高考数学第一轮复习:《直线与圆圆与圆的位置关系》(北师大版)
- 格式:doc
- 大小:465.50 KB
- 文档页数:9
高考数学专题复习:直线与圆、圆与圆的位置关系一、单选题1.已知圆22:2440A x y x y +---=,圆22:2220B x y x y +++-=,则两圆的公切线的条数是( ) A .1条B .2条C .3条D .4条2.已知点(,)P x y 是直线l :40kx y -+=(0k >)上的动点,过点P 作圆C :2220x y y =++的切线PA ,A 为切点,若||PA 最小为2时,圆M :220x y my +-=与圆C 外切,且与直线l 相切,则m 的值为( )A .2-B .2C .4D 23.在平面直角坐标系xOy 中,圆C 的方程为228150x y x +-+=,若直线2y kx =-上至少存在一点,使得以该点为圆心,1为半径的圆与圆C 有公共点,则k 的最大值是( ) A .23-B .13C .43D .24.已知直线10x my m -+-=被圆O :224x y +=所截得的弦长为m =( )A .1-B .1C .2D .5.已知直线():10l mx y m R +-=∈是圆22:4210C x y x y +-++=的对称轴,过点()2,A m -作圆C 的一条切线,切点为B ,则AB 等于( )A .4B .C .D .36.设a ,b 为正数,若圆224210x y x y ++-+=关于直线10ax by -+=对称,则2a bab+的最小值为( ) A .9B .8C .6D .107.已知圆221:4240C x y x y ++--=,2223311:222C x y ⎛⎫⎛⎫++-= ⎪ ⎪⎝⎭⎝⎭,则这两圆的公共弦长为( )A .2B .C .2D .18.设0r >,圆()()22213x y r -++=与圆2216x y +=的位置关系不可能是( ) A .相切B .相交C .内切或内含D .外切或相离9.已知圆C :()()22cos sin 3x y θθ-+-=交直线1y =-于A ,B 两点,则对于θ∈R ,线段AB 长度的最小值为( )A .1B C D .210.在同一平面直角坐标系下,直线ax by ab +=和圆222()()x a y b r -+-=(0ab ≠,0r >)的图象可能是( ).A .B .C .D .11.圆1C :221x y +=与圆2C :()224310x y k x y +++-=(k ∈R ,0k ≠)的位置关系为( )A .相交B .相离C .相切D .无法确定12.若直线:1l y kx =-与圆()()22:212C x y -+-=相切,则直线l 与圆()22:23D x y -+=的位置关系是( ) A .相交 B .相切 C .相离 D .不确定二、填空题13.圆22230x y y ++-=被直线0x y k +-=分成两段圆弧,且较短弧长与较长弧长之比为1:3,则k =________.14.过原点且倾斜角为60︒的直线与圆2240x y y +-=相交,则直线被圆截得的弦长为_____.15.过点()2,0与圆22 A: 230x y x +--+=相切的直线方程为__________.16.若直线mx +2ny -4=0(m ,n ∈R )始终平分圆22420x y x y +--=的周长,则mn 的取值范围是________. 三、解答题17.已知以点()1,1A 为圆心的圆与直线1:220l x y ++=相切,过点()2,0B 的动直线l 与圆A 相交于M 、N 两点. (1)求圆A 的方程;(2)当4MN =时,求直线l 的方程.18.已知圆C :222430x y x y ++-+=.(1)若直线l 过点(2,0)-且被圆C 截得的弦长为2,求直线l 的方程;(2)从圆C 外一点P 向圆C 引一条切线,切点为M ,O 为坐标原点,且PM PO =,求PM 的最小值.19.直线l :y x =与圆C :()()221316x y -+-=相交于A 、B 两点.(1)求平行于l 且与圆C 相切的直线方程; (2)求ABC 面积.20.已知圆C 过点()2,0R 、()4,2S -,且圆心C 在直线280x y --=上. (1)求圆C 的方程;(2)若点P 在圆C 上,O 为原点,()(),00A t t >,求tan POA ∠的最大值.21.已知圆C 的方程为226440x y x y ++-+=.(1)若直线:10l x y -+=与圆C 相交于M 、N 两点,求||MN 的长; (2)已知点()1,5P ,点Q 为圆C 上的动点,求||PQ 的最大值和最小值.22.已知直线:20l mx y m -+-=,C 的方程为22240x y x y +--=. (1)求证:l 与C 相交;(2)若l 与C 的交点为A 、B 两点,求OAB 的面积最大值.(O 为坐标原点)参考答案1.B 【分析】分别求得两圆的圆心坐标和半径,结合两圆的位置关系的判定方法,求得两圆的位置关系,即可求解. 【详解】由圆22:2440A x y x y +---=可化为22(1)(2)9x y -+-=, 可得圆心坐标为(1,2)A ,半径为3R =,由圆22:2220B x y x y +++-=可化为22(1)(1)4x y +++=, 可得圆心坐标为(1,1)B --,半径为2r,则圆心距为d AB == 又由5,1R r R r +=-=,所以R r AB R r -<<+, 可得圆A 与圆B 相交,所以两圆公共切线的条数为2条. 故选:B. 2.B 【分析】根据题意当CP 与l 垂直时,||PA 的值最小,进而可得2k =,再根据圆M 与圆C 外切可得0m >,根据圆M 与直线l 相切,利用圆心到直线的距离等于圆的半径,即可求出. m 的值.【详解】圆C 的圆心为(0,1)C -,半径为1,当CP 与l 垂直时,||PA 的值最小,此时点C 到直线l 的距离为d =,由勾股定理得22212+=,又0k >,解得2k =, 圆M 的圆心为(0,)2mM ,半径为||2m , ∵圆M 与圆C 外切,∴||1|(1)|22m m+=--,∴0m >,∵圆M 与直线l 相切,∴|4|2m m -+=2m =, 故选:B 3.C 【分析】根据直线与圆的位置关系和点到直线的距离公式建立不等式,解之可得选项. 【详解】圆C 的标准方程为22(4)1x y -+=,半径1r =,当圆心(4,0)到直线2y kx =-的距离1d r ≤+时,满足题意,圆心在直线上的射影点即满足题意,故有2d =≤,解得403k ≤≤,即k 的最大值为43, 故选:C. 4.A 【分析】由于直线过定点(1,1)--P,而||OP =OP 垂直,从而由斜率的关系列方程可求出m 【详解】∵直线10x my m -+-=过定点(1,1)--P ,连接OP,则||OP ∴直线10x my m -+-=与OP 垂直,11m=-, ∴1m =-, 故选:A. 5.A 【分析】根据直线():10l mx y m R +-=∈是圆22:4210C x y x y +-++=的对称轴,则圆心在直线l 上,求得m ,由过点()2,A m -作圆C 的一条切线,切点为B ,利用勾股定理即可求得AB . 【详解】由方程224210x y x y +-++=得()()22214x y -++=,圆心为()2,1C -,因为直线l 是圆C 的对称轴,所以圆心在直线l 上,所以1m =,所以A 点坐标为()2,1-,则AC =4AB =.故选:A . 6.A 【分析】求出圆的圆心坐标,得到,a b 的关系,然后利用基本不等式求解不等式的最值即可. 【详解】解:圆224210x y x y ++-+=,即()()22214x y ++-=,所以圆心为(2,1)-, 所以210a b --+=,即21a b +=,因为0a >、0b >,则2222(2)(2)2252229a b a b a b a b ab a ab ab abab+++++⋅===,当且仅当13b a ==时,取等号. 故选:A . 7.C 【分析】先求出两圆的公共弦所在直线的方程,用垂径定理求弦长. 【详解】由题意知221:4240C x y x y ++--=,222:3310C x y x y ++--=,将两圆的方程相减,得30x y +-=,所以两圆的公共弦所在直线的方程为30x y +-=.又因为圆1C 的圆心为(2,1)-,半径3r =,所以圆1C 的圆心到直线30x y +-=的距离d ==所以这两圆的公共弦的弦长为222223222d .故选:C. 8.D 【分析】计算出两圆圆心距d ,并与两圆半径和作大小比较,由此可得出结论. 【详解】两圆的圆心距d 4r +,4r +,所以两圆不可能外切或相离.9.C 【分析】由题意圆C 的圆心C 在单位圆上,求出点C到直线1y =-的距离的最大值,根据圆的弦长AB =. 【详解】解:由圆C :()()22cos sin 3x y θθ-+-=,知该圆的半径r =()cos ,sin C θθ在单位圆221x y +=上,∵原点O到直线1y =-12=,则点C 到直线1y =-的距离d 的最大值为13122+=,由AB =d 取最大值32时,线段AB故选:C .10.D 【分析】根据直线的位置及圆心所在的象限判断参数a 、b 的符号,进而确定正确选项. 【详解】直线ax by ab +=在x ,y 轴上的截距分别为b 和a ,圆心横坐标为a ,纵坐标为b . A :由直线位置可得0b <,而由圆的位置可得0b >,不正确. B :由直线位置可得0a >,而由圆的位置可得0a <,不正确. C :由直线位置可得0a >,而由圆的位置可得0a <,不正确.D :由直线位置可得0a >,0b <,而由圆的位置可得0a >,0b <,正确.11.A 【分析】求出两圆的圆心和半径,再求出两圆的圆心距,与两圆的半径和差比较可得结论 【详解】解:圆1C :221x y +=的圆心1(0,0)C ,半径为11r =,由()224310x y k x y +++-=,得222325(2)()124x k y k k +++=+,所以圆2C 的圆心为23(2,)2C k k --,半径2r所以12121C C r r +=1>0k ≠)1,所以1221C C r r >-所以两圆相交. 故选:A 12.A 【分析】由直线l 与圆C 相切可构造方程求得k;分别在2k =2k =过比较圆心到直线距离与圆的半径之间大小关系可得位置关系. 【详解】由圆C 方程知其圆心()2,1C直线l 与圆C相切,=2k =由圆D 方程知其圆心()2,0D,半径r =∴圆心D 到直线l距离d =当2k =(()222233021d r+-=-=<+,即d r <,此时圆D 与直线l 相交;当2k =(()222233021d r --=-=<+,即d r <,此时圆D 与直线l 相交; 综上所述:圆D 与直线l 相交. 故选:A. 13.1或3- 【分析】由题意可知较短弧所对圆心角是90︒,此时圆心到直线0x y k +-==,再由点到直线的距离公式求解即可 【详解】由题意知,圆的标准方程为()2214x y ++=,较短弧所对圆心角是90︒,所以圆心()0,1-到直线0x y k +-==1k =或3k =-.故答案为:1或3- 14.【分析】由已知求出直线方程,将圆方程化为标准方程求出圆心和半径,然后求出圆心到直线的距离,再利用弦长、弦心距和半径的关系求出弦长 【详解】解:由题意得直线方程为tan60y x =︒0y -=, 由2240x y y +-=,得22(2)4x y +-=,则圆心为(0,2),半径为2, 所以圆心(0,2)0y -=的距离为1d ==,所以所求弦长为=故答案为:15.x =2或)2y x =-. 【分析】 分斜率不存在和斜率存在两种情况讨论:斜率不存在时,直线l :x =2与圆相切;斜率存在时,设其为k ,则直线l :()2y k x =-,利用圆心到直线的距离等于半径,列方程求出k ,即可求出直线方程.【详解】圆22 A: 230x y x +--+=化为标准方程:()(22 11x y -+=,所以当过点()2,0的直线斜率不存在时,直线l :x =2与圆相切;过点()2,0的直线斜率存在时,设其为k ,则直线l :()2y k x =-,因为l 与圆A 相切,所以圆心到直线的距离等于半径,1=,解得:k =,此时l:)2y x =-. 故答案为:x =2或)2y x =-. 16.(,1]-∞【分析】 由题意得直线过圆心,进而得到2240m n +-=,所以mn 可转化为()2n n -,结合二次函数的值域即可求解.【详解】因为直线mx +2ny -4=0(m ,n ∈R )始终平分圆22420x y x y +--=的周长,所以直线经过圆心,又因为圆心为()2,1,则2240m n +-=,即2m n +=,因此2m n =-,所以()()2222111mn n n n n n =-=-+=--+≤,所以mn 的取值范围是(,1]-∞,故答案为:(,1]-∞.17.(1)()()22115x y -+-=;(2)2x =或0y =.【分析】(1)利用圆心到直线的距离求半径,即可得圆的方程;(2)首先考查直线斜率不存在的直线,判断是否满足4MN =,当直线的斜率存在时,设直线20kx y k --=,利用弦长公式求得斜率k ,即可得直线方程.【详解】解:(1)由题意可知,点A 到直线1l 的距离d =因为圆A 与直线1l 相切,则圆A 的半径r d ==所以,圆A 的标准方程为()()22115x y -+-=(2)①当直线l 的斜率不存在时因为直线l 的方程为2x =.所以圆心A 到直线l 的距离11d =.由(1)知圆的半径为r 4MN ==. 故2x =是符合题意的一条直线.②当直线l 的斜率存在时设直线l 的斜率为k ,则直线20kx y k --=圆心A 到直线l 的距离1d =因为22212MN d r ⎛⎫+= ⎪⎝⎭所以245+=,即()2211k k +=+,解得0k = 因此,直线l 的方程为0y =综上所述,直线l 的方程为2x =或0y =.18.(1)2x =-或3460x y -+=;(2. 【分析】(1)根据题意,由圆的方程分析圆的圆心与半径,分直线的斜率存在与不存在两种情况讨论,求出直线的方程,综合即可得答案;(2)根据题意,连接MC ,PC ,分析可得PMC △为直角三角形,即222||||||PM PC MC =-,设(,)P x y ,分析可得||MC ||||PM PO =,分析可得2222(1)(2)2x y x y ++--=+,变形可得P 的轨迹方程,据此结合直线与圆的方程分析可得答案.【详解】解:(1)222430x y x y ++-+=可化为22(1)(2)2x y ++-=.当直线l 的斜率不存在时,其方程为2x =-,易求得直线l 与圆C 的交点为(2,1)A -,()23B -,,2AB =,符合题意;当直线l 的斜率存在时,设其方程为(2)y k x =+,即20kx y k -+=,则圆心C 到直线l 的距离1d ,解得34k =. 所以直线l 的方程为3460x y -+=,综上,直线l 的方程为2x =-或3460x y -+=.(2)如图,PM 为圆C 的切线,连接MC ,PC ,则CM PM ⊥.所以PMC △为直角三角形.所以222PM PC MC =-.设点P 为(,)x y ,由(1)知点C 为(1,2)-,MC =PM PO =,P 的轨迹方程为2430x y -+=. 求PM 的最小值,即求PO 的最小值,也即求原点O 到直线2430x y -+=的距离,代入点到直线的距离公式可求得PM 的最小值d =19.(1)20x y -++或20x y -+-=;(2)【分析】(1)设切线方程为y x b =+,由切线定义求得b ,进而求得结果;(2)作CD AB ⊥,由点到直线距离公式求得CD ,再由弦长公式求得AB ,进而求得面积.【详解】(1)设切线方程为y x b =+,则圆心(1,3)C 到切线的距离4d r ==,解得2b =±所以切线方程为20x y -++或20x y -+-=;(2)作CD AB ⊥,垂足为D ,CD ==,∴AB ==∴1122ABC S AB CD =⋅=⨯△20.(1)()2244x y -+=;(2 【分析】 (1)根据垂径定理的逆定理可得弦RS 的垂直平分线过原点,又圆心C 在直线280x y --=上,联立直线方程即可得解;(2)根据题意知当OP 与圆相切时,tan POA ∠值最大,计算即可得解.【详解】(1)由20142RS k --==--,线段RS 中点坐标为(3,1)-, 所以线段RS 的垂直平分线为4y x =-,即40x y --=,由28040x y x y --=⎧⎨--=⎩可得圆C 的圆心为(4,0),易得半径2r ,所以圆C 的方程为22(4)4x y -+=;(2)由圆心在x 轴正半轴上,由()(),00A t t >,所以OA 在正半轴上,由090POA <∠<,故当OP 和圆相切时,即P 为切点时POA ∠最大,此时tan POA ∠最大,tanPOA ∠=. 21.(1)2;(2)最大值为8,最小值为3.【分析】(1)先将圆的方程化为标准方程,得出圆心坐标和半径,求出圆心到直线l 的距离,由勾股定理可得答案.(2)先求出PC 的长度,由圆的性质可得PC r PQ PC r -≤≤+,从而得到答案.【详解】解:(1)圆C 的一般式方程为()()22329x y ++-=,即圆心()C 3,2-,半径3r =,所以圆心C 到直线l :10x y -+=的距离d ==所以弦长 2MN ==;(2)5PC ,又3r =,所以max 8PQ PC r =+=,min 2PQ PC r =-=,即PQ 的最大值为8,最小值为3.22.(1)证明见解析;(2)5【分析】 (1)由题知直线l 过定点1,2,且为C 的圆心,故l 与C 相交;(2)由题知2AB r ==l 与直线OC 垂直时,O 到直线l 的距离最大,最大值为OC =.【详解】解:(1)由题知直线():21l y m x -=-,C 的标准方程为()()22125x y -+-=, 所以直线l 过定点1,2,为圆的圆心,所以直线过C 的圆心,故l 与C 相交;(2)由(1)知直线:20l mx y m -+-=过圆C 的圆心,C 的半径为r =所以2AB r ==所以当O 到直线l 的距离最大时,OAB 的面积取最大值,故当直线l 与直线OC 垂直时,O 到直线l 的距离最大,最大值为OC =所以OAB 的面积最大值为11522AB OC =。
第四节 直线与圆、圆与圆的位置关系授课提示:对应学生用书第359页[A 组 基础保分练]1.(2021·某某某某模拟)直线ax -by =0与圆x 2+y 2-ax +by =0的位置关系是( ) A .相交 B .相切 C .相离 D .不能确定解析:将圆的方程化为标准方程得⎝⎛⎭⎫x -a 22+⎝⎛⎭⎫y +b 22=a 2+b 24,所以圆心坐标为⎝⎛⎭⎫a 2,-b 2,半径r =a 2+b 22.因为圆心到直线ax -by =0的距离d =⎪⎪⎪⎪a 22+b 22a 2+b 2=a 2+b 22=r ,所以直线与圆相切. 答案:B 2.(2021·某某质检)圆x 2+y 2=4与圆x 2+y 2-4x +4y -12=0的公共弦所在直线和两坐标轴所围成图形的面积为( ) A .1 B .2 C .4 D .8 解析:由(x 2+y 2-4)-(x 2+y 2-4x +4y -12)=0得公共弦所在直线的方程为x -y +2=0,它与两坐标轴分别交于(-2,0),(0,2),所以直线和两坐标轴所围成图形的面积为12×2×2=2. 答案:B 3.(2021·某某十四校二联)已知直线x -2y +a =0与圆O :x 2+y 2=2相交于A ,B 两点(O 为坐标原点),且△AOB 为等腰直角三角形,则实数a 的值为( ) A .6或- 6 B .5或- 5 C . 6 D . 5 解析:因为直线x -2y +a =0与圆O :x 2+y 2=2相交于A ,B 两点(O 为坐标原点),且△AOB为等腰直角三角形,所以O 到直线AB 的距离为1,由点到直线的距离公式可得|a |12+(-2)2=1,所以a =±5. 答案:B 4.(2021·某某市第一次统考)直线l :y =kx +1与圆O :x 2+y 2=1相交于A ,B 两点,则“k =1”是“|AB |=2”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分也不必要条件解析:依题意,注意到|AB |=2=|OA |2+|OB |2等价于圆心O 到直线l 的距离等于22,即有1k 2+1=22,k =±1.因此,“k =1”是“|AB |=2”的充分不必要条件. 答案:A 5.(2021·某某一中模考)圆C 1:(x +1)2+(y -2)2=4与圆C 2:(x -3)2+(y -2)2=4的公切线的条数是( ) A .1 B .2 C .3 D .4解析:圆C 1:(x +1)2+(y -2)2=4的圆心为(-1,2),半径为2,圆C 2:(x -3)2+(y -2)2=4的圆心为(3,2),半径为2,两圆的圆心距|C 1C 2|=(-1-3)2+(2-2)2=4=2+2,即两圆的圆心距等于两圆的半径之和,故两圆相外切,故公切线的条数为3. 答案:C 6.(2021·某某调研)已知直线l :x +y -5=0与圆C :(x -2)2+(y -1)2=r 2(r >0)相交所得的弦长为22,则圆C 的半径r =( ) A . 2 B .2 C .2 2 D .4 解析:法一:依题意,得圆C 的圆心坐标为(2,1),圆心到直线l 的距离d =|2+1-5|1+1=2,因为弦长为22,所以2r 2-d 2=22,所以r =2.法二:联立得⎩⎪⎨⎪⎧x +y -5=0,(x -2)2+(y -1)2=r 2,整理得2x 2-12x +20-r 2=0,设直线l 与圆C 的两交点分别为A (x 1,y 1),B (x 2,y 2),所以x 1+x 2=6,x 1x 2=20-r 22,所以|AB |=1+k 2|x 1-x 2|=2(x 1+x 2)2-4x 1x 2=22,所以r =2. 答案:B 7.(2021·某某天河模拟)已知圆C 的方程为x 2-2x +y 2=0,直线l :kx -y +2-2k =0与圆C 交于A ,B 两点,则当△ABC 面积最大时,直线l 的斜率k =_________.解析:由x 2-2x +y 2=0,得(x -1)2+y 2=1,则圆的半径r =1,圆心C (1,0), 直线l :kx -y +2-2k =0与圆C 交于A ,B 两点, 当CA 与CB 垂直时,△ABC 面积最大,此时△ABC 为等腰直角三角形,圆心C 到直线AB 的距离d =22, 则有|2-k |1+k 2=22,解得k =1或7. 答案:1或7 8.(2021·某某六校联考)已知直线y =ax 与圆C :x 2+y 2-2ax -2y +2=0相交于A ,B 两点,且△ABC 为等边三角形,则圆C 的面积为_________.解析:圆C :x 2+y 2-2ax -2y +2=0可化为(x -a )2+(y -1)2=a 2-1,因为直线y =ax 和圆C 相交,△ABC 为等边三角形,所以圆心C 到直线ax -y =0的距离为32·a 2-1,即d =|a 2-1|a 2+1=3(a 2-1)2,解得a 2=7,所以圆C 的面积为6π.答案:6π9.已知圆M 过C (1,-1),D (-1,1)两点,且圆心M 在直线x +y -2=0上. (1)求圆M 的方程;(2)设P 是直线3x +4y +8=0上的动点,P A ,PB 是圆M 的两条切线,A ,B 为切点,求四边形P AMB 面积的最小值.解析:(1)设圆M 的方程为(x -a )2+(y -b )2=r 2(r >0),根据题意得⎩⎪⎨⎪⎧(1-a )2+(-1-b )2=r 2,(-1-a )2+(1-b )2=r 2,a +b -2=0,解得a =b =1,r =2,故所求圆M 的方程为(x -1)2+(y -1)2=4.(2)由题意知,四边形P AMB 的面积为S =S △P AM +S △PBM =12(|AM |·|P A |+|BM |·|PB |).又|AM |=|BM |=2,|P A |=|PB |,所以S =2|P A |,而|P A |2=|PM |2-|AM |2=|PM |2-4, 所以S =2|PM |2-4.因此要求S 的最小值,只需求|PM |的最小值,即在直线3x +4y +8=0上找一点P ,使得|PM |的值最小,所以|PM |min =3,所以四边形P AMB 面积的最小值为2|PM |2-4=25.10.已知圆O :x 2+y 2=r 2(r >0)与直线3x -4y +15=0相切. (1)若直线l :y =-2x +5与圆O 交于M ,N 两点,求|MN |; (2)设圆O 与x 轴的负半轴的交点为A ,过点A 作两条斜率分别为k 1,k 2的直线交圆O 于B ,C 两点,且k 1k 2=-3,试证明直线BC 恒过一点,并求出该点的坐标.解析:(1)由题意知,圆心O 到直线3x -4y +15=0的距离d =159+16=3=r ,所以圆O :x 2+y 2=9.又圆心O 到直线l :y =-2x +5的距离d 1=54+1=5,所以|MN |=29-d 21=4.(2)证明:易知A (-3,0),设B (x 1,y 1),C (x 2,y 2),则直线AB :y =k 1(x +3),由⎩⎪⎨⎪⎧y =k 1(x +3),x 2+y 2=9,得(k 21+1)x 2+6k 21x +9k 21-9=0, 所以-3x 1=9k 21-9k 21+1,即x 1=-3k 21+3k 21+1,所以y 1=k 1(x 1+3)=6k 1k 21+1,所以B ⎝ ⎛⎭⎪⎫3-3k 21k 21+1,6k 1k 21+1. 同理C ⎝ ⎛⎭⎪⎫3-3k 22k 22+1,6k 2k 22+1. 由k 1k 2=-3得k 2=-3k 1,将-3k 1代替k 2,可得C ⎝ ⎛⎭⎪⎫3k 21-27k 21+9,-18k 1k 21+9. 当3-3k 21k 21+1≠3k 21-27k 21+9,即k 1≠±3时,k BC =6k 1k 21+1+18k 1k 21+93-3k 21k 21+1-3k 21-27k 21+9=4k 13-k 21,k 1≠±3.从而直线BC :y -6k 1k 21+1=4k 13-k 21⎝⎛⎭⎪⎫x -3-3k 21k 21+1. 即y =4k 13-k 21⎣⎢⎡⎦⎥⎤x -3-3k 21k 21+1+9-3k 212(k 21+1), 化简得y =4k 13-k 21⎝⎛⎭⎫x +32. 所以直线BC 恒过一点,该点为⎝⎛⎭⎫-32,0. 当k 1=±3时,k 2=∓3,此时x B =-32=x C ,所以直线BC 的方程为x =-32,过点⎝⎛⎭⎫-32,0. 综上,直线BC 恒过定点⎝⎛⎭⎫-32,0. [B 组 能力提升练]1.(2021·某某马某某模拟)在平面直角坐标系xOy 中,若圆C :(x -3)2+(y -a )2=4上存在两点A ,B 满足:∠AOB =60°,则实数a 的最大值是( ) A .5 B .3 C .7 D .2 3 解析:根据题意,圆C 的圆心为(3,a ),在直线x =3上, 分析可得:当圆心距离x 轴的距离越远,∠AOB 越小,如图,当a >0时,圆心C 在x 轴上方,若OA ,OB 为圆的切线且∠AOB =60°,此时a 取得最大值,此时∠AOC =30°,有|OC |=2|AC |=4,即(3-0)2+(a -0)2=16,解得a =7,故实数a 的最大值是7. 答案:C 2.(2021·某某某某模拟)在平面直角坐标系xOy 中,圆C 经过点(0,1),(0,3),且与x 轴正半轴相切,若圆C 上存在点M ,使得直线OM 与直线y =kx (k >0)关于y 轴对称,则k 的最小值为( )A .233B . 3C .2 3D .4 3解析:如图,因为圆C 经过点(0,1),(0,3),且与x 轴正半轴相切, 所以圆心的纵坐标为2,半径为2,则圆心的横坐标为22-12=3,所以圆心坐标为(3,2),设过原点与圆相切的直线方程为y =k 1x ,由圆心到直线的距离等于半径,得|3k 1-2|k 21+1=2,解得k 1=0(舍去)或k 1=-43.所以若圆C 上存在点M ,使得直线OM 与直线y =kx (k >0)关于y 轴对称,则k 的最小值为43.答案:D 3.(2020·高考全国卷Ⅰ)已知⊙M :x 2+y 2-2x -2y -2=0,直线l :2x +y +2=0,P 为l 上的动点.过点P 作⊙M 的切线P A ,PB ,切点为A ,B ,当|PM |·|AB |最小时,直线AB 的方程为( )A .2x -y -1=0B .2x +y -1=0C .2x -y +1=0D .2x +y +1=0 解析:⊙M :(x -1)2+(y -1)2=4, 则圆心M (1,1),⊙M 的半径为2. 如图,由题意可知PM ⊥AB ,∴S 四边形P AMB =12|PM |·|AB |=|P A |·|AM |=2|P A |,∴|PM |·|AB |=4|P A |=4|PM |2-4.当|PM |·|AB |最小时,|PM |最小,此时PM ⊥l .故直线PM 的方程为y -1=12(x -1),即x -2y +1=0.由⎩⎪⎨⎪⎧x -2y +1=0,2x +y +2=0,得⎩⎪⎨⎪⎧x =-1,y =0,∴P (-1,0). 又∵P A 与⊙M 相切,∴直线P A 的方程为x =-1(∵在⊙M 中,-1≤x ≤1), ∴P A ⊥x 轴,P A ⊥MA ,∴A (-1,1). 又直线AB 与l 平行,设直线AB 的方程为2x +y +m =0,将A (-1,1)的坐标代入2x +y +m =0,得m =1. ∴直线AB 的方程为2x +y +1=0. 答案:D4.已知圆的方程为x 2+(y -1)2=4,圆心为C ,若过点P ⎝⎛⎭⎫1,12的直线l 与此圆交于A ,B 两点,则当∠ACB 最小时,直线l 的方程为( )A .4x -2y -3=0B .x +2y -2=0C .4x +2y -3=0D .x -2y +2=0解析:圆心坐标为(0,1),当弦长|AB |最小时,∠ACB 最小,此时直线AB 与PC 垂直,k l =-11-120-1=2,所以直线l 的方程为y -12=2(x -1),即4x -2y -3=0.答案:A5.已知直线l :x +ay -1=0(a ∈R )是圆C :x 2+y 2-4x -2y +1=0的对称轴.过点A (-4,a )作圆C 的一条切线,切点为B ,则|AB |=_________.解析:由于直线x +ay -1=0是圆C :x 2+y 2-4x -2y +1=0的对称轴,所以圆心C (2,1)在直线x +ay -1=0上,所以2+a -1=0,所以a =-1,所以A (-4,-1).所以|AC |2=36+4=40.又r =2,所以|AB |2=40-4=36.所以|AB |=6. 答案:6 6.(2021·某某启东中学检测)已知圆C 1:(x -1)2+(y +1)2=1,圆C 2:(x -4)2+(y -5)2=9,点M ,N 分别是圆C 1,圆C 2上的动点,P 为x 轴上的动点,则|PN |-|PM |的最大值是_________.解析:圆C 1:(x -1)2+(y +1)2=1的圆心为C 1(1,-1),半径为1,圆C 2:(x -4)2+(y -5)2=9的圆心为C 2(4,5),半径为3.要使|PN |-|PM |最大,需|PN |最大,且|PM |最小,|PN |的最大值为|PC 2|+3,|PM |的最小值为|PC 1|-1,故|PN |-|PM |的最大值是(|PC 2|+3)-(|PC 1|-1)=|PC 2|-|PC 1|+4,设C 2(4,5)关于x 轴的对称点为C ′2(4,-5),|PC 2|-|PC 1|=|PC ′2|-|PC 1|≤|C 1C ′2|=(4-1)2+(-5+1)2=5,故|PC 2|-|PC 1|+4的最大值为5+4=9,即|PN |-|PM |的最大值是9. 答案:97.已知圆O :x 2+y 2=9及点C (2,1).(1)若线段OC 的垂直平分线交圆O 于A ,B 两点,试判断四边形OACB 的形状,并给出证明;(2)过点C 的直线l 与圆O 交于P ,Q 两点,当△OPQ 的面积最大时,求直线l 的方程. 解析:(1)四边形OACB 为菱形,证明如下:易得OC 的中点为⎝⎛⎭⎫1,12,设A (x 1,y 1),B (x 2,y 2),易得OC 的垂直平分线的方程为y =-2x +52,代入x 2+y 2=9,得5x 2-10x -114=0,∴x 1+x 22=1,y 1+y 22=-2×1+52=12,∴AB 的中点为⎝⎛⎭⎫1,12,则四边形OACB 为平行四边形, 又OC ⊥AB ,∴四边形OACB 为菱形.(2)当直线l 的斜率不存在时,l 的方程为x =2,则P ,Q 的坐标为(2,5),(2,-5),∴S △OPQ =12×2×25=25.当直线l 的斜率存在时,设l 的方程为y -1=k (x -2)⎝⎛⎭⎫k ≠12, 即kx -y +1-2k =0⎝⎛⎭⎫k ≠12, 则圆心O 到直线l 的距离d =|1-2k |k 2+1.由平面几何知识得|PQ |=29-d 2, ∴S △OPQ =12×|PQ |×d =12×29-d 2×d =(9-d 2)d 2≤⎝ ⎛⎭⎪⎫9-d 2+d 222=92.当且仅当9-d 2=d 2,即d 2=92时,S △OPQ 取得最大值为92.∵25<92,∴S △OPQ 的最大值为92,此时,令4k 2-4k +1k 2+1=92,解得k =-7或k =-1.故直线l 的方程为x +y -3=0或7x +y -15=0.[C 组 创新应用练]1.已知直线l :x +y -1=0截圆Ω:x 2+y 2=r 2(r >0)所得的弦长为14,点M ,N 在圆Ω上,且直线l ′:(1+2m )x +(m -1)y -3m =0过定点P ,若PM ⊥PN ,则|MN |的取值X 围为( )A .[2-2,2+ 3 ]B .[2-2,2+ 2 ]C .[6-2,6+ 3 ]D .[6-2,6+ 2 ]解析:由题意,2r 2-12=14,解得r =2,因为直线l ′:(1+2m )x +(m -1)y -3m =0过定点P ,故P (1,1),设MN 的中点为Q (x ,y ),则OM 2=OQ 2+MQ 2=OQ 2+PQ 2,即4=x 2+y 2+(x -1)2+(y -1)2,化简可得⎝⎛⎭⎫x -122+⎝⎛⎭⎫y -122=32,所以点Q 的轨迹是以⎝⎛⎭⎫12,12为圆心,62为半径的圆,所以|PQ |的取值X 围为⎣⎢⎡⎦⎥⎤6-22,6+22,|MN |的取值X 围为[6-2,6+2].答案:D2.已知从圆C :(x +1)2+(y -2)2=2外一点P (x 1,y 1)向该圆引一条切线,切点为M ,且有|PM |=|PO |(O 为坐标原点),则当|PM |取得最小值时点P 的坐标为_________. 解析:如图所示,圆C 的圆心为C (-1,2),半径r =2,因为|PM |=|PO |,所以|PO |2+r 2=|PC |2,所以x 21+y 21+2=(x 1+1)2+(y 1-2)2,即2x 1-4y 1+3=0.要使|PM |最小,只要|PO |最小即可.当直线PO 垂直于直线2x -4y +3=0,即直线PO 的方程为2x +y =0时,|PM |最小,此时点P 即为两直线的交点,由⎩⎪⎨⎪⎧2x -4y +3=0,2x +y =0,得⎩⎨⎧x =-310,y =35,故当|PM |取得最小值时,点P 的坐标为⎝⎛⎭⎫-310,35.答案:⎝⎛⎭⎫-310,35。
2008高考数学一轮复习 直线和圆的位置关系【知识概要】1、直线和圆位置关系的判定方法一是方程的观点,即把圆的方程和直线的方程联立成方程组,利用判别式Δ来讨论位置关系.①Δ>0,直线和圆相交.②Δ=0,直线和圆相切.③Δ<0,直线和圆相离.方法二是几何的观点,即把圆心到直线的距离d 和半径R 的大小加以比较.①d <R ,直线和圆相交.②d =R ,直线和圆相切.③d >R ,直线和圆相离.2、直线和圆相切,这类问题主要是求圆的切线方程.求圆的切线方程主要可分为已知斜率k 或已知直线上一点两种情况,而已知直线上一点又可分为已知圆上一点和圆外一点两种情况.3、直线和圆相交,这类问题主要是求弦长以及弦的中点问题.【基础训练】1、设m >0,则直线2(x +y )+1+m =0与圆x 2+y 2=m 的位置关系为( )A.相切B.相交C.相切或相离D.相交或相切 解析:圆心到直线的距离为d =21m +,圆半径为m . ∵d -r =21m +-m =21(m -2m +1)=21(m -1)2≥0, ∴直线与圆的位置关系是相切或相离. 选C2、圆x 2+y 2-4x +4y +6=0截直线x -y -5=0所得的弦长等于( ) A.6 B.225 C.1 D.5 解析:圆心到直线的距离为22,半径为2,弦长为222)22()2(-=6.选A 3、圆x 2+y 2-4x =0在点P (1,3)处的切线方程为( )A x +3y -2=0B x +3y -4=0C x -3y +4=0D x -3y +2=0解法一:x 2+y 2-4x =0y =kx -k +3⇒x 2-4x +(kx -k +3)2=0.该二次方程应有两相等实根,即Δ=0,解得k =33. ∴y -3=33(x -1),即x -3y +2=0. 解法二:∵点(1,3)在圆x 2+y 2-4x =0上,∴点P 为切点,从而圆心与P 的连线应与切线垂直.又∵圆心为(2,0),∴1230--·k =-1.解得k =33,∴切线方程为x -3y +2=0.选D 4、由动点P 向圆122=+y x 引两条切线PB PA ,,切点分别为060,,=∠APB B A ,则动点P 的轨迹方程是 解析:由030,,,=∠∴∠⊥=APO AOB PO PA OA PB PA 平分 在230sin ,0==∆OAPO PAO Rt 中,设),(y x P ,则有422=+y x5、若直线y =x +k 与曲线x =21y -恰有一个公共点,则k 的取值范围是___________.解析:利用数形结合. 答案:-1<k ≤1或k =-2【典型例题】例1、 已知圆x 2+y 2+x -6y +m =0和直线x +2y -3=0交于P 、Q 两点,且OP ⊥OQ (O 为坐标原点),求该圆的圆心坐标及半径.剖析:由于OP ⊥OQ ,所以k OP ·k OQ =-1,问题可解.解:将x =3-2y 代入方程x 2+y 2+x -6y +m =0,得5y 2-20y +12+m =0.设P (x 1,y 1)、Q (x 2,y 2),则y 1、y 2满足条件y 1+y 2=4,y 1y 2=512m +. ∵OP ⊥OQ ,∴x 1x 2+y 1y 2=0.而x 1=3-2y 1,x 2=3-2y 2,∴x 1x 2=9-6(y 1+y 2)+4y 1y 2.∴m =3,此时Δ>0,圆心坐标为(-21,3),半径r =25. 评述:在解答中,我们采用了对直线与圆的交点“设而不求”的解法技巧,但必须注意这样的交点是否存在,这可由判别式大于零帮助考虑.例2、自点A (-3,3)发出的光线l 射到x 轴上,被x 轴反射,其反射光线所在的直线与圆x 2+y 2-4x -4y +7=0相切,求光线l 所在直线的方程.解:圆(x -2)2+(y -2)2=1关于x 轴的对称方程是(x -2)2+(y +2)2=1. 设l 方程为y -3=k (x +3),由于对称圆心(2,-2)到l 距离为圆的半径1,从而可得k 1=-43,k 2=-34.故所求l 的方程是3x +4y -3=0或4x +3y +3=0. 例3、已知圆C :(x -1)2+(y -2)2=25,直线l :(2m +1)x +(m +1)y -7m -4=0 (m ∈R ).(1)证明:不论m 取什么实数,直线l 与圆恒交于两点;(2)求直线被圆C 截得的弦长最小时l 的方程.剖析:直线过定点,而该定点在圆内,此题便可解得.(1)证明:l 的方程(x +y -4)+m (2x +y -7)=0.2x +y -7=0, x =3, x +y -4=0, y =1,即l 恒过定点A (3,1).∵圆心C (1,2),|AC |=5<5(半径),∴点A 在圆C 内,从而直线l 恒与圆C 相交于两点.(2)解:弦长最小时,l ⊥AC ,由k AC =-21, ∴l 的方程为2x -y -5=0.评述:若定点A 在圆外,要使直线与圆相交则需要什么条件呢? 【方法归纳总结】1、有关直线和圆的位置关系,一般要用圆心到直线的距离与半径的大小来确定.2、当直线和圆相切时,求切线方程一般要用圆心到直线的距离等于半径,求切线长一般要用切线、半径及圆外点与圆心连线构成的直角三角形;与圆相交时,弦长的计算也要用弦心距、半径及弦长的一半构成的直角三角形.3、有关圆的问题,注意圆心、半径及平面几何知识的应用.4、在确定点与圆、直线与圆、圆与圆的位置关系时,经常要用到距离,因此,两点间的距离公式、点到直线的距离公式等应熟练掌握,灵活运用.【针对训练】1、圆1)3()1(22=++-y x 的切线方程中有一个是( )(A )x -y =0 (B )x +y =0 (C )x =0 (D )y =0解:直线ax+by=022(1)(1x y -+=与相切1=,由排除法, ∵m ∈R ,∴ 得选C,本题也可数形结合,画出他们的图象自然会选C,用图象法解最省事。
直线与圆、圆与圆的位置关系知识点与题型复习一、基础知识1.直线与圆的位置关系(半径为r ,圆心到直线的距离为d )Δ<0 Δ=0 Δ>02.圆与圆的位置关系(两圆半径为r 1,r 2,d =|O 1O 2|)|r -r |<d <二、常用结论(1)圆的切线方程常用结论①过圆x 2+y 2=r 2上一点P (x 0,y 0)的圆的切线方程为x 0x +y 0y =r 2.②过圆(x -a )2+(y -b )2=r 2上一点P (x 0,y 0)的圆的切线方程为(x 0-a )(x -a )+(y 0-b )(y -b )=r 2. ③过圆x 2+y 2=r 2外一点M (x 0,y 0)作圆的两条切线,则两切点所在直线方程为x 0x +y 0y =r 2. (2)直线被圆截得的弦长弦心距d 、弦长l 的一半12l 及圆的半径r 构成一直角三角形,且有r 2=d 2+221⎪⎭⎫⎝⎛l .三、考点解析考点一 直线与圆的位置关系 考法(一) 直线与圆的位置关系的判断例、直线l :mx -y +1-m =0与圆C :x 2+(y -1)2=5的位置关系是( ) A .相交 B .相切 C .相离 D .不确定[解题技法]判断直线与圆的位置关系的常见方法: (1)几何法:利用d 与r 的关系.(2)代数法:联立方程组,消元得一元二次方程之后利用Δ判断.(3)点与圆的位置关系法:若直线恒过定点且定点在圆内,可判断直线与圆相交.考法(二) 直线与圆相切的问题例、(1)过点P (2,4)作圆(x -1)2+(y -1)2=1的切线,则切线方程为( )A .3x +4y -4=0B .4x -3y +4=0C .x =2或4x -3y +4=0D .y =4或3x +4y -4=0 (2)已知圆C :x 2+y 2-2x -4y +1=0上存在两点关于直线l :x +my +1=0对称,经过点M (m ,m )作圆C 的切线,切点为P ,则|MP |=________.考法(三) 弦长问题例、(1)若a 2+b 2=2c 2(c ≠0),则直线ax +by +c =0被圆x 2+y 2=1所截得的弦长为( ) A.12 B .1 C.22D.2 (2)设直线y =x +2a 与圆C :x 2+y 2-2ay -2=0相交于A ,B 两点,若|AB |=23,则圆C 的面积为( ) A .4π B .2π C .9π D .22π跟踪练习:1.已知圆的方程是x 2+y 2=1,则经过圆上一点M ⎪⎪⎭⎫⎝⎛2222,的切线方程是________. 2.若直线kx -y +2=0与圆x 2+y 2-2x -3=0没有公共点,则实数k 的取值范围是________.3.设直线y =kx +1与圆x 2+y 2+2x -my =0相交于A ,B 两点,若点A ,B 关于直线l :x +y =0对称,则|AB |=________.考点二 圆与圆的位置关系例、已知圆M :x 2+y 2-2ay =0(a >0)截直线x +y =0所得线段的长度是22,则圆M 与圆N :(x -1)2+(y -1)2=1的位置关系是( )A .内切B .相交C .外切D .相离变式练习:1.若圆C 1:x 2+y 2=1与圆C 2:x 2+y 2-6x -8y +m =0外切,则m =( )A .21B .19C .9D .-112.(变结论)若本例两圆的方程不变,则两圆的公共弦长为________.[解题技法]几何法判断圆与圆的位置关系的3步骤: (1)确定两圆的圆心坐标和半径长;(2)利用平面内两点间的距离公式求出圆心距d ,求r 1+r 2,|r 1-r 2|; (3)比较d ,r 1+r 2,|r 1-r 2|的大小,写出结论.课后作业1.若直线2x +y +a =0与圆x 2+y 2+2x -4y =0相切,则a 的值为( ) A .±5 B .±5 C .3 D .±32.与圆C 1:x 2+y 2-6x +4y +12=0,C 2:x 2+y 2-14x -2y +14=0都相切的直线有( ) A .1条 B .2条 C .3条 D .4条3.直线y =kx +3被圆(x -2)2+(y -3)2=4截得的弦长为23,则直线的倾斜角为( ) A.π6或5π6 B .-π3或π3 C .-π6或π6 D.π64.过点(3,1)作圆(x -1)2+y 2=r 2的切线有且只有一条,则该切线的方程为( ) A .2x +y -5=0 B .2x +y -7=0 C .x -2y -5=0 D .x -2y -7=05.若圆x 2+y 2+2x -6y +6=0上有且仅有三个点到直线x +ay +1=0的距离为1,则实数a 的值为( ) A .±1 B .±24 C .± 2 D .±326.过点P (1,-2)作圆C :(x -1)2+y 2=1的两条切线,切点分别为A ,B ,则AB 所在直线的方程为( ) A .y =-34 B .y =-12 C .y =-32 D .y =-147.在平面直角坐标系xOy 中,直线x +2y -3=0被圆(x -2)2+(y +1)2=4截得的弦长为________. 8.若P (2,1)为圆(x -1)2+y 2=25的弦AB 的中点,则直线AB 的方程为________. 9.过点P (-3,1),Q (a,0)的光线经x 轴反射后与圆x 2+y 2=1相切,则a 的值为________.10.点P 在圆C 1:x 2+y 2-8x -4y +11=0上,点Q 在圆C 2:x 2+y 2+4x +2y +1=0上,则|P Q |的最小值是________.11.已知圆C 1:x 2+y 2-2x -6y -1=0和圆C 2:x 2+y 2-10x -12y +45=0. (1)求证:圆C 1和圆C 2相交;(2)求圆C 1和圆C 2的公共弦所在直线的方程和公共弦长.12.已知圆C 经过点A (2,-1),和直线x +y =1相切,且圆心在直线y =-2x 上. (1)求圆C 的方程;(2)已知直线l 经过原点,并且被圆C 截得的弦长为2,求直线l 的方程.提高练习1.过圆x 2+y 2=1上一点作圆的切线,与x 轴、y 轴的正半轴相交于A ,B 两点,则|AB |的最小值为( ) A. 2 B.3 C .2 D .32.在平面直角坐标系xOy 中,A 为直线l :y =2x 上在第一象限内的点,B (5,0),以AB 为直径的圆C 与直线l 交于另一点D .若AB ―→·CD ―→=0,则点A 的横坐标为________. 3.已知圆C :x 2+(y -a )2=4,点A (1,0).(1)当过点A 的圆C 的切线存在时,求实数a 的取值范围; (2)设AM ,AN 为圆C 的两条切线,M ,N 为切点,当|MN |=455时,求MN 所在直线的方程.。
第四节直线与圆、圆与圆的位置关系授课提示:对应学生用书第158页[基础梳理]1.直线与圆的位置关系与判断方法(1)几何法:利用圆心到直线的距离d与半径r的大小关系.①d〈r⇔直线与圆相交;②d=r⇔直线与圆相切;③d〉r⇔直线与圆相离.(2)代数法:联立方程,消去x(或y)得一元二次方程,计算Δ=b2-4ac.①Δ〉0⇔直线与圆相交;②Δ=0⇔直线与圆相切;③Δ〈0⇔直线与圆相离.2.圆与圆的位置关系设圆O1:(x-a1)2+(y-b1)2=r错误!(r1〉0),圆O2+(y-b2=r2方法位置关系几何法:圆心距d与r1,r2的关系代数法:两圆方程联立组成方程组的解的情况外离d〉r1+r2无解外切d=r1+r2一组实数解续表相交|r1-r2|〈d〈r1+r2两组不同的实数解内切d=|r1-r2|(r1≠r2)一组实数解内含0≤d〈|r1-r2|(r1≠r2)无解位置关系内含内切相交外切外离公切线条数01234圆的方程两种设法技巧:(1)经过直线l:Ax+By+C=0与圆x2+y2+Dx+Ey+F=0的交点的圆的方程表示为(x2+y2+Dx+Ey+F)+λ(Ax+By+C)=0.(2)经过圆x2+y2+D1x+E1y+F1=0与圆x2+y2+D2x+E2y+F2=0的两个交点的圆的方程表示为x2+y2+D1x+E1y+F1+λ(x2+y2+D2x+E2y+F2)=0。
[四基自测]1.(基础点:直线与圆的位置关系)直线y=x+6与圆x2+y2-2y-4=0的位置关系为()A.相离B.相切C.相交且不过圆心 D.相交过圆心答案:A2.(基础点:圆与圆的位置关系)两圆x2+y2-2y=0与x2+y2-4=0的位置关系是()A.相交B.内切C.外切 D.内含答案:B3.(基础点:圆的弦长)直线l:3x-y-6=0与圆x2+y2-2x-4y=0相交于A,B两点,则|AB|=________.答案:104.(易错点:求圆的切线方程)已知直线l:y=k(x+错误!)和圆C:x2+(y-1)2=1,若直线l与圆C相切,则k=________.答案:0或3授课提示:对应学生用书第158页考点一直线与圆的位置关系挖掘1直线与圆位置关系的判断/ 自主练透[例1](1)直线l:mx-y+1-m=0与圆C:x2+(y-1)2=5的位置关系是()A.相交B.相切C.相离D。
高考专题--直线与圆、圆与圆的位置关系本文介绍了高考数学中与直线和圆、圆和圆的位置关系相关的知识点。
首先讲解了直线与圆的位置关系,通过圆心到直线的距离公式,可以得到关于x或y的一元二次方程,通过判别式Δ可以判断相交、相切、相离的位置关系。
接着讲解了圆与圆的位置关系,通过圆心距和半径之间的关系,可以判断相离、外切、内含、内切的位置关系。
最后通过诊断自测,帮助读者巩固所学知识点。
本文旨在介绍高考数学中关于直线和圆、圆和圆的位置关系的知识点。
首先,我们研究了如何判断直线和圆的位置关系,通过圆心到直线的距离公式,我们可以得到一个关于x或y的一元二次方程,并通过判别式Δ来确定相交、相切、相离的位置关系。
接着,我们研究了如何判断圆和圆的位置关系,通过圆心距和半径之间的关系,我们可以确定相离、外切、内含、内切的位置关系。
最后,我们通过诊断自测来巩固所学知识点。
1.解析:根据题意,有以下两个公式:AB|=\sqrt{1+\frac{1}{k^2}(y_1-y_2)^2-4y_1y_2}1+k^2(x_1+x_2)^2-4x_1x_2根据公式进行计算即可。
2.解析:求过一点的圆的切线方程,需要先判断该点是否在圆上,如果在圆上,则切线有无数条;如果不在圆上,则切线有且只有一条。
斜率不存在的情况需要特别注意。
易错防范]1.求圆的弦长问题,需要注意应用圆的性质解题,即用圆心与弦中点连线与弦垂直的性质,可以用勾股定理或斜率之积为-1列方程来简化运算。
2.过圆上一点作圆的切线有且只有一条;过圆外一点作圆的切线有且只有两条,若仅求得一条,除了考虑运算过程是否正确外,还要考虑斜率不存在的情况,以防漏解。
基础巩固题组1.解析:将圆的方程化为标准方程,得到圆心坐标为(1,4),根据点到直线的距离公式,将圆心到直线的距离代入公式,解出a的值即可。
答案:A2.解析:根据题意,可以得出该圆的圆心坐标为(1,0),半径为r。
根据求解切线的公式,可以得到切线方程为2x+y-7=0.答案:B3.解析:将圆的方程化为标准方程,得到圆心坐标为(-1,1),半径为2-a。
{北师大版}2020高考数学文科一轮复习课后练45《直线与圆圆与圆的位置关系》(建议用时:60分钟) A 组 基础达标一、选择题1.(2019·广州模拟)若一个圆的圆心为(0,1),且该圆与直线y =x +3相切,则该圆的标准方程是( ) A .x 2+(y -1)2=2 B .(x -1)2+y 2=2 C .x 2+(y -1)2=4D .(x -1)2+y 2=42.(2019·昆明摸底调研)直线l :x -y =0与圆C :(x -2)2+y 2=6相交于A ,B 两点,则|AB |=( ) A .2 B .4 C . 2 D. 63.已知圆O 1的方程为x 2+y 2=4,圆O 2的方程为(x -a )2+y 2=1,如果这两个圆有且只有一个公共点,那么a 的所有取值构成的集合是( )A .{1,-1}B .{3,-3}C .{1,-1,3,-3}D .{5,-5,3,-3}4.已知直线l :kx -y -3=0与圆O :x 2+y 2=4交于A ,B 两点,且OA →·OB →=2,则k =( ) A .2 B .± 2 C .±2 D . 25.已知过原点的直线l 与圆C :x 2+y 2-6x +5=0相交于不同的两点A ,B ,且线段AB 的中点坐标为D (2,2),则弦长为( )A .2B .3C .4D .5 二、填空题6.(2019·南京模拟)在平面直角坐标系xOy 中,若直线ax +y -2=0与圆C :(x -1)2+(y -a )2=16相交于A ,B 两点,且△ABC 为直角三角形,则实数a 的值是________.7.(2019·兰州月考)点P 在圆C 1:x 2+y 2-8x -4y +11=0上,点Q 在圆C 2:x 2+y 2+4x +2y +1=0上,则|PQ |的最小值是________.8.若⊙O :x 2+y 2=5与⊙O 1:(x -m )2+y 2=20(m ∈R )相交于A ,B 两点且两圆在点A 处切线互相垂直,则线段AB 的长度是________.4 [由题意⊙O 1与⊙O 在A 处切线互相垂直,则两切线分别过另一圆圆心,∴O 1A ⊥OA .三、解答题9.已知圆C经过点A(2,-1),和直线x+y=1相切,且圆心在直线y=-2x上.(1)求圆C的方程;(2)已知直线l经过原点,并且被圆C截得的弦长为2,求直线l的方程.10.(2018·河北邢台月考)已知圆C的方程为x2+(y-4)2=1,直线l的方程为2x-y=0,点P在直线l上,过点P作圆C的切线PA,PB,切点为A,B.(1)若∠APB=60°,求点P的坐标;(2)求证:经过A,P,C(其中点C为圆C的圆心)三点的圆必经过定点,并求出所有定点的坐标.B组能力提升1.已知两点A(-m,0)和B(2+m,0)(m>0),若在直线l:x+3y-9=0上存在点P,使得PA⊥PB,则实数m 的取值范围是( )A.(0,3) B.(0,4)C.[3,+∞)D.[4,+∞)2.(2019·达州联考)若圆(x-3)2+(y+5)2=r2有且只有两个点到直线4x-3y=2的距离等于1,则半径r的取值范围是( )A.(4,6) B.(4,6]C .[4,6)D .[4,6]3.若直线x sin θ+y cos θ=1与圆x 2+y 2-2x -2y cos θ+cos 2θ+1516=0相切,且θ为锐角,则这条直线的斜率是________.4.(2018·江苏南通模拟)如图,在平面直角坐标系xOy 中,已知圆C :x 2+y 2-4x =0及点A (-1,0),B (1,2).(1)若直线l 平行于AB ,与圆C 相交于M ,N 两点,|MN |=|AB |,求直线l 的方程;(2)在圆C 上是否存在点P ,使得|PA |2+|PB |2=12?若存在,求点P 的个数;若不存在,说明理由. 解析{北师大版}2020高考数学文科一轮复习课后练45《直线与圆圆与圆的位置关系》(建议用时:60分钟) A 组 基础达标一、选择题1.(2019·广州模拟)若一个圆的圆心为(0,1),且该圆与直线y =x +3相切,则该圆的标准方程是( ) A .x 2+(y -1)2=2 B .(x -1)2+y 2=2 C .x 2+(y -1)2=4D .(x -1)2+y 2=4A [由于圆心为(0,1),设该圆的标准方程是x 2+(y -1)2=r 2(r >0),因为该圆与直线y =x +3相切,故r =|2|2=2,故该圆的标准方程是x 2+(y -1)2=2.故选A .]2.(2019·昆明摸底调研)直线l :x -y =0与圆C :(x -2)2+y 2=6相交于A ,B 两点,则|AB |=( ) A .2 B .4 C . 2 D. 6B [由题意知,圆C 的圆心为C (2,0),半径为6,圆心C 到直线l 的距离为2,所以|AB |=262-22=4,故选B.]3.已知圆O 1的方程为x 2+y 2=4,圆O 2的方程为(x -a )2+y 2=1,如果这两个圆有且只有一个公共点,那么a 的所有取值构成的集合是( )A .{1,-1}B .{3,-3}C .{1,-1,3,-3}D .{5,-5,3,-3}C [因为两圆有且只有一个公共点,所以两个圆内切或外切,内切时,|a |=1;外切时,|a |=3,所以实数a 的取值集合是{1,-1,3,-3}.]4.已知直线l :kx -y -3=0与圆O :x 2+y 2=4交于A ,B 两点,且OA →·OB →=2,则k =( ) A .2 B .± 2 C .±2 D . 2 B [圆O :x 2+y 2=4的圆心为(0,0),半径为2, 设OA →与OB →的夹角为θ,则 2×2×cos θ=2, 解得cos θ=12,θ=π3,∴圆心到直线l 的距离为2cos π6=3,可得|-3|1+k2=3,解得k =± 2.]5.已知过原点的直线l 与圆C :x 2+y 2-6x +5=0相交于不同的两点A ,B ,且线段AB 的中点坐标为D (2,2),则弦长为( )A.2 B.3C.4 D.5A[将圆C:x2+y2-6x+5=0,整理得其标准方程为(x-3)2+y2=4,∴圆C的圆心坐标为(3,0),半径为2.∵线段AB的中点坐标为D(2,2),∴|CD|=1+2=3,∴|AB|=24-3=2.故选A.]二、填空题6.(2019·南京模拟)在平面直角坐标系xOy中,若直线ax+y-2=0与圆C:(x-1)2+(y-a)2=16相交于A,B两点,且△ABC为直角三角形,则实数a的值是________.-1[由题意知,圆C的半径是4,△ABC为直角三角形,则圆心C(1,a)到直线ax+y-2=0的距离为22,所以|a+a-2|a2+1=22,解得a=-1.]7.(2019·兰州月考)点P在圆C1:x2+y2-8x-4y+11=0上,点Q在圆C2:x2+y2+4x+2y+1=0上,则|PQ|的最小值是________.35-5[把圆C1、圆C2的方程都化成标准形式,得(x-4)2+(y-2)2=9,(x+2)2+(y+1)2=4.圆C1的圆心坐标是(4,2),半径长是3;圆C2的圆心坐标是(-2,-1),半径是2.圆心距d=+2++2=35>5.故圆C1与圆C2相离,所以|PQ|的最小值是35-5.]8.若⊙O:x2+y2=5与⊙O1:(x-m)2+y2=20(m∈R)相交于A,B两点且两圆在点A处切线互相垂直,则线段AB的长度是________.4[由题意⊙O1与⊙O在A处切线互相垂直,则两切线分别过另一圆圆心,∴O1A⊥OA.又|OA|=5,|O1A|=25,∴|O1O|=5.又A,B关于O1O所在直线对称,∴AB是Rt△OAO1斜边上高的2倍.∴|AB|=2×5×255=4.]三、解答题9.已知圆C经过点A(2,-1),和直线x+y=1相切,且圆心在直线y=-2x上.(1)求圆C的方程;(2)已知直线l 经过原点,并且被圆C 截得的弦长为2,求直线l 的方程. [解] (1)设圆心的坐标为C (a ,-2a ), 则a -2+-2a +2=|a -2a -1|2. 化简,得a 2-2a +1=0,解得a =1. ∴C (1,-2),半径r =|AC |=-2+-2+2= 2.∴圆C 的方程为(x -1)2+(y +2)2=2.(2)①当直线l 的斜率不存在时,直线l 的方程为x =0, 此时直线l 被圆C 截得的弦长为2,满足条件.②当直线l 的斜率存在时,设直线l 的方程为y =kx ,由题意得|k +2|1+k2=1,解得k =-34, ∴直线l 的方程为y =-34x .综上所述,直线l 的方程为x =0或y =-34x .10.(2018·河北邢台月考)已知圆C 的方程为x 2+(y -4)2=1,直线l 的方程为2x -y =0,点P 在直线l 上,过点P 作圆C 的切线PA ,PB ,切点为A ,B .(1)若∠APB =60°,求点P 的坐标;(2)求证:经过A ,P ,C (其中点C 为圆C 的圆心)三点的圆必经过定点,并求出所有定点的坐标. [解] (1)由条件可得圆C 的圆心坐标为(0,4),|PC |=2,设P (a,2a ),则a 2+a -2=2,解得a =2或a =65,∴点P 的坐标为(2,4)或⎝⎛⎭⎫65,125.(2)设P (b,2b ),过点A ,P ,C 的圆即是以PC 为直径的圆,其方程为x (x -b )+(y -4)(y -2b )=0,整理得x2+y 2-bx -4y -2by +8b =0,即(x 2+y 2-4y )-b (x +2y -8)=0.由⎩⎪⎨⎪⎧x 2+y 2-4y =0,x +2y -8=0,得⎩⎪⎨⎪⎧x =0,y =4或⎩⎨⎧x =85,y =165,∴该圆必经过定点(0,4)和⎝⎛⎭⎫85,165.B 组 能力提升1.已知两点A (-m,0)和B (2+m,0)(m >0),若在直线l :x +3y -9=0上存在点P ,使得PA ⊥PB ,则实数m 的取值范围是( )A .(0,3)B .(0,4)C .[3,+∞)D .[4,+∞)C [因为A (-m,0),B (2+m,0)(m >0),所以以AB 为直径的圆的圆心为(1,0),半径为1+m ,即方程为(x -1)2+y 2=(1+m )2.若直线l :x +3y -9=0上存在点P ,使得PA ⊥PB , 则直线l 与圆有公共点. ∴|1-9|2≤1+m ,解得m ≥3.] 2.(2019·达州联考)若圆(x -3)2+(y +5)2=r 2有且只有两个点到直线4x -3y =2的距离等于1,则半径r 的取值范围是( )A .(4,6)B .(4,6]C .[4,6)D .[4,6]A [由圆的标准方程得圆心坐标(3,-5), 则圆心(3,-5)到直线4x -3y =2的距离d =|4×3---2|32+42=255=5. 若圆(x -3)2+(y +5)2=r 2有且只有两个点到直线4x -3y =2的距离等于1,则满足d -1<r <d +1,即4<r <6,故选A .]3.若直线x sin θ+y cos θ=1与圆x 2+y 2-2x -2y cos θ+cos 2θ+1516=0相切,且θ为锐角,则这条直线的斜率是________.-33 [圆x 2+y 2-2x -2y cos θ+cos 2θ+1516=0化为标准方程得(x -1)2+(y -cos θ)2=116,圆心为(1,cos θ),半径为14,由题意得,圆心到直线的距离d =|1×sin θ+cos 2θ-1|cos 2θ+sin 2θ=14,所以|sin θ-sin 2θ|=14.因为θ为锐角,所以0<sin 2θ<sin θ<1,sin 2θ-sin θ+14=0,解得sin θ=12,故cos θ=32,所以直线x sin θ+y cos θ=1的斜率k =-sin θcos θ=-1232=-33.]4.(2018·江苏南通模拟)如图,在平面直角坐标系xOy 中,已知圆C :x 2+y 2-4x =0及点A (-1,0),B (1,2).(1)若直线l 平行于AB ,与圆C 相交于M ,N 两点,|MN |=|AB |,求直线l 的方程;(2)在圆C 上是否存在点P ,使得|PA |2+|PB |2=12?若存在,求点P 的个数;若不存在,说明理由.[解] (1)圆C 的标准方程为(x -2)2+y 2=4,所以圆心C (2,0),半径为2.因为l ∥AB ,A (-1,0),B (1,2),所以直线l 的斜率为2-01--=1.设直线l 的方程为x -y +m =0,则圆心C 到直线l 的距离为d =|2-0+m |2=|2+m |2.因为|MN |=|AB |=22+22=22,而|CM |2=d 2+⎝⎛⎭⎫|MN |22,所以4=+m 22+2,解得m =0或m =-4,故直线l的方程为x -y =0或x -y -4=0.(2)假设圆C 上存在点P ,设P (x ,y ),则(x -2)2+y 2=4,|PA |2+|PB |2=(x +1)2+(y -0)2+(x -1)2+(y -2)2=12,化简得x 2+y 2-2y -3=0,即x 2+(y -1)2=4.因为|2-2|<-2+-2<2+2,所以圆(x -2)2+y 2=4与圆x 2+(y -1)2=4相交,所以存在点P ,使|PA |2+|PB |2=12,点P 的个数为2.。
直线与圆-圆与圆的位置关系(学案)B一、 知识梳理(一)直线与圆的位置关系: 1、直线与圆的位置关系的判断:直线0=++C By Ax 与圆222)()(r b y a x =-+-的位置关系有三种 几何法:22BA C Bb Aa d +++=(1)d ⇔ (2)d ⇔ (3)d⇔代数法:利用直线方程与圆的方程联立方程组⎩⎨⎧=++++=++0022F Ey Dx y x C By Ax 求解,通过解的个数来判断:(1)当方程组有2个公共解时(直线与圆有2个交点),直线与圆相交; (2)当方程组有且只有1个公共解时(直线与圆只有1个交点),直线与圆相切; (3)当方程组没有公共解时(直线与圆没有交点),直线与圆相离; 即:将直线方程代入圆的方程得到一元二次方程,设它的判别式为Δ相切⇔Δ=0; 相交⇔Δ>0; 相离⇔Δ<0。
2. 过一点作圆的切线的方程: (1) 过圆外一点的切线:M()为圆外一点,设点斜式方程:y-=k(),利用几何法或代数法,一般解出两个k 值 ,如果解出一个k 值,则另一条是没有斜率的直线x=.(2)过圆上一点的切线方程:圆(x —a )2+(y —b )2=r 2,圆上一点为(x 0,y 0), 则过此点的切线方程为(x 0—a )(x —a )+(y 0—b )(y —b )= r 2特别地,过圆222r y x =+上一点),(00y x P 的切线方程为200r y y x x =+. 3.切点弦(1)过⊙C :222)()(r b y a x =-+-外一点),(00y x P 作⊙C 的两条切线,切点分别为B A 、,则切点弦AB 所在直线方程为:200))(())((r b y b y a x a x =--+--4. 切线长:若圆的方程为(x -a )2+(y -b )2=r 2,则过圆外一点P (x 0,y 0)的切线长为d=22020b)(+)(r y a x ---.2、两圆的位置关系(1)设两圆2121211)()(:r b y a x C =-+-与圆2222222)()(:r b y a x C =-+-,圆心距221221)()(b b a a d -+-=① 条公切线外离421⇔⇔+>r r d ; ② 条公切线外切321⇔⇔+=r r d ; ③ 条公切线相交22121⇔⇔+<<-r r d r r ; ④ 条公切线内切121⇔⇔-=r r d ; ⑤ 无公切线内含⇔⇔-<<210r r d ;外离 外切 相交 内切 内含 (2)两圆公共弦所在直线方程圆1C :221110x y D x E y F ++++=, 圆2C :222220x y D x E y F ++++=,则()()()1212120D D x E E y F F -+-+-=为两相交圆公共弦方程. 补充说明:● 若1C 与2C 相切,则表示其中一条公切线方程; ●若1C 与2C 相离,则表示连心线的中垂线方程.(3)圆系问题过两圆1C :221110x y D x E y F ++++=和2C :222220x y D x E y F ++++=交点的圆系方程为()22221112220x y D x E y F x y D x E y F λ+++++++++=()补充:① 上述圆系不包括2C ;② 当1λ=-时,(若1C 与2C 相切,则表示其中一条公切线方程;若1C 与2C 相离,则表示连心线的中垂线方程;若1C 与2C 相交,表示公共弦的直线方程。
)③ 过直线0Ax By C ++=与圆220x y Dx Ey F ++++=交点的圆系方程为()220x y Dx Ey F Ax By C λ+++++++=二、题型探究:[探究一]:直线与圆相切问题例1:将直线20x y λ-+=沿x 轴向左平移1个单位,所得直线与圆22240x y x y ++-= 相切,则实数λ的值为( )(A )-3或7 (B )-2或8 (C )0或10 (D )1或11[探究二]:直线与圆有关的最值问题例2:已知直线:2830L mx y m ---=和圆22:612200C x y x y +-++=; (1)m R ∈时,证明L 与C 总相交。
(2)m 取何值时,L 被C 截得弦长最短,求此弦长。
例3.已知圆:与:相交于,A B 两点。
(1)求公共弦AB 所在的直线方程;(2)求圆心在直线y x =-上,且经过,A B 两点的圆的方程; (3)求经过,A B 两点且面积最小的圆的方程。
[探究三]:直线与圆有关综合题例4:已知实数x 、y 满足1)1()2(22=-+-y x ,求xy z 1+=的最大值与最小值。
[题型探究四]:圆与圆位置关系例5: 讨论两圆的位置关系:已知圆C1:x2 + y2– 2mx + 4y + m2– 5 = 0,圆C2:x2 + y2 + 2x– 2my + m2– 3 = 0,m为何值时,(1)圆C1与圆C2相外切;(2)圆C1与圆C2内含.例6:圆系方程应用:求过直线x + y + 4 = 0与圆x2 + y2 + 4x– 2y– 4 = 0的交点且与y = x相切的圆的方程.例7:两个圆相交的公共弦长及公共弦所在的直线方程的求法求过两圆x2 + y2 + 6x– 4 = 0求x2 + y2 + 6y– 28 = 0的交点,且圆心在直线x–y– 4 = 0上的圆的方程.例8:已知圆C1:x2 +y2—2x =0和圆C2:x2 +y2 +4 y=0,试判断圆和位置关系,若相交,则设其交点为A、B,试求出它们的公共弦AB的方程及公共弦长。
三、方法提升:直线与圆的位置关系:l :f 1(x ,y )=0.圆C :f 2(x ,y )=0消y 得F (x )=0。
(1)直线与圆相交:F (x )=0中 >0;或圆心到直线距离d <r 。
直线与圆相交的相关问题:①弦长|AB |=21k +·|x 1 -x 2|=21k +·212214)(x x x x -+,或|AB |=222d r -;②弦中点坐标(221x x +,221y y +);③弦中点轨迹方程。
(2)直线与圆相切:F (x )=0中 =0,或d =r .其相关问题是切线方程.如P (x 0 ,y 0)是圆x 2 +y 2 =r 2 上的点,过P 的切线方程为x 0x +y 0y =r 2,其二是圆外点P (x 0 ,y 0)向圆到两条切线的切线长为22020)()(r b y a x --+-或22020r y x -+;其三是P (x 0 ,y 0)为圆x 2 +y 2 =r 2 外一点引两条切线,有两个切点A ,B ,过A ,B 的直线方程为x 0x +y 0y =r 2 。
(3)直线与圆相离:F (x )=0中 <0;或d <r ;主要是圆上的点到直线距离d 的最大值与最小值,设Q 为圆C :(x -a ) 2 +(y -b ) 2 =r 2上任一点,|PQ |m ax =|PC |+r ;|PQ |min =|PQ |-r ,是利用图形的几何意义而不是列出距离的解析式求最值.(4).圆与圆的位置关系:依平面几何的圆心距|O 1O 2|与两半径r 1 ,r 2 的和差关系判定. (1)设⊙O 1 圆心O 1 ,半径r 1 ,⊙O 2 圆心O 2 ,半径r 2 则:①当r 1 +r 2 =|O 1O 2|时⊙O 1 与⊙O 2 外切;②当|r 1 -r 2|=|O 1O 2|时,两圆相切;③当|r 1 -r 2|<|O 1O 2|<r 1 +r 2 时两圆相交;④当|r 1 -r 2|>|O 1O 2|时两圆内含;⑤当r 1 +r 2 <|O 1O 2|时两圆外离.(2)设⊙O 1 :x 2 +y 2 +D 1x +E 1y +F 1 =0,⊙O 2 :x 2 +y 2+D 2x +E 2y +F 2 =0。
①两圆相交A 、B 两点,其公共弦所在直线方程为(D 1 -D 2)x +(E 1 -E 2)y +F 1 -F 2 =0;②经过两圆的交点的圆系方程为x 2 +y 2 +D 1x +E 1y +F 1 +(x 2 +y 2+D 2x +E 2y +F 2)=0(不包括⊙O 2 方程). 四、反思感悟五、课时作业(一) 一、选择题1、若)1,2(-P 为圆25)1(22=+-y x 的弦AB 的中点,则直线AB 的方程是( )A. 03=--y xB. 032=-+y xC. 01=-+y xD. 052=--y x2、圆0222=-+x y x 和圆0422=++y y x 的位置关系是( )A .相切B .相交C .相离D .不确定3、圆2x 2+2y 2=1与直线xsin θ+y -1=0(θ∈R ,θ≠π2 +k π,k ∈Z )的位置关系是( )A .相交B .相切C .相离D .不确定4、设直线2x -y - 3 =0与y 轴的交点为P ,点P 把圆(x +1)2+y 2=25的直径分为两段,则其长度之比为( )A . 73 或37B . 74 或47C . 75 或57D . 76 或675、以点)724,715()3,0()0,3(C B A 、、--为顶点的三角形与圆)0(222>=+R R y x 没有公 共点,则圆半径R 的取值范围是( ) A .),7893()10103,0(+∞⋃ B . )7893,10103( C . ),3()322,0(+∞⋃ D . )3,322( 二、填空题6、直线x +2y=0被曲线x 2+y 2-6x -2y -15=0所截得的弦长等于________________.7、以点(1,2)为圆心,且与直线4x+3y-35=0相切的圆的方程是________________.8、集合A ={(x ,y )|x 2+y 2=4},B ={(x ,y )|(x -3)2+(y -4)2=r 2},其中r >0,若A ∩B 中有且仅有一个元素,则r 的值是________________.9、一束光线从点A (-1,1)出发经x 轴反射到圆C :(x -2)2+(y -3)2=1的最短路程是________________.10、已知三角形三边所在直线的方程为y =0,x =2,x +y -4- 2 =0,则这个三角形内切圆的方程为________________.三、解答题11、求过点(3,1),且与圆4)1(22=+-y x 相切的直线的方程。
12、求经过点A (0,5),且与直线02=-y x 和02=+y x 都相切的圆的方程。