图形与变换复习
- 格式:doc
- 大小:31.50 KB
- 文档页数:6
第六单元整理复习:2、空间与图形:图形与变换
复习内容:图形与变换
复习目标:使学生深刻认识图形变换的原理,进一步掌握图形变换的基础知识和基本技能,并能解决简单的问题。
复习过程:
一回顾与交流。
1.轴对称图形。
(1)什么是轴对称图形?
(2)判断下面图形,哪些是轴对称图形?
(3)画对称轴。
你能画出图形的对称轴吗?可以怎样画?
长方形等边三角形圆
(4)画对称图形。
①出示图形。
②学生画出左图的对称图。
③展示学生的作品,师生共同评价。
2.平移与旋转。
(1)下面现象哪些是平移,哪些是旋转?
出示图片。
(2)画一画。
①在方格纸上画出图形A
②把图形A向右平移5格。
③把图形A向下平移3格,再绕点O将图形顺对针旋转90度。
过程要求:
①学生利用方格纸进行操作。
②教师巡视,了解情况。
③学生汇报操作过程和结果。
④利用投影展示学生的作品,师生共同评价。
3.图形的放大与缩小。
把图形按2:1放大。
(1)按2:1放大是什么意思?
(2)师生共同完成。
二巩固练习
1.完成课文做一做。
2.完成课文练习二十。
1。
初二数学图形与变换试题1.下列图形中,既是轴对称图形又是中心对称图形的是()【答案】B【解析】由轴对称图形与中心对称图形的概念可知:平行四边形不是轴对称图形,是不是中心对称图形,所以选项A错误;圆既是轴对称图形,也是中心对称图形,所以选项B正确;正五边形是轴对称图形,不是中心对称图形,所以选项C错误;等腰三角形不是轴对称图形,不是中心对称图形,所以选项D错误;故选:B.【考点】1.中心对称图形;2.轴对称图形.2.如图,△ABC中,∠C=90°,AD平分∠BAC,交BC于D,若DC=7,则点D到AB的距离DE= .【答案】7【解析】根据角平分线的性质可得点D到AB的距离等于点D到AC的距离,即CD的长度.【考点】角平分线的性质3.如图①是3×3正方形方格,将其中两个方格涂黑,并且使涂黑后的整个图案是轴对称图形,约定绕正方形ABCD的中心旋转能重合的图案都视为同一种图案,例如图②中的四幅图就视为同一种图案,则得到的不同图案共有()A.4种B.5种C.6种D.7种【答案】C.【解析】符合要求的图形有以下6种,故答案选C.【考点】轴对称图形.4.(8分)(1)问题发现:如图1,点A、B是直线l外的任意两点,在直线l上,试确定一点P,使PA,PB最短.作法如下:作点A关于直线l的对称点A′,连结A′B交l于点P,则PA+PB=A′B最短.(不必证明)(2)解决问题:如图2,等边△ABC的边长为4,E为AB的中点,AD⊥BC,P是AD上一点.①在图中画出点P,使点B,E到点P的距离之和最短;(保留作图痕迹,不写作法)②求这个最短距离.(3)应用拓展:如图3,角形铁架∠MON=30°,A,D分别是OM,ON上的定点,且OA=7,OD=24,为实际设计的需要,需在OM和ON上分别找出点C,B,使AB+BC+CD的值最小.请在图中画出点B、C,则此时的最小值为(保留作图痕迹,不写作法)【答案】(1)图见解析,2;(2)图见解析,25.【解析】(2)根据等边三角形的对称性可知B和点C关于直线AD对称,连接CE,交AD于P,所以点P即为所求,再根据勾股定理即可求出点B,E到点P的最短距离和;(3)作D关于OM的对称点D′,作A作关于ON的对称点A′,连接A′D′与OM,ON的交点就是C,B二点.,则折线ABCD的最短长度转化为一条线段的长度.然后运用勾股定理求出其值.试题解析:解:(2)如图2所示:点P为所求,∵△ABC是等边三角形,∴AB=AC=BC=4,∵E为AB的中点,∴AE=BE=2,∴CE==2,∵AD⊥BC,因为等边三角形ABC关于直线AD对称∴BP=CP,∴BP+PE=CP+PE=CE=2;(3)如图3所示:解:作D关于OM的对称点D′,作A作关于ON的对称点A′,连接A′D′与OM,ON的交点就是C,B二点.此时AB+BC+CD=A′B+BC+CD′=A′D′为最短距离.连接DD′,AA′,OA′,OD′.∵OA=OA′,∠AOA′=60°,∴∠OAA′=∠OA′A=60°,∴△OAA′是等边三角形.同理△ODD′也是等边三角形.∴OD'=OD=24,OA′=OA=7,∠D′OA′=90°.∴A′D′==25.【考点】轴对称-最短路线问题;勾股定理.5.如图,在正方形网格中,△OBC的顶点分别为O(0,0),B(3,﹣1)、C(2,1).(1)以点O(0,0)为位似中心,按比例尺2:1在位似中心的异侧将△OBC放大为△OB′C′,放大后点B、C两点的对应点分别为B′、C′,画出△OB′C′,并写出点B′、C′的坐标:B′(,),C′(,);(2)在(1)中,若点M(x,y)为线段BC上任一点,写出变化后点M的对应点M′的坐标(,).【答案】(1)B′(﹣6,2),C′(﹣4,﹣2),图见解析;(2)M′(﹣2x,﹣2y).【解析】(1)延长BO,CO,在延长线上分别截取OB′=2OB,OC′=2OC,连接B'C',即可得到放大2倍的位似图形△OB'C';再根据各点的所在的位置写出点的坐标即可;(2)M点的横坐标、纵坐标分别乘以-2即可得M′的坐标.试题解析:解:(1)如图(2分)B′(﹣6,2),C′(﹣4,﹣2)(2)M′(﹣2x,﹣2y).【考点】位似变换.6.点A(-2,1)关于y轴对称的点的坐标为.【答案】(2,1).【解析】根据平面内关于y轴对称的点,纵坐标相同,横坐标互为相反数,已知点A(-2,1),则点A关于y轴对称的点的横坐标为-(-2)=2,纵坐标为1,故点(-2,1)关于y轴对称的点的坐标是(2,1).【考点】关于x轴、y轴对称的点的坐标.7.(4分)在平面直角坐标系中,点A(1,2a+3)在第一象限.(1)若点A到x轴的距离与到y轴的距离相等,求a的值;(2)若点A到x轴的距离小于到y轴的距离,求a的取值范围.【答案】(1)-1(2)【解析】(1)根据平面直角坐标系的特点,到x轴的距离为,到y轴的距离为,然后根据距离相等列方程求解;(2)根据距离的关系列不等式组可求解.试题解析:(1)∵点A到x轴的距离与到y轴的距离相等,∴2a+3=1,解得a=-1;(2)∵点A到x轴的距离小于到y轴的距离,A(1,2a+3)在第一象限∴【考点】平面直角坐标系,不等式组的解集8.如图,△ABE和△ACD是△ABC分别沿着AB、AC边翻折180°形成的,若∠BAC=150°,则∠θ=_______.【答案】60°.【解析】根据对顶角相等,翻折得到的∠E=∠ACB可得到∠θ=∠EAC,再由△ABE和△ACD是△ABC分别沿着AB,AC边翻折180°形成的可得∠BAC=150°,所以∠DAC=∠BAE=∠BAC=150°.即可得∠DAE=∠DAC+∠BAE+∠BAC-360°=150°+150°+150°-360°=90°.进而得∠θ=∠EAC=∠DAC-∠DAE=60°.【考点】折叠的性质.9.在平面直角坐标系中,A(﹣4,3),点O为坐标原点,则线段OA的长为.【答案】5.【解析】∵A(﹣4,3),点O为坐标原点,∴OA==5,故答案为:5.【考点】勾股定理;坐标与图形性质.10.如图,在长度为1个单位长度的小正方形组成的长方形中,点A,B,C在小正方形的顶点上.(1)在图中画出与△ABC关于直线l成轴对称的△AB′C′;(2)△ABC的面积为;(3)在直线l上找一点P,使PB+PC的长最短,则这个最短长度为.【答案】(1)作图见试题解析;(2)5.5;(3)5.【解析】(1)根据轴对称的性质画出△ABC关于直线l成轴对称的△AB′C′即可;(2)利用矩形的面积减去三个顶点上三角形的面积即可;(3)连接BC′交直线l于点P,则P点即为所求点,PB+PC的最短长度为线段BC′的长.试题解析:(1)如图所示;(2)S=4×3﹣×1×3﹣×2×3﹣×1×4=12﹣﹣3﹣2=5.5.故答案为:5.5;△ABC(3)连接BC′交直线l于点P,则P点即为所求点,此时PB+PC的最短长度为线段BC′的长,BC′==5.故答案为:5.【考点】1.作图-轴对称变换;2.轴对称-最短路线问题.11.请写出两个是轴对称图形的汉字.【答案】由、丰答案不唯一【解析】根据轴对称图形的性质可知:汉字中的由、丰、田、日等等都是轴对称图形,答案不唯一.【考点】轴对称图形12.如图所示,观察规律并填空:__________.【答案】【解析】根据所给的图形可知:图形是偶数数字所构成的轴对称图形,所以空白处应该填6的轴对称图形,即:.【考点】轴对称图形13.如图,AD是△ABC的角平分线,从点D向AB、AC两边作垂线段,垂足分别为E、F,那么下列结论中错误的是A.DE=DF B.AE=AF C.BD=CD D.∠ADE=∠ADF【答案】C.【解析】试题解析:∵AD是的角平分线,DE⊥AB,DF⊥AC,∴DE=DF,在Rt△ADE和Rt△ADF中,,∴Rt△ADE≌Rt△ADF(HL),∴AE=AF,∠ADE=∠ADF,∴结论错误的是BD=CD.故选C.【考点】角平分线的性质.14.如图,分别作出点P关于OA、OB的对称点P1、P2,连结P1P2,分别交OA、OB于点M、N,若P1P2=5cm,则△PMN的周长为__________________.【答案】5cm.【解析】如图,根据轴对称的性质可得PM=P1M,PN=P2N,所以△MNP的周长=PM+MN+PN=P1M+MN+P1M=P1P2=5cm.【考点】轴对称的性质.15.下列各时刻是轴对称图形的为()A.B.C.D.【答案】C.【解析】只有C是轴对称图形.故选C.【考点】轴对称图形.16.如图,方格纸中的每个小方格都是边长为1的正方形,在建立平面直角坐标系后,△ABC的顶点均在格点上,A(-1,5),B(-1,0),C(-4,3).(1)画出△ABC关于y轴对称的△A1B1C1;(其中A1、B1、C1是A、B、C的对应点,不写画法)(2)写出A1、B1、C1的坐标;(3)求出△A1B1C1的面积.【答案】(1)见解析;(2),,;(3)7.5【解析】根据轴对称图形的性质画出图形,得出点的坐标;根据三角形的面积求法得出三角形的面积.试题解析:(1)如图(2),,.(3)解:【考点】轴对称图形17.如图,将△ABC沿直线DE折叠后,使得点B与点A重合.已知AC=5cm,△ADC的周长为17cm,则BC的长为()A.7cm B.10cm C.12cm D.22cm【答案】C.【解析】由折叠可得:AD=BD,∵△ADC的周长为17cm,AC=5cm,∴AD+DC=17﹣5=12(cm),∵AD=BD,∴BD+CD=12cm.故选C.【考点】翻折变换(折叠问题).18.如图是一个轴对称图形,AD所在的直线是对称轴,仔细观察图形,回答下列问题:(1)线段BO、CF的对称线段分别是_____________;(2)△ACE的对称三角形是______________.【答案】CO、BE、△ABF【解析】根据题意可得:直线AD为对称轴,则BO的对称线段为CO,CF的对称线段为BE,△ACE的对称三角形为△ABF.【考点】轴对称图形的性质19.如图,A(-1,0),C(1,4),点B在x轴上,且AB=3.(1)求点B的坐标,并画出△ABC;(2)求△ABC的面积.【答案】(1)B点坐标(-4,0)或(2,0)(2)6【解析】根据AB的长度得出点B的坐标,根据三角形的面积计算公式求出三角形的面积.试题解析:(1)∵AB=3 ∴点B的坐标为(-4,0)或(2,0)(2)S=3×4÷2=6.【考点】平面直角坐标系.20.在平面直角坐标系中,点(﹣3,2)关于原点对称的点是()A.(2,﹣3)B.(﹣3,﹣2)C.(3,2)D.(3,﹣2)【答案】D.【解析】由两个点关于原点对称,则横、纵坐标都是原数的相反数,得点(﹣3,2)关于原点对称的点是(3,﹣2).故选D.【考点】关于原点对称的点的坐标.21.下列手机屏幕解锁图案中不是轴对称图形的是()A.B.C.D.【答案】A【解析】根据轴对称图形的概念:A、不是轴对称图形,故本选项正确;B、是轴对称图形,故本选项错误;C、是轴对称图形,故本选项错误;D、是轴对称图形,故本选项错误.故选A.【考点】轴对称图形22.如图,在坐标系中,已知A(1,1)、B(3,5),要在y轴上找一点P,使︱PB-PA︱最大,则点P的坐标为()A.(0,1)B.C.D.(0,-1)【答案】D.【解析】做直线BA交y轴于点P,则PB-PA=AB最长,其余时候,︱PB-PA︱<AB,设直线AB为,∴,解得:,∴,当x=0时,y=-1,∴P(0,-1).故选D.【考点】1.一次函数的应用;2.最值问题.23. P在第二象限内,P到x轴的距离是4,到y轴的距离是3,那么点P的坐标为,点P到原点的距离是.【答案】(-3,4),5.【解析】试题解析:∵P在第二象限内,P到x轴的距离是4,到y轴的距离是3,∴点P的横坐标为-3,纵坐标为4,∴点P的坐标为(-3,4),点P到原点的距离==5.【考点】点的坐标.24.等边三角形是轴对称图形,它有条对称轴【答案】三.【解析】试题解析:等边三角形的对称轴是三条高所在的直线.故它的对称轴共有3条.【考点】1.轴对称图形;2.等边三角形的性质.25.已知等腰三角形的一边等于4,一边等于7,那么它的周长为.【答案】15或18.【解析】试题解析:腰长是4时,周长是4+4+7=15,腰长是7时,周长是7+7+4=18,综上所述:周长是15或18.【考点】1.等腰三角形的性质;2.三角形三边关系.26.在△ABC中,∠C=90°,AD平分∠BAC,若DC=7,则D点到AB的距离为__________【答案】7.【解析】试题解析:如图,过点D作DE⊥AB于E,∵∠C=90°,AD平分∠BAC,∴DE=DC=7.【考点】角平分线的性质.27.将一张正方形纸片按如图1、图2所示的方向对折,然后沿图3中的虚线剪裁得到图4,将图4的纸片展开铺平,得到的图案是()【答案】B.【解析】根据题意,按照图中的顺序向右上翻折,向左上角翻折,剪去左上角,展开得到,故答案选B.【考点】翻折变换.28.在下列网格图中,每个小正方形的边长均为1个单位.在Rt△ABC中,∠C=90°,AC=3,BC=4.(1)试在图中做出△ABC以A为旋转中心,沿顺时针方向旋转90°后的图形△AB1C1;(2)若点B的坐标为(﹣3,5),试在图中画出直角坐标系,并标出A、C两点的坐标;(3)根据(2)的坐标系作出与△ABC关于原点对称的图形△A2B2C2,并标出B2、C2两点的坐标.【答案】(1)答案见解析;(2)A(0,1)C(-3,1);(3)(3,-5)(3,-1)【解析】(1)分别作出点B个点C旋转后的点,然后顺次连接可以得到;(2)根据点B的坐标画出平面直角坐标系;(3)分别作出点A、点B、点C关于原点对称的点,然后顺次连接可以得到.试题解析:(1)△A如图所示;(2)如图所示,A(0,1),C(﹣3,1);(3)△如图所示,(3,﹣5),(3,﹣1).【考点】(1)图形的旋转;(2)关于原点对称的点坐标29.点P在第二象限内,且点P到轴的距离是4,到轴的距离是3,那么点P的坐标为___________.【答案】(-3,4)【解析】由点P在第二象限内,可知横坐标为负,纵坐标为正,又因为点P到x轴的距离是4,到y轴的距离是3,可知横坐标为-3,纵坐标为4,所以点P的坐标为(-3,4).【考点】象限内点的坐标特征.30.在平面直角坐标系中,点(1,-3)在()A.第一象限B.第二象限C.第三象限D.第四象限【答案】D【解析】试题解析:点(1,-3)在第四象限.故选D.【考点】点的坐标.31.点P(1,-1)关于x轴对称的点P′的坐标为_________.【答案】(1,1).【解析】试题解析:根据关于x轴对称点的坐标特点:横坐标不变,纵坐标互为相反数可得点P (1,-1)关于x轴对称的点的坐标为P′(1,1).【考点】关于x轴、y轴对称的点的坐标.32.在平面直角坐标系中,点P(﹣2,﹣3)在()A.第一象限B.第二象限C.第三象限D.第四象限【答案】 C.【解析】∵-2<0,-3<0,∴点P(﹣2,﹣3)在第三象限.故选C.【考点】点的坐标.33.若点(a,-4)关于y轴对称的点的坐标为(-3,b),则b的值为_______________【答案】-64.【解析】试题解析:∵点(a,-4)关于y轴对称的点的坐标为(-3,b),∴a=3,b=-4,∴b a=-64.【考点】关于x轴、y轴对称的点的坐标.34.(2015秋•宝应县月考)画图计算:在8×8的方格纸中有△ABC 若A点的坐标(﹣2,0),C点的坐标(0,4).(1)在图中画出平面直角坐标系并写出B点的坐标.(2)在图中画出△A′B′C′,使它与△ABC关于y轴对称,设小方格的边长为1,判断△A′B′C′的形状并求B′C′边上的高h的值.【答案】(1)B(﹣4,1);(2)h=2.【解析】(1)首先确定原点位置,然后再建立平面直角坐标系;(2)首先确定A、B、C三点对称点的位置,再连接即可得到△A′B′C′;计算出A′C′2、A′B′2、B′C′2,根据勾股定理逆定理可得△A′B′C′为直角三角形.再利用直角三角形的面积计算出B′C′边上的高h的值即可.解:(1)如图所示:B(﹣4,1);(2)△A′B′C′为直角三角形,∵A′C′2=42+22=20,A′B′2=12+22=5,B′C′2=32+42=25,A′C′2+A′B′2=B′C′2,∴△A′B′C′为直角三角形;过A′作A′D′⊥B′C′,根据△A′B′C′的面积得:A′C′•A′B′=B′C′•h,ו=וh,解得:h=2.【考点】作图-轴对称变换.35.(2015秋•兴化市校级月考)若|a|=5,|b|=4,且点M(a,b)在第三象限,则点M的坐标是()A.(5,4)B.(﹣5,4)C.(﹣5,﹣4)D.(5,﹣4)【答案】C【解析】根据第三象限内点的横坐标与纵坐标都是负数求出a、b,然后写出即可.解:∵|a|=5,|b|=4,且点M(a,b)在第三象限,∴a=﹣5,b=﹣4,∴(﹣5,﹣4).故选C.36.如图,已知棋子“车”的坐标为(-2,-1),棋子“马”的坐标为(1,-1),则棋子“炮”的坐标为.【答案】(3,-2).【解析】试题解析:如图,棋子“炮”的坐标为(3,-2).【考点】坐标确定位置.37.下列图形中,轴对称图形的个数为()A.1个B.2 个C.3个D.4个【答案】B【解析】将图形沿着某条直线折叠,直线两边的图形能够完全重叠的图形叫做轴对称图形;本题中第二和第三个是轴对称图形.【考点】轴对称图形38.(2015秋•钦南区期末)如图,下列图案是我国几家银行的标志,其中轴对称图形有()A.1个B.2个C.3个D.4个【答案】C【解析】根据轴对称图形的概念:如果一个图形沿一条直线折叠后,直线两旁的部分能够互相重合,那么这个图形叫做轴对称图形.据此可知只有第三个图形不是轴对称图形.解:根据轴对称图形的定义:第一个图形和第二个图形有2条对称轴,是轴对称图形,符合题意;第三个图形找不到对称轴,则不是轴对称图形,不符合题意.第四个图形有1条对称轴,是轴对称图形,符合题意;轴对称图形共有3个.故选:C.【考点】轴对称图形.39.如果,那么的值是________.【答案】5【解析】设,所以x=2k,y=3k,z=4k,所以.【考点】比例的性质.40.(2015秋•开江县期末)如图,在高3米,坡面线段AB长为5米的楼梯表面铺地毯,已知楼梯宽1.5米,地毯售价为40元/平方米,若将楼梯表面铺满地毯,则至少需元.【答案】420元【解析】先利用勾股定理求得三角形的底边长,然后根据地毯长度=BC+AC可知地毯长=7米,然后再根据题意计算即可.解:如图所示:在Rt△ABC中,由勾股定理可知:BC==4米.地毯的总长=BC+AC=4+3=7米.地毯的面积=7×1.5=10.5平方米.地毯的总价=40×10.5=420元.故答案为:420元.【考点】勾股定理的应用.41.(2015秋•孝感月考)如图,∠A=50°,P是等腰△ABC内一点,且∠PBC=∠PCA,则∠BPC为()A.100°B.140°C.130°D.115°【答案】D【解析】根据等腰三角形两底角相等求出∠ACB,然后求出∠PCB+∠PBC=∠ACB,再根据三角形的内角和定理列式计算即可得解.解:∵∠A=50°,△ABC是等腰三角形,∴∠ACB=(180°﹣∠A)=(180°﹣50)=65°,∵∠PBC=∠PCA,∴∠PCB+∠PBC=∠PCB+∠PCA=∠ACB=65°,∴∠BPC=180°﹣(∠PCB+∠PBC)=180°﹣65°=115°.故选D.【考点】等腰三角形的性质.42.(2015秋•岑溪市期末)点M(3,﹣4)关于x轴的对称点的坐标是.【答案】(3,4)【解析】根据“关于x轴对称的点,横坐标相同,纵坐标互为相反数”解答.解:点M(3,﹣4)关于x轴的对称点M′的坐标是(3,4).故答案为:(3,4).【考点】关于x轴、y轴对称的点的坐标.43.如图,在平面直角坐标系xOy中,点A(1,3),点B(5,1).(1)只用直尺(无刻度)和圆规,求作一个点P,使点P同时满足下列两个条件:①点P到A,B两点的距离相等;②点P到∠xOy的两边的距离相等.(要求保留作图痕迹,不必写出作法)(2)在(1)作出点P后,点P的坐标为_________.【答案】(1)中垂线与平分线的交点P,作图见解析;(2)P(4,4).【解析】(1)利用中垂线与平分线的交点即为P点;(2)结合点,点,再利用(1)中条件进而得出P点坐标.试题解析:(1)如图所示:P点即为所求;(2)如图所示:P(4,4).【考点】1、作图:复杂作图;2、角平分线的性质;3、线段垂直平分线的性质.44.如图,在平面直角坐标系中,以O为圆心,适当长为半径画弧,交x轴于点M,交y轴于点N,再分别以点M、N为圆心,大于MN的长为半径画弧,两弧在第二象限交于点P.若点P的坐标为(2a,b+1),则a与b的数量关系为()A.a=b B.2a+b=﹣1C.2a﹣b=1D.2a+b=1【答案】B【解析】根据作图过程可得P在第二象限角平分线上,有角平分线的性质:角的平分线上的点到角的两边的距离相等可得|2a|=|b+1|,再根据P点所在象限可得横纵坐标的和为0,进而得到a与b的数量关系.解:根据作图方法可得点P在第二象限角平分线上,则P点横纵坐标的和为0,故2a+b+1=0,整理得:2a+b=﹣1,故选:B.【考点】作图—基本作图;坐标与图形性质;角平分线的性质.45.下列“数字”图形中,有且仅有一条对称轴的是()【答案】A【解析】A轴对称图形,一条对称轴;B不是轴对称图形;C是轴对称图形,有两条对称轴;D 是轴对称图形,有两条对称轴.【考点】轴对称图形.46.下列平面图形中,不是轴对称图形的是:【答案】A.【解析】试题解析:根据轴对称图形的概念,可知只有A沿任意一条直线折叠直线两旁的部分都不能重合.故选A.【考点】轴对称图形.47.已知点P(4,5)到x轴的距离是,到y轴的距离是.【答案】5,4.【解析】根据点到x轴的距离是纵坐标的绝对值,点到y轴的距离是点的横坐标的绝对值,可得答案.解:点P(4,5)到x轴的距离是5,到y轴的距离是4,故答案为:5,4.【考点】点的坐标.48.已知等腰三角形的一个内角为40°,则这个等腰三角形的顶角为.【答案】40°或100°.【解析】首先知有两种情况(顶角是40°和底角是40°时),由等边对等角求出底角的度数,用三角形的内角和定理即可求出顶角的度数.解:△ABC,AB=AC.有两种情况:(1)顶角∠A=40°,(2)当底角是40°时,∵AB=AC,∴∠B=∠C=40°,∵∠A+∠B+∠C=180°,∴∠A=180°﹣40°﹣40°=100°,∴这个等腰三角形的顶角为40°和100°.故答案为:40°或100°.【考点】等腰三角形的性质;三角形内角和定理.49.点P(5,﹣3)关于x轴对称的点P′的坐标为.【答案】(5,3).【解析】熟悉:平面直角坐标系中任意一点P′(x,y),关于x轴的对称点的坐标是(x,﹣y).解:根据轴对称的性质,得点P(5,﹣3)关于x轴对称的点的坐标为(5,3).【考点】关于x轴、y轴对称的点的坐标.50.下列各点中,在第三象限的是()A.(2,3)B.(2,﹣1)C.(﹣2,6)D.(﹣1,﹣5)【答案】D【解析】根据第三象限点的坐标特征,结合选项找到横纵坐标均为负的点即可.解:观察各选项横纵坐标均为负的点只有选项D,故选D.【考点】点的坐标.51.下列图形中,既是中心对称图形又是轴对称图形的是()【答案】D【解析】根据轴对称图形与中心对称图形的概念求解.解:A、是中心对称图形,不是轴对称图形,故本选项错误;B、不是中心对称图形,是轴对称图形,故本选项错误;C、不是中心对称图形,是轴对称图形,故本选项错误;D、既是中心对称图形又是轴对称图形,故本选项正确.故选D.【考点】中心对称图形;轴对称图形.52.如图,△ABC中,AB=AC,∠A=40°,DE是腰AB的垂直平分线,求∠DBC的度数.【解析】已知∠A=40°,AB=AC可得∠ABC=∠ACB,再由线段垂直平分线的性质可求出∠ABC=∠A,易求∠DBC.解:∵∠A=40°,AB=AC,∴∠ABC=∠ACB=70°,又∵DE垂直平分AB,∴DB=AD∴∠ABD=∠A=40°,∴∠DBC=∠ABC﹣∠ABD=70°﹣40°=30°.故答案为:30°.【考点】线段垂直平分线的性质;等腰三角形的性质.53.一只跳蚤在第一象限及x轴、y轴上跳动,在第一秒钟,它从原点跳动到(0,1),然后接着按图中箭头所示方向跳动[即(0,0)→(0,1) →(1,1) →(1,0 )→…],且每秒跳动一个单位,那么第35秒时跳蚤所在位置的坐标是__________【答案】(5,0)【解析】根据跳动的路线与方向得出一般性的规律,然后根据规律得出答案.【考点】规律题54.如图,P是等边△ABC内的一点,若将△PAC绕点A按逆时针方向旋转到△P'AB,则∠PAP'=_____.【答案】60°【解析】根据旋转图形的性质可得:∠PAP′=∠BAC=60°.【考点】旋转图形的性质55.下列图形中,既是轴对称图形,又是中心对称图形的是()【答案】C.【解析】试题解析:A、不是轴对称图形,是中心对称图形.故本选项错误;B、是轴对称图形,不是中心对称图形.故本选项错误;C、是轴对称图形,也是中心对称图形.故本选项正确;D、不是轴对称图形,是中心对称图形.故本选项错误.故选C.【考点】1.中心对称图形;2.轴对称图形.56.如图,△ABC是等腰直角三角形,D是斜边BC上的中点,△ABD绕点A旋转到△ACE的位置,恰与△ACD组成正方形ADCE,则△ABD按逆时针方向旋转了 °【解析】绕点A旋转到的位置,恰好与组成正方形ADCE,按逆时针方向旋转了【考点】旋转的性质.57.下列说法正确的是()A.平移不改变图形的形状和大小,而旋转则改变图形的形状和大小B.在成中心对称的两个图形中,连结对称点的线段都被对称中心平分C.在平面直角坐标系中,一点向右平移2个单位,纵坐标加2D.在平移和旋转图形中,对应角相等,对应线段相等且平行【答案】B.【解析】试题解析:A、平移不改变图形的形状和大小,旋转也不改变图形的形状和大小,故此选项错误;B、在成中心对称的两个图形中,连结对称点的线段都被对称中心平分,此选项正确;C、在平面直角坐标系中,一点向右平移2个单位,横坐标加2,故此选项错误;D、在平移中,对应角相等,对应线段相等且平行,旋转则对应线段有可能不平行,故此选项错误.故选B.【考点】图形变换.58.如图,△ABC中,AB=4,BC=6,∠B=60°,将△ABC沿射线BC的方向平移,得到△A′B′C′,再将△A′B′C′绕点A′逆时针旋转一定角度后,点B′恰好与点C重合,则平移的距离为,旋转角的度数为.【答案】2,60°【解析】根据平移和旋转的性质得到三角形全等,进而解答即可.解:∵将△ABC沿射线BC的方向平移,得到△A′B′C′,再将△A′B′C′绕点A′逆时针旋转一定角度后,点B′恰好与点C重合,∴△ABC≌△A'B'C',∴AB=A'B'=A'C,∴△A'B'C是等边三角形,∴∠A'CB'=60°,B'C=AB=4,∴BB'=6﹣4=2,旋转角的度数为60°,故答案为:2,60°;59.如图所示的几何体的俯视图是()A.B.C.D.【答案】C【解析】解:从上往下看,易得一个长方形中间有一条竖直的平分线.60.如图,在平面直角坐标系中,正方形ABCD的对称中心与原点重合,顶点A的坐标为(﹣1,1),顶点B在第一象限,若点B在直线y=kx+3上,则k的值为.【答案】﹣2.【解析】∵正方形ABCD的对称中心与原点重合,顶点A的坐标为(﹣1,1),∴B(1,1).∵点B在直线y=kx+3上,∴1=k+3,解得k=﹣2.故答案为:﹣2.【考点】一次函数图象上点的坐标特征;正方形的性质.。
第七章图形与变换第二十四讲平移、旋转与对称【基础知识回顾】一、轴对称与轴对称图形:1、轴对称:把一个图形沿着某一条直线翻折过去,如果它能够与另一个图形那么就说这两个图形成轴对称,这条直线叫2、轴对称图形:如果把一个图形沿着某条直线对折,直线两旁的部分能够互相那么这个图形叫做轴对称图形3、轴对称性质:⑴关于某条直线对称的两个图形⑵对应点连接被对称轴【名师提醒:1、轴对称是指个图形的位置关系,而轴对称图形是指个具有特殊形状的图形;2、对称轴是而不是线段,轴对称图形的对称轴不一定只有一条】二、图形的平移与旋转:1、平移:⑴定义:在平面内,把某个图形沿着某个移动一定的这样的图形运动称为平移⑵性质:Ⅰ、平移不改变图形的与,即平移前后的图形Ⅱ、平移前后的图形对应点所连的线段平行且【名师提醒:平移作图的关键是确定平移的和】2、旋转:⑴定义:在平面内,将一个图形绕一个定点沿某个方向旋转一个,这样的图形运动称为旋转,这个点称为转动的称为旋转角⑵旋转的性质:Ⅰ、旋转前后的图形Ⅱ、旋转前后的两个圆形中,对应点到旋转中心的距离都,每对对应点与旋转中心的连线所成的角度都是旋转角都【名师提醒:1、旋转作用的关键是确定、和,2、一个图形旋转一定角度后如果能与自身重合,那么这个图形就是旋转对称图形】三、中心对称与中心对称图形:1、中心对称:在平面内,一个图形绕某一点旋转1800能与另一个图形就说这两个图形关于这个点成中心对称,这个点叫做2、中心对称图形:一个图形绕着某点旋转后能与自身重合,这种图形叫中心对称图形,这个点叫做3、性质:在中心对称的两个图形中,对称点的连线都经过且被平分【名师提醒:1、中心对称是指个图形的位置关系,而中心对称图形是指个具有特殊形状的图形2、常见的轴对称图形有、、、、、等,常见的中心对称图形有、、、、、等3、所有的正n边形都是对称图形,且有条对称轴,边数为偶数的正多边形,又是对称图形,4、注意圆形的各种变换在平面直角坐标系中的运用】【典型例题解析】1.已知点P(3,-1)关于y轴的对称点Q的坐标是(a+b,1-b),则a b的值为.2.点P(2,-1)关于x轴对称的点P′的坐标是.3.在图示的方格纸中(1)作出△ABC关于MN对称的图形△A1B1C1;(2)说明△A2B2C2是由△A1B1C1经过怎样的平移得到的?4.已知点P(3,2),则点P关于y轴的对称点P1的坐标是,点P关于原点O的对称点P2的坐标是5.下列图形中既是中心对称图形又是轴对称图形的是()A.B.C.D.6.点(3,2)关于x轴的对称点为()A.(3,-2)B.(-3,2)C.(-3,-2)D.(2,-3)7.在平面直角坐标系中,将点A(-2,3)向右平移3个单位长度后,那么平移后对应的点A′的坐标是()A.(-2,-3)B.(-2,6)C.(1,3)D.(-2,1)8.如图,将Rt△ABC(其中∠B=35°,∠C=90°)绕点A按顺时针方向旋转到△AB1C1的位置,使得点C、A、B1在同一条直线上,那么旋转角等于()A.55°B.70°C.125°D.145°9.P是∠AOB内一点,分别作点P关于直线OA、OB的对称点P1、P2,连接OP1、OP2,则下列结论正确的是()A.OP1⊥OP B.OP1=OP2C.OP1⊥OP2且OP1=OP2D.OP1≠OP2 10.已知点M(3,-2),将它先向左平移4个单位,再向上平移3个单位后得到点N,则点N的坐标是.11.夏季荷花盛开,为了便于游客领略“人从桥上过,如在河中行”的美好意境,某景点拟在如图所示的矩形荷塘上架设小桥.若荷塘周长为280m,且桥宽忽略不计,则小桥总长为m.12.如图,在直角△OAB中,∠AOB=30°,将△OAB绕点O逆时针旋转100°得到△OA1B1,则∠A1OB= °.13.如图,正方形ABCD的边长为4,点P在DC边上且DP=1,点Q是AC上一动点,则DQ+PQ的最小值为.14.如图,在矩形纸片ABCD中,AB=12,BC=5,点E在AB上,将△DAE沿DE折叠,使点A落在对角线BD上的点A′处,则AE的长为.15.如图,在平面直角坐标系中,△ABC的三个顶点都在格点上,点A的坐标为(2,4),请解答下列问题:(1)画出△ABC关于x轴对称的△A1B1C1,并写出点A1的坐标.(2)画出△A1B1C1绕原点O旋转180°后得到的△A2B2C2,并写出点A2的坐标.第二十五讲相似图形(一):【知识梳理】1.比例基本性质及运用(1)线段比的含义:如果选用同一长度单位得两条线段a、b的长度分别为m、n,那么就说这两条线段的比是a:b=m:n,或写成a m=b n,和数的一样,两条线段的比a、b中,a叫做比的前项 b叫做比的后项.注意:①针对两条线段;②两条线段的长度单位相同,但与所采用的单位无关;③其比值为一个不带单位的正数.(2)线段成比例及有关概念的意义:在四条线段中,如果其中两条线段的比等于另外两条线段的比,那么这四条线段叫做成比例线段,简称比例线段,已知四条线段a、b、c、d,如果a c=b d或a:b=c:d,那么a、b、c、d叫做成比例的项,线段a、d叫做比例外项,线段b、d叫做比例内项,线段d叫做a、b、c的第四比例项,当比例内项相同时,即a bb c=或a:b=b:c,那么线段b叫做线段a和c的比例中项.(3)比例的性质,①基本性质:如果a:b=c:d,那么ad=bc;反之亦成立。
图形与图形的变换1.图形的初步认识①掌握画基本几何体(直棱柱、圆柱、圆锥、球)的三视图,会判断简单物体的三视图,能根据三视图描述基本几何体或实物原型.②了解直棱柱、圆锥的侧面展开图,能根据展开图判断立体模型.③了解几何体与其三视图、展开图(球除外)之间的关系.④掌握比较角的大小,估计一个角的大小,计算角度的和与差,进行度、分、秒简单换算.⑤了解角平分线及其性质,了解补角、余角、对顶角;理解等角的余角相等、等角的补角相等、对顶角相等.⑥了解两点之间,线段最短;了解经过两点有一条直线,并且只有一条直线.⑦了解垂线、垂线段等概念,垂线段最短的性质,点到直线距离的意义;了解过一点有且仅有一条直线垂直于已知直线.⑧掌握用三角尺或量角器过一点画一条直线的垂线;了解线段垂直平分线及其性质.⑨理解平行线的特征和平行线的识别;了解过直线外一点有且仅有一条直线平行于已知直线;掌握用三角尺和直尺过已知直线外一点画这条直线的平行线.⑩理解平行线之间距离的意义;掌握度量两条平行线之间的距离的方法.2.轴对称①认识轴对称.②理解对应点所连的线段被对称轴垂直平分的性质.③掌握能按要求作简单平面图形经过一次或两次轴对称后的图形.④掌握简单图形之间的轴对称关系,并指出对称轴.⑤掌握基本图形(等腰三角形、矩形、菱形、等腰梯形、正多边形、圆)的轴对称性质及相关性质.⑥掌握利用轴对称进行图案的设计.3.平移和旋转①认识平移,理解对应点连线平行且相等的性质;掌握按要求作简单平面图形平移后的图形;掌握选用平移进行图案设计.②认识旋转(含中心对称);理解对应点到旋转中心的距离相等、对应点与旋转中心连线所成的角彼此相等的性质.③了解平行四边形、圆是中心对称图形.④掌握按要求作简单平面图形旋转后的图形.⑤掌握图形之间的轴对称、平移、旋转及其组合四种关系形式.⑥掌握运用轴对称、平移和旋转的组合进行图案设计.⑦在观察、操作、推理、归纳等探索过程中,发展学生的合情推理能力,培养学生的数学说理的习惯与能力.【课时分布】图形与图形的变换在第一轮复习时大约需要3个课时,下表为内容及课时安排(仅供参考)课时数内容1基本图形的认识1轴对称与轴对称图形1平移与旋转1图形与图形的变换单元测试与评析【知识回顾】1.知识脉络图形的初步认识立体图形平面图形视图平面展开图点和线角相交线平行线图形之间的变换关系轴对称平移旋转旋转对称中心对称2.基础知识(1)两点之间线段最短;连结直线外一点与直线上各点的所有线段中,垂线段最短.(2)视图有正视图、俯视图、侧视图(左视图、右视图).(3)平行线间的距离处处相等.(4)平移是由移动的方向和距离决定的.(5)平移的特征:①对应线段平行(或共线)且相等;连结对应的线段平行(或共线)且相等;②对应角分别相等;③平移后的图形与原图形全等.(6)图形的旋转由旋转中心、旋转角度和旋转方向决定.(7)旋转的特征:①对应点与旋转中心的距离相等;对应线段相等,对应角相等;②每一点都绕旋转中心旋转了相同的角度;③旋转后的图形与原图形全等.3、能力要求例1选择、填空题(1)如图6-1,小军将一个直角三角板绕它的一条直角边所在的直线旋转一周形成一个几何体,将这个几何体的侧面展开得到的大致图形是·····································A.B.C .D .【分析】图形的旋转与展开.【解】D .(2)如图6-2,已知□ABCD 的对角线BD =4cm ,将□ABCD 绕其对称中心O 旋转180°,则点D 所转过的路径长为()A .4πcmB .3πcmC .2πcmD .πcm【分析】图形的旋转与圆弧问题结合.【解】C .(3)有两个完全重合的矩形,将其中一个始终保持不动,另一个矩形绕其对称中心O 按逆时针方向进行旋转,每次均旋转45 ,第1次旋转后得到图①,第2次旋转后得到图②……,则第10次旋转后得到的图形与图①~图④中相同的是()A .图①B .图②C .图③D .图④【分析】图形的旋转与操作.【解】B .(4)如图6-3,在Rt △ABC 中,∠C =90°,AC =8,BC =6,ABCD 图6-3C’图①图②图③图④图6-2ABCDO图6-1(5)按图中所示方法将△BCD 沿BD 折叠,使点C 落在边AB 上的点C ′处,则折痕BD的长为__________.【分析】图形的折叠与勾股定理应用.【解】35.(5)如图6-4,在68⨯的网格图(每个小正方形的边长均为1个单位长度)中,⊙A 的半径为2个单位长度,⊙B 的半径为1个单位长度,要使运动的⊙B 与静止的⊙A 内切,应将⊙B 由图示位置向左平移个单位长度.【分析】图形平移、圆的位置关系与发散思维结合【解】4或6(6)如图6-5所示,在折纸活动中,小明制作了一张ABC △纸片,点D E 、分别是边AB 、AC 上,将ABC△沿着DE 折叠压平,A 与'A 重合,若=70A ︒∠,则1+2∠∠=()A.140︒B.130︒C.110︒D.70︒【分析】图形折叠、三角形内角和与平角的结合【解】A(7)如图6-6-1和6-6-2,四边形ABCD 是边长为1的正方形,四边形EFGH 是边长为2的正方形,点D 与点F 重合,点B ,D (F ),H 在同一条直线上,将正方形ABCD 沿F →H 方向平移至点B 与点H 重合时停止,设点D 、F 之间的距离为x ,正方形ABCD 与正方形EFGH 重叠部分的面积为y ,则能大致反映y 与x 之间函数关系的图象是()图6-4图6-5图图【分析】图形的平移、动点问题及函数图像【解】B【说明】由于概念、性质比较多,复习时可以通过基本练习题的训练,使学生熟练掌握图形与图形变换的基本知识、基本方法和基本技能.重视平移、旋转、折叠、展开过程中学生思维的训练,重视平移、旋转、折叠、展开的操作过程,提高学生的分解、组合图形的能力和动手能力。
图形的变换与计算【第一部分平移】【知识点】1、平移的概念.2、理解“对应点的连线平行且相等”等平移变换的基本特征;能够按照要求画出简单平面图形平移后的图形;能利用平移进行简单的图案设计.3、平移变换的确定:给定了平移方向和平移的距离,就确定了平移.4、图形在平移下的不变性和不变量.平移把任一线段变成与它平行且相等的线段,即在平移下,任一线段保持方向和长度不变;平移把任一个角变成与它相等的角,即在平移下,任一个角保持大小不变.【基础训练】一、选择题1.下列几种运动属于平移的有()①水平运输带上的砖在运动;②升降机上下做机械运动;③足球场上足球的运动;④超市里电梯上的乘客;⑤平直公路上行驶的汽车A.2种B.3种C.4种D.5种2.点A(1,2)向右平移2个单位得到对应点A’,则点A’的坐标是( )A.(1.4)B.(1.0) C.(-l,2) D.(3,2)二、填空题1.如图5-1-1所示,每个小正方形的边长都是1个单位长度,△ABC移到了△A′B′C′的位置,则平移的方向是,平移的距离是个单位长度.2.如图5-1-2所示,△ABC平移到△A′B′C′的位置,则与AA′平行的线段有,与AA′相等的线段是.【提高训练】一、选择题1.如图所示5-1-3,在平面内,将一个图形沿某个方向移动一定距离,这样的图形变换为平移,如图,将网格中的三条线段沿网格线的方向(水平或垂直)平移后组成一个首尾依次相接的三角形,至少需要移动()A.12格B.11格C.9格D.8格2.如图5-1-4所示:边长分别为和的两个正方形,其一边在同一水平线上,小正方形沿该水平线自左向右匀速穿过大正方形,设穿过的时间为,大正方形内除去小正方形部分的面积为(阴影部分),那么与的大致图象应为()二、解答题A.B.C.D.图5-1-3图5-1-4图2FD EA BC图1图5-1-5 图5-1-1 图5-1-21.已知如图5-1-5所示,图1和图2中的每个小正方形的边长都是1个单位.(1)将图1中的格点△ABC ,先向右平移3个单位,再向上平移2个单位,得到△A 1B 1C 1,请你在图1中画出△A 1B 1C 1.(2)在图2中画出一个与格点△DEF 相似但相似比不等于1的格点三角形.2.在平面直角坐标系中,直线l 过点M(3,0),且平行于轴.(1)如果△ABC 三个顶点的坐标分别是A(-2,0),B(-l,O),C(-1,2),△ABC 关于轴的对称图形是△A 1B 1C 1,△A 1B 1C 1关于直线的对称图形是△A 2B 2C 2,写出△A 2B 2C 2的三个顶点的坐标; (2)如果点的坐标是(,0),其中,点P 关于轴的对称点是,点关于直线的对称点是,求的长.3.如图5-1-7(单位:m ),等腰三角形ABC 以2米/秒的速度沿直线L 向正方形移动,直到AB 与CD 重合。
苏教版六年级数学——图形与变换(总复习教案)复习内容:教科书第十二册P108整理与反思以及P108-109练习与实践1-5题。
知识要点:1.图形的平移,图形的旋转。
2.图形的平移和旋转可以变换图形的位置,不能改变图形的大小。
3.图形的放大与缩小。
4.图形的放大与缩小不能改变图形的形状,但可以改变图形的大小。
5.轴对称图形。
教学目标:1.通过复习平面图形的变换方法,整体上进一步把握图形与变换的意义和方法。
2.会用平移、旋转的方法改变图形的位置,能按比例放大、缩小图形,培养学生的动手实践能力。
3.理解轴对称图形的特征,会判断一些特殊图形是否是轴对称图形,会画轴对称图形的对称轴4.通过复习,进一步体会平移和旋转、放大与缩小的方法,激发学生的学习热情,培养学生的创新意识。
教学准备:教师准备教学光盘教学过程:一、整理与反思1.提问:你知道变换图形的位置的方法有哪些?引导学生说出变换图形的位置的方法主要是平移和旋转。
火车、电梯和缆车的运动是平移;风扇叶片、螺旋桨和钟摆的运动是旋转。
与时针旋转方向相同的是顺时针旋转,方向相反的是逆时针旋转。
2.怎样能不改变图形的形状而只改变图形的大小?引导学生说出运用放大和缩小的方法可以只改变图形的大小,而不改变图形的形状。
3.比较平移与旋转与放大和缩小这两种方法有什么联系和区别?区别:平移和旋转不改变图形的大小,只改变图形的位置。
而放大和缩小不改变图形的形状,只改变图形的大小。
联系:两种方法都不改变图形的形状。
4提问:什么是轴对称图形?我们学过的图形中哪些图形是轴对称图形?它们分别有多少条对称轴?引导学生得出:长方形、正方形、等腰三角形、等边三角形、等腰梯形、圆都是轴对称图形。
长方形有2条对称轴,正方形有4条对称轴,等腰三角形和等腰梯形有1条对称轴,等边三角形有3条对称轴,圆有无数条对称轴。
(教师出示相应的图片)二、指导学生完成练习与实践。
1.完成练习与实践的第1题。
先让学生独立判断,然后结合学生的判断,进一步明确轴对称图形的基本含义,即把一个平面图形沿一条直线对折,折痕两边的部分能够完全重合,那么这个图形叫做轴对称图形。
数学图形与变换试题1.下面的哪些图案是旋转而成的?【答案】B,C【解析】根据图形变换的特征,上行左图是由一个图形通过轴对称而成的;右图是由一个图案通过顺时针(或逆时针)旋转72°、144°、216°、288°而成的;下行左图是由一个图案通过过顺时针(或逆时针)旋转90°、180°、270°而成的;右图是由一个图形经过轴对称后,再平移而成的.解:如图,根据旋转图形特征,图B由一个图案通过顺时针(或逆时针)旋转72°、144°、216°、288°而成的;图C由一个图案通过过顺时针(或逆时针)旋转90°、180°、270°而成的.故答案为:B,C.点评:根据旋转图形的特征,一个图形绕某点旋转一定角度后,这点不动,其余各部分均绕此点按相同方向旋转相同的角度,再结合每个图形的特征即可判断.2.下面现象哪些是平移?哪些是旋转?请在括号内标明.,,,,.【答案】旋转、平移、平移、旋转、平移【解析】钟表的指针是绕中心轴转动,根据旋转的意义,属于旋转现象;小船行驶,是小船整体向一个方向运动,根据平移的意义,属于平移现象;塔吊吊重物,是上、下运动,根据平移的意义,属于平移现象;转椅是绕中心轴转动,根据旋转的意义,属于旋转现象;小坦克是整体向一个方向运动,根据平移的意义,属于平移现象.解:钟表指针转动、转椅转动属于旋转现象;小船行驶、塔吊吊重物、小坦克运动属于平移现象.故答案为:旋转、平移、平移、旋转、平移.点评:本题是考查平移的意义、旋转的意义,区别在于看图形(物体)在动力过程中是否改变方向,平移不改变方向,旋转改变方向.3.利用旋转设计图案.(自己确定旋转角度)【答案】【解析】先画出一个平行四边形,然后根据旋转图形的特点,绕点O顺(或逆)时针旋转90°画出一个平行四边形,再旋转90°画出一个平行四边形,再旋转90°画出一个平行四边形,即可成为一个美丽的图案.解:由分析画图如下:点评:本题是考查运用旋转设计图案,根据旋转图形的特点即可画出.4.按照要求将下表完成.(1)向平移的格.(2)画出向下平移四格后的图形.(3)画出的另一半,使它成为一个轴对称图形.【答案】右,8,【解析】(1)通过观察我们不难发现,图中三角形是整体沿某一方向移动了一定的距离,它们的形状、大小没变,只是位置改变了,是平移.所以向右平移的8格.(2)将此图的各点沿向下的方向平移4格,得到对应点,顺次连接成新图即可.(3)根据轴对称图形的性质,先找到各突出点的对应点,再顺次连接即可得到一个轴对称图形.解:如图,点评:本题主要是考查平移的意义.物体平移后,只是位置变化,大小、形状不变,及根据轴对称图形的性质作对称作图形.注意图形的变换,看关键点的变换即可.5.连一连.【答案】【解析】(1)第一个盒子,因为有8个红球、2个黄球,所以摸到红球的可能性大;第二个盒子,只有10个黄球,所以一定能摸到黄球;第三个盒子,只有10个红球,所以一定摸到红球;第四个盒子,5个红球、5个黄球,所以摸到红球和黄球的可能性一样大;(2)结合平移和旋转的意义:平移是物体运动时,物体上任意两点间,从一点到另一点的方向与距离都不变的运动;在平面内,将某个图形,绕一个顶点沿某个方向旋转一定角度,这样的图形运动称为旋转;据此进行解答即可.解:连线如下:点评:解答此题的关键:(1)根据可能性的大小进行解答;(2)根据平移和旋转的含义解答.6.(1)将方格纸中的三角形绕它的直角顶点逆时针旋转90°,画出旋转图形.(2)方格纸中右面图形是等腰梯形的一半,画出它的另一半.【答案】【解析】(1)根据图形旋转的方法,先把与直角顶点相连的两条直角边绕直角顶点逆时针旋转90度后,再把第三条边连接起来即可得出旋转后的三角形;(2)等腰梯形是轴对称图形,如图,根据轴对称图形的性质:对应的连线被对称轴垂直平分,找出梯形的另外两个顶点,即可画出这个梯形的另一半.解:根据题干分析画图如下:点评:此题考查利用旋转和轴对称图形的性质进行图形变换的方法.7.图中A如何变换得到图B?【答案】逆时针旋转90°,向右平移7格【解析】如图,根据旋转图形的特征,图中A绕点A逆时针旋转90°,点A的位置不变,各边均绕点A逆时针旋转90°,点A到点B的距离是7格,再向右平移7格即可得到图形B.解:如图,图中A首先绕点A逆时针旋转90°,再向右平移7格即可得到图形B;故答案为:逆时针旋转90°,向右平移7格.点评:关键是看图B与图A的方向,再看对应点相离几格.8.下面物体的运动是平移的画“—”,是旋转的画“○”.【答案】○,—,—,○【解析】直升飞机的螺旋桨是绕中心轴转动的,根据旋转的意义,属于旋转现象;电音机的按键电源开关是按进、弹出,根据平移的意义属于平移现象;计数器的珠子是上、下拨动,根据平移的意义属于平移现象;钟表的指针是绕中心轴转动,根据旋转的意义,属于旋转现象.解:直升飞机的螺旋桨、钟表的指针是旋转,电音机的按键电源开关、计数器的珠子属于平移.故答案为:点评:本题是考查平移、旋转的意义,关键是看图形的方向是否改变,平移和旋转都不改变图形的大小和形状,平移不改变图形的方向,旋转改变图形的方向.9.(1)笑脸向平移了格.(2)画出漏斗向上平移4格后的图形.【答案】右、6、【解析】(1)左、右两个笑脸的各对称点相距6格,因此右面的笑脸是由左边面的笑脸向右平移6格得到的.(2)根据图形平移的方法,先把漏斗的四个顶点分别向上平移4格,即可得出要求的图形.解:据分析解答如下:(1)笑脸向右平移了6格.(2)画出漏斗向上平移4格后的图形如下:故答案为:右、6.点评:此题考查了图形平移的方法.10.按要求在方格纸上画图.(1)画出方格纸左边图形的轴对称图形.(2)画出方格纸右边三角形绕O点逆时间旋转90后的图形.【答案】【解析】(1)根据轴对称图形的性质:对应点的连线被对称轴垂直平分,即可画出图形的另一半,使它成为一轴对称图形.(2)点O就是图形旋转后的对应点,把其它两点绕点O逆时针旋转90°后,顺次连接即为所求的图形.解:根据题干分析画图如下:点评:考查利用轴对称和旋转变换作图;图形的旋转,看关键点的旋转即可;注意绕图形的一个顶点旋转时,这个点就是旋转后图形的一个顶点.11.(1)画出三角形的对称图形.(2)绕黑点顺时针旋转90度.(3)自己画一个对称图形.【答案】【解析】(1)根据轴对称图形的性质:对应的连线被对称轴垂直平分,据此先确定三角形的三个对应点,再依次连接起来即可;(2)以黑点为旋转中心,把其他三个顶点分别绕黑点顺时针旋转90度后,得出旋转后的对应点,再依次连接起来即可得出旋转后的图形;(3)根据轴对称图形的定义,画出一个轴对称图形即可,此题答案不唯一.解:根据题干分析画图如下:点评:此题主要考查利用轴对称、旋转进行图形变换方法的灵活应用.12.(1)画出下面图形的轴对称图形.(2)将下面图形绕O点顺时针旋转90°【答案】【解析】(1)根据轴对称图形的性质,即可画出图形的另一半,使它成为一个轴对称图形.(2)根据图形旋转的方法,以点A为旋转中心,找出三角形的三个顶点绕点O顺时针旋转90°后的对应点,再把它们依次连接起来,即可得出旋转后的图形.解:根据题干分析,画图如下:点评:此题考查了根据轴对称图形的性质画轴对称图形以及图形旋转的方法.13.画出下面左图的轴对称图,如图绕点0逆时针旋转90°.【答案】【解析】(1)根据轴对称的性质:所有对称点的连线都被这条对称轴垂直平分;分别画出这个图形关于这条直线的对称点,然后依次连接起来,即可得出这个图形1的轴对称图形;(2)根据图形旋转的性质,先把与点O相连的两条边逆时针旋转90°,即可确定这个旋转后的三角形的位置与大小,再将第三边连接起来即可得出旋转后的三角形.解:根据题干分析,作图如下:点评:此题考查了轴对称的性质以及图形的旋转的性质的灵活应用.14.下面每个小方格的边长是1厘米,请按要求画图.(1)画出将圆A向上平移5格后的图形,平移后A点的位置用数对表示是(,).(2)过B点作直线a的垂线.(3)以P点为顶点画一个直角三角形,然后将它绕P点顺时针方向旋转90°.(4)画一个面积为8平方厘米的轴对称图形(画出1条对称轴).【答案】【解析】(1)圆心确定圆的位置,半径确定圆的大小,由此先将点A向上平移5格,再以平移后的点A为圆心,以1厘米为半径即可画出这个平移后的图形1,再利用数对表示位置的方法表示平移后A点的位置;(2)用三角板的一条直角边的已知直线重合,沿重合的直线平移三角板,使三角板的另一条直角边和B点重合,过B沿直角边向已知直线a画直线即可.(3)利用方格图中的直角,以P点为直角顶点画一个直角三角形2,再根据图形旋转的方法,将它绕P点顺时针方向旋转90°得到图形3.(4)长方形是一个轴对称图形,由此画出底为长4厘米宽2厘米的长方形4,则面积=4×2=8平方厘米,再根据轴对称图形的定义画出1条对称轴即可.解:(1)先将点A向上平移5格,再以平移后的点A为圆心,以1厘米为半径即可画出这个平移后的图形1,平移后A点的位置是(2,8);(2)过B沿直角边向已知直线a画直线如图所示:(3)以P点为直角顶点画一个直角三角形2,再根据图形旋转的方法,将它绕P点顺时针方向旋转90°得到图形3.(4)画出底为长4厘米宽2厘米的长方形4和它的一条对称轴如图所示:点评:此题考查了数对表示位置的方法、圆的画法、垂线的画法以及画指定面积的轴对称图形的画法的综合应用.15.(1)在下面的方格纸中任意设计一个轴对称图形,并画出它的对称轴.(2)画出平行四边形ABCD绕D点顺时针旋转90°后的图形.【答案】【解析】依据轴对称图形的概念即可作答.解:如图所示,即为所要求的作图;.点评:此题主要考查轴对称图形的概念及画法.16.画出一个只有2条对称轴的四边形.【答案】【解析】在平面内,如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这样的图形叫轴对称图形,这条直线叫对称轴,由此即可解决问题.解:根据轴对称的定义可知,四边形中长方形只有2条对称轴,如右图所示.点评:抓住轴对称的定义,即可解决此类问题.17.(2007•淮安模拟)画出图形的另一半,使它成为一个轴对称图形.【答案】【解析】找出7个端点的轴对称点,用同样粗细的线段逐点连接,即可得解.解:点评:此题考查了运用平移、对称和旋转设计图案.18.(1)画出图形①的另一半,使它成为一个轴对称图形.(2)画出图形②先向右平移4格,再向下平移2格后的图形.(3)画出图形③先向下平移6格,再绕点O逆时针方向旋转90°后的图形.【答案】【解析】(1)在平面内,如果一个图形沿一条直线折叠,直线两旁的部分能够完全重合,这样的图形叫做轴对称图形.(2)找出图形的各个顶点,先右移4格,再下移2格.(3)找出图形的各个顶点,向下移6格,再绕O点逆时针旋转90°,据此可解答.解:找出图中的各个顶点对应的位置,然后连线.点评:本题考查了学生作对称图形和平移,旋转后图开的能力.关键是找出各个顶点后再连线.19.已知每个网格中小正方形的边长都是1,图1中的阴影图案是由三段以格点为圆心,半径分别为1和2的圆弧围成.(1)填空:图1中阴影部分的面积是(结果保留π);(2)请你在下图中以图1为基本图案,借助轴对称、平移或旋转设计一个完整的花边图案(要求至少含有两种图形变换).【答案】π﹣2;【解析】(1)如下图所示,阴影部分的面积=扇形OBE的面积﹣正方形OACD的面积﹣扇形ABC的面积﹣弧CE与CD,DE围成图形的面积.弧CE与CD,DE围成图形的面积=小正方形EFCD的面积﹣扇形FCE的面积,据此即可求解;(2)借助轴对称、平移或旋转即可解决问题.解:(1)如图:则阴影部分的面积为﹣1×1﹣﹣(1×1﹣),=π﹣1﹣﹣1+=π﹣2;(2)所设计方案如下图所示:.点评:解决本题的关键是弄清图中的扇形的半径与圆心,把不规则的图形的面积转化为几个规则图形的面积的和或差来求解.20.按要求作图.(1)以虚线L为对称轴,画出小树的另一半.(2)再将整个图形先向右平移6格.再向下平移3格.画出移后的图形.(3)用数对表示A点平移前、后所在的位置.平移前的A点:(,)平移后的A点:(,)(4)最后将平移的图形绕小树的下端点A顺时针旋转90°,画出旋转后的图形.【答案】;3,6,9,3【解析】(1)在小树上标上字母,如图所示:先以L为对称轴找出对称点,然后连接对称点即可;(2)先找将整个图形先向右平移6格后得到图形①,然后再将①向下平移3格后得到图形②即可;(3)根据数对的表示方法,先找出A点横轴对应的数,然后找出纵轴对应的数写出数对,同理找出平移后A点的数对即可;(4)将平移的图形绕小树的下端点A顺时针旋转90°得到图形③;解:(1)画出小树的对称图形如下所示:(2)(3)平移前的A点:(3,6)平移后的A点:(9,3);(4)绕小树的下端点A顺时针旋转90°后如下图所示:点评:此题考查了学生对称、平移和旋转的作图能力.21.(2011•长汀县模拟)在方格纸上按要求画图.(1)按2:1的比放大长方形,在下面画出放大后的图形.(2)把三角形绕点0顺时针旋转90°.(3)把三角形向下平移4格.【答案】【解析】(1)由图可知,原长方形长为2,宽为1,所以按2:1扩大后的长方形长为2×2=4,宽为1×2=2;由此即可画图;(2)根据图形旋转的方法,先把三角形与点O相连的两条边顺时针旋转90°,再把第三条边连接起来,即可得出旋转后的图三角形1;(2)根据图形平移的方法,先把三角形的三个顶点分别向下平移4格,再依次连接起来,即可得出平移后的三角形2,由此作图即可.解:根据题干分析,作图如下:点评:此题考查了图形的平移、旋转、放大与缩小的方法的综合应用.22.(2012•安岳县模拟)(1)画出图①绕点O逆时针旋转90°后的图形.(2)画出图②另一半,使它成为轴对称图形.【答案】【解析】(1)根据图形旋转的定义,即可画出图形.(2)根据轴对称图形的性质,对称点到对称轴的距离相等,对称轴是对称点的连线的垂直平分线,在对称轴的另一边画出关键的5个对称点,然后首尾连接各对称点即可.解:据分析画图如下:点评:(1)此题考查图形的旋转的方法的灵活应用.(2)本题是考查作轴对称图形,关键是画对称点.23.(2013•广东模拟)如图,上面是一个等腰直角三角形,下面是一个长方形:(单位:厘米)(1)计算这个组合图形的面积.(2)以AB为轴旋转一周,求得到的立体图形的体积.(π取3.14)【答案】19.5平方厘米;169.56立方厘米【解析】(1)图形的面积=三角形的面积+长方形的面积,据此代入数据即可求解;(2)所得到的立体图形,上部是一个底面半径和高都为3厘米的圆锥,下部是一个底面半径为3厘米,高为5厘米的圆柱,依据各自的体积公式即可得解.解:(1)3×3÷2=4.5(cm2),3×5=15(cm2),4.5+15=19.5(cm2);答:这个组合图形的面积是19.5平方厘米.(2)3.14×32×5+×3.14×32×3,=3.14×9×5+×3.14×9×3,=141.3+28.26,=169.56(立方厘米);答:得到的立体图形的体积是169.56立方厘米.点评:此题主要考查三角形和长方形的面积,以及圆柱和圆锥的体积的计算方法.24.下面的现象中是平移的画“△”,是旋转的画“□”.(1)索道上运行的观光缆车.(2)钟面上的分针.(3)飞机的螺旋桨.(4)工作中的电风扇.(5)拉动抽屉..【答案】△,□,□,□,△【解析】平移是物体运动时,物体上任意两点间,从一点到另一点的方向与距离都不变的运动.旋转是物体运动时,每一个点离同一个点(可以在物体外)的距离不变的运动,称为绕这个点的转动,这个点称为物体的转动中心.所以,它并不一定是绕某个轴的.根据平移与旋转定义判断即可.解:(1)索道上运行的观光缆车,是平移;(2)钟面上的分针,是旋转;(3)飞机的螺旋桨,是旋转;(4)工作中的电风扇,是旋转;(5)拉动抽屉,属于平移;故答案为:△,□,□,□,△.点评:本题是考查图形的平移、旋转的意义.图形平移与旋转的区别在于图形是否改变方向,平移图形不改变方向,旋转图形改变方向.25.用钥匙开教室的门是现象,推开门是现象.【答案】旋转,旋转【解析】用钥匙开教室的门是绕着支点的旋转现象,推开门也是旋转现象;据此解答.解:根据分析可知:用钥匙开教室的门是旋转现象,推开门是旋转现象;故答案为:旋转,旋转.点评:平移是物体运动时,物体上任意两点间,从一点到另一点的方向与距离都不变的运动;旋转是物体运动时,每一个点离同一个点(可以在物体外)的距离不变的运动,称为绕这个点的转动,这个点称为物体的转动中心.所以,它并不一定是绕某个轴的.26.推拉窗户是旋转现象.(判断对错)【答案】×【解析】移是物体运动时,物体上任意两点间,从一点到另一点的方向与距离都不变的运动;旋转是物体运动时,每一个点离同一个点(可以在物体外)的距离不变的运动,称为绕这个点的转动,这个点称为物体的转动中心.所以,它并不一定是绕某个轴的;据此判断.解:根据平移的意义可知:推拉窗户是旋转现象;故答案为:×.点评:明确平移和旋转的含义是解答此题的关键.27.如图是由经过旋转得到的..【答案】错误【解析】根据平移、旋转和轴对称的性质即可得出正确结果.解:观察图形可知,如图是由经过平移得到的,原题说法错误.故答案为:错误.点评:本题考查平移、旋转的性质.平移的基本性质:①平移不改变图形的形状、大小和方向;②经过平移,对应点所连的线段平行或在同一直线上,对应线段平行且相等,对应角相等.旋转的性质:①旋转变化前后,对应线段、对应角分别相等,图形的大小、形状都不改变;②两组对应点连线的交点是旋转中心.28.与时针旋转方向相同的是旋转,方向相反的是旋转.【答案】顺时针,逆时针【解析】我们知道钟表指针走的方向,跟钟表指针走的方向一样叫顺时针方向,反之叫逆时针方向.解:与时针旋转方向相同的是顺时针旋转,方向相反的是逆时针旋转;故答案为:顺时针,逆时针.点评:本题主要是考查旋转方向,顺时针方向与逆时针方向是两个基本概念,要记住.29.飞机降落到机场跑道到机身静止这一过程,对于整个机身而言,属于现象,而对于滚动的轮胎而言,它是现象.【答案】平移、旋转【解析】根据物体平移和旋转的特征,平移是将一个图形从一个位置变换到另一个位置,旋转是一个图形绕着一个定点旋转一定的角度,飞机前行是平移运动,是平移现象;轮胎滚动,是将轮胎绕车轴旋转一定的角度,属于旋转现象;据此解答即可.解:由分析得出:飞机降落到机场跑道到机身静止这一过程,对于整个机身而言,属于平移现象;而对于滚动的轮胎而言,它是旋转现象.故答案为:平移、旋转.点评:解决本题要根据平移和旋转的特点来判断.30.链带带动的两个齿轮转动的方向,互相咬合的两个齿轮转动的方向.【答案】相同,相反【解析】链带带动的两个齿轮转动的方向是相同,都是一个方向,互相咬合的两个齿轮转动的方向是相反的,据此解答.解:链带带动的两个齿轮转动的方向相同,互相咬合的两个齿轮转动的方向相反;故答案为:相同,相反.点评:本题主要考查两种不同的齿轮转动的方向.31.钟面上指针从“12”绕点O顺时针旋转90度到“”,接着绕点O逆时针旋转度到“1”.【答案】3,60【解析】钟表里,每一大格所对的圆心角是30°,根据这个关系,依次推算即可解答.解:钟面上指针从“12”绕点O顺时针旋转90度到“3”,接着绕点O逆时针旋转60度到“1”;故答案为:3,60.点评:本题考查钟面角的问题,用到的知识点为:钟表上12个数字,每相邻两个数字之间的夹角为30°.32.如图:从阴影三角形A到B的运动是A、旋转B、平移C、不确定.【答案】A【解析】如图,阴影三角形A和B的各对应点分别在平行四边形对角线交点的两边,方向相反,且点平行四边形对角线交点的距离相等.根据旋转图形的特征,三角A绕平行四边形的对角线的交点旋转180°即可得得三角形B,据此解答.解:如图,从阴影三角形A到B的运动是旋转;故选:A.点评:本题主要是考查旋转图形的特征,图形旋转后形状、大小不变,只是方向的改变.33.五星红旗缓缓升起,是一种现象.【答案】平移【解析】当五星红旗在奥运赛场冉冉升起时,五星红旗的运动是只是位置发生了变化,由地面升到了旗杆顶端,它的大小,形状不变,是平移现象.解:五星红旗的运动是只是位置发生了变化,它的大小,形状不变,是平移现象;故答案为:平移点评:本题是考查平移的意义.平移现象只是位置发生了变化,它的大小,形状不变.34.时针运动是现象,拉抽屉是现象.【答案】旋转;平移【解析】根据旋转的意义,旋转是一个图形绕着一个定点旋转一定的角度,时针运动是旋转现象.根据平移的意义,平移是将一个图形从一个位置变换到另一个位置,拉抽屉是平移现象.解:时针运动是旋转现象,拉抽屉是平移现象.故答案为:旋转;平移.点评:本题是考查平移与旋转的意义.旋转变换和平移都不改变图形的形状和大小,只是位置的变化.35.你学过的图形变换的方式有:、、.【答案】平移,旋转,对称【解析】图形变换的方式有多种,我们学过的图形变换有三种形式:平移、旋转、对称.解:由分析知:图形变换的三种方式是平移、旋转、对称.故答案为:平移,旋转,对称.点评:此题考查了图形变换的三种方式,平时应多注意基础知识的积累.36.看图填空.(1)指针从“12”绕点A顺时针旋转 °到“2”;(2)指针从“12”绕点A顺时针旋转°到“3”;(3)指针从“1”绕点A顺时针旋转°到“6”.【答案】(1)60;(2)90;(3)150【解析】时钟钟面上1至12个数字,把钟面平均分成12个大格,每个大格的所对的圆心角的度数30°,所以指针绕点A顺时针旋转一个格,旋转经过的角度就是30°,由此即可解决问题.解:(1)“12”到“2”之间有2个大格,30°×2=60°,答:指针从“12”绕点A顺时针旋转60°到“2”;(2)“12”到“3”之间有3个大格,所以30°×3=90°,答:指针从“12”绕点A顺时针旋转90°到“3”;(3)“1”到“6”之间有5个大格,30°×5=150°,答:指针从“1”绕点A顺时针旋转150°到“6”.故答案为:(1)60;(2)90;(3)150.点评:抓住钟面上一个大格所对的圆心角的度数是30°,是解决此类问题的关键.37.(1)图1向平移格.(2)把金鱼图向左平移7格.【答案】上,5个,【解析】(1)图形(1)在下,所以上向上平移,找到图形(1)的上面的三角形的顶点,数出到平移后的图形的上面的三角形的顶点的格数,就是平移了几个格,据此解答;(2)把金鱼图向左数出7个格,平行移动7个格即得到平移后的图形.解:(1)图1向上平移 5格;(2)把金鱼图向左数出7个格,得到平移后的图形的图形②;。
图形与变换(一)中考复习指导(复习范围:轴对称、平移与旋转)一、复习目标1、经历观察、分析、操作、欣赏以及抽象、概括等过程,探索图形平移与旋转基本性质,进一步发展空间观念,增强审美意识;2、通过复习,进一步理解平移、旋转的基本内涵,理解平移前后两个图形对应点连线平行且相等、对应线段和对应角分别相等的性质;旋转的不变性;3、通过对图形进行观察、分析、欣赏和动手操作、画图等过程再现,掌握有关画图的操作技能,发展初步的审美能力.4、能按要求作出简单平面图形的轴对称、平移、旋转后的图形;能够探索图形之间的关系.培养探究精神和动手能力.二、知识结构三、复习重难点重点:平移与旋转的基本概念及基本性质,作图.难点:平移与旋转特征的探索及理解.探索图形之间的平移与旋转的关系.四、知识要点1.平移、旋转和轴对称的性质(1)平移变换的性质①对应线段___(或共线)且___;对应点所连结的线段___且___,因为经过平移,图形的每个点都沿同一个方向移动了相同的距离,平移变换前后的两条对应线段的四个端点所围成的四边形为平行四边形(四点共线除外).②对应角分别___,且对应角的两边分别___,方向___.③平移后的图形与原图形___,因为平移只改变图形___,不改变图形的___和___.(2)轴对称变换的性质①关于直线对称的两个图形是____图形.②如果两个图形关于某直线对称,对称轴是对应点连线的______.③两个图形关于某直线对称,如果它们对应线段或延长线相交,那么交点在___.④如果两个图形的对应点连线被同一直线垂直平分,那么这两个图形关于这条直线对称.(3)旋转变换的性质图形通过旋转,图形中每一点都绕着旋转中心沿相同的方向旋转了同样大小的角度,任意一对对应点与旋转中心的连线都是旋转角,对应点到旋转中心的距离___,对应线段___,对应角___,旋转过程中,图形的___、_______都没有发生变化.2.中心对称图形和轴对称图形的概念(1)中心对称图形是把一个图形绕着某一点____,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫_______.(2)轴对称图形是把一个图形沿着某一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做______.运用二者定义能够正确识别中心对称图形和轴对称图形3.平移、旋转和轴对称的作图(1)平移作图步骤①确定平移的方向和距离;②根据对应点的连线平行(或在一条直线上)且相等作出图形各关键点的对应点;③按原图形的连结方式顺次连结各点.(2)旋转作图步骤①分析题目要求,找出旋转____,确定_____.②分析所作图形,找出构成图形的关键点.③沿一定的方向,按一定的角度、旋转各顶点和旋转中心所连线段,从而作出图形中各关键点的对应点.④按原图形连结方式顺次连结各对应点.(3)中心对称作图步骤①连结决定已知图形的形状、大小的各关键点与对称中心,并且延长至2倍,得到各点的对称点.②按原图形的连结方式顺次连结对称点即得所作图形.4.平移、旋转和轴对称之间的联系一个图形沿两条平行直线翻折两次相当于一次平移,沿不平行的两条直线翻折两次相当于一次旋转,其旋转角等于两直线交角的2倍.五、思想方法1.转化思想:如运用图形的全等变换可将不规则图形转化为规则图形.2.构造思想:在运用轴对称图形的性质解最短距离问题时需寻找对称点,构造轴对称图形.3.方法:对图形的处理可以通过平移,对折和旋转使问题简化六、基本题型图形的平移与旋转都是图形的全等变换,它们在空间与图形中占有重要的地位,它和前面的轴对称及后面的平行四边形密切相关,因此复习本部分知识是进一步学习后面知识的基础,现将常见经题型归纳如下.1、轴对称概念及性质的应用知识链接一个图形沿着某一条直线翻折过去,它能够与另一图形重合,则这两个图形成轴对称,这条直线叫对称轴.【例1】如图,分别以OM、ON为对称轴作△ABC的轴对称图形.分析:从“分别”可知实际上可看成两题.以OM为对称轴时,OM与△ABC两边都相交,以ON为对称轴时顶点A在ON上,基本作法都是先分别作△ABC的各顶点关于OM(ON)的对称点.作法:作AD⊥OM于D,延长AD至A'使A'D=AD,得点A关于OM的对称点A'.同法作出点B,C关于OM的对称点B',C'.顺次连结A'、B'、C'.△A'B'C'是△ABC关于OM的轴对称图形.作BE⊥ON于E,延长BE至B″使B″E=EB,得点B关于ON的对称点B″.同法作出点C关于ON的对称点C″.A″与A重合.顺次连结A″、B″、C″.△A″B″C″是△ABC关于ON的轴对称图形【点评】△ABC与△A'B'C'关于直线OM成轴对称时,边AB、A'B'、(AC、A'C')都与OM相交交点P(Q)重合.2.运用平移的概念解题知识链接在同一平面内,将一个图形沿着某个方向移动一定的距离,这样的图形运动称为平移.平移是继轴对称以后的又一个图形的基本变换,平移既可以来表示物体(图形)运动的过程,也可以表示物体(图形)运动后最终的位置与初始位置的关系,平移不改变图形的形状和大小.【例2】如图,下列各组图形,可经平移变换,由一个图形得到另一个图形的是()【分析】平移是指一个图形沿某一方向的平行移动,所以选项B、选项C、和选项D 都不可以由平移变换得到.解:A.3.运用平移的性质解题知识链接图形经过平移,平移后的图形与原来的图形对照有如下特征:(1)平移后的图形与原来图形的对应线段平行且相等,对应角相等.(2)图形的形状、大小都没有发生变化.(3)在平移过程中,对应线段、对应点所连的线段可能在一条直线上.(4)平移后对应点所连的线段平行且相等.(5)连结对应点的线段相等,这条线段的长度就是平移的距离,线段的方向就是平移的方向.【例3】一个图形经过平移变换后,有以下几种说法,其中不恰当的说法是( ) A.平移后,图形的形状和大小都不改变B.平移后的图形与原图形的对应线段相等,对应角相等C.平移后的图形的形状不变,但大小可以改变D.利用基本图形的平移可以设计出美丽的图案【分析】图形的平移变换不改变图形的形状和大小,变换后的图形与原图形是全等图形. 解:C.【例4】如图,线段AB=CD ,AB 与CD 相交于O ,且∠AOC=60°,CE 是由AB 平移所得,则AC+BD 与AB 的大小关系是 ( )A.AC+BD<AB B.AC+BD=ABC.AC+BD≥AB D.无法确定【分析】CE 是经AB 平移得到,则CE=AB ,CE 与CD 的夹角仍为60°.解:∵AB=CE ,AB ∥CE ,∴ ∠OCE=∠AOC=60°.又∵ CD=AB , ∴ CE=CD.连结DE ,则△CDE 是等边三角形.∴CD=DE=CE=AB.∵BD+BE>DE ,∴BD+AC>AB.当AC ∥BD 时,BD+AC=AB ,∴AC+BD≥AB.故选C.【点评】全面考虑AC 和BD 的位置关系,并且正确运用平移性质是解决问题的关键.4、旋转的概念及特征知识链接 将平面图形F 绕这平面内的一个定点O 旋转一个定角α而形成的图形F',由F 到F'这种变换称旋转变换.点O 称旋转中心,旋转中心是旋转变换下唯一位置不变点,α称旋转角.运用旋转变换的关键在于选好旋转中心和旋转角.【例5】如图可以看作是一个等腰直角三角形旋转若干次而生成的则每次旋转的度数可以是( )A .90°B .60°C .45°D .30°.解析:由图所示,由于等腰直角三角形两个底角都是45°,所以每次旋转的度数是45°. 故应选C.【例6】如图6所示,把一个直角三角尺ACB 绕着30°角的顶点B顺时针旋转,使得点A 与CB 的延长线上的点E 重合.(1)三角尺旋转了多少度?(2)连结CD ,试判断△CBD 的形状;(3)求∠BDC 的度数.解析:本题考查旋转的性质.(1)由∠ABC =∠DBE = 30°,则∠CBD =180°-30°=150°. 故三角尺旋转了150°.(2)由旋转的性质:经过旋转,对应线段相等. 则BC = BD . 所以,△CBD 是等腰三角形. (3)由(1)、(2)知,△CBD 是等腰三角形,∠CBD =150°. 所以,∠BDC =21(180°-150°)= 15°.A C BD E【点评】主要考查学生对旋转的性质的理解和认识.同时注意理解平移与旋转的区别和联系.【例7】如图1,一等腰直角三角尺GEF 的两条直角边与正方形ABCD 的两条边分别重合在一起.现正方形ABCD 保持不动,将三角尺GEF 绕斜边EF 的中点O (点O 也是BD 中点)按顺时针方向旋转.(1)如图2,当EF 与AB 相交于点M ,GF 与BD 相交于点N 时,通过观察或测量BM ,FN 的长度,猜想BM ,FN 满足的数量关系,并证明你的猜想;(2)若三角尺GEF 旋转到如图3所示的位置时,线段FE 的延长线与AB 的延长线相交于点M ,线段BD 的延长线与GF 的延长线相交于点N ,此时,(1)中的猜想还成立吗?若成立,请证明;若不成立,请说明理由.解析:(1)BM =FN .证明:∵△GEF 是等腰直角三角形,四边形ABCD 是正方形,∴ ∠ABD =∠F =45°,OB = OF .又∵∠BOM =∠FON ,∴ △OBM ≌△OFN ,∴ BM =FN .(2)BM =FN 仍然成立.证明:∵△GEF 是等腰直角三角形,四边形ABCD 是正方形,∴∠DBA =∠GFE =45°,OB =OF .∴∠MBO =∠NFO =135°.【点评】本题是一道以正方形为背景的三角板操作题,它推广旋转角度的变化,来探究图形的规律,寻找出不变量,并证明猜想的开放题5、简单的图案设计知识链接 灵活运用平移、旋转的变换方法进行简单的图案设计.【例8】(1)如图,在方格纸中如何通过平移或旋转两种变换,由图形A 得到图形B ,在图形B 得到图形C (对于平移变换要求回答出平移的方向和平移的距离;对于旋转变换要求回答出旋转中心、旋转方向和旋转角度);(2)图2是某设计师设计图案的一部分,请你运用旋转变换的方法,在方格纸中将图形绕点O 顺时针依次旋转90°、180°、270°,依次画出旋转后所得到的图形,你会得到一个美丽的图案,但涂阴影时不要涂错了位置,否则不会出现理想的效果,你来试一试吧!解析:(1)由图形A 得到图形B ,是通过平移变换所得: 图形A 向上平移4个单位后得到图形B ;由图形B 得到图形C ,是通过平移和旋转两种变换所得: 先将图形B 向右平(图1) (图2) P 图A 图B P 1 P 2 图 C O O (图3) 图2 E A B D G F O M N C 图3 A B D G EF O M N C图1 A ( G ) B ( E ) C O D ( F )· ·移4个单位后,以点P 2为旋转中心,顺时针旋转90°即得图形C .(2)运用旋转变换的方法,按照要求进行作图如图3所示.【点评】主要考查学生灵活运用平移、旋转的变换方法进行简单的图案设计.学生欣赏并体验图形变换在现实生活中的广泛应用,使学生历经观察、操作、推理、想象等探索过程,注重对数学知识的理解和综合运用. 同时注意理解平移与旋转的区别和联系.【例9】如图,将方格中的图案作下列变换,请画出相应的图案:(1)沿x 轴正向平移4个单位;(2)关于x 轴轴对称.解析:(1)平移后的图案如图4所示;(2)关于x 轴轴对称如图4所示.【点评】平移的最显著特征就是平移不改变图形的形状和大小,只是位置发生了变化.利用其特征,进行简单的平移作图,注重考查学生知识的理解和应用.【例10】试用两个圆,两个三角形,两条平行线设计一些具有平移、旋转和轴对称关系的图案来说明你的设计意图. 解析 由于圆、线段既是轴对称图形,又是旋转对称图形,只要所选用三角形为等边三角形或等腰三角形,便不难将三者有机结合,设计出一些合理图案来.举几例,供同学们参考:(1)平移关系:两盏电灯 两支棒棒糖(2)旋转关系:错位倒置 等价变换(3)轴对称关系:一个外星人一辆小车同学们还可以发挥你们的智慧,设计出其他一些符合条件的更有意思的图案.【点评】利用简单的几何图形进行图案设计,运用所学的知识,进行合理想象,旨在培养动手操作能力,是近年来出现的一类新题型,也是新课程标准的教学目标之一.。
数学图形与变换试题1.“森”字可以看成是“木”字经过两次平移之后得到的,请写两个类似的字:、.【答案】晶、品【解析】“森”字可以看成是“木”字经过两次平移之后得到的,类似的字还有晶、品、众、淼、犇等“品”字结构的字.解:“森”字可以看成是“木”字经过两次平移之后得到的,类似的字:晶、品;故答案为:晶、品.点评:本题是考查平移的意义.根据题意,中“品”结构的字都可以看作由一个字经过两次平移之后得到的.2.将下图顺时针旋转90°后可以得到什么图形?【答案】【解析】根据旋转的定义,即可将这个组合图形进行旋转.解:根据旋转的定义,可将上图顺时针旋转90°后如右图所示.点评:紧扣旋转的定义,即可解决此类问题3.下面是两个同样大的圆和正三角形,请你用其中的2个或2个以上的图形,设计一个轴对称图形,并画出来.【答案】【解析】根据轴对称图形的意义“在平面内,如果一个图形沿一条直线折叠,直线两旁的部分能够完全重合,这样的对称图形,这条直线叫做对称轴”来解答即可.解:如图,点评:利用轴对称图形的意义来作图解决问题.4.欣赏图的图案,并分析这个图案形的过程.提问:(1)基本图案是什么?有几个?(2)分析同色“爬虫”、异色“爬虫”之间的关系.【答案】(1)这个图案是由三个“基本图案”组成的,它们分别是三种不同颜色的“爬虫”(绿、白、黑),形状、大小完全相同;(2)在图中,同色的“爬虫”之间是平移关系,所有同色的“爬虫”可以通过其中一只经过平移而得到;相邻的不同色的“爬虫”之间可以通过旋转而得到,其中,旋转角度为120°,旋转中心为“爬虫”头上、腿上或脚趾上一点【解析】应通过平移和旋转两种方式来进行分析解答.解:(1)这个图案是由三个“基本图案”组成的,它们分别是三种不同颜色的“爬虫”(绿、白、黑),形状、大小完全相同;(2)在图中,同色的“爬虫”之间是平移关系,所有同色的“爬虫”可以通过其中一只经过平移而得到;相邻的不同色的“爬虫”之间可以通过旋转而得到,其中,旋转角度为120°,旋转中心为“爬虫”头上、腿上或脚趾上一点.点评:此题考查目的是发展学生空间观念,同时能够灵活运用平移旋转轴对称的组合进行一定的图案设计的能力.5.你知道下面美丽的图案是由哪个图形变换来的吗?连连看!【答案】【解析】根据图形旋转的特征地,图中的上面三幅美丽图都是由下图面一个图形通过旋转得到的.左图是由下面中间的图绕一点经过顺时针(或逆时针)旋转120°,再旋转120°得到;中间的图形图案是由下面右图绕一点经过顺时针(或逆时针)旋转90°、再旋转90°、再旋转90°得到的;右是由下面左图绕一点经过顺时针(或逆时针)经过多次旋转得到的.解:根据分析,连线如下:故答案为:点评:本题是考查图利用图形变的设计图案.小学阶段图形变包括图形的平移、旋转、轴对称.灵活去用可设计出很多精美的图案.6.填一填,移一移,画一画.(1)图①先向平移了格,再向平移了格成为图②.(2)图①先向平移了格,再向平移了格成为图③.(3)图①先向下平移2格,再向右平移6格,画出平移后的图④.【答案】上,2,右,4;下,5,右,3;【解析】根据平移的特征,(1)图①先向上平移了 2格,再向右平移了 4格成为图②,(2)图①先向下平移了 5格,再向右平移了 3格成为图③,(3)把三角形的三个顶点分别先向下平移2格,再向右平移6格,再依次连接起来即可得出平移后的三角形.解:如图,(1)图①先向上平移了 2格,再向右平移了 4格成为图②,(2)图①先向下平移了 5格,再向右平移了 3格成为图③,(3)根据分析画图如下:点评:本题是考查图形的平移,方向关键看箭头指向,距离关键看对应点相距几格.7.如图,图形A平移得图形B,请你用旋转的方法说一说,图形A是怎样得到图形C、D、E的:【答案】图形A向右平移8格得到图形B,再顺时针旋转90°得到图形C,再顺时针旋转90°得到图形D,再顺时针旋转90°得到图形E【解析】根据旋转的性质,先确定旋转中心,再确定旋转的角度,依此即可得到图形A是如何变为图形C、D、E的.解:图形A向右平移8格得到图形B,再顺时针旋转90°得到图形C,再顺时针旋转90°得到图形D,再顺时针旋转90°得到图形E.点评:此题考查了旋转、平移的性质.解题关键是利用平移、旋转的性质确定图形的变换.8.利用旋转设计图案.(自己确定旋转角度)【答案】【解析】先画出一个平行四边形,然后根据旋转图形的特点,绕点O顺(或逆)时针旋转90°画出一个平行四边形,再旋转90°画出一个平行四边形,再旋转90°画出一个平行四边形,即可成为一个美丽的图案.解:由分析画图如下:点评:本题是考查运用旋转设计图案,根据旋转图形的特点即可画出.9.一个等边三角形,以它的对称轴为轴旋转半周,转出来的是一个圆锥..【答案】正确【解析】等边三角形的对称轴就是底边上的高所在的直线,这条对称轴把这个等边三角形分成两个完全一样的直角三角形,直角边在对称轴上,一个直角三角形,以它的一条直角边为轴,旋转一周,它的一面就是一个以另一条直角边为半径的一个圆面,直角三角形的斜边形成一个曲面,由于直角三角形的另一点在轴上,旋转后还是一点,这个直角三角形就形成一个圆锥.两个直角三角形,以它的对称轴为轴旋转半周,就会转出一个底面以这个三角形的底边为直径,以这个三角形的高为高的圆锥.解:一个等边三角形,以它的对称轴为轴旋转半周,转出来的是一个圆锥;故答案为:正确点评:本题主要考查图形的旋转、等边三角形的特征.10.(1)图形1绕A点旋转90°到图形2.(2)图形2绕A点旋转90°到图形3.(3)图形4绕A点顺时针旋转到图形2.(4)图形3绕A点顺时针旋转到图形1.【答案】逆时针,逆时针,180°,180°【解析】本题的基本图形为椭圆形,(1)(2)是依次逆时针旋转;(3)(4)顺时针旋转180°、180°可得出如图所示的图形.解:所示图形(1)(2)是由基本图形绕中心点逆时针旋转;(3)(4)是由基本图形绕中心点顺时针旋转180°、180°得到的;故答案为:逆时针,逆时针,180°,180°.点评:本题考查了利用旋转设计图案的知识,属于基础题,注意基本图案的寻找是关键.11.连一连.【答案】【解析】(1)第一个盒子,因为有8个红球、2个黄球,所以摸到红球的可能性大;第二个盒子,只有10个黄球,所以一定能摸到黄球;第三个盒子,只有10个红球,所以一定摸到红球;第四个盒子,5个红球、5个黄球,所以摸到红球和黄球的可能性一样大;(2)结合平移和旋转的意义:平移是物体运动时,物体上任意两点间,从一点到另一点的方向与距离都不变的运动;在平面内,将某个图形,绕一个顶点沿某个方向旋转一定角度,这样的图形运动称为旋转;据此进行解答即可.解:连线如下:点评:解答此题的关键:(1)根据可能性的大小进行解答;(2)根据平移和旋转的含义解答.12.变换的“”.(1)把图形A绕O点顺时针旋转度,再向平移格得到图形B;(2)把图形B绕O点顺时针旋转度,再向平移格得到图形C;(3)把图形C绕O点顺时针旋转度,再向平移格得到图形D.【答案】90,右,0,90,右,0,90,右,0【解析】把把图形A绕O点顺时针旋转90度,再向右平移0格得到图形B,依次填空即可.解:(1)把图形A绕O点顺时针旋转90度,再向右平移0格得到图形B;(2)把图形B绕O点顺时针旋转90度,再向右平移0格得到图形C;(3)把图形C绕O点顺时针旋转90度,再向右平移0格得到图形D.故答案为:90,右,0,90,右,0,90,右,0.点评:本是主要是考查图形的旋转、平移.旋转与平移的相同点:位置发生变化,大小不变,形状不变,都在一个平面内.不同点:平移,运动方向不变.旋转,围绕一个点或轴,做圆周运动.13.(1)画出图形①的另一半,使它成为一个轴对称图形.(2)画出图形②先向右平移4格,再向下平移2格后的图形.(3)画出图形③先向下平移6格,再绕点O逆时针方向旋转90°后的图形.【答案】【解析】(1)在平面内,如果一个图形沿一条直线折叠,直线两旁的部分能够完全重合,这样的图形叫做轴对称图形.(2)找出图形的各个顶点,先右移4格,再下移2格.(3)找出图形的各个顶点,向下移6格,再绕O点逆时针旋转90°,据此可解答.解:找出图中的各个顶点对应的位置,然后连线.点评:本题考查了学生作对称图形和平移,旋转后图开的能力.关键是找出各个顶点后再连线.14.(1)用数对表示三角形三个顶点的位置:A、B、C.(2)把三角形向上平移5格,画出平移后的图形.(3)把三角形绕A点顺时针旋转90°,并按2:1的比放大.画出旋转放大后的三角形.【答案】(3,4);(1,1);(3,1);【解析】(1)数对表示位置的方法是:第一个数字表示列,第二个数字表示行,由此即可标出各点的数对位置;(2)根据图形平移的方法,把三角形的三个顶点分别向上平移5格,再依次连接起来即可得出平移后的三角形1;(3)根据图形旋转的方法,把与点A相连的两条边分别绕点A顺时针旋转90度,再把第三条边连接起来即可得出旋转后的三角形2;按2:1把这个三角形放大,就是把这个三角形的两条直角边扩大2倍,由此数出三角形ABC的两条直角边的格数,分别乘2,即可得出放大后的三角形的两条直角边,据此即可画出这个直角三角形3.解:(1)根据数对表示位置的方法可得:A的位置是:(3,4);B的位置是(1,1);C的位置是(3,1);(2)(3)根据题干分析,可以画图如下:故答案为:(3,4);(1,1);(3,1).点评:此题主要考查数对表示位置的方法以及图形的平移、旋转、放大与缩小的方法的灵活应用.15.(1)看图填空.图中圆形的位置是(,).画圆要求:圆形的位置是(2,3),圆的半径是原来的2倍.(2)画出三角形绕a点顺时针旋转90°后的图形.(3)根据给定的对称轴画出图形的另一半.【答案】(2,8);【解析】(1)圆心确定圆的位置,由此利用数对表示位置的方法即可标出圆的位置,原来圆的半径是1,则扩大2倍后,圆的半径为2;由此即可画出扩大后的圆;(2)根据图形旋转的方法,把三角形与点A相连的两条边绕点A顺时针旋转90度后,再把第三条边连接起来,即可得出旋转后的三角形;(3)如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图,轴对称图形的性质是:在轴对称图形中,对称轴两侧的对应点到对称轴两侧的距离相等.由此即可画出图形的另一半,使它成为一个轴对称图形.解:(1)根据数对表示位置的方法可得:圆的位置是(2,8);则画出扩大后的圆如图所示:(2)(3)根据题干分析可以画图如下:点评:此题考查了数对表示位置的方法以及圆的画法、图形的旋转以及利用轴对称图形的性质作图的能力.16.(2012•祥云县模拟)画出下图绕点O按顺时针方向旋转90°后得到的图形.【答案】【解析】根据旋转的性质,先将与O相连的两条直角边顺时针旋转90°,由此即可画出旋转后的图形.解:由分析作图如下:点评:此题考查了利用旋转的性质,关键是抓住点O相连的两条直角边即可确定旋转后的图形的位置.17.如图,直角等腰三角形ABC的斜边BC长8厘米,将这个三角形以顶点A为定点,沿顺时针方向旋转90度,那么斜边BC扫过的面积是多少平方厘米?【答案】18.24平方厘米【解析】根据题干可以画出这个旋转后的示意图;将这个三角形以顶点A为定点,沿顺时针方向旋转90度,则斜边BC扫过的面积就是图中涂色部分的面积,即等于半圆的面积﹣直角三角形BCD的面积,由此即可分析解答.解:根据题干分析,设这个圆的半径是r,三角形BCD的面积是:8×8÷2=32(平方厘米),所以2r×r÷2=32,则r2=32,所以半圆的面积是:3.14×32÷2=50.24(平方厘米),则阴影部分的面积是:50.24﹣32=18.24(平方厘米);答:BC边划过的面积是18.24平方厘米.点评:根据题干,画出这个等腰直角三角形旋转后的图形,再利用半圆和三角形的面积公式即可解答问题.18.(2013•龙海市模拟)画出下面方格图中的长方形绕点O顺时针旋转90°后,再向右平移5格得到的图形.【答案】【解析】根据题意弄清绕哪个点,按什么方向,旋转多少度,然后再弄清在向哪个方向平移几个格,最后得到所需图形,关键是找出长方形的对应点,然后连接在一起即可,并平移即可.解:由题意知,找到原长方形的对应点得到旋转90°后的图形如虚线所示,然后向右平移5个格得到最后的图形,如下图所示:点评:此题考查了运用旋转画图形,关键是找对应点还有一个知识点就是平移.19.把“6”旋转180°是“9”,把“9”旋转180°是“6”,那么把“69”旋转180°是数字.【答案】69【解析】利用作图工具,分别把“6”、“9”和“69”旋转180°,得出结论.解:分别把“6”、“9”和“69”旋转180°得到下图:答:把“69”旋转180°是数字 69.故答案为:69.点评:简单的旋转作图,可先在方格纸上画图,体会旋转的关键是确定旋转中心和旋转角,在自己动手画图的过程中,自己归纳总结出旋转的关键.作简单平面图形旋转后的图形,要明确旋转中心在哪里,旋转的角度是多少,是顺时针旋转还是逆时针旋转等.20.把二次函数y=(x﹣1)2+2的图象绕原点旋转180°后得到的图象的解析式为.【答案】y=﹣(x+1)2﹣2【解析】根据顶点式解析式求出原二次函数的顶点坐标,然后根据关于中心对称的点的横坐标与纵坐标互为相反数求出旋转后的二次函数的顶点坐标,最后根据旋转变换只改变图形的位置,不改变图形的形状写出解析式即可.解:二次函数y=(x﹣1)2+2顶点坐标为(1,2),绕原点旋转180°后得到的二次函数图象的顶点坐标为(﹣1,﹣2),所以,旋转后的新函数图象的解析式为y=﹣(x+1)2﹣2.故答案为:y=﹣(x+1)2﹣2.点评:本题考查了二次函数图象与几何变换,利用点的变换解决函数图象的变换,求出变换后的顶点坐标是解题的关键.21.在平移现象后面画“□”,在旋转现象后面画“○”.(1)正在运行的直线传送带上的货物.(2)飞机螺旋桨的运动.(3)电梯上下移动.(4)正沿着笔直旗杆上升的国旗.(5)开电冰箱的门.(6)拉抽屉..【答案】□,○,□,□,○,□【解析】平移是物体运动时,物体上任意两点间,从一点到另一点的方向与距离都不变的运动,旋转是物体运动时,每一个点离同一个点(可以在物体外)的距离不变的运动,称为绕这个点的转动,这个点称为物体的转动中心.所以,它并不一定是绕某个轴的.,根据平移与旋转定义判断即可.解:由分析知,(1)正在运行的直线传送带上的货物.□(2)飞机螺旋桨的运动.○(3)电梯上下移动.□(4)正沿着笔直旗杆上升的国旗.□(5)开电冰箱的门.○(6)拉抽屉.□故答案为:□,○,□,□,○,□.点评:此题是考查对平移与旋转的理解及在实际生活中的运用.22.用钥匙开教室的门是现象,推开门是现象.【答案】旋转,旋转【解析】用钥匙开教室的门是绕着支点的旋转现象,推开门也是旋转现象;据此解答.解:根据分析可知:用钥匙开教室的门是旋转现象,推开门是旋转现象;故答案为:旋转,旋转.点评:平移是物体运动时,物体上任意两点间,从一点到另一点的方向与距离都不变的运动;旋转是物体运动时,每一个点离同一个点(可以在物体外)的距离不变的运动,称为绕这个点的转动,这个点称为物体的转动中心.所以,它并不一定是绕某个轴的.23.把连续平移,每次平移格得到.【答案】2【解析】根据平移的性质,结合图形,可直接求得结果.解:由一个方格平移到另一个方格的移动方向,就是图形的平移方向.观察图形可知,原图平移二格二格移动6次得到6个这样的原图,则平移的方向是从左到右,平移的距离即12个方格的长度.所以每次平移2格.故答案为:2.点评:本题考查了图形的平移,图形的平移只改变图形的位置,而不改变图形的形状和大小.解题的关键是理解平移的方向,由图形判断平移的方向和距离.注意结合图形解题的思想.24.推拉窗户是旋转现象.(判断对错)【答案】×【解析】移是物体运动时,物体上任意两点间,从一点到另一点的方向与距离都不变的运动;旋转是物体运动时,每一个点离同一个点(可以在物体外)的距离不变的运动,称为绕这个点的转动,这个点称为物体的转动中心.所以,它并不一定是绕某个轴的;据此判断.解:根据平移的意义可知:推拉窗户是旋转现象;故答案为:×.点评:明确平移和旋转的含义是解答此题的关键.25.图形向平移了个小格.【答案】左,6【解析】找出两个三角形平移的对应关键点,即可得到平移的方向和距离,由此得解.解:图形向左平移了6个小格.故答案为:左,6.点评:此题考查了简单图形平移,找到关键点,进行关键点的平移,向什么方向平移,平移多少是解决此题的关键.26.如图所示中,图形①与图形成轴对称.如果把图形③平移,能得到图形.(填序号)【答案】②、③;④【解析】依据轴对称图形的意义,即在平面内,如果一个图形沿一条直线对折,对折后的两部分都能完全重合,这样的图形叫做轴对称图形,这条直线就是其对称轴,据此即可进行判断.解:据分析解答如下:如图所示中,图形①与图形②和③成轴对称.如果把图形③平移,能得到图形④.故答案为:②、③;④.点评:此题主要考查轴对称图形的意义的灵活应用.27.电风扇叶片的运动是平移..【答案】错误【解析】电风扇的运动是风叶绕中心轴转动,根据旋转的意义,把一个图形绕着某一点转动一个角度的图形变换叫做旋转,因此,电风扇的运动是旋转.解:电风扇的运动是旋转.所以电风扇叶片的运动是平移,是错误的;故答案为:错误.点评:本题是考查旋转的意义.要判断一个运动是不是旋转,关键是看这个图形是不是绕一点或轴运动,旋转不一定作圆周运动.28.观察并发现如图图形旋转前后的位置变化关系.指针从点E绕点O顺时针旋转120°到点;指针从点C绕点O顺时针旋转到点D;指针从点B绕点O逆时针旋转到点E.【答案】C;120°;90°【解析】O是旋转中心,根据旋转的方向,由图形观察旋转的角度,很容易得出结论.解:观察图形可知:指针从点E绕点O顺时针旋转120°到点C;指针从点C绕点O顺时针旋转120°到点D;指针从点B绕点O逆时针旋转90°到点E.故答案为:C;120°;90°.点评:本题考查了旋转变换的关系.关键是根据题干确定旋转的中心、方向和旋转的角度.29.(如图)一个长方形,如果以AB边为轴旋转一周,所得到的几何形体是一个,它的底面半径是厘米,高是厘米,体积是立方厘米.【答案】圆柱;4;6;301.44【解析】根据圆柱展开图的特点和旋转的性质,可以得出长方形沿一边AB为轴旋转一周得到的图形是圆柱,这条边就是圆柱的高,另一边BC就是圆柱底面的半径.利用圆柱的体积公式即可计算得出其体积.解:由题意知,所得到的几何体是圆柱,AB就是圆柱的高,BC就是圆柱的底面半径.3.14×42×6,=3.14×16×6,=301.44(立方厘米),答:所得到的几何体是圆柱,它的底面半径是4厘米,高是6厘米,体积是301.44立方厘米.故答案为:圆柱;4;6;301.44.点评:抓住圆柱展开图的特点及旋转的性质得出圆柱,是解决本题的关键.30.下面的现象是平移的,在横线上里画“○”;是旋转的,在括号里画“□”.;;;.【答案】○;□;○;□【解析】平移是物体运动时,物体上任意两点间,从一点到另一点的方向与距离都不变的运动!旋转是物体运动时,每一个点离同一个点(可以在物体外)的距离不变的运动,称为绕这个点的转动,这个点称为物体的转动中心.所以,它并不一定是绕某个轴的.由此根据平移与旋转定义判断即可.解:算盘珠子的上下移动,是平移现象;方向盘的运动属于旋转现象;拉抽屉属于平移现象;飞机的螺旋桨运动属于旋转现象;故答案为:○;□;○;□.点评:此题是对平移与旋转理解及在实际当中的运用.31.哪些是“平移”现象,哪些是“旋转”现象:(1)在算盘上拨珠的运动是现象;(2)自行车的踏脚运动是现象;(3)电梯里的上下运动是现象;(4)时钟上时针、分针、秒针的运动是现象.【答案】平移;旋转;平移;旋转【解析】平移是物体运动时,物体上任意两点间,从一点到另一点的方向与距离都不变的运动;旋转是物体运动时,每一个点离同一个点(可以在物体外)的距离不变的运动,称为绕这个点的转动,这个点称为物体的转动中心.所以,它并不一定是绕某个轴的.根据平移与旋转定义判断即可.解:(1)在算盘上拨珠的运动是上下移动,属于平移现象;(2)自行车的踏脚运动是绕车轴为中心,做圆的旋转的运动,属于旋转现象;(3)电梯里的上下运动是平移现象;(4)时钟上时针、分针、秒针的运动是围绕表芯一圈一圈转动的,属于旋转现象.故答案为:平移;旋转;平移;旋转.点评:此题是考查对平移与旋转的理解及在实际当中的运用.32.图形1绕点0旋转度后得到图形2.【答案】180【解析】如图,这图形1和图形2方向相反,图形2是图形1绕点0顺时针(或逆时针)旋转180°得到的;据此解答.解:如图:图形1和图形2方向相反,图形2是图形1绕点0顺时针(或逆时针)旋转180°得到的;故答案为:180.点评:本题是考查图形旋转的特点,一个图形绕某点旋转90°时,旋转后的图形的各对应边与原图的垂直,旋转180°方向相反,旋转360°与原图重合.33.钟面上的时针指着5,当时针逆时针旋转90°后,时针指着数字2..(判断对错)【答案】√【解析】钟面上有12个数字,这12个数字把一个周角平均分成了12份,一个周角是360°,每份是360°÷12=30°,即两个相邻数字间的度数是30°,时针从“5”绕中心点O逆时针旋转90°,90°÷3=3,就是旋转了3个数字,即5﹣3=2,此时时针指向“2”,解:如图,表盘上时针从“5”绕中心点O逆时针旋转90°,90°÷3=3,就是旋转了3个数字,即5﹣3=2,此时时针指向“2”,原题说法正确.故答案为:√.点评:解答本题主要掌握钟面上的12个数字把一个周角平均分成了12份,每份是360°÷12=30°,即个相邻数字间的度数是30°.34.电扇风叶的运动属于旋转..【答案】正确【解析】风扇转到是风扇的风叶绕中心轴转动.根据旋转的意义,把一个图形绕着某一点O 转动一个角度的图形变换叫做旋转.由此可判断风扇转动是旋转运动.解:风扇转到是风扇的风叶绕中心轴转动,是旋转运动;故答案为:正确点评:本题是考查旋转现象.旋转是物体在以一个点或一个轴为中心的圆周上运动的现象,不一定要作圆周运动.因此摆动也是旋转,所以秋千、钟摆、跷跷板的运动是摆动,同时也是旋转.35.教室里的吊扇,它的叶片的运动方式是旋转..【答案】正确【解析】风扇转动是风扇的叶片绕中心轴转动.根据旋转的意义,把一个图形绕着某一点转动一个角度的图形变换叫做旋转.由此可判断风扇转动是旋转运动.解:风扇转动是风扇的叶片绕中心轴转动,是旋转运动;故答案为:正确点评:本题是考查旋转现象.旋转是物体在以一个点或一个轴为中心的圆周上运动的现象,不一定要作圆周运动.因此摆动也是旋转,所以秋千、钟摆、跷跷板的运动是摆动,同时也是旋转.36.火车和电梯的运动是;汽车方向盘的运动是.【答案】平移,旋转【解析】根据图形平移、旋转的意义,平移是将一个图形从一个位置变换到另一个位置,旋转是一个图形绕着一个定点旋转一定的角度,即可解答.解:火车和电梯的运动是平移;汽车方向盘的运动是旋转;故答案为:平移,旋转.点评:本题是考查平移、旋转的意义,注意,旋转是物体在以一个点或一个轴为中心的圆周上运动的现象,不一定要作圆周运动.因此摆动也是旋转,所以秋千、钟摆、跷跷板的运动是摆动,同时也是旋转.37.小明在商场里站在电梯上上楼,他在做运动.(填“平移”“旋转”).【答案】平移【解析】平移是物体运动时,物体上任意两点间,从一点到另一点的方向与距离都不变的运动;旋转是物体运动时,每一个点离同一个点(可以在物体外)的距离不变的运动,称为绕这个点的转动,这个点称为物体的转动中心.所以,它并不一定是绕某个轴的.依此根据平移与旋转定义判断即可.解:由平移与旋转定义可知:电梯上下运动是平移.故答案为:平移.。
中考数学复习专项知识总结—图形的变换(中考必备)1、平移(1)定义:把一个图形沿着某一直线方向移动,这种图形的平行移动,简称为平移。
(2)平移的性质:平移后的图形与原图形全等;对应角相等;对应点所连的线段平行(或在同一条直线上)且相等。
(3)坐标的平移:点(x,y)向右平移a个单位长度后的坐标变为(x+a,y);点(x,y)向左平移a个单位长度后的坐标变为(x-a,y);点(x,y)向上平移a个单位长度后的坐标变为(x,y+a);点(x,y)向下平移a个单位长度后的坐标变为(x,y-a)。
2、轴对称(1)轴对称:把一个图形沿着某一条直线折叠,如果它能够与另一个图形重合,那么就说这两个图形关于这条直线成轴对称。
这条直线叫做对称轴,折叠后重合的点是对应点,叫做对称点。
(2)轴对称图形:如果一个平面图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形。
这条直线叫做它的对称轴。
(3)轴对称的性质:关于某条直线对称的图形是全等形。
经过线段中点并且垂直于这条线段的直线,叫做这条线段的垂直平分线。
如果两个图形关于某条直线对称,那么对称轴是任何一对对应点所连线段的垂直平分线。
轴对称图形的对称轴,是任何一对对应点所连线段的垂直平分线。
(4)线段垂直平分线的性质线段垂直平分线上的点到这条线段两个端点的距离相等;与一条线段两个端点距离相等的点,在线段的垂直平分线上。
(5)坐标与轴对称:点(x,y)关于x轴对称的点的坐标是(x,-y);点(x,y)关于y轴对称的点的坐标是(-x,y);3、旋转(1)旋转定义:把一个平面图形绕着平面内某一点O转动一个角度,叫做图形的旋转。
点O叫做旋转中心,转动的角叫做旋转角。
如果图形上的点P经过旋转变为点P′,那么这两个点叫做这个旋转的对应点。
旋转的性质:①对应点到旋转中心的距离相等;①对应点与旋转中心所连线段的夹角等于旋转角;①旋转前后的图形全等。
(2)中心对称定义:把一个图形绕着某一点旋转180°,如果它能够与另一个图形重合,那么就说这两个图形关于这个点对称或中心对称。
初三数学第二章图形与变换复习(NO:005)知识总结1、(2012浙江)如图,将周长为8的△ABC 沿BC 方向平移1个单位得到△DEF ,则四边形ABFD 的周长为 102、(2012绍兴)在如图所示的平面直角坐标系内,画在透明胶片上的▱ABCD ,点A 的坐标是(0,2).现将这张胶片平移,使点A 落在点A′(5,﹣1)处,则此平移可以是( B )A . 先向右平移5个单位,再向下平移1个单位B . 先向右平移5个单位,再向下平移3个单位C . 先向右平移4个单位,再向下平移1个单位D . 先向右平移4个单位,再向下平移3个单位3、(2012湖北咸宁,6,3分)如图,正方形OABC 与正方形ODEF 是位似图形,O 为位似中心,相似比为1∶2,点A 的坐标为(1,0),则E 点的坐标为( C ).A .(2,0)B .(23,23) C .(2,2) D .(2,2)4、(2012年广西玉林市,10,3)如图,正方形ABCD 的两边BC 、AB 分别在平面直角坐标系内的x 轴、y 轴的正半轴上,正方形A ′B ′C ′D ′与正方形ABCD 是以AC 的中点O ′为中心的位似图形,已知AC=23,若点A ′的坐标为(1,2),则正方形A ′B ′C ′D ′与正方形ABCD 的相似比是( B )5、(2012聊城)如图,在方格纸中,△ABC 经过变换得到△DEF,正确的变换是( B ) A .把△ABC 绕点C 逆时针方向旋转90°,再向下平移2格 B .把△ABC 绕点C 顺时针方向旋转90°,再向下平移5格 C .把△ABC 向下平移4格,再绕点C 逆时针方向旋转180° D .把△ABC 向下平移5格,再绕点C 顺时针方向旋转180°6、(2012山东德州)由图中左侧三角形仅经过一次平移、旋转或轴对称变换,不能得到的图形是( C )A B DF(第6题)(A ) (C ) (D )(B )7、(2007潍坊)如图,两个全等的长方形ABCD 与CDEF ,旋转长方形ABCD 能和长方形CDEF 重合,则可以作为旋转中心的点有( A )A .1个B .2个C .3个D .无数个8、(2008潍坊)如图,在平面直角坐标系中,Rt OAB △的顶点A的坐标为,若将OAB △绕O 点逆时针旋转60后,B 点到达B '点,则B '点的坐标是)23,33(第7题 第8题 第9题9、(2009潍坊)如图,已知Rt ABC △中,9030ABC BAC AB ∠=∠==°,°,,将ABC △绕顶点C 顺时针旋转至A B C '''△的位置,且A C B '、、三点在同一条直线上,则点A 经过的最短路线的长度是( D )cm .A .8B.C .32π3D .8π310、(2012广东汕头)如图,将△ABC 绕着点C 顺时针旋转50°后得到△A′B′C′.若∠A=40°.∠B′=110°,则∠BCA′的度数是 80011、(2012贵州六盘水)两块大小一样斜边为4且含有30°角的三角板如图5水平放置.将△CDE 绕C 点按逆时针方向旋转,当E 点恰好落在AB 上时,△CDE 旋转了 30 度.第10题第11题 第12题12、(2012中考)如图,在△ABC 中,∠ACB =90º,∠B =30º,AC =1,AC 在直线l 上.将△ABC 绕点A 顺时针旋转到位置①,可得到点P 1,此时AP 1=2;将位置①的三角形绕点P 1顺时针旋转到位置②,可得 到点P 2,此时AP 2=2+3;将位置②的三角形绕点P 2顺时针旋转到位置③,可得到点P 3,此时AP 3=3 +3;…,按此规律继续旋转,直到得到点P 2012为止,则AP 2012=【 】A .2011+671 3B .2012+671 3C .2013+671 3D .2014+671 3'B①② ③1P 2 P 3 … l又∵2012÷3=670…2,∴AP 2012=670(3+3)+(2+3)=2012+6713故选B .13、(2012山东泰安)如图,菱形OABC 的顶点O 在坐标原点,顶点A 在x 轴上,∠B=120°,OA=2,将菱形OABC 绕点O 顺时针旋转105°至OA B C '''的位置,则点B '的坐标为(2,2-)14、(2012广州)如图4,在等边△ABC 中,AB=6,D 是BC 上一点,且BC=3BD ,△ABD 绕点A 旋转后得到△ACE ,则CE 的长度为 2 。
图形与变换知识点总结1. 基本图形在图形与变换中,我们首先要了解的是基本图形。
基本图形包括点、线、面以及立体图形。
点是没有大小和形状的,只有位置的表示。
线是连续的点的集合,有长度没有宽度。
面是由线段构成的,有长度和宽度。
而立体图形是由面构成的,有长度、宽度和高度。
2. 平移变换平移变换是指将一个图形沿着一条直线进行移动,但是位置、大小和形状都不发生改变。
平移变换有两种方式:向右移动、向左移动、向上移动以及向下移动。
3. 旋转变换旋转变换是指将一个图形以一个固定点为中心进行旋转。
旋转变换有两种方式:顺时针旋转和逆时针旋转。
4. 镜像变换镜像变换是指将一个图形关于一条直线进行对称。
镜像变换有两种情况:关于x轴对称和关于y轴对称。
5. 缩放变换缩放变换是指将一个图形按照一定比例进行放大或缩小。
缩放变换有两种情况:等比例缩放和非等比例缩放。
6. 合成变换合成变换是指将多个变换组合在一起进行操作,比如先进行平移,再进行旋转。
7. 图形的性质在进行图形与变换的过程中,我们需要了解一些图形的性质,比如,几何图形的对称性,图形的面积和周长的计算,图形的相似性等。
8. 应用图形与变换在我们的日常生活中应用非常广泛。
比如在建筑设计中,进行平移变换,旋转变换可以帮助我们设计出更加合理的建筑物。
在工程制图中,我们经常需要对图形进行放大或缩小,这就是缩放变换的应用。
在电子游戏中,图形与变换也是非常重要的内容,可以帮助我们实现更加生动的游戏画面。
总的来说,图形与变换是数学中一个非常重要的知识点,它不仅可以帮助我们更好地理解几何图形的性质,还可以应用到我们的生活和工作中。
希望本篇总结对大家有所帮助。
第二章图形与变换复习教学目标(1)会利用轴对称、平移、旋转、相似变换以及它们的组合解决一些简单的图案设计、剪纸等(2)欣赏轴对称、平移、旋转、相似等变换在现实生活中的应用.重难点(1)利用图形变换的思想解决有关图形的计算问题.(2)利用简单图形和图形变换,欣赏并设计一些简单的图案设计问题.教学过程一、梳理知识形成网络1、出示课题,提问:(1)我们已学过哪几种图形变换?(2)这个课题图案中运用了哪些图形变换?(3)你能从画面上找出轴对称变换、平移变换、旋转变换、相似变换吗?2、回顾:(1)把一个图形沿着某一条直线对折,若直线两侧的部分能够互相重合,则这样的图形称之为轴对称图形,这条直线叫做这个图形的对称轴 .(2)由一个图形变为另一个图形,使这两个图形关于某条直线成轴对称,这样的图形改变叫做图形的对称变换,也叫轴对称变换,经变换所得的新图形叫做原图形的对称图形 .(3)若图形关于某一条直线对称,则连结相应两对称点的线段必被其对称轴平分 .(4)平移后的图形与原来图形的对应线段相等,对应点所连的线段相等 .(5)旋转变换不改变图形的形状,对应点到旋转的中心的距离相等,对应点与旋转中心连线所成的角度等于旋转角的角度.(7)图形的相似变换不改变图形中的每一个角的大小,图形中的每条线段都(缩小或扩大)相同的倍数 .二、双基落实巩固提高(一)轴对称1、如果一个图形沿着一条直线折叠,直线两旁的部分能够互相重合,那么这个图形叫作轴对称图形.这条直线叫作它的对称轴,图形中能够完全重合的两个点称为对称点.2、轴对称图形的性质:对称轴垂直平分连结两个对称点之间的线段.(二)平移变换由一个图形改变为另一个图形,在改变过程中,原图形上所有的点都向同一个方向运动,且运动相等的距离,这样的图形改变叫做图形的平移变换,简称平移.平移变换的性质:(1)、平移变换不改变图形的形状、大小和方向;(2)、连结对应点的线段平行且相等.(三)相似变换1、由一个图形改变为另一个图形,在改变的过程中保持形状不变(大小可以改变),这样的图形改变叫做图形的相似变换.2、图形的放大和缩小都是相似变换,大小不变时是一种特殊的相似变换.(四)旋转变换由一个图形改变为另一个图形,在改变过程中,原图形上的所有点都绕一个固定的点,按同一个方向,转动同一个角度,这样的图形改变叫做图形的旋转变换,简称旋转,这个固定的点叫做旋转中心.旋转的基本性质:(1)、旋转不改变图形的大小和形状;(2)、对应点到旋转中心的距离相等;(3)、对应点与旋转中心的连线所成的角度等于旋转的角度.一、选择题1.(2011年江苏盐都中考模拟)图所示的汽车标志图案中,能用平移变换来分析形成过程的图案是 ( )A. B. C . D.答案 D2.(2011年北京四中中考模拟19)图3,将∠BAC 沿DE 向∠BAC内折叠,使AD 与A ’D 重合,A ’E 与AE 重合,若∠A =300, 则∠1+∠2=( )A 、500B 、600C 、450D 、以上都不对 答案 B3.(2011年浙江省杭州市中考数学模拟22)如图是万花筒的一个图案,图中所有小三角形均是全等三角形,其中把菱形ABCD 以A 为中心旋转多少度后可得图中另一阴影的菱形( )A 、顺时针旋转60°B 、 顺时针旋转120°C 、逆时针旋转60°D 、 逆时针旋转120° 答案:D4. (2011年兴华公学九下第一次月考)如图,直径AB 为6的半圆,绕A 点逆时针旋转60°,此时点B 到了点B ,则图中阴影部分的面积是A .6πB .5πC .4πD .3π 答案:A5. (2011年黄冈市浠水县中考调研试题)下列图案由黑、白两种颜色的正方形组成,其中属于轴对称图形的是( )答案:B6.(2011年青岛二中)视力表对我们来说并不陌生.如图是视力表的一部分,其中开口向上的两个“E ”之间的变换是( )(第3题)标准对数视力表 0.1 4.00.12 4.1 0.154.2(第11题图)A .平移B .旋转C .对称D .位似答案:D7、(北京四中模拟)下列图形中,既是轴对称图形,又是中心对称图形的是( ) A 、角 B 、平行四边形 C 、等边三角形 D 、矩形答案:D 8、(2011浙江杭州模拟14)如图折叠直角三角形纸片的直角,使点C 落在斜边AB 上的点E 处. 已知AB=38, ∠B=30°, 则DE 的长是( ). A. 6 B. 4 C. 34 D. 23 答案:B9. (2011武汉调考模拟)下列图形中,绕着它的中心旋转60°后,能够与原图形完全重合.,则这个图形是( )A .等边三角形B .正方形C .圆D .菱形答案:C 10、(2011年浙江杭州二模)下列图形中,既是轴对称图形,又是中心对称图形的是( )A. B. C. D.答案:C11、(2011年浙江杭州七模)如图,点A ,B ,C 的坐标分别为(0,1),(0,2),(3,0)-.从下面四个点(3,3)M ,(3,3)N -,(3,0)P -,(3,1)Q -中选择一个点,以A ,B ,C 与该点为顶点的四边形是中心对称图形的个数有( ) A .1个 B .2个 C .3个D .4个答案:CB 组1.(2011 天一实验学校 二模)下列交通标志中既是中心对称图形,又是轴对称图形的是 ( )答案:A 2. (2011浙江慈吉 模拟) 如图所示网格中, 已知②号三角形是由①号三角形经旋转变化得到的, 其旋转中心是下列各点中的( )A. PB. QC. R 答案:C3.(2011年重庆江津区七校联考一模)下列美丽的图案,既是轴对称图形又是)A .1个B .2个C .3个D .4个 答案:C 4.(2011年安徽省巢湖市七中模拟)下列美丽图案,既是轴对称图形又是中心对称图形的个数是( )A .1个B .2个C .3个D .4个 答案:C5.(2011北京四中二模)下列美丽的图案,既是轴对称图形又是中心对称图形的个数是( )(A )1个 (B )2个 (C )3个 (D )4个 答案:C6.(2011浙江杭州育才初中模拟)一名模型赛车手遥控一辆赛车,先前进1m ,然后,原地逆时针方向旋转角a(0°<α<180°)。
小结与复习习题精选(二)一、填空题。
(3分×10=30分)1.如果某个图形绕着它的中心点旋转180°后能与原图形重合,那么这个图形叫做。
2.矩形和菱形都是中心对称图形,对称中心是,矩形和菱形又都是轴对称图形,共有条对称轴。
3.图形在平移、旋转变换过程中,有一个共同的特征,即图形的和不变。
4.国旗上的五角星是旋转对称图形,它的旋转中心是,它旋转的最小角度是。
5.在26个大写英文字母中,是中心对称图形的共有个。
6.在平行四边形、矩形、菱形、直角梯形、正方形、圆中既是中心对称图形又是轴对称图形的共有个。
7.①内角和与外角和相等;②对角线交点到一组对边的距离相等;③都是轴对称图形;④都是中心对称图形。
平行四边形、矩形、菱形、正方形的共同性质有。
8.如果△ABC与△DEF关于点O成中心对称,那么△ABC与△DEF的关系是。
9.如图20-52,正方形ABCD,在BC上取一点E,延长AB至F,使BF、BE,AE的延长线交CF于G,则线段AE与CF的关系一定是。
10.如图20-53,△ABC是等腰直角三角形,BC是斜边,点P是△ABC内一点,将△ABP绕点A逆时针旋转后,与△ACP'重合,如果AP=5,则PP'的长等于。
二、选择题(3分×8=24分)11.香港于1997年7月1日成为中华人民共和国的一个特别行政区,它的区徽图案(紫荆花)如图20-54所示,这个图形是()。
A.是轴对称图形B.是中心对称图形C.既是轴对称图形,也是中心对称图形D.既不是轴对称图形,也不是中心对称图形12.下列图形中既是中心对称图形又是轴对称图形的是()。
13.下列图案中,是中心对称图形的是()。
14.在下列几何图形中:①两条互相平分的线段;②两条互相垂直的直线;③两个有公共顶点的角;④两个有公共边的等腰三角形;⑤两个有一条公共边的正方形,是中心对称图形的有()。
A.1个B.2个C.3个D.4个15.下列说法中正确的是()。
图形与变换复习
【教学内容】
《义务教育课程标准实验教科书数学》六年级下册第103页内容,第104页~105页1、2、3、6题。
【教学目标】
1.通过复习使学生进一步掌握对称、平移、旋转、放大与缩小等图形变换的特征;学会运用对称、平移、旋转、放大与缩小的特征进行图形的变换。
2.在丰富的现实情境中,经历观察、操作、欣赏、分析、想象、创作等数学活动过程,进一步发展学生的空间观念。
3.通过欣赏图形变换所创造出的美,进一步感受对称、平移、旋转、放大与缩小在现实生活中的广泛应用,体会数学的文化价值,感受数学的美。
4.在活动中培养学生合作、探讨、交流、反思的意识。
【教学重点】
进一步掌握对称、平移、旋转、放大与缩小的特征。
【教学难点】
综合运用对称、平移、旋转、放大与缩小的特征进行图形的变换,进一步发展学生空间观念。
【教学过程】
一、谈话引入。
师:上节课我们一起整理复习了图形的认识与测量,这节课
继续整理和复习图形与变换的知识。
(揭示课题)
二、回忆整理,再现旧知。
1.欣赏图案:(出示课件)小精灵:同学们好,今天我给大家带来了一些漂亮的图案,让我们一起来欣赏吧。
!(显示五个图案,分别为人教版课标教材小学数学五年级下册教科书第3页的京剧脸谱、第6页的紫荆花图案、第7页的花边图案,天安门图案、第五个图案是三个模样相同但大小不同的奥运福娃,依次从小到大排成一排。
)
讨论交流:你们能用数学的眼光来分析一下,在这些漂亮的图案中,发现了哪些数学概念?(同桌同学互相交流,教师巡视,适当参与学生活动)
反馈交流:(教师根据学生回答演示动态课件)
生1:花边图案是其中一个图案连续向右平移得到的。
生2:京剧脸谱是经过轴对称变换得到的。
生3:天安门城楼的图案是一个轴对称图形。
生4:紫荆花的图案是其中一个花瓣绕中心点向逆时针方向旋转得到的。
生5:三个大小不同,模样相同的奥运福娃是按比例放大缩小后得到的。
教师根据学生回答板书:平移、轴对称、旋转、放大与缩小提问:誰能说说轴对称图形的特征?
(设计意图:通过六年的学习,学生已在不同学段学习了图
形变换的知识,所存在脑子中的也是一些零散的记忆,教师为学生提供丰富的图案素材,分别出示5幅观赏性强,并藏着不同的变换特征的图案,引导学生观察,让学生在欣赏图案的过程中对所学知识进行回顾再现,避免学生空想,不仅给学生以美的熏陶,激发学生的学习热情,同时体会图形的变换在生活中的广泛应用,对小学阶段所学的平移、轴对称、旋转、放大与缩小的特征系统地进行整理。
在此过程中,感受我国的民族文化。
)
三、综合运用,复习旧知
欣赏课本第104页板报花边图案。
师:
刚才我们欣赏的这些图案大多是设计师们设计的,瞧,这是一位同学利用图形的变换设计的板报花边,仔细观察,你们知道他利用了哪些变换的知识吗?(出示课件)
学生在小组内讨论交流,教师巡视,适当参与学生活动。
反馈交流:(教师根据学生回答演示动态课件)
生1:他利用了平移的知识,把第一个图形连续向右平移5次就得到了这一排花边。
生2:他利用了旋转的知识,首先在竖直方向,从上至下依次画好三个不同大小的等腰直角三角形,再将这一组三角形按顺时针方向依次旋转45度7次就得到了这个图案。
生3:旋转的每一组三角形是依次按比例缩小排列的。
生4:旋转的每一组三角形是轴对称图形。
生5:其中的每幅图案是大小不同的三个正方形绕中心点旋转得到的。
小结:这个板报的花边是综合运用了图形变换知识进行设计的。
其实人们在生活中利用图形的变换可以设计出许许多多漂亮的图案,让我们至身于这缤纷多彩的世界之中。
(设计意图:在上个环节中将所学图形变换的知识一一再现,回顾特征,这个环节中充分利用书上提供的板报花边图案,呈现的是图形与变换内容综合性的问题,让学生通过独立观察思考,小组合作交流图形变换的过程,并借助多媒体进行验证,发现这个图案综合运用了平移、轴对称、旋转、放大与缩小的知识,从整体上进一步掌握对称、平移、旋转、放大与缩小等图形变换的特征,再次感受到这些变换的魅力所在。
)
四、巩固提高,拓展思维
1.做一做。
要求:仔细观察,先独立思考,再在小组内互相交流想法。
2.练习二十第1题。
学生独立在书上完成,教师巡视指导,全班交流汇报。
小结:有的轴对称图形的对称轴只有一条,有的不只一条。
3.练习二十第3题。
要求:先独立想一想,如果还不能解决,在小组内可以利用
学具转一转。
(教师巡视、指导。
)
反馈:教师利用多媒体课件进行反馈
(设计意图:针对不同层次的学生提出不同的要求,让空间感较弱的学生通过学具的操作和多媒体课件的演示,知道旋转可使一个平面图形变成立体图形,切身体会到变换的趣味性和数学的好玩,让学生在玩中学,玩中悟。
)
宋以后,京师所设小学馆和武学堂中的教师称谓皆称之为“教谕”。
至元明清之县学一律循之不变。
明朝入选翰林院的进士之师称“教习”。
到清末,学堂兴起,各科教师仍沿用“教习”一称。
其实“教谕”在明清时还有学官一意,即主管县一级的教育生员。
而相应府和州掌管教育生员者则谓“教授”和“学正”。
“教授”“学正”和“教谕”的副手一律称“训导”。
于民间,特别是汉代以后,对于在“校”或“学”中传授经学者也称为“经师”。
在一些特定的讲学场合,比如书院、皇室,也称教师为“院长、西席、讲席”等。
4.练习二十第6题。
宋以后,京师所设小学馆和武学堂中的教师称谓皆称之为“教谕”。
至元明清之县学一律循之不变。
明朝入选翰林院的进士之师称“教习”。
到清末,学堂兴起,各科教师仍沿用“教习”一称。
其实“教谕”在明清时还有学官一意,即主管县一级的教育生员。
而相应府和州掌管教育生员者则谓“教授”和“学正”。
“教授”“学正”和“教谕”的副手一律称“训导”。
于民间,特别是汉代以后,对于在“校”或“学”中传授经学者也称为“经
师”。
在一些特定的讲学场合,比如书院、皇室,也称教师为“院长、西席、讲席”等。
要练说,得练听。
听是说的前提,听得准确,才有条件正确模仿,才能不断地掌握高一级水平的语言。
我在教学中,注意听说结合,训练幼儿听的能力,课堂上,我特别重视教师的语言,我对幼儿说话,注意声音清楚,高低起伏,抑扬有致,富有吸引力,这样能引起幼儿的注意。
当我发现有的幼儿不专心听别人发言时,就随时表扬那些静听的幼儿,或是让他重复别人说过的内容,抓住教育时机,要求他们专心听,用心记。
平时我还通过各种趣味活动,培养幼儿边听边记,边听边想,边听边说的能力,如听词对词,听词句说意思,听句子辩正误,听故事讲述故事,听谜语猜谜底,听智力故事,动脑筋,出主意,听儿歌上句,接儿歌下句等,这样幼儿学得生动活泼,轻松愉快,既训练了听的能力,强化了记忆,又发展了思维,为说打下了基础。
学生独立在书上完成,教师巡视指导,全班交流汇报时请学生演示是怎样画
的。
五、小小设计家。