数k >0,使得∠M +k ∠N =360°,则称∠N 为∠M 的k 系补周角.如若∠M =90°,∠N =45°,则∠N 为∠M 的6系补周角.(1)若∠H =120°,则∠H 的4系补周角的度数为 ;(2)在平面内AB ∥CD ,点E 是平面内一点,连接BE ,DE .①如图1,∠D =60°,若∠B 是∠E 的3系补周角,求∠B 的度数;②如图2,∠ABE 和∠CDE 均为钝角,点F 在点E 的右侧,且满足∠ABF =n ∠ABE ,∠CDF =n ∠CDE (其中n 为常数且n >1),点P 是∠ABE 角平分线BG 上的一个动点,在P 点运动过程中,请你确定一个点P 的位置,使得∠BPD 是∠F 的k 系补周角,并直接写出此时的k 值(用含n 的式子表示).24.如图①,已知直线12l l //,且3l 和12,l l 分别相交于,A B 两点,4l 和12,l l 分别相交于,C D 两点,点P 在线段AB 上,记1 23ACP BDP CPD ∠∠∠∠∠∠=,=,=.(1)若120,355︒︒∠=∠=,则2∠=_____;(2)试找出123∠∠∠,,之间的数量关系,并说明理由;(3)应用(2)中的结论解答下列问题;如图②,点A 在B 处北偏东42︒的方向上, 若88BAC ︒∠=,则点 A 在C 处的北偏西_____的方向上;(4)如果点P 在直线3l 上且在,A B 两点外侧运动时,其他条件不变,试探究1 23∠∠∠,,之间的关系(点 P 和,A B 两点不重合),直接写出结论即可.25.问题情境(1)如图①,已知360B E D ∠+∠+∠=︒,试探究直线AB 与CD 有怎样的位置关系?并说明理由.小明给出下面正确的解法:直线AB 与CD 的位置关系是//AB CD .理由如下:过点E 作//EF AB (如图②所示)所以180B BEF ∠+∠=︒(依据1)因为360B BED D ∠+∠+∠=︒(已知)所以360B BEF FED D ∠+∠+∠+∠=︒所以180FED D ∠+∠=︒所以//EF CD (依据2)因为//EF AB所以//AB CD (依据3)交流反思上述解答过程中的“依据1”,“依据2”,“依据3”分别指什么?“依据1”:________________________________;“依据2”:________________________________;“依据3”:________________________________.类比探究(2)如图,当B 、E ∠、F ∠、D ∠满足条件________时,有//AB CD . 拓展延伸(3)如图,当B 、E ∠、F ∠、D ∠满足条件_________时,有//AB CD .26.在△ABC 中,∠BAC =90°,点D 是BC 上一点,将△ABD 沿AD 翻折后得到△AED ,边AE 交BC 于点F .(1)如图①,当AE ⊥BC 时,写出图中所有与∠B 相等的角: ;所有与∠C 相等的角: .(2)若∠C -∠B =50°,∠BAD =x °(0<x ≤45) .① 求∠B 的度数;②是否存在这样的x 的值,使得△DEF 中有两个角相等.若存在,并求x 的值;若不存在,请说明理由.27.AB ∥CD ,点P 为直线AB ,CD 所确定的平面内的一点.(1)如图1,写出∠APC 、∠A 、∠C 之间的数量关系,并证明;(2)如图2,写出∠APC 、∠A 、∠C 之间的数量关系,并证明;(3)如图3,点E 在射线BA 上,过点E 作EF ∥PC ,作∠PEG =∠PEF ,点G 在直线CD 上,作∠BEG 的平分线EH 交PC 于点H ,若∠APC =30°,∠PAB =140°,求∠PEH 的度数.28.如图1,在四边形ABCD 中,A D BC ,A=C ∠∠.(1)求证:B=D ∠∠;(2)如图2,点E 在线段AD 上,点G 在线段AD 的延长线上,连接BG ,AEB=2G ∠∠,求证:BG 是EBC ∠的平分线;(3)如图3,在(2)的条件下,点E 在线段AD 的延长线上,EDC ∠的平分线DH 交BG 于点H ,若ABE=66∠︒.,求B HD ∠的度数.【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【分析】由平行线的性质,可知与∠A 相等的角有∠ADC 、∠AFE 、∠EGC 、∠GCD .【详解】∵AB ∥CD ,∴∠A=∠ADC ;∵AB ∥EF ,∴∠A=∠AFE ;∵AF ∥CG ,∴∠EGC=∠AFE=∠A ;∵CD ∥EF ,∴∠EGC=∠DCG=∠A ;所以与∠A 相等的角有∠ADC 、∠AFE 、∠EGC 、∠GCD 四个,故选B .2.B解析:B【详解】解:34∠∠=//AB CD ∴,①正确;12∠=∠//AD BC ∴,②不正确;5B ∠=∠//AB CD ∴,③正确;//AD BE5D ∴∠=∠B D ∠=∠5B ∴∠=∠//AB CD ∴,④正确;综上所述,①、③、④正确,故选B .3.D解析:D【分析】依据AD EF BC BD GF ∥∥,∥,即可得到1,1ADB DBC FGC EFG EHB ∠=∠=∠=∠=∠∠=∠,再根据BD 平分ADC ∠,即可得到ADB CDB CFG ∠=∠=∠.【详解】解:∵AD EF BC BD GF ∥∥,∥,∴11ADB DBC FGC EFG EHB ∠=∠=∠=∠=∠∠=∠,,又∵BD 平分ADC ∠,∴ADB CDB CFG ∠=∠=∠,∴图中与1∠相等的角(1∠除外)共有7个,故选:D.【点睛】此题主要考查了平行线的性质,此题充分运用平行线的性质以及角的等量代换就可以解决问题.4.A解析:A【分析】根据平行线、角平分线、垂直的性质及三角形内角和定理依次判断即可得出答案.【详解】解:①∵EG∥BC,∴∠CEG=∠ACB,又∵CD是△ABC的角平分线,∴∠CEG=∠ACB=2∠DCB,故本选项正确;②无法证明CA平分∠BCG,故本选项错误;③∵∠A=90°,∴∠ADC+∠ACD=90°,∵CD平分∠ACB,∴∠ACD=∠BCD,∴∠ADC+∠BCD=90°.∵EG∥BC,且CG⊥EG,∴∠GCB=90°,即∠GCD+∠BCD=90°,∴∠ADC=∠GCD,故本选项正确;④∵∠EBC+∠ACB=∠AEB,∠DCB+∠ABC=∠ADC,∴∠AEB+∠ADC=90°+12(∠ABC+∠ACB)=135°,∴∠DFE=360°﹣135°﹣90°=135°,∴∠DFB=45°=12∠CGE,故本选项正确.故选:A.【点睛】本题考查的是三角形内角和定理,熟知直角三角形的两锐角互余是解答此题的关键.5.B解析:B【解析】【分析】已知BE和DF分别平分∠ABF和∠CDE,根据角平分线分定义可得∠ABE=12∠ABF,∠CDF=12∠CDE;过点E作EM//AB,点F作FN//AB,即可得////AB CD EM//FN,由平行线的性质可得∠ABE=∠BEM,∠MED=∠EDC,∠ABF=∠BFN,∠CDF=∠DFN,由此可得∠BED=∠BEM+∠DEM=∠ABE+∠CDE=12∠ABF+∠CDE,∠BFD=∠BFN+∠DFN=∠ABF+∠CDF=∠ABF +12∠CDE,又因2∠BED-∠BFD=48°,即可得2(12∠ABF+∠CDE)-(∠ABF +12∠CDE)=48°,由此即可求得∠CDE=32°.【详解】∵BE和DF分别平分∠ABF和∠CDE,∴∠ABE=12∠ABF,∠CDF=12∠CDE,过点E作EM//AB,点F作FN//AB,∵//AB CD,∴////AB CD EM//FN,∴∠ABE=∠BEM,∠MED=∠EDC,∠ABF=∠BFN,∠CDF=∠DFN,∴∠BED=∠BEM+∠DEM=∠ABE+∠CDE=12∠ABF+∠CDE,∠BFD=∠BFN+∠DFN=∠ABF+∠CDF=∠ABF +12∠CDE,∵2∠BED-∠BFD=48°,∴2(12∠ABF+∠CDE)-(∠ABF +12∠CDE)=48°,∴∠CDE=32°.故选B.【点睛】本题考查了平行线的性质,根据平行线的性质确定有关角之间的关系是解决问题的关键. 6.A解析:A【解析】【分析】依据∠OGD=148°,可得∠EGO=32°,根据AB∥CD,可得∠EGO =∠GOF,根据GO平分∠EOF,可得∠GOE =∠GOF,等量代换可得:∠EGO=∠GOE=∠GOF=32°,根据FH OE⊥,可得:OFH∠=90°-32°-32°=26°【详解】解:∵∠OGD=148°,∴∠EGO=32°∵AB∥CD,∴∠EGO =∠GOF,∠的角平分线OG交CD于点G,∵EOF∴∠GOE =∠GOF,∵∠EGO=32°∠EGO =∠GOF∠GOE =∠GOF,∴∠GOE=∠GOF=32°,⊥,∵FH OE∠=90°-32°-32°=26°∴OFH故选A.【点睛】本题考查的是平行线的性质及角平分线的定义的综合运用,易构造等腰三角形,用到的知识点为:两直线平行,内错角相等.7.C解析:C【解析】试题分析:根据命题的正确与否,直接可知:邻补角相加和为180°,不一定相等,故①是假命题;根据对顶角相等的性质,可知②是真命题;根据平行线的性质,两直线平行,同位角相等,可知③是假命题;根据平行线的性质,两直线平行,内错角相等,可知④是假命题.故选C.8.D解析:D【解析】试题分析:延长TS,∵OP∥QR∥ST,∴∠2=∠4,∵∠3与∠ESR互补,∴∠ESR=180°﹣∠3,∵∠4是△FSR的外角,∴∠ESR+∠1=∠4,即180°﹣∠3+∠1=∠2,∴∠2+∠3﹣∠1=180°.故选D.考点:平行线的性质.9.A解析:A【分析】分别利用对顶角的性质、平行线的性质及不等式的性质分别判断后即可确定正确的选项.【详解】解:A.对顶角相等,正确,是真命题;B.两直线被第三条直线所截,内错角相等,错误,是假命题;C.等腰直角三角形不一定都全等,是假命题;D.如果0>a>b,那么a2<b2,是假命题.【点睛】本题考查了命题与定理的知识,解题的关键是了解对顶角的性质、平行线的性质及不等式的性质,难度不大.10.B解析:B【分析】根据全等三角形的判定、平行四边形的判定、垂径定理、平行线的性质一一判断即可.【详解】①斜边中线和一个锐角分别对应相等的两个直角三角形全等,是真命题;②一组对边平行,另一组对边相等的四边形是平行四边形,是假命题,比如等腰梯形;③在圆中,平分弦的直径垂直于弦,是假命题(此弦非直径);④平行于同一条直线的两直线互相平行,是真命题;故选B.【点睛】本题考查命题与定理、全等三角形的判定、平行四边形的判定、垂径定理、平行线的性质等知识,解题的关键是熟练掌握基本概念.11.C解析:C【分析】根据平行线的性质,即可得到∠1+∠2+∠3=180°,再根据∠2=∠3,∠1=50°,即可得出∠2的度数.【详解】∵a∥b,∴∠1+∠2+∠3=180°,又∵∠2=∠3,∠1=50°,∴50°+2∠2=180°,∴∠2=65°,故选:C .【点睛】本题主要考查了平行线的性质,角平分线的定义,解题时注意:两直线平行,同旁内角互补.12.C解析:C【分析】根据线段公理,两点之间的距离的概念,平行公理,垂线段最短等知识一一判断即可.【详解】解:①两点之间,线段最短,正确.②连接两点之间的线段叫做这两点间的距离,错误,应该是连接两点之间的线段的距离叫做这两点间的距离.③经过直线外一点,有且只有一条直线与这条直线平行,正确.④直线外一点与这条直线上各点连接的所有线段中,垂线段最短.正确.故选C .【点睛】本题考查线段公理,两点之间的距离的概念,平行公理,垂线段最短等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.二、填空题13.或【分析】由两角的两边互相平行可得出两角相等或互补,再由题意,其中一个角比另一个角的3倍少,可得出答案.【详解】解:设为x ,则为,若两角互补,则,解得,;若两角相等,则,解得,.故答案解析:125︒或20︒【分析】由两角的两边互相平行可得出两角相等或互补,再由题意,其中一个角比另一个角的3倍少40︒,可得出答案.【详解】解:设β∠为x ,则α∠为340x -︒,若两角互补,则340180x x +-︒=︒,解得55x =︒,125α∠=︒;若两角相等,则340x x =-︒,解得20x =︒,20α∠=︒.故答案为:125︒或20︒.【点睛】本题考查了平行线的性质,解题的关键是注意若∠α与∠β的两边分别平行,即可得∠α与∠β相等或互补,注意方程思想与分类讨论思想的应用.14.n 或180﹣n【分析】分两种情况讨论:当点在线段上;点在延长线上,根据平行线的性质,即可得到结论.【详解】解:过A 作AM⊥BC 于M ,如图1,当点C 在BM 延长线上时,点F 在线段AD 上,∵解析:n 或180﹣n【分析】分两种情况讨论:当点M 在线段BC 上;点C 在BM 延长线上,根据平行线的性质,即可得到结论.【详解】解:过A 作AM ⊥BC 于M ,如图1,当点C 在BM 延长线上时,点F 在线段AD 上,∵AD ∥BC ,CF ⊥AD ,∴CF ⊥BG ,∴∠BCF =90°,∴∠BCE+∠ECF =90°,∵CE ⊥AB ,∴∠BEC =90°,∴∠B+∠BCE =90°,∴∠B =∠ECF =n°,∵AD ∥BC ,∴∠BAF =180°﹣∠B =180°﹣n°,过A 作AM ⊥BC 于M ,如图2,当点C 在线段BM 上时,点F 在DA 延长线上,∵AD∥BC,CF⊥AD,∴CF⊥BG,∴∠BCF=90°,∴∠BCE+∠ECF=90°,∵CE⊥AB,∴∠BEC=90°,∴∠B+∠BCE=90°,∴∠B=∠ECF=n°,∵AD∥BC,∴∠BAF=∠B=n°,综上所述,∠BAF的度数为n°或180°﹣n°,故答案为:n或180﹣n.【点睛】本题主要考查了平行线的性质的运用,解题时注意:两直线平行,同旁内角互补;两直线平行,内错角相等.15.130°或50°【解析】【分析】作图分析,若两个角的边互相垂直,那么这两个角必相等或互补,可据此解答.【详解】如图∵β的两边与α的两边分别垂直,∴α+β=180°故β=130°,在上述情解析:130°或50°【解析】【分析】作图分析,若两个角的边互相垂直,那么这两个角必相等或互补,可据此解答.【详解】如图∵β的两边与α的两边分别垂直,∴α+β=180°故β=130°,在上述情况下,若反向延长∠β的一边,那么∠β的补角的两边也与∠α的两边互相垂直,故此时∠β=50;综上可知:∠β=50°或130°,故正确答案为:【点睛】本题考核知识点:四边形内角和. 解题关键点:根据题意画出图形,分析边垂直的2种可能情况.16.55或20【分析】根据平行线性质得出∠A+∠B=180°①,∠A=∠B②,求出∠A=3∠B﹣40°③,把③分别代入①②求出即可.【详解】解:∵∠A与∠B的两边分别平行,∴∠A+∠B=180解析:55或20【分析】根据平行线性质得出∠A+∠B=180°①,∠A=∠B②,求出∠A=3∠B﹣40°③,把③分别代入①②求出即可.【详解】解:∵∠A与∠B的两边分别平行,∴∠A+∠B=180°①,∠A=∠B②,∵∠A比∠B的3倍少40°,∴∠A=3∠B﹣40°③,把③代入①得:3∠B﹣40°+∠B=180°,∠B=55°,把③代入②得:3∠B﹣40°=∠B,∠B=20°,故答案为:55或20.【点睛】本题考查平行线的性质,解题的关键是掌握由∠A和∠B的两边分别平行,即可得∠A =∠B或∠A+∠B=180°,注意分类讨论思想的应用.17.4【分析】观察图象,发现平移前后,B、E对应,C、F对应,根据平移的性质,易得平移的距离为BE=BC-EC=4,进而可得答案.【详解】由题意平移的距离为BE=BC-EC=10-6=4,故答解析:4【分析】观察图象,发现平移前后,B 、E 对应,C 、F 对应,根据平移的性质,易得平移的距离为BE=BC-EC=4,进而可得答案.【详解】由题意平移的距离为BE=BC-EC=10-6=4,故答案为:4.【点睛】本题考查了平移的性质,经过平移,对应点所连的线段平行(或在同一直线上)且相等,对应线段平行(或在同一直线上)且相等,对应角相等.本题关键要找到平移的对应点.任何一对对应点所连线段的长度都等于平移的距离.18.65°【分析】由AB//CD 可得∠HFD=130︒,再由FE 平分∠HFD 可求出∠HFE.【详解】∵∴∠EHF+∠HFD=180°∵∴∠HFD=130°∵平分,∴∠HFE=∠HFD=解析:65°【分析】由AB//CD 可得∠HFD=130︒,再由FE 平分∠HFD 可求出∠HFE .【详解】∵//AB CD∴∠EHF+∠HFD=180°∵50EHF ∠=︒∴∠HFD=130°∵FE 平分HFD ∠,∴∠HFE=12∠HFD=1130652⨯︒=︒ 故答案为:65°.【点睛】此题主要考查了平行线的性质以及角平分线的定义,熟练掌握平行线的性质以及角平分线的定义是解题的关键.19.(n﹣1)×180【分析】分别过P1、P2、P3作直线AB的平行线P1E,P2F,P3G,由平行线的性质可得出:∠1+∠3=180°,∠5+∠6=180°,∠7+∠8=180°,∠4+∠2=18解析:(n﹣1)×180【分析】分别过P1、P2、P3作直线AB的平行线P1E,P2F,P3G,由平行线的性质可得出:∠1+∠3=180°,∠5+∠6=180°,∠7+∠8=180°,∠4+∠2=180°于是得到∠1+∠2=10°,∠1+∠P1+∠2=2×180,∠1+∠P1+∠P2+∠2=3×180°,∠1+∠P1+∠P2+∠P3+∠2=4×180°,根据规律得到结果∠1+∠2+∠P1+…+∠P n=(n+1)×180°.【详解】解:如图,分别过P1、P2、P3作直线AB的平行线P1E,P2F,P3G,∵AB∥CD,∴AB∥P1E∥P2F∥P3G.由平行线的性质可得出:∠1+∠3=180°,∠5+∠6=180°,∠7+∠8=180°,∠4+∠2=180°∴(1)∠1+∠2=180°,(2)∠1+∠P1+∠2=2×180,(3)∠1+∠P1+∠P2+∠2=3×180°,(4)∠1+∠P1+∠P2+∠P3+∠2=4×180°,∴∠1+∠2+∠P1+…+∠P n=(n+1)×180°.故答案为:(n+1)×180.【点睛】本题考查的是平行线的性质,根据题意作出辅助线,利用两直线平行,同旁内角互补是解答此题的关键.20.8【分析】理解已知条件是解答此题的关键,跳格总共有6格,第一次只能跳1格,后面的可以跳2格或者1格,当全部都是1格,或者部分1格部分2格,整理出所有的情况即可求出答案.【详解】当全部都只跳1解析:8【分析】理解已知条件是解答此题的关键,跳格总共有6格,第一次只能跳1格,后面的可以跳2格或者1格,当全部都是1格,或者部分1格部分2格,整理出所有的情况即可求出答案.【详解】当全部都只跳1格时,1种方法;当有1次跳2格,其他全部1格,有4种方法;当有2次跳2格时,其他全部1格,有3种方法;不存在3次或者更多跳2格的情况综上共有1+4+3=8种方法.【点睛】本题考查数列的递推式,实际上我们解题时抓住实际问题的本质,写出满足条件的数列,利用数列的递推式写出结果.三、解答题21.(1)①90;②t 为3s 或6s 或9s 或18s 或21s 或24s 或27s ;(2)①正确,②错误,证明见解析.【分析】(1)①由平角的定义,结合已知条件可得:180,DPC CPA DPB ∠=︒-∠-∠从而可得答案;②当//BD PC 时,有两种情况,画出符合题意的图形,利用平行线的性质与角的和差求解旋转角,可得旋转时间;当//PA BD 时,有两种情况,画出符合题意的图形,利用平行线的性质与角的和差关系求解旋转角,可得旋转时间;当//AC DP 时,有两种情况,画出符合题意的图形,利用平行线的性质与角的和差关系求解旋转角,可得旋转时间;当//AC BD 时,画出符合题意的图形,利用平行线的性质与角的和差关系求解旋转角,可得旋转时间;当//AC BP 时的旋转时间与//PA BD 相同;(2)分两种情况讨论:当PD 在MN 上方时,当PD 在MN 下方时,①分别用含t 的代数式表示,CPD BPN ∠∠,从而可得CPD BPN∠∠的值;②分别用含t 的代数式表示,CPD BPN ∠∠,得到BPN CPD ∠+∠是一个含t 的代数式,从而可得答案.【详解】解:(1)①∵∠DPC =180°﹣∠CPA ﹣∠DPB ,∠CPA =60°,∠DPB =30°,∴∠DPC =180﹣30﹣60=90°,故答案为90;②如图1﹣1,当BD ∥PC 时,∵PC∥BD,∠DBP=90°,∴∠CPN=∠DBP=90°,∵∠CPA=60°,∴∠APN=30°,∵转速为10°/秒,∴旋转时间为3秒;如图1﹣2,当PC∥BD时,PC BD∠PBD=90°,∵//,∴∠CPB=∠DBP=90°,∵∠CPA=60°,∴∠APM=30°,∵三角板PAC绕点P逆时针旋转的角度为180°+30°=210°,∵转速为10°/秒,∴旋转时间为21秒,如图1﹣3,当PA∥BD时,即点D与点C重合,此时∠ACP=∠BPD=30°,则AC∥BP,∵PA∥BD,∴∠DBP=∠APN=90°,∴三角板PAC绕点P逆时针旋转的角度为90°,∵转速为10°/秒,∴旋转时间为9秒,如图1﹣4,当PA∥BD时,∵∠DPB=∠ACP=30°,∴AC∥BP,∵PA∥BD,∴∠DBP=∠BPA=90°,∴三角板PAC绕点P逆时针旋转的角度为90°+180°=270°,∵转速为10°/秒,∴旋转时间为27秒,如图1﹣5,当AC∥DP时,∵AC∥DP,∴∠C=∠DPC=30°,∴∠APN=180°﹣30°﹣30°﹣60°=60°,∴三角板PAC绕点P逆时针旋转的角度为60°,∵转速为10°/秒,∴旋转时间为6秒,AC DP时,如图1﹣6,当//AC DP,//DPA PAC∴∠=∠=︒,90∠+∠=︒-︒+︒=︒,DPN DPA1803090240∴三角板PAC绕点P逆时针旋转的角度为240︒,∵转速为10°/秒,∴旋转时间为24秒,如图1﹣7,当AC∥BD时,∵AC∥BD,∴∠DBP=∠BAC=90°,∴点A在MN上,∴三角板PAC绕点P逆时针旋转的角度为180°,∵转速为10°/秒,∴旋转时间为18秒,当//AC BP时,如图1-3,1-4,旋转时间分别为:9s,27s.综上所述:当t为3s或6s或9s或18s或21s或24s或27s时,这两个三角形是“孪生三角形”;(2)如图,当PD在MN上方时,①正确,理由如下:设运动时间为t秒,则∠BPM=2t,∴∠BPN=180°﹣2t,∠DPM=30°﹣2t,∠APN=3t.∴∠CPD=180°﹣∠DPM﹣∠CPA﹣∠APN=90°﹣t,21802,BPN CPD t∴∠=∠=︒-∴1.2 CPD BPN∠=∠②∠BPN+∠CPD=180°﹣2t+90°﹣t=270°﹣3t,可以看出∠BPN+∠CPD随着时间在变化,不为定值,结论错误.当PD在MN下方时,如图,①正确,理由如下:设运动时间为t 秒,则∠BPM =2t ,∴∠BPN =180°﹣2t ,∠DPM =230,t -︒ ∠APN =3t .∴∠CPD =360CPA APN DPB BPN ︒-∠-∠-∠-∠()360603301802t t =︒-︒--︒-︒-=90t ︒-21802,BPN CPD t ∴∠=∠=︒- ∴1.2CPD BPN ∠=∠ ②∠BPN +∠CPD =180°﹣2t +90°﹣t =270°﹣3t ,可以看出∠BPN +∠CPD 随着时间在变化,不为定值,结论错误.综上:①正确,②错误.【点睛】本题考查的是角的和差倍分关系,平行线的性质与判定,角的动态定义(旋转角)的理解,掌握分类讨论的思想是解题的关键.22.(1)242∠=︒;(2)理由见解析;(3)12∠=∠,理由见解析.【分析】(1)由平角定义求出∠3=42°,再由平行线的性质即可得出答案;(2)过点B 作BD ∥a .由平行线的性质得∠2+∠ABD =180°,∠1=∠DBC ,则∠ABD =∠ABC−∠DBC =60°−∠1,进而得出结论;(3)过点C 作CP ∥a ,由角平分线定义得∠CAM =∠BAC =30°,∠BAM =2∠BAC =60°,由平行线的性质得∠1=∠BAM =60°,∠PCA =∠CAM =30°,∠2=∠BCP =60°,即可得出结论.【详解】解:(1)如图1148∠=︒,90BCA ∠=︒,3180142BCA ∴∠=︒-∠-∠=︒,//a b ,2342∴∠=∠=︒;图1BD a,(2)理由如下:如图2.过点B作//图22180∴∠+∠=︒,ABDa b,//∴,//b BD∴∠=∠DBC,1ABD ABC DBC∴∠=∠-∠=︒-∠,601∴∠+︒-∠=︒,2601180∴∠-∠=︒;21120∠=∠,(3)12图3CP a,理由如下:如图3,过点C作//AC平分BAM∠,∴∠=∠=︒,CAM BAC30BAM BAC∠=∠=︒,260a b,又//CP b∴,//BAM∠=∠=︒,160∴∠=∠=︒,30PCA CAM903060BCP BCA PCA ∴∠=∠-∠=︒-︒=︒,又//CP a ,260BCP ∴∠=∠=︒,12∠∠∴=.【点睛】本题是三角形综合题目,考查了平移的性质、直角三角形的性质、平行线的判定与性质、角平分线定义、平角的定义等知识;本题综合性强,熟练掌握平移的性质和平行线的性质是解题的关键.23.(1)60°;(2)①75°,②当BG 上的动点P 为∠CDG 的角平分线与BG 的交点时,满足∠BPD 是∠F 的k 系补周角,此时k=2n ,推导见解析.【分析】(1)直接利用k 系补周角的定义列方程求解即可.(2)①依据k 系补周角的定义及平行线的性质,建立∠B ED 、∠B 、∠D 的关系式求解即可.②结合本题的构图特点,利用平行线的性质得到:∠ABF+∠CDF+∠F=360°,结合∠ABF =n ∠ABE ,∠CDF =n ∠CDE (其中n 为常数且n >1),又由于点P 是∠ABE 角平分线BG 上的一个动点,通过构造相同特殊条件猜想出一个满足条件的P 点,再通过推理论证得到k 的值(含n 的表达式),即说明点P 即为所求.【详解】解:(1)设∠H 的4系补周角的度数为x ,则有120°+4x=360°,解得:x=60°∴∠H 的4系补周角的度数为60°;(2)①如图,过点E 作EF//AB ,∵AB//EF,∴EF//CD ,∴∠B=∠1,∠D=∠2,∴∠1+∠2=∠B+∠D ,即∠B ED=∠B+∠D ,∵∠BED+3∠B=360°,∠D =60,∴360360B B ︒-∠=∠+︒,解得:∠B=75°,∴∠B=75°;②预备知识,基本构图:如图,AB//CD//EF,则∠ABE+∠BEG=180°,∠DCE+∠GEC=180°,∴∠ABE+∠BEG+∠DCE+∠GEC=360°,即∠ABE+∠DCG+∠BEC=360°如图:当BG 上的动点P 为∠CDG 的角平分线与BG 的交点时,满足∠BPD 是∠F 的k 系补周角,此时k=2n.理由如下:若∠BPD 是∠F 的k 系补周角,则∠F+k ∠BPD=360°,∴k ∠BPD=360°-∠F又由基本构图知:∠ABF+∠CDF=360°-∠F , ∴k ∠BPD=∠ABF+∠CDF ,又∵∠ABF =n ∠ABE ,∠CDF =n ∠CDE ,∴k ∠BPD= n ∠ABE+ n ∠CDE ,∵∠BPD=∠PHD+∠PDH,∵AB//CD ,PG 平分∠ABE ,PD 平分∠CDE ,∴∠PHD=∠ABH=12ABE ∠ ,∠PDH=12CDE ∠, ∴2k (ABE ∠+CDE ∠)=n(∠ABE+∠CDE), ∴k=2n.【点睛】本题主要考查平行线的基本性质及基本构图的应用.题型较新颖,发散性较强,理解题意,熟练掌握平行线的性质及其基本构图是解题的关键.24.(1)35︒;(2)123∠+∠=∠,理由见解析;(3)46︒;(4)当P 点在A 的上方时,321∠=∠-∠,当P 点在B 的下方时,312∠=∠-∠.【分析】(1)由题意直接根据平行线的性质和三角形内角和定理进行分析即可求解;(2)由题意过点P 作//PM AC ,进而利用平行线的性质进行分析证明即可;(3)根据题意过A 点作//AF BD ,则////A BD CE ,进而利用平行线的性质即可求解;(4)根据题意分当P 点在A 的上方与当P 点在B 的下方两种情况进行分类讨论即可.【详解】解:()1∵12l l //,∴∠1+∠PCD+∠PDC+∠2=180°,在△PCD 中,∠3+∠PCD+∠PDC=180°,∴∠3=∠1+∠2,则有∠2=∠3-∠1=35︒,故答案为:35︒;()2123∠+∠=∠理由如下:过点P 作//PM AC//AC BD////AC PM BD ∴12CPM DPM ∴∠=∠∠=∠,12CPM DPM CPD ∴∠+∠=∠+∠=∠()3过A 点作//AF BD ,则////A BD CE ,则BAC DBA ACE ∠∠+∠=,故答案为:46︒;()4当P 点在A 的上方时,如图 2,∴∠1=∠FPC .∵14//l l ,∴2//PF l ,∴∠2=∠FPD∵∠CPD=∠FPD-∠FPC∴∠CPD=∠2-∠1,即321∠=∠-∠.当P 点在B 的下方时,如图 3,∴∠2=∠GPD∵12l l //,∴1//PG l ,∴∠1=∠CPG∵∠CPD=∠CPG-∠GPD∴∠CPD=∠1-∠2,即312∠=∠-∠.【点睛】本题考查平行线的判定与性质,利用了等量代换的思想,熟练掌握平行线的判定与性质是解答本题的关键.25.(1)两直线平行,同旁内角互补;同旁内角互补,两直线平行;如果两条直线都与第三条直线平行,那么这两条直线也互相平行;(2)∠B +∠E +∠F +∠D =540°;(3)∠B +∠E +∠D -∠F =180°.【分析】(1)根据平行线的性质和判定,平行公理的推论回答即可;(2)过点E 、F 分别作GE ∥HF ∥CD ,根据两直线平行,同旁内角互补及已知条件求得同旁内角∠ABE +∠BEG =180°,得到AB ∥GE ,再根据平行线的传递性来证得AB ∥CD ; (3)过点E 、F 分别作ME ∥FN ∥CD ,根据两直线平行,内错角相等及已知条件求得同旁内角∠B +∠BEM =180°,得到AB ∥ME ,再根据平行线的传递性来证得AB ∥CD .【详解】解:(1)由题意可知:“依据1”:两直线平行,同旁内角互补;“依据2”: 同旁内角互补,两直线平行;“依据3”: 如果两条直线都与第三条直线平行,那么这两条直线也互相平行; (2)当∠B 、∠E 、∠F 、∠D 满足条件∠B +∠E +∠F +∠D =540°时,有AB ∥CD . 理由:如图,过点E 、F 分别作GE ∥HF ∥CD ,则∠GEF +∠EFH =180°,∠HFD +∠CDF =180°,∴∠GEF +∠EFD +∠FDC =360°;又∵∠B +∠BEF +∠EFD +∠D =540°,∴∠ABE +∠BEG =180°,∴AB ∥GE ,∴AB ∥CD ;(3)当∠B 、∠E 、∠F 、∠D 满足条件∠B +∠E +∠D -∠F =180°时,有AB ∥CD . 如图,过点E 、F 分别作ME ∥FN ∥CD ,则∠MEF =EFN ,∠D =∠DFN ,∵∠B +∠BEF +∠D -∠EFD =180°,∴∠B +∠BEM +∠MEF +∠D -∠EFN -∠DFN =180°,∴∠B +∠BEM =180°,∴AB ∥ME ,∴AB ∥CD .【点睛】本题考查平行线的判定和性质的综合应用,作出合适的辅助线,灵活运用平行线的性质定理和判定定理是解题的关键.26.(1)∠E 、∠CAF ;∠CDE 、∠BAF ; (2)①20°;②30【分析】(1)由翻折的性质和平行线的性质即可得与∠B 相等的角;由等角代换即可得与∠C 相等的角;(2)①由三角形内角和定理可得90B C ∠+∠=︒,再由50C B ∠∠︒-=根据角的和差计算即可得∠C 的度数,进而得∠B 的度数.②根据翻折的性质和三角形外角及三角形内角和定理,用含x 的代数式表示出∠FDE 、∠DFE 的度数,分三种情况讨论求出符合题意的x 值即可.【详解】(1)由翻折的性质可得:∠E =∠B ,∵∠BAC =90°,AE ⊥BC ,∴∠DFE =90°,∴180°-∠BAC =180°-∠DFE =90°,即:∠B +∠C =∠E +∠FDE =90°,∴∠C =∠FDE ,∴AC ∥DE ,∴∠CAF =∠E ,∴∠CAF =∠E =∠B故与∠B 相等的角有∠CAF 和∠E ;∵∠BAC =90°,AE ⊥BC ,∴∠BAF +∠CAF =90°, ∠CFA =180°-(∠CAF +∠C )=90°∴∠BAF +∠CAF =∠CAF +∠C =90°∴∠BAF =∠C又AC ∥DE ,∴∠C =∠CDE ,∴故与∠C 相等的角有∠CDE 、∠BAF ;(2)①∵90BAC ∠=︒∴90B C ∠+∠=︒又∵50C B ∠∠︒-=,∴∠C =70°,∠B =20°;②∵∠BAD =x °, ∠B =20°则160ADB x ∠︒︒=-,20ADF x ∠︒︒=+,由翻折可知:∵160ADE ADB x ∠∠︒︒==-, 20E B ∠∠︒==,∴1402FDE x ∠︒︒=-, 202DFE x ∠︒︒=+,当∠FDE =∠DFE 时,1402202x x ︒︒︒︒-=+, 解得:30x ︒︒=;当∠FDE =∠E 时,140220x ︒︒︒-=,解得:60x ︒︒=(因为0<x ≤45,故舍去); 当∠DFE =∠E 时,20220x ︒︒︒+=,解得:0x ︒=(因为0<x ≤45,故舍去); 综上所述,存在这样的x 的值,使得△DEF 中有两个角相等.且30x =.【点睛】本题考查图形的翻折、三角形内角和定理、平行线的判定及其性质、三角形外角的性质、等角代换,解题的关键是熟知图形翻折的性质及综合运用所学知识.27.(1)∠A +∠C +∠APC =360°,证明详见解析;(2)∠APC =∠A −∠C ,证明详见解析;(3)55°.【分析】(1)首先过点P 作PQ ∥AB ,结合题意得出AB ∥PQ ∥CD ,然后由“两直线平行,同旁内。
八年级数学上册第五章相交线与平行线单元测试卷(提升篇)(Word 版 含解析)一、选择题1.给出下列4个命题:①同旁内角互补;②相等的角是对顶角;③等角的补角相等;④两直线平行,同位角相等.其中,假命题的个数为( )A .1B .2C .3D .42.下列结论中:①同一平面内,两条不相交的直线被第三条直线所截,形成的同旁内角互补;②在同一平面内,若,//a b b c ⊥,则a c ⊥; ③直线外一点到直线的垂线段叫点到直线的距离;④同一平面内,过一点有且只有一条直线与已知直线平行,正确的个数有( )A .1个B .2个C .3个D .4个3.如图,O 是直线AB 上一点,OE 平分∠BOD ,OF ⊥OE ,∠D =110°,添加一个条件,仍不能判定AB ∥CD ,添加的条件可能是( )A .∠BOE =55°B .∠DOF =35°C .∠BOE +∠AOF =90°D .∠AOF =35° 4.如图,将矩形ABCD 沿GH 折叠,点C 落在点Q 处,点D 落在AB 边上的点E 处,若∠AGE=32°,则∠GHC 等于( )A .112°B .110°C .108°D .106°5.如图所示,若AB ∥EF ,用含α、β、γ的式子表示x ,应为( )A .αβγ++B .βγα+-C .180αγβ︒--+D .180αβγ︒++-6.如图所示,若∠1=∠2=45°,∠3=70°,则∠4等于( )A .70°B .45°C .110°D .135° 7.如图,AB ∥CD ,BF ,DF 分别平分∠ABE 和∠CDE ,BF ∥DE ,∠F 与∠ABE 互补,则∠F 的度数为A .30°B .35°C .36°D .45°8.下列各命题中,属于假命题的是( )A .若0a b ->,则a b >B .若0a b -=,则0ab ≥C .若0a b -<,则a b <D .若0a b -≠,则0ab ≠9.下列命题是真命题的有( )个①对顶角相等,邻补角互补②两条直线被第三条直线所截,同位角的平分线平行③垂直于同一条直线的两条直线互相平行④过一点有且只有一条直线与已知直线平行A .0B .1C .2D .310.如图,下列说法错误的是( )A .若a∥b,b∥c,则a∥cB .若∠1=∠2,则a∥cC .若∠3=∠2,则b∥cD .若∠3+∠5=180°,则a∥c11.已知//AB CD ,∠EAF=13∠EAB ,∠ECF=13∠ECD ,若∠E=66°,则∠F 为( )A .23°B .33°C .44°D .46°12.如图,ABC 面积为2,将ABC 沿AC 方向平移至DFE △,且AC=CD ,则四边形AEFB 的面积为( )A .6B .8C .10D .12二、填空题13.如图,AB ∥CD ,CF 平分∠DCG ,GE 平分∠CGB 交FC 的延长线于点E ,若∠E =34°,则∠B 的度数为____________.14.如图,已知AB CD ∥,CE 、BE 的交点为E ,现作如下操作:第一次操作,分别作ABE ∠和DCE ∠的平分线,交点为1E ,第二次操作,分别作1ABE ∠和1DCE ∠的平分线,交点为2E ,第三次操作,分别作2ABE ∠和2DCE ∠的平分线,交点为3E ,…第n 次操作,分别作1n ABE -∠和1n DCE -∠的平分线,交点为n E .若1n E ∠=度,那BEC ∠等于__________度.15.如图,有两个正方形夹在AB 与CD 中,且AB//CD,若∠FEC=10°,两个正方形临边夹角为150°,则∠1的度数为________度(正方形的每个内角为90°)16.如图,a ∥b ,∠2=∠3,∠1=40°,则∠4的度数是______度.17.如图,AC ⊥AB ,AC ⊥CD ,垂足分别是点A 、C ,如果∠CDB=130°,那么直线AB 与BD 的夹角是________度.18.如图,已知12∠=∠,求证:A BCH ∠=∠.证明:∵12∠=∠(已知)23∠∠=(______)∴13∠=∠(等量代换)∴//CH (______)(同位角相等,两直线平行)∴A BCH ∠=∠(______)19.如图,AB ∥CD ,∠β=130°,则∠α=_______°.20.如图,直角△ABC 中,AC=3,BC=4,AB=5,则内部五个小直角三角形的周长为_____.三、解答题21.如图,直线MN∥GH,直线l1分别交直线MN、GH于A、B两点,直线l2分别交直线MN、GH于C、D两点,且直线l1、l2交于点E,点P是直线l2上不同于C、D、E点的动点.(1)如图①,当点P在线段CE上时,请直写出∠NAP、∠HBP、∠APB之间的数量关系:;(2)如图②,当点P在线段DE上时,(1)中的∠NAP、∠HBP、∠APB之间的数量关系还成立吗?如果成立,请说明成立的理由;如果不成立,请写出这三个角之间的数量关系,并说明理由.(3)如果点P在直线l2上且在C、D两点外侧运动时,其他条件不变,请直接写出∠NAP、∠HBP、∠APB之间的数量关系.22.如图1所示,AB∥CD,E为直线CD下方一点,BF平分∠ABE.(1)求证:∠ABE+∠C﹣∠E=180°.(2)如图2,EG平分∠BEC,过点B作BH∥GE,求∠FBH与∠C之间的数量关系.(3)如图3,CN平分∠ECD,若BF的反向延长线和CN的反向延长线交于点M,且∠E+∠M=130°,请直接写出∠E的度数.23.钱塘江汛期即将来临,防汛指挥部在一危险地带两岸各安置了一探照灯,便于夜间查看江水及两岸河堤的情况.如图,灯A射线自AM顺时针旋转至AN便立即回转,灯B射线自BP顺时针旋转至BQ便立即回转,两灯不停交叉照射巡视.若灯A转动的速度是a°/秒,灯B转动的速度是b°/秒,且a、b满足|a﹣3b|+(a+b﹣4)2=0.假定这一带长江两岸河堤是平行的,即PQ∥MN,且∠BAN=45°.(1)求a、b的值;(2)若灯B射线先转动30秒,灯A射线才开始转动,在灯B射线到达BQ之前,A灯转动几秒,两灯的光束互相平行?(3)如图,两灯同时转动,在灯A 射线到达AN 之前,若射出的光束交于点C ,过C 作CD ⊥AC 交PQ 于点D ,则在转动过程中,∠BAC 与∠BCD 的数量关系是否发生变化?若不变,请求出其数量关系;若改变,请求出其取值范围.24.如图,已知直线12//l l ,直线3l 交1l 于C 点,交2l 于D 点,P 是线段CD 上的一个动点,(1)若P 点在线段CD (C 、D 两点除外)上运动,问PAC ∠,APB ∠,PBD ∠之间的关系是什么?这种关系是否变化?(2)若P 点在线段CD 之外时,PAC ∠,APB ∠,PBD ∠之间的关系怎样?说明理由25.如图,AB ∥CD .(1)如图1,∠A 、∠E 、∠C 的数量关系为 .(2)如图2,若∠A =50°,∠F =115°,求∠C ﹣∠E 的度数;(3)如图3,∠E =90°,AG ,FG 分别平分∠BAE ,∠CFE ,若GD ∥FC ,试探究∠AGF 与∠GDC 的数量关系,并说明理由.26.问题情境:如图1,//AB CD ,128PAB ∠=︒,124PCD ∠=︒,求APC ∠的度数.小明的思路是过点P 作//PE AB ,通过平行线性质来求APC ∠.(1)按照小明的思路,写出推算过程,求APC ∠的度数.(2)问题迁移:如图2,//AB CD ,点P 在射线OM 上运动,记PAB α∠=,PCD β∠=,当点P 在B 、D 两点之间运动时,问APC ∠与α、β之间有何数量关系?请说明理由.(3)在(2)的条件下,当点P 在线段OB 上时,请直接写出APC ∠与α、β之间的数量关系.27.如图1,在四边形ABCD 中,A D BC ,A=C ∠∠.(1)求证:B=D ∠∠;(2)如图2,点E 在线段AD 上,点G 在线段AD 的延长线上,连接BG ,AEB=2G ∠∠,求证:BG 是EBC ∠的平分线;(3)如图3,在(2)的条件下,点E 在线段AD 的延长线上,EDC ∠的平分线DH 交BG 于点H ,若ABE=66∠︒.,求B HD ∠的度数.28.如图1,已知直线PQ ∥MN ,点A 在直线PQ 上,点C 、D 在直线MN 上,连接AC 、AD ,∠PAC =50°,∠ADC =30°,AE 平分∠PAD ,CE 平分∠ACD ,AE 与CE 相交于E . (1)求∠AEC 的度数;(2)若将图1中的线段AD 沿MN 向右平移到A 1D 1如图2所示位置,此时A 1E 平分∠AA 1D 1,CE 平分∠ACD 1,A 1E 与CE 相交于E ,∠PAC =50°,∠A 1D 1C =30°,求∠A 1EC 的度数.(3)若将图1中的线段AD 沿MN 向左平移到A 1D 1如图3所示位置,其他条件与(2)相同,求此时∠A 1EC 的度数.【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【分析】根据平行线的判定方法对①进行判断;据对顶角的定义对②进行判断;根据平行线的性质对④进行判断;根据补角的定义对③进行判断.【详解】两直线平行,同旁内角互补,所以①错误;相等的角不一定是对顶角,所以②错误;等角的补角相等,所以③正确;两条平行直线被第三条直线所截,同位角相等,所以④正确;;故选B.【点睛】本题主要考查了平行线的性质及判定,对顶角的性质等,熟练掌握各性质定理是解答此题的关键.2.B解析:B【分析】根据平行线的性质,点到直线的距离依次判断.【详解】解:①同一平面内,两条不相交的直线(即两直线平行)被第三条直线所截,形成的同旁内角互补,说法正确;②在同一平面内,若,//a b b c ⊥,则a c ⊥,说法正确;③直线外一点到直线的垂线段叫点到直线的距离,说法错误;④同一平面内,过一点有且只有一条直线与已知直线平行,说法错误;正确的说法有2个,故选:B .【点睛】此题考查平行线的性质,点到直线的距离,正确理解定义是解题的关键.3.C解析:C【分析】根据平行线的判定定理判断即可.【详解】解:∵OE 平分∠BOD ,∠BOE=55°,∴∠BOD=2∠BOE=110°,∵∠D=110°,∴∠BOD=∠D,∴CD∥AB,故A不符合题意;∵OF⊥OE,∴∠FOE=90°,∠DOF=35°,∴∠DOE=55°,∵OE平分∠BOD,∴∠DOB=2∠DOE=110°,∵∠D=110°,∴∠DOB=∠D,∴AB∥CD,故B不符合题意;∵∠BOE+∠AOF=90°,∴∠EOF=90°,但不能判断AB∥CD,故C符合题意;∵OF⊥OE,∴∠FOE=90°,∠AOF=35°,∴∠BOE=55°,∵OE平分∠BOD,∴∠DOB=2∠BOE=110°,∵∠D=110°,∴∠DOB=∠D,∴AB∥CD,故D不符合题意;故选:C.【点睛】本题考查了角平分线的性质和平行线的判定定理,熟练掌握平行线的判定定理即可得到结论.4.D解析:D【解析】分析:由折叠可得:∠DGH=12∠DGE=74°,再根据AD∥BC,即可得到∠GHC=180°﹣∠DGH=106°.详解:∵∠AGE=32°,∴∠DGE=148°,由折叠可得:∠DGH=12∠DGE=74°.∵AD∥BC,∴∠GHC=180°﹣∠DGH=106°.故选D.点睛:本题主要考查了平行线的性质,解题时注意:两直线平行,同旁内角互补.5.C解析:C【分析】过C作CD∥AB,过M作MN∥EF,推出AB∥CD∥MN∥EF,根据平行线的性质得出α+∠BCD=180°,∠DCM=∠CMN,∠NMF=γ,求出∠BCD=180°-α,∠DCM=∠CMN=β-γ,即可得出答案.【详解】过C作CD∥AB,过M作MN∥EF,∵AB∥EF,∴AB∥CD∥MN∥EF,∴α+∠BCD=180°,∠DCM=∠CMN,∠NMF=γ,∴∠BCD=180°-α,∠DCM=∠CMN=β-γ,︒--+,∴x=∠BCD+∠DCM=180αγβ故选:C.【点睛】本题考查了平行线的性质的应用,主要考查了学生的推理能力.6.C解析:C【分析】根据对顶角的性质可得∠1=∠5,再由等量代换得∠2=∠5,即可得到到a∥b,利用两直线平行同旁内角互补可得∠3+∠4=180°,最后根据∠3的度数即可求出∠4的度数.【详解】解:∵∠1与∠5是对顶角,∴∠1=∠2=∠5=45°,∴a∥b,∴∠3+∠6=180°,∵∠3=70°,∴∠4=∠6=110°.故答案为C.【点睛】本题考查了对顶角的性质、平行线的性质及判定,其中掌握平行线的性质和判定是解答本题的关键.7.C解析:C【解析】【分析】延长BG交CD于G,然后运用平行的性质和角平分线的定义,进行解答即可.【详解】解:如图延长BG交CD于G∵BF∥ED∴∠F=∠EDF又∵DF 平分∠CDE,∴∠CDE=2∠F,∵BF∥ED∴∠CGF=∠EDF=2∠F,∵AB∥CD∴∠ABF=∠CGF=2∠F,∵BF平分∠ABE∴∠ABE=2∠ABF=4∠F,又∵∠F 与∠ABE 互补∴∠F +∠ABE =180°即5∠F=180°,解得∠F=36°故答案选C.【点睛】本题考查了平行的性质和角平分线的定义,做出辅助线是解答本题的关键.8.D解析:D【分析】根据不等式的性质对各选项进行逐一判断即可.【详解】A、正确,符合不等式的性质;B、正确,符合不等式的性质.C、正确,符合不等式的性质;D、错误,例如a=2,b=0;故选D.【点睛】考查了命题与定理的知识,解题的关键是了解不等式的性质,难度不大.9.B解析:B【分析】根据平行线的性质定理、平行公理、对顶角和邻补角的概念判断即可.【详解】解:对顶角相等,邻补角互补,故①是真命题;两条平行线被第三条直线所截,同位角的平分线平行,故②是假命题;在同一平面内,垂直于同一条直线的两条直线互相平行,故③是假命题;过直线外一点有且只有一条直线与已知直线平行,故④是假命题;故正确的个数只有1个,故选:B.【点睛】本题考查的是平行的公理和应用,命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉课本中的性质定理.10.C解析:C【解析】试题分析:根据平行线的判定进行判断即可.解:A、若a∥b,b∥c,则a∥c,利用了平行公理,正确;B、若∠1=∠2,则a∥c,利用了内错角相等,两直线平行,正确;C、∠3=∠2,不能判断b∥c,错误;D、若∠3+∠5=180°,则a∥c,利用同旁内角互补,两直线平行,正确;故选C.考点:平行线的判定.11.C解析:C【分析】如图(见解析),先根据平行线的性质、角的和差可得66EAB EC C D AE ∠+∠=∠=︒,同样的方法可得F FAB FCD ∠=∠+∠,再根据角的倍分可得,2323FAB EAB FCD ECD ∠=∠∠=∠,由此即可得出答案. 【详解】 如图,过点E 作//EG AB ,则////EG AB CD ,,EAB CE C A D G G E E ∴∠=∠∠∠=,66AEG EAB ECD CE A C G E ∴∠+=∠+=∠=∠∠︒,同理可得:F FAB FCD ∠=∠+∠,11,33EAF EAB ECF ECD ∠=∠∠=∠, ,2323FAB EAB FCD ECD ∴∠=∠∠=∠, ()266443333222F FAB FCD EAB ECD EAB ECD ∴∠=∠+∠=∠+∠=∠+∠=⨯︒=︒,故选:C .【点睛】本题考查了平行线的性质、角的和差倍分,熟练掌握平行线的性质是解题关键.12.C解析:C【分析】如图(见解析),先根据平移的性质可得//AE BF ,2BF AD AC ==,DE AC =,再根据平行线的性质可得BEF 的边BF 上的高等于BG ,然后根据三角形的面积公式分别求出ABE △和BEF 的面积即可得出答案.【详解】如图,过点B 作BG AE ⊥于点G ,连接BE ,ABC 面积为2,122AC BG ∴⋅=,即4AC BG ⋅=, 由平移的性质得://AE BF ,BF AD =,DE AC =,AC CD =,2BF AD AC CD AC ∴==+=,3AE AD DE AC =+=, 113622ABE S AE BG AC BG ∴=⋅=⋅⋅=, //AE BF ,BEF ∴的边BF 上的高等于BG ,112422BEF S BF BG AC BG ∴=⋅=⋅⋅=, ∴四边形AEFB 的面积为6410ABE BEF S S +=+=,故选:C .【点睛】本题考查了平移的性质、平行线间的距离、三角形的面积公式等知识点,熟练掌握平移的性质是解题关键.二、填空题13.68°【分析】如图,延长DC 交BG 于M .由题意可以假设∠DCF=∠GCF=x,∠CGE=∠MGE=y.构建方程组证明∠GMC=2∠E 即可解决问题.【详解】解:如图,延长DC 交BG 于M .由题意解析:68°【分析】如图,延长DC 交BG 于M .由题意可以假设∠DCF=∠GCF=x ,∠CGE=∠MGE=y .构建方程组证明∠GMC=2∠E 即可解决问题.【详解】解:如图,延长DC 交BG 于M .由题意可以假设∠DCF=∠GCF=x ,∠CGE=∠MGE=y .则有22x y GMCx y E=+∠⎧⎨=+∠⎩①②,①-2×②得:∠GMC=2∠E,∵∠E=34°,∴∠GMC=68°,∵AB∥CD,∴∠GMC=∠B=68°,故答案为:68°.【点睛】本题考查平行线的性质,角平分线的定义等知识,解题的关键是熟悉基本图形,学会添加常用辅助线,学会利用参数构建方程组解决问题,属于中考填空题中的能力题.14.【分析】先过E作EF∥AB,根据AB∥CD,得出AB∥EF∥CD,再根据平行线的性质,得出∠B=∠1,∠C=∠2,进而得到∠BEC=∠ABE+∠DCE;根据∠ABE和∠DCE的平分线交点为E1,解析:2n【分析】先过E作EF∥AB,根据AB∥CD,得出AB∥EF∥CD,再根据平行线的性质,得出∠B=∠1,∠C=∠2,进而得到∠BEC=∠ABE+∠DCE;根据∠ABE和∠DCE的平分线交点为E1,则可得出∠CE1B=∠ABE1+∠DCE112=∠ABE12+∠DCE12=∠BEC;同理可得∠BE2C=∠ABE2+∠DCE212=∠ABE112+∠DCE112=∠CE1B14=∠BEC;根据∠ABE2和∠DCE2的平分线,交点为E3,得出∠BE3C18=∠BEC;…据此得到规律∠E n12n=∠BEC,最后求得∠BEC的度数.【详解】如图1,过E作EF∥AB.∵AB∥CD,∴AB∥EF∥CD,∴∠B=∠1,∠C=∠2.∵∠BEC=∠1+∠2,∴∠BEC=∠ABE+∠DCE;如图2.∵∠ABE和∠DCE的平分线交点为E1,∴∠CE1B=∠ABE1+∠DCE112=∠ABE12+∠DCE12=∠BEC.∵∠ABE1和∠DCE1的平分线交点为E2,∴∠BE2C=∠ABE2+∠DCE212=∠ABE112+∠DCE112=∠CE1B14=∠BEC;∵∠ABE2和∠DCE2的平分线,交点为E3,∴∠BE3C=∠ABE3+∠DCE312=∠ABE212+∠DCE212=∠CE2B18=∠BEC;…以此类推,∠E n12n=∠BEC,∴当∠E n=1度时,∠BEC等于2n度.故答案为:2n.【点睛】本题考查了角平分线的定义以及平行线性质:两直线平行,内错角相等的运用.解决问题的关键是作平行线构造内错角,解题时注意:从一个角的顶点出发,把这个角分成相等的两个角的射线叫做这个角的平分线.15.【解析】【详解】作IF∥AB,GK∥AB,JH∥AB因为AB∥CD所以,AB∥CD∥ IF∥GK∥JH所以,∠IFG=∠FEC=10°所以,∠GFI=90°-∠IFG=80°所以,∠解析:【解析】【详解】作IF∥AB,GK∥AB,JH∥AB因为AB∥CD所以,AB∥CD∥ IF∥GK∥JH所以,∠IFG=∠FEC=10°所以,∠GFI=90°-∠IFG=80°所以,∠KGF=∠GFI=80°所以,∠HGK=150°-∠KGF=70°所以,∠JHG=∠HGK=70°同理,∠2=90°-∠JHG=20°所以,∠1=90°-∠2=70°故答案为70【点睛】本题考查了平行线的性质,正确作出辅助线是关键,注意掌握平行线的性质:两直线平行,内错角相等.16.40【解析】试题分析:如图,分别作a、b的平行线,然后根据a∥b,可得∠1=∠5,∠6=∠7,∠8=∠4,然后根据∠2=∠3,即∠5+∠6=∠7+∠8,然后由∠1=40°,可求得∠4=40°.解析:40【解析】试题分析:如图,分别作a、b的平行线,然后根据a∥b,可得∠1=∠5,∠6=∠7,∠8=∠4,然后根据∠2=∠3,即∠5+∠6=∠7+∠8,然后由∠1=40°,可求得∠4=40°.故答案为:40.17.50【分析】先根据平行线的判定可得,再根据平行线的性质、两直线的夹角的定义即可得.【详解】∵,,∴,∵,∴,∴直线AB与BD的夹角是50度,故答案为:50.本题考查了平解析:50【分析】先根据平行线的判定可得//AB CD ,再根据平行线的性质、两直线的夹角的定义即可得.【详解】∵AC AB ⊥,AC CD ⊥,∴//AB CD ,∵130CDB ∠=︒,∴18050ABD CDB ∠=︒-∠=︒,∴直线AB 与BD 的夹角是50度,故答案为:50.【点睛】本题考查了平行线的判定与性质、两直线的夹角的定义,熟练掌握平行线的判定与性质是解题关键.18.对顶角相等,AG ,两直线平行,同位角相等.【分析】根据对顶角的定义可得,再根据平行线的判定可得CH//AG,最后由两直线平行、同位角相等即可证明.【详解】解:证明:∵(已知)(对顶角相等)解析:对顶角相等,AG ,两直线平行,同位角相等.【分析】根据对顶角的定义可得23∠∠=,再根据平行线的判定可得CH//AG,最后由两直线平行、同位角相等即可证明.【详解】解:证明:∵12∠=∠(已知)23∠∠=(对顶角相等)∴13∠=∠(等量代换)∴//CH (AG )(同位角相等,两直线平行)∴A BCH ∠=∠(两直线平行,同位角相等).故答案为:对顶角相等,AG ,两直线平行,同位角相等.【点睛】本题考查了对顶角的定义、平行线的性质和判定定理等知识,灵活应用平行线的性质和判定定理是解答本题的关键.19.50根据平行线的性质解答即可.【详解】解:∵AB∥CD,∴ =∠1,∵∠1+=180°,∠=130°,∴∠1=180°-=180°-130°=50°,∴=50°,故答案为:5解析:50【分析】根据平行线的性质解答即可.【详解】解:∵AB ∥CD ,∴α∠ =∠1,∵∠1+β∠=180°,∠β=130°,∴∠1=180°-β∠=180°-130°=50°,∴α∠=50°,故答案为:50.【点睛】本题考查了平行线的性质和平角的定义,解题的关键掌握平行线的性质和平角的定义. 20.12【解析】分析:由图形可知,内部小三角形直角边是大三角形直角边平移得到的,故内部五个小直角三角形的周长为大直角三角形的周长.详解:由图形可以看出:内部小三角形直角边是大三角形直角边平移得到的 解析:12【解析】分析:由图形可知,内部小三角形直角边是大三角形直角边平移得到的,故内部五个小直角三角形的周长为大直角三角形的周长.详解:由图形可以看出:内部小三角形直角边是大三角形直角边平移得到的, 故内部五个小直角三角形的周长为AC+BC+AB=12.故答案为12.点睛:本题主要考查了平移的性质,需要注意的是:平移前后图形的大小、形状都不改变.三、解答题21.(1)∠APB=∠NAP+∠HBP;(2)见解析;(3)∠HBP=∠NAP+∠APB 【分析】(1)过P点作PQ∥GH,根据平行线的性质即可求解;(2)过P点作PQ∥GH,根据平行线的性质即可求解;(3)根据平行线的性质和三角形外角的性质即可求解.【详解】解:(1)如图①,过P点作PQ∥GH,∵MN∥GH,∴MN∥PQ∥GH,∴∠APQ=∠NAP,∠BPQ=∠HBP,∵∠APB=∠APQ+∠BPQ,∴∠APB=∠NAP+∠HBP,故答案为:∠APB=∠NAP+∠HBP;(2)如图②,过P点作PQ∥GH,∵MN∥GH,∴MN∥PQ∥GH,∴∠APQ+∠NAP=180°,∠BPQ+∠HBP=180°,∵∠APB=∠APQ+∠BPQ,∴∠APB=(180°﹣∠NAP)+(180°﹣∠HBP)=360°﹣(∠NAP+∠HBP);(3)如备用图,∵MN∥GH,∴∠PEN=∠HBP,∵∠PEN=∠NAP+∠APB,∴∠HBP=∠NAP+∠APB.故答案为:∠HBP=∠NAP+∠APB.【点睛】此题考查了平行公理的推论:平行于同一条直线的两直线平行,以及平行线的性质:两直线平行,同位角相等;两直线平行,内错角相等;两直线平行,同旁内角互补,熟记定理是解题的关键.22.(1)见解析;(2)2∠FBH +∠C =180°;(3)80°【分析】(1)过点E 作//EK AB ,由平行线的性质得出,180ABE BEK CEK C ∠=∠∠+∠=︒,进而得出答案;(2)设,ABF EBF BEG CEG αβ∠=∠=∠=∠=,由平行线的性质得出,HBE BEG FBH FBE HBE βαβ∠=∠=∠=∠-∠=-,由(1)知180ABE C BEC ∠+∠-∠=︒,即可得出答案;(3)设,ABF EBF x ECN DCN y ∠=∠=∠=∠=,由(1)知2()180E x y ∠=+-︒,过M 作////PQ AB CD ,由平行线的性质得出,PMF ABF x QMN DCN y ∠=∠=∠=∠=,求出130E FMN x y ∠+∠=+=︒,即可得出答案.【详解】(1)如图1,过点E 作//EK AB∴ABE BEK ∠=∠∵//AB CD∴//EK CD∴180CEK C ∠+∠=︒∴180ABE C E BEC CEK C BEC CEK C ∠+∠-∠=∠+∠+∠-∠=∠+∠=︒; (2)∵BF 、EG 分别平分ABE ∠、BEC ∠∴,ABF EBF BEG CEG ∠=∠∠=∠设,ABF EBF BEG CEG αβ∠=∠=∠=∠=∵//BH EG∴HBE BEG β∠=∠=∴FBH FBE HBE αβ∠=∠-∠=-由(1)知,180ABE C BEC ∠+∠-∠=︒即222()180C C αβαβ+∠-=-+∠=︒∴2180FBH C ∠+∠=︒;(3)∵CN 、BF 分别平分ECD ∠、ABE ∠∴,ABF EBF ECN DCN ∠=∠∠=∠设,ABF EBF x ECN DCN y ∠=∠=∠=∠=由(1)知:180ABE C E ∠+∠-∠=︒即2()180E x y ∠=+-︒如图3,过M 作////PQ AB CD则,PMF ABF x QMN DCN y ∠=∠=∠=∠=∴180180()FMN PMF QMN x y ∠=︒-∠-∠=︒-+130E FMN ∠+∠=︒∴2()180180()130x y x y +-︒+︒-+=︒130x y ∴+=︒∴2()180213018080E x y ∠=+-︒=⨯︒-︒=︒.【点睛】本题考查了角平分线的定义、平行线的性质、角的和差等知识点,较难的是题(3),通过作辅助线,构造平行线是解题关键.23.(1)a =3,b =1;(2)当t =15秒或82.5秒时,两灯的光束互相平行;(3)∠BAC 与∠BCD 的数量关系不发生变化,其大小比值为∠BCD:∠BAC =2:3.【分析】(1)利用绝对值和完全平方式的非负性即可解决问题.(2)分三种情况,利用平行线的性质列出方程即可解决.(3)将∠BAC 和∠BCD 分别用t 的代数式表示,然后在进行运算即可.【详解】(1)∵|a ﹣3b|+(a+b ﹣4)2=0.又∵|a ﹣3b|≥0,(a+b ﹣4)2≥0.∴a =3,b =1;故答案为a=3,b=1.(2)设A 灯转动t 秒,两灯的光束互相平行,①当0<t <60时,3t =(30+t )×1,解得t =15;②当60<t <120时,3t ﹣3×60+(30+t )×1=180,解得t =82.5;③当120<t <150时,3t ﹣360=t+30,解得t =195>150(不合题意)综上所述,当t =15秒或82.5秒时,两灯的光束互相平行.故答案为:t=15秒或t=82.5秒.(3)设A灯转动时间为t秒,∵∠CAN=180°﹣3t,∴∠BAC=45°﹣(180°﹣3t)=3t﹣135°,又∵PQ∥MN,∴∠BCA=∠CBD+∠CAN=t+180°﹣3t=180°﹣2t,∵∠ACD=90°,∴∠BCD=90°﹣∠BCA=90°﹣(180°﹣2t)=2t﹣90°,∴∠BCD:∠BAC=2:3.故答案为:∠BAC与∠BCD的数量关系不发生变化,其大小比值为∠BCD:∠BAC=2:3.【点睛】本题考查了绝对值和完全平方式的非负性、平行线的性质、解方程等知识,读懂题目的意思,掌握好平行线的性质是解题的关键.24.(1)∠APB=∠PAC +∠PBD,不会变化;(2)∠PBD=∠PAC+∠APB或∠PAC=∠PBD+∠APB,理由见解析.【分析】(1)当P点在C、D之间运动时,首先过点P作PE∥l1,由l1∥l2,可得PE∥l2∥l1,根据两直线平行,内错角相等,即可求得:∠APB=∠PAC+∠PBD,即∠APB、∠PAC、∠PBD之间的关系不发生变化;(2)当点P在C、D两点的外侧运动时,由直线l1∥l2,根据两直线平行,同位角相等以及三角形外角的性质,即可求得∠PAC,∠APB,∠PBD之间的关系.【详解】(1)如图①,当P点在C、D之间运动时,∠APB=∠PAC+∠PBD.理由如下:过点P作PE∥l1,∵l1∥l2,∴PE∥l2∥l1,∴∠PAC=∠1,∠PBD=∠2,∴∠APB=∠1+∠2=∠PAC+∠PBD,即∠APB、∠PAC、∠PBD之间的关系不发生变化;(2)如图②,当点P在C、D两点的外侧运动,且在l1上方时,∠PBD=∠PAC+∠APB.理由如下:∵l1∥l2,∴∠PEC=∠PBD,∵∠PEC=∠PAC+∠APB,∴∠PBD=∠PAC+∠APB.当点P在C、D两点的外侧运动,且在l2下方时,∠PAC=∠PBD+∠APB.如图③,理由如下:∵l1∥l2,∴∠PED=∠PAC,∵∠PED=∠PBD+∠APB,∴∠PAC=∠PBD+∠APB.【点睛】本题主要考查平行线的性质与三角形外角的性质.解题的关键是掌握:两直线平行,内错角相等与两直线平行,同位角相等,注意辅助线的作法.25.(1)∠AEC=∠C+∠A;(2)∠C﹣∠E=15°;(3)2∠AGF+∠GDC=90°.理由见解析.【分析】(1)过点E作EF∥AB,知AB∥CD∥EF,据此得∠A=∠AEF,∠C=∠CEF,根据∠AEC=∠AEF+∠CEF可得答案;(2)分别过点E、F作FM∥AB,EN∥AB,设∠NEF=x=∠EFM,知∠AEF=x+50°,∠MFC=115°-x,据此得∠C=180°-(115°-x)=x+65°,进一步计算可得答案;(3)分别过点E、F、G作FM∥AB,EN∥AB,GH∥AB,设∠GAE=x=∠GAB,∠GFM=y,∠MPC=z,知∠GPE=y+z,从而得2x+2y+z=90°,∠C=180°-z,根据GD∥FC得∠D=z,由GH∥AB,AB∥CD知∠AGF=x+y,继而代入可得答案.【详解】(1)∠AEC=∠C+∠A,如图1,过点E作EF∥AB,∵AB∥CD,∴AB∥CD∥EF,∴∠A=∠AEF,∠C=∠CEF,则∠AEC=∠AEF+∠CEF=∠A+∠C,故答案为:∠AEC=∠C+∠A;(2)如图2,分别过点E、F作FM∥AB,EN∥AB,设∠NEF=x=∠EFM,则∠AEF=x+50°,∠MFC=115°﹣x,∴∠C=180°﹣(115°﹣x)=x+65°,∴∠C﹣∠E=x+65°﹣(x+50°)=15°;(3)如图3,分别过点E、F、G作FM∥AB,EN∥AB,GH∥AB,设∠GAE=x=∠GAB,∠GFM=y,∠MPC=z,则∠GPE=y+z,∴2x+2y+z=90°,∠C=180°﹣z,∵GD∥FC,∴∠D=z,∵GH∥AB,AB∥CD,∴∠AGF=x+y,∴2∠AGF+∠GDC=90°.【点睛】本题主要考查平行线的性质,解题的关键是掌握两直线平行内错角相等的性质.26.(1)108°;(2)∠APC=α+β,理由见解析;(3)∠APC=β-α.【分析】(1)过P作PE∥AB,先推出PE∥AB∥CD,再通过平行线性质可求出∠APC;(2)过P作PE∥AB交AC于E,先推出AB∥PE∥DC,然后根据平行线的性质得出α=∠APE,β=∠CPE,即可得出答案;(3)过点P作PE∥AB交OA于点E,同(2)中方法根据平行线的性质得出α=∠APE,β=∠CPE,即可得出答案.【详解】解:(1)过点P作PE∥AB,∵AB∥CD,∴PE∥AB∥CD,∴∠A+∠APE=180°,∠C+∠CPE=180°,∵∠PAB=128°,∠PCD=124°,∴∠APE=52°,∠CPE=56°,∴∠APC=∠APE+∠CPE=108°;(2)∠APC=α+β.理由如下:如图2,过P作PE∥AB交AC于E,∵AB∥CD,∴AB∥PE∥CD,∴α=∠APE,β=∠CPE,∴∠APC=∠APE+∠CPE=α+β;(3)∠APC=β-α.理由如下:过点P作PE∥AB交OA于点E,同(2)可得,α=∠APE,β=∠CPE,∴∠APC=∠CPE-∠APE=β-α.【点睛】本题主要考查了平行线的性质与平行公理,解题的关键是过拐点作平行线,利用平行线的性质解决问题.27.(1)见解析;(2)见解析;(3)57BHD ∠=︒.【解析】【分析】(1)由AD BC ∥可得180A B ∠+∠=︒,进而可证180C B ∠+∠=︒,从而AB CD ∥,180A D +=︒∠∠,根据等角的补角相等可证B D ∠=∠;(2)由AD BC ∥,可得CBG G ∠=∠,又2AEB G ∠=∠,可证EBG G ∠=∠,从而EBG CBG ∠=∠,可证BG 是EBC ∠的角平分线;(3)设GDH HDC α∠=∠=,EBG CBG β∠=∠=,由AB CD ∥,可得6622180βα︒++=︒,即57αβ+=︒.过点H 作HP AB ,可证CD HP ,所以DHP HDC α∠=∠=,180DHP BHD ABE GBE ∠+∠+∠∠=︒+,即66180BHD αβ+∠+︒+=︒,进而可求出57BHD ∠=︒. 【详解】解:(1)证明:∵AD BC ∥,∴180A B ∠+∠=︒,∵A C ∠=∠,∴180C B ∠+∠=︒,∴AB CD ∥,∴180A D +=︒∠∠,∴B D ∠=∠;(2)∵AD BC ∥,∴CBG G ∠=∠,∵2AEB G ∠=∠,∴2CBE G ∠=∠,∴2EBG CBG G ∠+∠=∠,∴EBG G ∠=∠,∴EBG CBG ∠=∠,∴BG 是EBC ∠的角平分线;(3)∵DH 是GDC ∠的平分线,∴GDH HDC ∠=∠,设GDH HDC α∠=∠=,∵AD BC ∥,∴2BCD GDC α∠=∠=.设EBG CBG β∠=∠=,∵AB CD ∥,∴180ABC BCD ∠+∠=︒,∴180ABE EBC BCD ∠+∠+∠=︒,∵66ABE ∠=︒,∴6622180βα︒++=︒,∴57αβ+=︒.过点H 作HP AB ,∴180PHB ABH ∠+∠=︒,∵AB CD ∥,∴CD HP ,∴DHP HDC α∠=∠=,∴180DHP BHD ABE GBE ∠+∠+∠∠=︒+,即 66180BHD αβ+∠+︒+=︒, ∴57BHD ∠=︒.【点睛】本题主要考查了平行线的性质与判定的综合应用,熟练掌握平行线的性质与判定方法是解答本题的关键.解题时注意:平行线的判定是由角的数量关系判断两直线的位置关系,平行线的性质是由平行关系来寻找角的数量关系.28.(1)∠AEC =130°;(2)∠A 1EC =130°;(3)∠A 1EC =40°.【解析】【分析】(1)由直线PQ ∥MN ,∠ADC=∠QAD=30°,可得∠PAD=150°,再求∠PAE=75°,可得∠CAE=25°;由∠PAC=∠ACN ,求得∠ECA=25°,故∠AEC=180°﹣25°﹣25°;(2)先求出∠QA1D1=30°,∠PA1D1=150°,再求出∠PA1E=∠EA1D1=75°,再求出∠CAQ=130°,∠ACN=50°,根据平分线定义得∠ACE=25°,再利用四边形内角和性质可求∠CEA1;(3)根据平行线性质和角平分线定义可求得∠QA1E=∠2=15°,∠ACE=∠ECN=∠1=25°,再由∠CEA1=∠1+∠2即可求得答案.【详解】(1)如图1所示:∵直线PQ∥MN,∠ADC=30°,∴∠ADC=∠QAD=30°,∴∠PAD=150°,∵∠PAC=50°,AE平分∠PAD,∴∠PAE=75°,∴∠CAE=25°,可得∠PAC=∠ACN=50°,∵CE平分∠ACD,∴∠ECA=25°,∴∠AEC=180°﹣25°﹣25°=130°;(2)如图2所示:∵∠A1D1C=30°,线段AD沿MN向右平移到A1D1,PQ∥MN,∴∠QA1D1=30°,∴∠PA1D1=150°,∵A1E平分∠AA1D1,∴∠PA1E=∠EA1D1=75°,∵∠PAC=50°,PQ∥MN,∴∠CAQ=130°,∠ACN=50°,∵CE平分∠ACD1,∴∠ACE=25°,∴∠CEA1=360°﹣25°﹣130°﹣75°=130°;(3)如图3所示:过点E作FE∥PQ,∵∠A1D1C=30°,线段AD沿MN向左平移到A1D1,PQ∥MN,∴∠QA1D1=30°,∵A1E平分∠AA1D1,∴∠QA1E=∠2=15°,∵∠PAC=50°,PQ∥MN,∴∠ACN=50°,∵CE平分∠ACD1,∴∠ACE=∠ECN=∠1=25°,∴∠CEA1=∠1+∠2=15°+25°=40°.【点睛】本题考查了平行线性质,角平分线定义,熟练运用平行线性质和角平分线定义推出角的度数是解题的关键.。
提高篇
1.如图,∠ABC =∠ADC,BF 、DE 分别是∠ABC 、∠ ADC 的角平分线,∠1=∠2,求征DC ∥AB 。
32
1
F
E D
C
B
A
2.已知直线a 、b 、c 在同一平面内,a ∥b ,a 与c 相交于p ,那么b 与c 也一定相交,请说明理由
3.如图,∠B =∠C ,B 、A 、D 三点在同一直线上,∠DAC =∠B +∠C ,AE 是∠DAC 的平分线,求征:AE ∥BC
2
1E
D C
A
4.如图,已知直线AB 、CD 被直线EF 所截,如果∠BMN =∠D NF ,∠1=∠2,那么MQ ∥NP ,试写出推理
P
Q
M
N 2
1
F
E
D
C
B A
5.如图,已知∠1与∠3互余,∠2与∠3的余角互补,问直线12,l l 平行吗?为什么? l 4
l 3l 2
l 1
3
21
6.根据图填空.
2条直线相交3条直线相交于一点4条直线相交于一点n条直线相交于一点对顶角有________对对顶角有________对对顶角共有________对对顶角共有________对(用含n的式子表示)
7.同一平面内三条直线最多有m个交点,最少有n个交点,则m+n等于
A.2
B.3
C.4
D.5
8.小明将较大的一个三角尺按如图12所示的情形放置在课本上(平面图),此时他量得∠1=120°,则你认为∠2应是
A.100°
B.120°
C.150°
D.160°
9.如图5—15,△ABC中,∠A=60°,∠ABC、∠ACB的平分线BD、CD交于点D,则∠BDC =_________.
10.如图5—21,△ABC中,∠B=34°,∠ACB=104°,AD是BC边上的高AE是∠BAC的平分线,求∠DAE的度数.AE是∠BAC的平分线,求∠DAE的度数.
11.已知DE∥BC,CD是∠ACB的角平分线,∠B=80°,∠ACB=50°。
试求∠EDC与∠BDC的度数。
12.在直角三角形、钝角三角形和锐角三角形这三种三角形中,有两条高在三角形外部的是
三角形.
13.把一副常用的三角板如图所示拼在一起,那么图中∠ADE 是 度.
14.在△ABC 中,∠C=∠ABC=2∠A ,BD 是AC 边上的高。
试求∠DBC 的度数。
15.如图11,AB ∥CD ∥EF ,若∠ABC =50°,∠CEF =150°,则∠BCE =( ) A.60° B.50° C.30° D.20°
F E
D
C
B A
F
E
D
C
B
A
(11) (12)
16..下列说法中,为平行线特征的是( )
①两条直线平行, 同旁内角互补; ②同位角相等, 两条直线平行;③内错角相等, 两条直线平行; ④垂直于同一条直线的两条直线平行. A.① B.②③ C.④ D.②和④
17.如果两个角的一边在同一直线上,另一边互相平行,那么这两个角只能( ) A.相等 B.互补 C.相等或互补 D.相等且互补
18.如图12,AB ⊥BC ,BC ⊥CD ,∠EBC =∠BCF ,那么,∠ABE 与∠DCF 的位置与大小关系是 ( )
A.是同位角且相等;
B.不是同位角但相等;
C.是同位角但不等;
D.不是同位角也不等 19.已知,如图,MN ⊥AB ,垂足为G ,MN ⊥CD ,垂足为H ,直线EF 分别交AB 、CD 于G 、Q ,∠GQC =120°,求∠EGB 和∠HGQ 的度数。
Q
H G
M N
F
E
D
C B
A
20.如图,∠CAB =100°,∠ABF =130°,AC ∥MD ,BF ∥ME ,求∠DME 的度数
M F
E D C
B
A
21.如图,DE ∥CB ,试证明∠AED =∠A +∠B 。
E
D C
B
A
22.如图,∠1=∠2,∠C =∠D ,那么∠A =∠F ,为什么?
1
4
32F
E
D C B
A
23.如图,AB ∥CD ,∠1=∠2,∠BEF 与 ∠EFC 相等吗?为什么?(提示:连接BC )
1
2
F E D
C
B A
24.如图,已知∠1+∠2=180°,∠3=∠B ,试判断∠ AED 与∠C 的关系。
1
5432
F E
D
C
B
A
25.已知,直线AB 和AB 外一点P ,作一条经过点P 的直线CD ,使CD ∥A B 。
P
B
A
26.已知,如图,∠AOB 及其两边上的点C 、D ,过点C 作CE ∥OB ,过点D 作DF ∥OA ,CE 、DF 交于点P 。
D A
B
C
O
26. 如图,AB ∥DE ,试问∠B 、∠E 、∠BCE 有什么关系.
解:∠B +∠E =∠BCE 过点C 作CF ∥AB ,
则B ∠=∠____( ) 又∵AB ∥DE ,AB ∥CF ,
∴____________( ) ∴∠E =∠____( ) ∴∠B +∠E =∠1+∠2
即∠B +∠E =∠BCE .
27. 如图2—67,已知:AE 平分∠BAC ,CE 平分∠ACD ,且AB ∥CD 。
说明:∠1+∠2=90°
28. 阅读理解并在括号内填注理由:如图,已知AB ∥CD ,∠1=∠2,试说明EP ∥FQ . 证明:∵AB ∥CD ,
∴∠MEB =∠MFD ( ) 又∵∠1=∠2,
∴∠MEB -∠1=∠MFD -∠2, 即 ∠MEP =∠______
∴EP ∥_____.( )
29. 已知DB ∥FG ∥EC ,A 是FG 上一点,∠ABD =60°,∠ACE =36°,AP 平分∠BAC ,求:⑴∠BAC 的大小;⑵∠P AG 的大小.
30. 如图,已知ABC ∆,AD BC ⊥于D ,E 为AB 上一点,EF BC ⊥于F ,//DG BA 交CA 于G 。
.求证12∠=∠.。