河南省信阳市商城县上石桥高中2019-2020学年高二下学期期中考试数学(理)试卷
- 格式:doc
- 大小:1.02 MB
- 文档页数:10
2019-2020年高二下学期期中考试数学(理)含答案本试卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,共100分,考试用时90分钟。
考试结束后,将本试卷和答题卡一并交回。
祝各位考生考试顺利!参考公式:1.用最小二乘法求线性回归方程系数公式注意事项:1.答第I卷前,考生务必将自己的姓名、准考证号、科目涂写在答题卡上。
2.每小题选出答案后,用铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
答在试卷上的无效。
3.本卷共8小题,每小题4分,共32分。
一、选择题在每小题给出的四个选项中,只有一项是符合题目要求的.1.是虚数单位,复数=A.B.C.D.2.函数是定义在R上的可导函数,则下列说法不正确...的是A.若函数在时取得极值,则B.若,则函数在处取得极值C.若在定义域内恒有,则是常数函数D.函数在处的导数是一个常数3.若对于预报变量y与解释变量x的10组统计数据的回归模型中,计算R2=0.95,又知残差平方和为120.55,那么的值为A.241.1 B.245.1 C.2411 D.24514.复数z满足(1+2i)z=4+ai(a∈R,i是虚数单位),若复数z的实部与虚部相等则a等于A.12 B.4 C.D.l25.复数在复平面上对应的点位于A.第四象限B.第三象限C.第二象限D.第一象限6.函数的导函数的图像如图所示,则的图像最有可能的是7.若函数在(0,1)内有极小值,则实数b 的取值范围是 A .(0,1) B .(0,) C .(0,+∞) D .(∞,1)8.曲线在横坐标为l 的点处的切线为l ,则点P(3,2)到直线l 的距离为 A . B . C . D .第Ⅱ卷(非选择题)题号二三总分1516 17 18 19得分二、填空题(本大题共6个小题,每小题4分,共24分。
把答案填在答题纸上的相应横线上) 9.下表是关于新生婴儿的性别与出生时间段调查的列联表,那么,A= ,B= ,C= ,D= 。
2019-2020学年高二第二学期期中数学试卷一、选择题(共10小题).1.(x +1)n 的展开式共有11项,则n 等于( ) A .9B .10C .11D .82.已知函数f (x )=sin x ,其导函数为f '(x ),则f '(π3)=( )A .−12B .32C .12D .−323.从0,1,2,3这四个数中任取两个不同的数组成一个两位数,则这个两位数是偶数的概率为( ) A .13B .49C .12D .594.在(x +2)5的展开式中,二项式系数的最大值为( ) A .5B .15C .10D .205.已知正态密度曲线的函数关系式是f (x )=2πσe (x−μ)22σ2,设有一正态总体,它的概率密度曲线是函数f (x )的图象,且f (x )=18πe (x−10)28(x ∈R ),则这个正态总体的平均数μ与标准差σ分别是( ) A .10与8 B .10与2C .8与10D .2与106.设n ∈N*,则Cn01n 80+Cn11n ﹣181+C n21n ﹣282+C n31n ﹣383+……+C nn−1118n ﹣1+Cnn 108n 除以9的余数为( )A .0B .8C .7D .27.在比赛中,如果运动员甲胜运动员乙的概率是23,那么在五次比赛中,运动员甲恰有三次获胜的概率是( )A.40243B.80243C.110243D.202438.设(1+x)n=a0+a1x+a2x2+a3x3+……+a n x n,若a0+a1+a2+a3+……+a n=64,则展开式中系数最大的项是()A.15x2B.21x3C.20x3D.30x39.某旅游公司为了推出新的旅游产品项目,派出五名工作人员前往重庆的三个网红景点一“洪崖洞夜景、轻轨穿楼、长江索道”进行团队游的可行性调研.若每名工作人员只去一个景点,每个景点至少有一名工作人员前往,其中工作员甲、乙需要到同一景点调研,则不同的人员分配方案种数为()A.18 B.36 C.54 D.7210.设函数f(x)=ax+xx−1(x>1),若a是从1,2,3三数中任取一个,b是从2,3,4,5四数中任取一个,那么f(x)>b恒成立的概率为()A.16B.14C.34D.56二、多项选择题(本大题共2小题,每小题5分,共10分.全部选对得5分,部分选对得3分,有选错得0分)11.若随机变量X服从两点分布,其中P(X=0)=13,E(X)、D(X)分别为随机变量X均值与方差,则下列结论正确的是()A.P(X=1)=E(X)B.E(3X+2)=4C.D(3X+2)=4 D.D(X)=4912.已知函数f(x)=xlnx,若0<x1<x2,则下列结论正确的是()A.x2f(x1)<x1f(x2)B.x1+f(x1)<x2+f(x2)C .f(x 1)−f(x 2)x 1−x 2<0D .当lnx >﹣1时,x 1f (x 1)+x 2f (x 2)>2x 2f (x 1) 三、填空题(本大题共4小题,每小题5分,共20分) 13.函数在f (x )=﹣x +1x在[1,2]上的最大值是 .14.随机变量ξ服从正态分布N (1,σ2),已知P (ξ<0)=0.3,则P (ξ<2)= .15.设(1+ax )2020=a 0+a 1x +a 2x 2+……+a 2019x 2019+a 2020x 2020,若a 1+2a 2+3a 3+…+2019a 2019+2020a 2020=2020a ,则实数a = .16.在《爸爸去哪儿》第二季第四期中,村长给6位“萌娃”布置一项搜寻空投食物的任务.已知:①食物投掷地点有远、近两处;②由于Grace 年纪尚小,所以要么不参与该项任务,但此时另需一位小孩在大本营陪同,要么参与搜寻近处投掷点的食物;③所有参与搜寻任务的小孩须被均分成两组,一组去远处,一组去近处,那么不同的搜寻方案有 种.(以数字作答)四、解答题(本大题共6小题,共计70分) 17.有4名学生和2位老师站成一排合影. (1)若2位老师相邻,则排法种数为多少? (2)若2位老师不相邻,则排法种数为多少?18.甲、乙、丙三位学生各自独立地解同一道题,已知甲、乙做对该题的概率都为13,丙做对该题的概率为14,且三位学生能否做对相互独立,设随机变量X 表示这三位学生中做对该题的人数,其分布列为:X0123P13a b136(1)求a,b的值;(2)求X的数学期望.19.在(x+2)10的展开式中,求:(1)含x8项的系数;(2)如果第3r项和第r+2项的二项式系数相等,求r的值,20.在一次购物抽奖活动中,假设10张奖券中有一等奖奖券1张,可获价值50元的奖品,有二等奖奖券3张,每张可获价值10元的奖品,其余6张没有奖品.(1)顾客甲从10张奖券中任意抽取1张,求中奖次数X的概率分布.(2)顾客乙从10张奖券中任意抽取2张,①求顾客乙中奖的概率;②设顾客乙获得的奖品总价值Y元,求Y的概率分布及期望.21.2018年10月28日,重庆公交车坠江事件震惊全国,也引发了广大群众的思考﹣﹣如何做一个文明的乘客.全国各地大部分社区组织居民学习了文明乘车规范.A社区委员会针对居民的学习结果进行了相关的问卷调查,并将得到的分数整理成如图所示的统计图.(Ⅰ)求得分在[70,80)上的频率;(Ⅱ)求A社区居民问卷调査的平均得分的估计值;(同一组中的数据以这组数据所在区间中点的值作代表)(Ⅲ)由于部分居民认为此项学习不具有必要性,A社区委员会对社区居民的学习态度作调查,所得结果统计如下:(表中数据单位:人)认为此项学习十分必要认为此项学习不必要50岁以上400600 50岁及50岁以下800200根据上述数据,计算是否有99.9%的把握认为居民的学习态度与年龄相关.附:K2=n(ad−bc)2(a+b)(c+d)(a+c)(b+d),其中n=a+b+c+d.P(K2≥k0)0.1000.0500.0100.001 k0 2.706 3.841 6.63510.82822.已知函数f(x)=(ax2+x+a)e﹣x(a∈R).(Ⅰ)当a=0时,求f(x)在点(0,f(0))处的切线方程;(Ⅱ)若a≥0,求函数f(x)的单调区间;(Ⅲ)若对任意的a≤0,f(x)≤bln(x+1)在x∈[0,+∞)上恒成立,求实数b的取值范围.参考答案一、单项选择题(本大题共10小题,每小题5分,共50分,在每小题给出的四个选项中,只有一项是符合题目要求的.)1.(x+1)n的展开式共有11项,则n等于()A.9 B.10 C.11 D.8【分析】直接利用二项式定理的性质写出结果即可.解:因为(x+1)n的展开式共有11项,则n+1=11⇒n=10;故选:B.【点评】本题考查二项式定理的简单性质的应用,基本知识的考查.2.已知函数f(x)=sin x,其导函数为f'(x),则f'(π3)=()A.−12B.32C.12D.−32【分析】可以求出导函数f′(x)=cos x,从而可得出f′(π3)的值.解:∵f(x)=sin x,∴f′(x)=cos x,∴f′(π3)=cosπ3=12.故选:C.【点评】本题考查了基本初等函数的求导公式,已知函数求值的方法,考查了计算能力,属于基础题.3.从0,1,2,3这四个数中任取两个不同的数组成一个两位数,则这个两位数是偶数的概率为()A.13B.49C.12D.59【分析】基本事件总数n=3×3=9,这个两位数是偶数包含的基本事件个数m=1×3+1×2=5.由此能求出这个两位数是偶数的概率.解:从0,1,2,3这四个数中任取两个不同的数组成一个两位数,基本事件总数n=3×3=9,这个两位数是偶数包含的基本事件个数m=1×3+1×2=5.∴这个两位数是偶数的概率为p=mn=59.故选:D.【点评】本题主要考查概率的求法,考查古典概型计算公式等知识,意在考查学生的转化能力和计算求解能力.4.在(x+2)5的展开式中,二项式系数的最大值为()A.5 B.15 C.10 D.20【分析】展开式中共有6项,根据展开式中间两项的二项式系数最大,故第3,4项的二项式系数最大,问题得以解决.解:展开式中共有6项,根据展开式中间两项的二项式系数最大故第3,4项的二项式系数最大,故C52=C53=10,故选:C.【点评】本题主要考查二项式系数的性质及二项展开式的通项公式是解决二项展开式的特定项问题的工具,属于基础题. 5.已知正态密度曲线的函数关系式是f (x )=2πσe (x−μ)22σ2,设有一正态总体,它的概率密度曲线是函数f (x )的图象,且f (x )=8πe (x−10)28(x ∈R ),则这个正态总体的平均数μ与标准差σ分别是( ) A .10与8B .10与2C .8与10D .2与10【分析】把已知函数解析式转化为正态密度曲线的函数关系式求解.解:∵f (x )=18πe (x−10)28=22π(x−10)22×22,∴平均数μ=10,标准差σ=2. 故选:B .【点评】本题考查正态密度曲线的函数,是基础题. 6.设n ∈N*,则Cn 01n 80+C n 11n ﹣181+C n 21n ﹣282+C n 31n ﹣383+……+C nn−1118n ﹣1+Cnn 108n 除以9的余数为( )A .0B .8C .7D .2【分析】直接利用二项式定理把条件转化即可求解结论. 解:因为Cn 01n 80+C n 11n ﹣181+C n 21n ﹣282+C n 31n ﹣383+……+C nn−1118n ﹣1+Cnn 108n =(1+8)n =9n ; 故除以9的余数为0; 故选:A .【点评】本题考查余数的求法,是中档题,解题时要认真审题,注意组合数性质及二项式定理的合理运用.7.在比赛中,如果运动员甲胜运动员乙的概率是23,那么在五次比赛中,运动员甲恰有三次获胜的概率是( ) A .40243B .80243C .110243D .20243【分析】由条件利用n 次独立重复实验中恰好发生k 次的概率计算公式,计算求得结果. 解:根据每次比赛中,甲胜运动员乙的概率是23,故在五次比赛中,运动员甲恰有三次获胜的概率是C 53•(23)3•(1−23)2=80243, 故选:B .【点评】本题主要考查n 次独立重复实验中恰好发生k 次的概率计算公式,属于基础题. 8.设(1+x )n =a 0+a 1x +a 2x 2+a 3x 3+……+a n x n ,若a 0+a 1+a 2+a 3+……+a n =64,则展开式中系数最大的项是( ) A .15x 2B .21x 3C .20x 3D .30x 3【分析】由题意可得 a 0+a 1+a 2+…+a n =(1+1)n =64,得 n =6,由此求得展开式中系数最大的项.解:因为 a 0+a 1+a 2+…+a n =(1+1)n =64,得 n =6, 故展开式中系数最大的项是第四项;即∁63x 3=20x 3;故选:C .【点评】本题主要考查二项式定理的应用,二项式系数的性质,属于中档题. 9.某旅游公司为了推出新的旅游产品项目,派出五名工作人员前往重庆的三个网红景点一“洪崖洞夜景、轻轨穿楼、长江索道”进行团队游的可行性调研.若每名工作人员只去一个景点,每个景点至少有一名工作人员前往,其中工作员甲、乙需要到同一景点调研,则不同的人员分配方案种数为( ) A .18B .36C .54D .72【分析】根据分步计数原理,把2元素组合一个复合元素,再进行组合和分配,问题得以解决.解:由于工作员甲、乙需要到同一景点调研,把A,B看作一个复合元素,则本题等价于4个元素分配到3个位置,每一个位置至少一个,故有C42A33=36种,故选:B.【点评】本题考查了排列组合混合问题,先选后排是最基本的思想.10.设函数f(x)=ax+xx−1(x>1),若a是从1,2,3三数中任取一个,b是从2,3,4,5四数中任取一个,那么f(x)>b恒成立的概率为()A.16B.14C.34D.56【分析】先把f(x)的解析式变形,用分离常数法,然后用均值不等式求出最小值,本题是一个古典概型,试验发生包含的所有事件是12个,满足条件的事件是10个,列举出结果.解:x>1,a>0,f(x)=ax+x−1+1x−1=ax+1x−1+1=a(x﹣1)+1x−1+1+a≥2√a+1+a=(√a+1)2,当且仅当x=√1a+1>1时,取“=”,∴f(x)min=(√a+1)2,于是f(x)>b恒成立就转化为(√a+1)2>b成立.设事件A:“f(x)>b恒成立”,则基本事件总数为12个,即(1,2),(1,3),(1,4),(1,5);(2,2),(2,3),(2,4),(2,5);(3,2),(3,3),(3,4),(3,5);事件A包含事件:(1,2),(1,3);(2,2),(2,3),(2,4),(2,5);(3,2),(3,3),(3,4),(3,5)共10个由古典概型得P(A)=1012=56,故选:D.【点评】在使用古典概型的概率公式时,应该注意:(1)要判断该概率模型是不是古典概型;(2)要找出随机事件A包含的基本事件的个数和试验中基本事件的总数;当解析式中含有分式,且分子分母是齐次的,注意运用分离常数法来进行式子的变形,在使用均值不等式应注意一定,二正,三相等.二、多项选择题(本大题共2小题,每小题5分,共10分.全部选对得5分,部分选对得3分,有选错得0分)11.若随机变量X服从两点分布,其中P(X=0)=13,E(X)、D(X)分别为随机变量X均值与方差,则下列结论正确的是()A.P(X=1)=E(X)B.E(3X+2)=4C.D(3X+2)=4 D.D(X)=49【分析】推丑陋同P(X=1)=23从而E(X)=0×13+1×23=23,D(X)=(0−23)2×13+(1−23)2×23=29,由此能过河卒子同结果.解:随机变量X服从两点分布,其中P(X=0)=13,∴P(X=1)=23,E (X )=0×13+1×23=23,D (X )=(0−23)2×13+(1−23)2×23=29,在A 中,P (X =1)=E (X ),故A 正确;在B 中,E (3X +2)=3E (X )+2=3×23+2=4,故B 正确;在C 中,D (3X +2)=9D (X )=9×29=2,故C 错误; 在D 中,D (X )=29,故D 错误. 故选:AB .【点评】本题考查命题真假的判断,考查离散型随机变量的分布列、数学期望、方差等基础知识,考查运算求解能力,是中档题.12.已知函数f (x )=xlnx ,若0<x 1<x 2,则下列结论正确的是( ) A .x 2f (x 1)<x 1f (x 2)B .x 1+f (x 1)<x 2+f (x 2)C .f(x 1)−f(x 2)x 1−x 2<0D .当lnx >﹣1时,x 1f (x 1)+x 2f (x 2)>2x 2f (x 1)【分析】根据条件分别构造不同的函数,求函数的导数,利用函数单调性和导数之间的关系进行判断即可. 解:A .正确;因为令g (x )=f(x)x=lnx ,在(0,+∞)上是增函数,∴当 0<x 1<x 2 时,g (x 1)<g (x 2),∴f(x 1)x 1<f(x 2)x 2即x 2f (x 1)<x 1f (x 2).B .错误;因为令g (x )=f (x )+x =xlnx +x ∴g ′(x )=lnx +2,∴x ∈(e ﹣2,+∞)时,g ′(x )>0,g (x )单调递增,x ∈(0,e ﹣2)时,g ′(x )<0,g (x )单调递减.∴x 1+f (x 1)与x 2+f (x 2)无法比较大小.C .错误;因为令g (x )=f (x )﹣x =xlnx ﹣x ,g ′(x )=lnx ,∴x ∈(0,1)时,g ′(x )<0,g (x )在(0,1)单调递减,x ∈(1,+∞)时,g ′(x )>0,g (x )在(1,+∞)单调递增,∴当0<x 1<x 2<1时,g (x 1)>g (x 2), ∴f (x 1)﹣x 1>f (x 2)﹣x 2, ∴f (x 1)﹣f (x 2)>x 1﹣x 2, ∴f(x 1)−f(x 2)x 1−x 2<0.当1<x 1<x 2 时,g (x 1)<g (x 2) ∴f (x 1)﹣x 1<f (x 2)﹣x 2, ∴f (x 1)﹣f (x 2)<x 1﹣x 2, ∴f(x 1)−f(x 2)x 1−x 2>0.D.正确;因为lnx>﹣1时,f(x)单调递增,又∵A正确,∴x1•f(x1)+x2•f(x2)﹣2x2f(x1)>x1[f(x1)﹣f(x2)]+x2[f(x2)﹣f(x1)]=(x1﹣x2)[f(x1)﹣f(x2)]>0.故选:AD.【点评】本题主要考查命题的真假判断,在求解中用到了利用导数判断函数的单调性,并用到了函数单调性的定义.需要学习掌握的是构造函数的办法,综合性较强,有一定的难度.三、填空题(本大题共4小题,每小题5分,共20分)在[1,2]上的最大值是0 .13.函数在f(x)=﹣x+1x【分析】先求导数,得单调性,进而得出最大值.<0,解:因为f′(x)=﹣1−1x2所以f(x)在[1,2]上单调递减,f(x)max=f(1)=﹣1+1=0,故答案为:0.【点评】本题考查利用导数求单调性进而得出最大值.14.随机变量ξ服从正态分布N(1,σ2),已知P(ξ<0)=0.3,则P(ξ<2)=0.7 .【分析】随机变量ξ服从正态分布N(1,σ2),得到曲线关于x=1对称,根据曲线的对称性得到小于0的和大于2的概率是相等的,从而做出大于2的数据的概率,根据概率的性质得到结果.解:随机变量ξ服从正态分布N(1,σ2),∴曲线关于x=1对称,∴P(ξ<0)=P(ξ>2)=0.3,∴P(ξ<2)=1﹣0.3=0.7,故答案为:0.7【点评】本题考查正态分布曲线的特点及曲线所表示的意义,考查概率的性质,是一个基础题,这种题目可以出现在选择或填空中,是一个送分题目.15.设(1+ax)2020=a0+a1x+a2x2+……+a2019x2019+a2020x2020,若a1+2a2+3a3+…+2019a2019+2020a2020=2020a,则实数a=0 .【分析】结合所求式子与已知的式子特点,可以对原函数求导数,然后利用赋值法求解即可.解:对已知的式子两边同时求导数可得:2020a(1+ax)2019=a1+2a2x+3a3x2+⋯+2020a2020x2019,令x=1则:2020a(1+ax)2019=a1+2a2+3a3+…+2020a2020,又因为:a1+2a2+3a3+…+2019a2019+2020a2020=2020a,所以(1+a)2019=1,所以a=0.故答案为:0.【点评】本题考查二项式定理的系数的性质、赋值法的应用.同时考查了学生的运算能力,属于基础题.16.在《爸爸去哪儿》第二季第四期中,村长给6位“萌娃”布置一项搜寻空投食物的任务.已知:①食物投掷地点有远、近两处;②由于Grace年纪尚小,所以要么不参与该项任务,但此时另需一位小孩在大本营陪同,要么参与搜寻近处投掷点的食物;③所有参与搜寻任务的小孩须被均分成两组,一组去远处,一组去近处,那么不同的搜寻方案有 40 种.(以数字作答)【分析】根据题意,分2种情况讨论:①、Grace 不参与该项任务,需一位小孩在大本营陪同,则其余4人被均分成两组,一组去远处,一组去近处;②、Grace 参与该项任务,则从其余5人中选2人去近处,剩余3人搜寻远处,分别求出每种情况的方案数目;由分类计数原理计算可得答案. 解:根据题意,分2种情况讨论: ①、Grace 不参与该项任务,在其余5人中,任选1人在大本营陪同,有C 51=5种情况, 剩余4人,平均分成2组,有C 42C 22A 22=3种分组方法,在将2组对应2个地点,有A 22=2种情况,此时一共有5×3×2=30种方案; ②、Grace 参与该项任务,在其余5人中,任选2人与Grace 一起搜寻近处投掷点的食物,有C 52=10种情况, 而剩余3人搜寻远处投掷点的食物,有1种情况, 则此时一共有10×1=10种方案;则一共有30+10=40种符合题意的分配方案; 故答案为:40.【点评】本题考查排列、组合的运用,要先认真分析题意,注意2种方案参与的人数不同.四、解答题(本大题共6小题,共计70分) 17.有4名学生和2位老师站成一排合影.(1)若2位老师相邻,则排法种数为多少?(2)若2位老师不相邻,则排法种数为多少?【分析】(1)2位老师站在一起,可以采取绑定法计数,先绑定2位老师,再将2者看作一人与4名学生进行全排列;(2)2位老师互不相邻,可先排4名学生,然后把2位老师插空,最后用乘法原理计数.解:(1)先把2位老师“捆绑”看做1元素,与其余4个元素进行排列,再对2位老师进行排列,共有A22A55=240种,(2)先让4名学生站好,有A44种排法,这时有5个“空隙”可供2位老师选取,共有A44A52=480种.【点评】本题考查排列、组合及简单计数问题,解题的关键是熟练掌握计数原理及排列组合的公式,掌握一些特殊的计数技巧,如本题中绑定法,插空法.要注意每种方法与相应问题的对应.18.甲、乙、丙三位学生各自独立地解同一道题,已知甲、乙做对该题的概率都为13,丙做对该题的概率为14,且三位学生能否做对相互独立,设随机变量X表示这三位学生中做对该题的人数,其分布列为:X0123P13a b136(1)求a,b的值;(2)求X的数学期望.【分析】(1)利用相互独立事件概率乘法公式和互斥事件概率加法公式能求出a,利用对立事件概率计算公式能求出b.(2)由离散型随机变量的分布列能求出数学期望E(X).解:(1)∵甲、乙做对该题的概率都为13,丙做对该题的概率为14,且三位学生能否做对相互独立, ∴a =13×(1−13)×(1−14)+(1−13)×13×(1−14)+(1−13)×(1−13)×14=49, b =1﹣P (X =0)﹣P (X =1)﹣P (X =3)=1−13−49−136=736.(2)E (X )=0×13+1×49+2×736+3×136=1112. 【点评】本题考查概率的求法,考查离离散型随机变量的数学期望的求法,考查相互独立事件概率乘法公式、互斥事件概率加法公式、对立事件概率计算公式等基础知识,考查运算求解能力,是中档题. 19.在(x +2)10的展开式中,求: (1)含x 8项的系数;(2)如果第3r 项和第r +2项的二项式系数相等,求r 的值, 【分析】先求出展开式的通项.(1)令通项中x 的指数为8,求出k 的值即可; (2)写出该两项的二项式系数,令其相等,求出r 的值. 解:(1)二项式展开式的通项如下:T r+1=C 10r 2r x 10−r ,由已知令10﹣r =8, 所以r =2.所以含x 8项的系数为C 10222=180.(2)第3r 项与第r +2项的二项式系数相等, 则C 103r−1=C 10r+1,即3r ﹣1=r +1或3r ﹣1+r +1=10. 解得r =1或r =52(舍).故r 的值为1.【点评】本题考查二项式展开式系数的性质,利用通项法研究特定项的问题,同时考查学生的化简运算能力.属于基础题.20.在一次购物抽奖活动中,假设10张奖券中有一等奖奖券1张,可获价值50元的奖品,有二等奖奖券3张,每张可获价值10元的奖品,其余6张没有奖品. (1)顾客甲从10张奖券中任意抽取1张,求中奖次数X 的概率分布. (2)顾客乙从10张奖券中任意抽取2张, ①求顾客乙中奖的概率;②设顾客乙获得的奖品总价值Y 元,求Y 的概率分布及期望.【分析】(1)抽奖一次,只有中奖和不中奖两种情况,1表示中奖,0表示不中奖,则X 的取值只有0,1两种,分别求出相应的概率,由此能求出X 的分布列.(2)①顾客乙中奖可分为互斥的两类:所抽取的2张奖券有1张中奖和2张都中奖,由此利用互斥事件概率加法公式能求出顾客乙中奖的概率.②顾客乙所抽取的2张奖券中有0张中奖,1张中奖(1张1等奖或1张2等奖)或2张都中奖(2张二等奖或2张1等奖或1张2等奖1张2等奖),Y 的可能取值为0,10,20,50,60,分别求出相应的概率,由此能求出随机变量Y 的概率分布列和数学期望.解:(1)抽奖一次,只有中奖和不中奖两种情况, 1表示中奖,0表示不中奖,则X 的取值只有0,1两种,P (X =0)=C 61C 101=35,P (X =1)=C 41C 101=25,∴X 的分布列为:X1P3525(2)①顾客乙中奖可分为互斥的两类:所抽取的2张奖券有1张中奖和2张都中奖, ∴顾客乙中奖的概率为:P =C 41C 61+C 42C 102=23.②顾客乙所抽取的2张奖券中有0张中奖,1张中奖(1张1等奖或1张2等奖)或2张都中奖(2张二等奖或2张1等奖或1张2等奖1张2等奖), ∴Y 的可能取值为0,10,20,50,60,P (Y =0)=C 62C 102=13, P (Y =10)=C 41C 61C 102=25,P (Y =20)=C 32C 102=115, P (Y =50)=C 11C 61C 102=215, P (Y =60)=C 11C 31C 102=115,∴随机变量Y 的概率分布列为:Y 010205060P1325115215115EY =0×13+10×25+20×115+50×215+60×115=16(元).【点评】本题考查概率的求法,考查离离散型随机变量的数学期望的求法,考查互斥事件概率加法公式、古典概型等基础知识,考查运算求解能力,是中档题.21.2018年10月28日,重庆公交车坠江事件震惊全国,也引发了广大群众的思考﹣﹣如何做一个文明的乘客.全国各地大部分社区组织居民学习了文明乘车规范.A 社区委员会针对居民的学习结果进行了相关的问卷调查,并将得到的分数整理成如图所示的统计图.(Ⅰ)求得分在[70,80)上的频率;(Ⅱ)求A社区居民问卷调査的平均得分的估计值;(同一组中的数据以这组数据所在区间中点的值作代表)(Ⅲ)由于部分居民认为此项学习不具有必要性,A社区委员会对社区居民的学习态度作调查,所得结果统计如下:(表中数据单位:人)认为此项学习十分必要认为此项学习不必要50岁以上400600 50岁及50岁以下800200根据上述数据,计算是否有99.9%的把握认为居民的学习态度与年龄相关.附:K2=n(ad−bc)2(a+b)(c+d)(a+c)(b+d),其中n=a+b+c+d.P(K2≥k0)0.1000.0500.0100.001 k0 2.706 3.841 6.63510.828【分析】(Ⅰ)由频率分布直方图计算所求的频率值;(Ⅱ)利用各组的中间值与对应的频率乘积的和,计算平均分;(Ⅲ)根据2×2列联表计算观测值,对照临界值得出结论.解:(Ⅰ)由频率分布直方图,计算得分在[70,80)上的频率为1﹣0.1﹣0.15﹣0.2﹣0.15﹣0.1=0.3;(Ⅱ)由(Ⅰ)知各组的中间值与对应的频率如下表,中间值455565758595频率0.10.150.20.30.150.1计算问卷调査的平均得分为45×0.1+55×0.15+65×0.2+75×0.3+85×0.15+95×0.1=70.5;(Ⅲ)根据2×2列联表,认为此项学习十分必要认为此项学习不必要合计50岁以上400600100050岁及50岁以下8002001000总计12008002000计算K2=2000×(400×200−600×800)21000×1000×1200×800≈333.333>10.828,所以有99.9%的把握认为居民的学习态度与年龄相关.【点评】本题考查了频率分布直方图和样本数字特征的应用问题,也考查了独立性检验的应用问题,是基础题.22.已知函数f(x)=(ax2+x+a)e﹣x(a∈一、选择题).(Ⅰ)当a=0时,求f(x)在点(0,f(0))处的切线方程;(Ⅱ)若a≥0,求函数f(x)的单调区间;(Ⅲ)若对任意的a≤0,f(x)≤bln(x+1)在x∈[0,+∞)上恒成立,求实数b的取值范围.【分析】(Ⅰ)当a=0时,f(x)=x•e﹣x,f′(x)=e﹣x﹣x•e﹣x=e﹣x(1﹣x),可得f′(0)=1,f(0)=0,即可得出切线方程.(Ⅱ)由题意,f'(x)=(2ax+1)e﹣x﹣(ax2+x+a)e﹣x=﹣e﹣x[ax2+(1﹣2a)x+a ﹣1]=﹣e﹣x(x﹣1)(ax+1﹣a).对a分类讨论:a=0,a>0,即可得出.(Ⅲ)令g(a)=e﹣x(x2+1)a+xe﹣x,a∈(﹣∞,0],当x∈[0,+∞)时,e﹣x(x2+1)≥0,g(a)单调递增,则g(a)max=g(0)=xe−x.可得g(a)≤bln(x+1)对∀a ∈(﹣∞,0]恒成立等价于bln(x+1)≥g(a)max=g(0),即xe﹣x≤bln(x+1),对x∈[0,+∞)恒成立,对b分类讨论,利用单调性即可得出.解:(Ⅰ)当a=0时,f(x)=x•e﹣x,∴f′(x)=e﹣x﹣x•e﹣x=e﹣x(1﹣x)……(1分)∴f′(0)=1,f(0)=0,∴函数f(x)在点(0,f(0))处的切线方程为y=x.……(Ⅱ)由题意,f'(x)=(2ax+1)e﹣x﹣(ax2+x+a)e﹣x=﹣e﹣x[ax2+(1﹣2a)x+a ﹣1]=﹣e﹣x(x﹣1)(ax+1﹣a).……(ⅰ)当a=0时,f'(x)=﹣e﹣x(x﹣1),令f'(x)>0,得x<1;f'(x)<0,得x>1,所以f(x)在(﹣∞,1)单调递增,(1,+∞)单调递减;……(ⅱ)当a>0时,1−1a<1,令f'(x)>0,得1−1a <x<1;f'(x)<0,得x<1−1a或x>1,……所以f(x)在(1−1a ,1)单调递增,在(−∞,1−1a),(1,+∞)单调递减,………(Ⅲ)令g(a)=e﹣x(x2+1)a+xe﹣x,a∈(﹣∞,0],当x∈[0,+∞)时,e﹣x(x2+1)≥0,g(a)单调递增,则g(a)max=g(0)=xe−x,………………则g(a)≤bln(x+1)对∀a∈(﹣∞,0]恒成立等价于bln(x+1)≥g(a)max=g (0),即xe﹣x≤bln(x+1),对x∈[0,+∞)恒成立.………(ⅰ)当b≤0时,∀x∈(0,+∞),bln(x+1)<0,xe﹣x>0,此时xe﹣x>bln(x+1),不合题意,舍去.…………(ⅱ)当b>0时,令h(x)=bln(x+1)﹣xe﹣x,x∈[0,+∞),则h′(x)=bx+1−(e−x−xe−x)=bex+x2−1(x+1)e x,……其中(x+1)e x>0,∀x∈[0,+∞),令p(x)=be x+x2﹣1,x∈[0,+∞),则p(x)在区间[0,+∞)上单调递增,……①当b≥1时,p(x)≥p(0)=b﹣1≥0,所以对∀x∈[0,+∞),h'(x)≥0,则h(x)在[0,+∞)上单调递增,故对任意x∈[0,+∞),h(x)≥h(0)=0,即不等式bln(x+1)≥xe﹣x在[0,+∞)上恒成立,满足题意.…………②当0<b<1时,由p(0)=b﹣1<0,p(1)=be>0及p(x)在区间[0,+∞)上单调递增,所以存在唯一的x0∈(0,1)使得p(x0)=0,且x∈(0,x0)时,p(x)<0.即h'(x)<0,所以h(x)在区间(0,x0)上单调递减,则x∈(0,x0)时,h(x)<h(0)=0,即bln(x+1)<xe﹣x,不符合题意.……综上所述,b≥1.…………【点评】本题考查了利用利用导数研究函数的单调性极值与最值、方程与不等式的解法、分类讨论方法、等价转化方法,考查学生的运算推理能力,属于难题.。
2019-2020年高二下学期期中联考数学(理)试题含答案王永杰李好敬一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的。
1.若复数满足,则的共轭复数的虚部是()A、B、C、D、2.若,则a的值是()A、2B、3C、4D、63.已知随机变量服从正态分布则()A、0.89B、0.78C、0.22D、0.114.函数的定义域为开区间,导函数在内的图象如图所示,则函数在开区间内极值点有()A、1个B、2个C、3个D、4个5.用数学归纳法证明不等式“”的过程中,由n=k到n=k+1时,不等式的左边()A.增加了一项 B. 增加了两项C. 增加了一项,又减少了一项D. 增加了两项,又减少了一项6.已知随机变量X的分布列如下表(其中为常数):则下列计算结果错误的是()A、B、C、D、7.用红、黄、蓝三种颜色给如图所示的六个相连的圆涂色,若每种颜色只能涂两个圆,且相邻两个圆所涂颜色不能相同,则不同的涂色方案的种数是()A.12B.24C.30D.368.直线a//b, a上有5个点,b上有4 个点,以这九个点为顶点的三角形个数为()A、B、 C、D、9.某种玉米种子,如果每一粒发芽的概率为90%,播下5粒种子,则其中恰有两粒未发芽的概率约是()A.0.07B.0.27 C.0.30 D.0.3310.展开式中的常数项是( )A .B .18C .20D .011.给出下列命题:(1)已知事件是互斥事件,若,则;(2)已知事件是互相独立事件,若,则(表示事件的对立事件);(3)的二项展开式中,共有4个有理项. 则其中真命题的序号是( )A .(1)、(2).B .(1)、(3).C .(2)、(3).D .(1)、(2)、(3).12.函数是函数的导函数,且函数在点处的切线为000:()'()()(),()()()l y g x f x x x f x F x f x g x ==-+=-,如果函数在区间上的图像如图所示, 且,那么( )A .是的极大值点B .=是的极小值点C .不是极值点D .是极值点二、填空题:本大题共4小题,每小题5分。
河南省信阳市商城县上石桥高中2019-2020学年高二数学下学期期中试题 文一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.复数⎝ ⎛⎭⎪⎫i -1i 3的虚部是( ) A.-8 B.-8i C.8D.02.下面4个散点图中,不适合线性回归模型拟合的两个变量是( )3.设1a <1b <0,则在①a 2>b 2;②a+b>2ab ;③ab<b 2;④a 2+b 2>|a|+|b|.这4个不等式中,恒成立的不等式的个数为( ) A.0个 B.1个 C.2个D.3个4.上一个n 层台阶,若每次可上一层或两层,设所有不同的上法的总数为f(n),则下列猜想正确的是( ) A.f(n)=nB.f(n)=f(n -1)+f(n -2)C.f(n)=f(n -1)×f(n-2)D.f(n)=⎩⎪⎨⎪⎧n ,n =1,2,f (n -1)+f (n -2),n≥35.某一算法流程图如图,输入x =1得结果为( )A.0B.1C.2D.36.某市为了缓解交通压力,实行机动车辆限行政策,每辆机动车每周一到周五都要限行一天,周末(周六和周日)不限行.某公司有A ,B ,C ,D ,E 五辆车,每天至少有四辆车可以上路行驶.已知E 车周四限行,B 车昨天限行,从今天算起,A ,C 两车连续四天都能上路行驶,E 车明天可以上路,由此可知下列推测一定正确的是( ) A.今天是周四 B.今天是周六 C.A 车周三限行D.C 车周五限行7.下列四个命题中,正确的个数为( ) ①满足z =1z的复数,只有±1;②若a ,b∈R ,且a =b ,则(a -b)+(a +b)i 是纯虚数; ③若复数z 1,z 2满足z 1z 2∈R ,则z 1=z -2;④在复平面内,复数m +im -i对应的点位于第一象限,则实数m 的取值范围是(1,+∞)A.0个B.1个C.2个D.3个8.若x ,y 是正数,则⎝ ⎛⎭⎪⎫x +12y 2+⎝ ⎛⎭⎪⎫y +12x 2的最小值是( ) A.3B.72C.4D.929.在回归分析中,代表了数据点和它在回归直线上相应位置的差异的是( ) A.总偏差平方和 B.残差平方和 C.回归平方和D.相关指数R 210.如果根据性别与是否爱好运动的列联表得到K 2≈3.852>3.841,所以判断性别与运动有关,那么这种判断犯错的可能性不超过( )A.2.5%B.0.5%C.1%D.5%11.(2018·北京西城联考)设1<x<2,则lnx x ,(lnx x )2,lnx2x 2的大小关系是( )A .(lnx x )2<lnx x <lnx2x 2B.lnx x <(lnx x )2<lnx2x 2 C .(lnx x )2<lnx 2x 2<lnx xD.lnx 2x 2<(lnx x )2<lnx x12.将1,2,3,…,9这9个数填在如图的9个空格中,要求每一行从左到右,第一列从上到下依次增大,当3,4固定在图中位置时,填写空格的方法种数为( )A.6种 C.18种D.24种二、填空题(本大题共4小题,每小题5分,共20分.把答案填在题中横线上)13.已知i 为虚数单位,复数a +3i2i的实部与虚部相等,则实数a =________. 14.对任意非零实数a ,b ,定义a ⊗b 的算法原理如程序框图所示,设a 为函数y =x 2-2x +3(x∈R )的最小值,b 为抛物线y 2=8x 的焦点到准线的距离,则计算机执行该程序后输出的结果是__________.15.各项均为正数的等比数列{a n }的前n 项和为S n ,若a 2·a 6=4,a 3=1,则(S n +94)22a n 的最小值为________.16.已知两个圆:x 2+y 2=1①与x 2+(y -3)2=1②,则由①式减去②式可得上述两圆的对称轴方程,将上述命题在曲线仍为圆的情况下加以推广,即要求得到一个更一般的命题,而已知命题应成为所推广命题的一个特例,推广的命题为:_____________________________ ________________________________________________________________________. 三、解答题(本大题共6小题,共70分,解答应写出文字说明、证明过程或演算步骤) 17.(10分)设复数z =lg(m 2-2m -2)+(m 2+3m +2)i ,试求实数m 为何值时,z 对应的点位于复平面的第二象限?18.(12分)为调查某地区老年人是否需要志愿者提供帮助,用简单随机抽样方法从该地区调查了500位老年人,结果如下:(1)(2)能否有99%的把握认为该地区的老年人是否需要志愿者提供帮助与性别有关?(3)根据(2)的结论,能否提出更好的调查方法来估计该地区的老年人中,需要志愿者提供帮助的老年人的比例?说明理由.附:K 2=n (ad -bc )2(a +b )(c +d )(a +c )(b +d )19.(12分)如右图所示,在平面上,设h a ,h b ,h c 分别是△ABC 三条边上的高,P 为△ABC 内任意一点,P 到相应三边的距离分别为p a ,p b ,p c ,可以得到结论p a h a +p b h b +p ch c=1.通过类比写出在空间中的类似结论,并加以证明.20.(12分)一种计算装置,有一个数据输入口A 和一个运算结果输出口B ,执行的运算程序是:①当从A 口输入自然数1时,从B 口输出实数13,记为f(1)=13;②当从A 口输入自然数n(n≥2)时,在B 口得到的结果f(n)是前一结果f(n -1)的2n -32n +1倍.(1)求f(2),f(3)的值;(2)归纳猜想f(n)的表达式,并证明;(3)求∑ni =1f(i).21.(12分)电视传媒公司为了解某地区电视观众对某类体育节目的收视情况,随机抽取了100名观众进行调查.下面是根据调查结果绘制的观众日均收看该体育节目时间的频率分布直方图:将日均收看该体育节目时间不低于40分钟的观众称为“体育迷”,已知“体育迷”中有10名女性.(1)根据已知条件完成下面的2×2列联表,并据此资料你是否认为“体育迷”与性别有关?(2)已知“超级体育迷”中有2名女性.若从“超级体育迷”中任意选取2人,求至少有1名女性观众的概率.附:k2=n(ad-bc)2(a+b)(c+d)(a+c)(b+d).22.(12分)已知函数f(x)=x 2lnx -13ax 3-32x 2.(1)若函数y =f(x)在定义域上单调递减,求实数a 的取值范围; (2)设函数f(x)有两个极值点x 1,x 2,求证:ln(x 1x 2)>4.参考答案一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.复数⎝ ⎛⎭⎪⎫i -1i 3的虚部是( )A.-8B.-8iC.8D.0答案 A解析 ⎝ ⎛⎭⎪⎫i -1i 3=⎝ ⎛⎭⎪⎫i -i i 23=(2i)3=-8i.故选A.2.下面4个散点图中,不适合线性回归模型拟合的两个变量是( )答案 A解析 由散点图可以看出C ,D 的样本点分布在一条直线附近,B 的样本点分布在一条抛物线的附近,可以转化为线性回归模型.而A 的样本点则是散落的分布,没有集中的趋势.故选A.3.设1a <1b <0,则在①a 2>b 2;②a+b>2ab ;③ab<b 2;④a 2+b 2>|a|+|b|.这4个不等式中,恒成立的不等式的个数为( ) A.0个 B.1个 C.2个 D.3个答案 B解析 因为1a <1b<0,所以b<a<0,所以a 2<b 2,故①错;a +b<0,2ab>0,故②错;ab<b 2,③恒成立;当a =-14,b =-12时,a 2+b 2=516,|a|+|b|=34,故④错.综上,只有③恒成立.故选B.4.上一个n 层台阶,若每次可上一层或两层,设所有不同的上法的总数为f(n),则下列猜想正确的是( ) A.f(n)=nB.f(n)=f(n -1)+f(n -2)C.f(n)=f(n -1)×f(n-2)D.f(n)=⎩⎪⎨⎪⎧n ,n =1,2,f (n -1)+f (n -2),n≥3答案 D解析 当n =1时,f(1)=1;当n =2时,f(2)=2;当n≥3时,由于每次只能上一层或两层,因此f(n)=f(n -1)+f(n -2).故选D. 5.某一算法流程图如图,输入x =1得结果为( )A.0B.1C.2D.3答案 B解析 当x =1时,12不是整数,故y =x =1.故选B.6.某市为了缓解交通压力,实行机动车辆限行政策,每辆机动车每周一到周五都要限行一天,周末(周六和周日)不限行.某公司有A ,B ,C ,D ,E 五辆车,每天至少有四辆车可以上路行驶.已知E 车周四限行,B 车昨天限行,从今天算起,A ,C 两车连续四天都能上路行驶,E 车明天可以上路,由此可知下列推测一定正确的是( )A.今天是周四B.今天是周六C.A 车周三限行D.C 车周五限行答案 A解析 在限行政策下,要保证每天至少有四辆车可以上路行驶,周一到周五每天只能有一辆车限行.由周末不限行,B 车昨天限行知,今天不是周一,也不是周日;由E 车周四限行且明天可以上路可知,今天不是周三;由E 车周四限行,B 车昨天限行知,今天不是周五;从今天算起,A ,C 两车连续四天都能上路行驶,如果今天是周二,A ,C 两车连续上路行驶到周五,只能同时在周一限行,不符合题意;如果今天是周六,则B 车周五限行,又E 车周四限行,所以A ,C 两车连续上路行驶到周二,只能同时在周三限行,不符合题意.所以今天是周四.故选A.7.下列四个命题中,正确的个数为( ) ①满足z =1z的复数,只有±1;②若a ,b∈R ,且a =b ,则(a -b)+(a +b)i 是纯虚数; ③复数z∈R 的充要条件是z =z -;④在复平面内,复数m +im -i 对应的点位于第一象限,则实数m 的取值范围是(1,+∞)A.0个B.1个C.2个D.3个答案 D解析 只有②不正确,如a =b =0时,对应复数为0,是实数.故选D. 8.若x ,y 是正数,则⎝ ⎛⎭⎪⎫x +12y 2+⎝ ⎛⎭⎪⎫y +12x 2的最小值是( ) A.3B.72C.4D.92答案 C9.在回归分析中,代表了数据点和它在回归直线上相应位置的差异的是( ) A.总偏差平方和 B.残差平方和 C.回归平方和 D.相关指数R 2答案 B解析 y i -y ^=e ^i ,∑ni =1 e ^i 2为残差平方和.故选B.10.如果根据性别与是否爱好运动的列联表得到K 2≈3.852>3.841,所以判断性别与运动有关,那么这种判断犯错的可能性不超过( ) A.2.5% B.0.5% C.1% D.5%答案 D解析 ∵P(K 2≥3.841)≈0.05,故“判断性别与运动有关”出错的可能性为5%.11.“所以9的倍数(m)都是3的倍数(p),某奇数(s)是9的倍数(m),故某奇数(s)是3的倍数(p).”上述推理得( ) A.小前提错 B.结论错 C.正确 D.大前提错答案 C解析 前提和结论都是正确的.故选C.12.将1,2,3,…,9这9个数填在如图的9个空格中,要求每一行从左到右,第一列从上到下依次增大,当3,4固定在图中位置时,填写空格的方法种数为( )A.6种C.18种D.24种答案 A解析3,4固定,则1,2,9也固定,当x=5时,①m为6,则y,n为6,m,n可互换有2种. 同理当y为5时,也有1+2=3种.∴有2×(1+2)=6种.故选A.二、填空题(本大题共4小题,每小题5分,共20分.把答案填在题中横线上)13.已知i为虚数单位,复数a+3i2i的实部与虚部相等,则实数a=________.答案-3解析a+3i2i=(a+3i)i-2=32-ai2,由题意知32=-a2,解得a=-3.14.(高考真题·湖北卷)阅读如图所示的程序框图,运行相应的程序,输出的结果i=________.答案 5解析从程序框图知,a=10,i=1;a=5,i=2;a=16,i=3;a=8,i=4;a=4,i=5.故输出i=5.15.许多因素都会影响贫穷,教育也许是其中之一.在研究这两个因素的关系时,收集了美国50个州的成年人受过9年或更少教育的百分比(x)和收入低于官方规定的贫困线的人数占本州人数的百分比(y)的数据,建立的回归直线方程如下:y=0.8x+4.6,估计值0.8说明______________________,成年人受过9年或更少教育的百分比(x)和收入低于官方规定的贫困线人数占本州人数的百分比(y)之间的相关系数r________(填“大于0”或“小于0”).答案一个地区受过9年或更少教育的百分比每增加1%,收入低于官方规定的贫困线的人数占本州人数的百分比将增加0.8%左右大于0解析由回归分析可知.16.已知两个圆:x2+y2=1①与x2+(y-3)2=1②,则由①式减去②式可得上述两圆的对称轴方程,将上述命题在曲线仍为圆的情况下加以推广,即要求得到一个更一般的命题,而已知命题应成为所推广命题的一个特例,推广的命题为:_____________________________ ________________________________________________________________________.答案设两圆方程为(x-a)2+(y-b)2=r2,(x-c)2+(y-d)2=r2(a≠c或b≠d),则由两方程相减得两圆的对称轴方程为2(c-a)x+2(d-b)y+a2+b2-c2-d2=0解析这是一个类比推理题,由两相交圆将方程相减可以得到相交弦方程知,只需将两同半径的一般圆方程相减消去二次项即可.但要注意得出的结论必须是正确的.三、解答题(本大题共6小题,共70分,解答应写出文字说明、证明过程或演算步骤) 17.(10分)设复数z =lg(m 2-2m -2)+(m 2+3m +2)i ,试求实数m 为何值时,z 对应的点位于复平面的第二象限?解析 要使z 对应的点位于复平面内的第二象限, 则⎩⎪⎨⎪⎧m 2-2m -2>0,lg (m 2-2m -2)<0,m 2+3m +2>0.解得-1<m<1-3或1+3<m<3.18.(12分)先解答(1),再通过结果类比解答(2).(1)求证:tan ⎝⎛⎭⎪⎫x +π4=1+tanx 1-tanx ; (2)设x∈R ,a≠0,f(x)是非零函数,且函数f(x +a)=1+f (x )1-f (x ),试问f(x)是周期函数吗?证明你的结论.证明 (1)tan ⎝⎛⎭⎪⎫x +π4=tan π4+tanx1-tan π4tanx=1+tanx 1-tanx .(2)类比猜想:f(x)是以T =4a 为周期的周期函数. 因为f(x +2a)=f(x +a +a)=1+f (x +a )1-f (x +a )=1+1+f (x )1-f (x )1-1+f (x )1-f (x )=-1f (x ), 所以f(x +4a)=-1f (x +2a )=f(x).所以f(x)是以T =4a 为周期的周期函数.19.(12分)某大型企业人力资源部为了研究企业员工的工作积极性和对待企业改革态度的关系,随机抽取了189名员工进行调查,所得数据如下表所示:解析 由公式,得K 2=189×(54×63-40×32)294×95×86×103≈10.759.因为10.759>7.879,所以有99.5%的把握说抽样员工对待企业改革的态度与工作积极性是有关的,可以认为企业的全体员工对待企业改革的态度与其工作积极性是有关的.20.(12分)已知a ,b ,c 表示△ABC 的边长,m>0,求证:a a +m +b b +m >cc +m. 证明 设f(x)=xx +m(x>0),且0<x 1<x 2,则f(x 2)-f(x 1)=x 2x 2+m -x 1x 1+m =m (x 2-x 1)(x 1+m )(x 2+m ).∵m>0,0<x 1<x 2,∴m+x 1>0,m +x 2>0,x 2-x 1>0. ∴f(x 2)-f(x 1)>0,即f(x 2)>f(x 1). ∴f(x)在(0,+∞)上为增函数. 在△ABC 中,a +b>c ,则a +b a +b +m >cc +m .∴c c +m <a a +b +m +b a +b +m <a a +m +b b +m. ∴原不等式成立.21.(12分)一种计算装置,有一个数据输入口A 和一个运算结果输出口B ,执行的运算程序是:①当从A 口输入自然数1时,从B 口输出实数13,记为f(1)=13;②当从A 口输入自然数n(n≥2)时,在B 口得到的结果f(n)是前一结果f(n -1)的2n -32n +1倍.(1)求f(2),f(3)的值;(2)归纳猜想f(n)的表达式,并证明;(3)求∑ni =1f(i). 解析 (1)由题可知f(n)=2n -32n +1f(n -1),n≥2. ∴f(2)=2×2-32×2+1×13=115,同理得f(3)=135.(2)由f(1)=13=11×3,f(2)=115=13×5,f(3)=135=15×7.归纳猜想:f(n)=1(2n -1)(2n +1).∵f (n )f (n -1)=2n -32n +1,∴f (2)f (1)·f (3)f (2)·f (4)f (3)·…·f (n )f (n -1)=15·37·59·…·2n -32n +1,从而f (n )f (1)=3(2n -1)(2n +1).∴f(n)=1(2n -1)(2n +1).(3)∑ni =1f(i)=11×3+13×5+15×7+…+1(2n -1)×(2n +1)=12⎣⎢⎡⎝⎛⎭⎪⎫1-13+⎝ ⎛⎭⎪⎫13-15+⎝ ⎛⎭⎪⎫15-17+…+⎦⎥⎤⎝ ⎛⎭⎪⎫12n -1-12n +1=12⎝ ⎛⎭⎪⎫1-12n +1=n 2n +1. 22.(12分)电视传媒公司为了解某地区电视观众对某类体育节目的收视情况,随机抽取了100名观众进行调查.下面是根据调查结果绘制的观众日均收看该体育节目时间的频率分布直方图:将日均收看该体育节目时间不低于40分钟的观众称为“体育迷”,已知“体育迷”中有10名女性.(1)根据已知条件完成下面的2×2列联表,并据此资料你是否认为“体育迷”与性别有关?非体育迷体育迷合计男女10 55合计(2)已知“超级体育迷”中有2名女性.若从“超级体育迷”中任意选取2人,求至少有1名女性观众的概率.附:k2=n(ad-bc)2(a+b)(c+d)(a+c)(b+d).P(k2≥k0) 0.05 0.01k0 3.841 6.635解析(1)25人,从而2×2列联表如下:将2×2k 2=n (ad -bc )2(a +b )(c +d )(a +c )(b +d )=100×(30×10-45×15)275×25×45×55=10033≈3.030.因为3.030<3.841,所以没有理由认为“体育迷”与性别有关.(2)由频率分布直方图可知,“超级体育迷”为5人,从而一切可能结果所组成的基本事件空间为Ω={(a 1,a 2),(a 1,a 3),(a 2,a 3),(a 1,b 1),(a 1,b 2),(a 2,b 1),(a 2,b 2),(a 3,b 1),(a 3,b 2),(b 1,b 2)}.其中a i 表示男性,i =1,2,3.b j 表示女性,j =1,2.Ω由10个基本事件组成,而且这些基本事件的出现是等可能的. 用A 表示“任选2人中,至少有1人是女性”这一事件,则A ={(a 1,b 1),(a 1,b 2),(a 2,b 1),(a 2,b 2),(a 3,b 1),(a 3,b 2),(b 1,b 2)}, 事件A 由7个基本事件组成,因而P(A)=710.。
河南省信阳市商城县高级中学2019年高二数学理测试题含解析一、选择题:本大题共10小题,每小题5分,共50分。
在每小题给出的四个选项中,只有是一个符合题目要求的1. 设α、β、γ为两两不重合的平面,l、m、n为两两不重合的直线.给出下列四个命题:①若α⊥γ,β⊥γ,则α∥β;②若m?α,n?α,m∥β,n∥β,则α∥β;③若α∥β,l?α,则l∥β;④若α∩β=l,β∩γ=m,γ∩α=n,l∥γ,则m∥n.其中真命题的个数是( )参考答案:B略2. 椭圆:,左右焦点分别是,焦距为,若直线与椭圆交于点,满足,则离心率是()A. B. C.D.参考答案:B略3. 给出以下结论:(1)命题“存在”的否定是:“不存在;(2)复数在复平面内对应的点在第二象限(3)为直线,为两个不同平面,若,则(4)已知某次高三模拟的数学考试成绩~,统计结果显示,则.其中结论正确的个数为( )A.4B.3C.2D.1参考答案:D略4. 椭圆上一点P到左焦点的距离为,则P到右准线的距离为()A.B.C.D.参考答案:C【考点】椭圆的简单性质.【分析】设P(x0,y0),由题意可得|PF1|=a+ex0=3,解得x0.再利用P到右准线的距离d=﹣x0即可得出.【解答】解:设P(x0,y0),由椭圆上一点P到左焦点F1的距离为,即|PF1|=a+ex0=,∴a=,e=解得x0=﹣. =3,∴P到右准线的距离d=3=.故选:C.5. 有5位学生和2位老师并坐一排合影,若教师不能坐在两端,且要坐在一起,则有多少种不同坐法()A.7! 种B.240种C.480种D.960种参考答案:D6. 一工厂生产的100个产品中有90个一等品,10个二等品,现从这批产品中抽取4个,则其中恰好有一个二等品的概率为()A .B .C.D..参考答案:D7. 在△ABC中,内角A,B,C的对边分别是,若,则等于().A. B. C. D.参考答案:C8. 已知=b+i(a,b∈R),其中i为虚数单位,则a+b=()A.﹣1 B.1 C.2 D.3参考答案:B【考点】复数代数形式的混合运算.【分析】先化简复数,再利用复数相等,解出a、b,可得结果.【解答】解:由得a+2i=bi﹣1,所以由复数相等的意义知a=﹣1,b=2,所以a+b=1另解:由得﹣ai+2=b+i(a,b∈R),则﹣a=1,b=2,a+b=1.故选B.9. 无穷等比数列的各项和为,若数列满足,则数列的各项和为()(A)(B)(C)(D)参考答案:A10. 若命题“p∧(¬q)”与“¬p”均为假命题,则()A.p真q真B.p假q真C.p假q假D.p真q假参考答案:A【考点】命题的真假判断与应用.【分析】由已知结合复合命题真假判断的真值表,可得答案.【解答】解:∵命题“¬p”为假命题,∴p为真命题,又∵“p∧(¬q)”为假命题,故命题“¬q”为假命题,∴q为真命题,故选:A.【点评】本题以命题的真假判断与应用为载体,考查了复合命题,熟练掌握复合命题真假判断的真值表,是解答的关键.二、填空题:本大题共7小题,每小题4分,共28分11. 在等差数列中,若,则有成立.类比上述性质,在等比数列中,若,则有.参考答案:略12. 通过调查发现,某班学生患近视的概率为0.4,现随机抽取该班的2名同学进行体检,则他们都不近似的概率是.参考答案:0.36【考点】相互独立事件的概率乘法公式.【专题】概率与统计.【分析】由题意可得每个学生不近视的概率为0.6,再利用相互独立事件的概率乘法公式求得随机抽取该班的2名同学进行体检,他们都不近似的概率.【解答】解:由题意可得每个学生不近视的概率为0.6,随机抽取该班的2名同学进行体检,他们都不近似的概率是0.6×0.6=0.36,故答案为:0.36.【点评】本题主要考查相互独立事件的概率乘法公式,所求的事件的概率与它的对立事件的概率之间的关系,属于基础题.13. 若三点A(3,3),B(a,0),C(0,b)(其中a?b≠0)共线,则+= .参考答案:【考点】三点共线.【分析】利用向量的坐标公式:终点坐标减去始点坐标,求出向量的坐标;据三点共线则它们确定的向量共线,利用向量共线的充要条件列出方程得到a,b的关系.【解答】解:∵点A(3,3)、B(a,0)、C(0,b)(ab≠0)∴=(a﹣3,﹣3),=(﹣3,b﹣3),∵点A(3,3)、B(a,0)、C(0,b)(ab≠0)共线∴∴(a﹣3)×(b﹣3)=﹣3×(﹣3)所以ab﹣3a﹣3b=0,∴+=,故答案为:.【点评】本题考查利用点的坐标求向量的坐标、向量共线的充要条件、向量共线与三点共线的关系.14. 若某几何体的三视图如图所示,则此几何体的表面积是 .参考答案:72+15. “若x∈R,使得x2+(a-1)x+1<0”是真命题,则实数a的取值范围是参考答案:16. 下列语句中:①②③④⑤⑥其中是赋值语句的个数为()A.6 B.5 C.4D.3参考答案:C17. 设A={x|x2-2x-3>0},B={x|x2+ax+b≤0},若A∪B=R,A∩B=(3,4],则a +b=_____。
河南省信阳市2019学年高二下学期期中考试数学(理)试卷【含答案及解析】姓名___________ 班级____________ 分数__________一、选择题1. 数列1,3,6,10, x, 21,…中的 x 等于A. 17B. 16C. 15D. 142. 关于复数的四个命题::复数对应的点在第二象限,:,:的共轭复数为,:z的虚部为.其中的真命题个数为A. 4B. 3C. 2D. 13. 函数的导函数是A. B.C. D.4. 若函数满足,则 ( )A.-3 B . -6 ___________ C .-9 D .-125. 已知曲线在处的切线的斜率为,则实数的值为A. B. - C. D.6. 已知上的可导函数的图象如图所示,则的解集为A. B.C. D.7. 某单位安排甲、乙、丙三人在某月1日至12日值班,每人4天.甲说:我在1日和 3 日都有值班;乙说:我在 8 日和 9 日都有值班;丙说:我们三人各自值班的日期之和相等.据此可判断丙必定值班的日期是A. 2 日和5日 ___________ B. 5 日和6日C . 6 日和11日________________D . 2 日和11日8. 若由曲线 y = x 2 + k 2 与直线 y =2 kx 及 y 轴所围成的平面图形的面积 S=9,则 k =A. 3B. -3或3C. 3D. -39. 面积为的平面凸四边形的第条边的边长为,此四边形内任一点到第条边的距离记为,若,则,类比以上性质,体积为的三棱锥的第个面的面积记为,此三棱锥内任一点到第个面的距离记为,若,则等于()A. B. C. D.10. 若点在函数的图像上,点在函数的图像上,则的最小值为A. B. 8 C. D. 211. 下列命题中①若 ,则函数在取得极值;②直线与函数的图像不相切;③ 若(为复数集),且的最小值是;④定积分.正确的有.()A .①④________________________B .③④____________________C .②④ ____________________________D .②③④12. 设函数是定义在上的可导函数,其导函数为,且有,则不等式的解集A. B.C. D.二、填空题13. 已知为实数,复数为纯虚数,则_________ .14. 若曲线与曲线在交点处有公切线,则___________15. 关于 x 的方程 x 3 -3 x 2 - a =0有三个不同的实数解,则实数 a 的取值范围是________.16. 记当时,观察下列等式:,,,,,可以推测,三、解答题17. 设复数z=-3cosθ+2isinθ.(1)当θ=时,求|z|的值;(2)若复数z所对应的点在直线x+3y=0上,求的值.18. (1) 已知函数求(2)求曲线与轴以及直线所围图形的面积.19. 设函数为奇函数,其图象在点处的切线与直线垂直,导函数的最小值为.( 1 )求的值;( 2 )求函数的单调递增区间,并求函数在上的最大值和最小值.20. 是否存在常数,使等式对于一切都成立?若不存在,说明理由;若存在,请用数学归纳法证明?21. 已知函数。
2019-2020年高二下学期期中联考数学理试题含答案一、选择题(本题12小题,每题5分共60分)1.已知复数的共轭复数(为虚数单位),则在复平面内对应的点位于() A.第一象限B.第二象限C.第三象限D.第四象限2.若命题:,命题:,则是的( )A.必要不充分条件B.充要条件C.充分不必要条件D.既不充分也不必要条件3.几何体的三视图如图所示,则该几何体的体积为()A.B.C.D.4.设函数,则该函数曲线在处的切线方程是( )A. B.C. D.5.观察按下列顺序排列的等式:,,,,…,猜想第个等式应为( )A.B.C.D.6.如图,在直三棱柱ABC-A1B1C1中,∠ACB=90°,AA1=2,AC=BC=1,则异面直线A1B与AC所成角的余弦值是( )A. B. C. D.7.已知抛物线的顶点在原点,焦点在轴上,抛物线上的点到焦点的距离为4,则的值为() A.6或-6 B.2或-2 C.4或-4 D.12或-128. 七名同学站成一排照毕业纪念照,其中甲必须站在正中间,并且乙,丙两位同学要站在一起,则不同的排法有( )A .240种 B.192种 C.120种 D.96种9. 若的展开式中的系数为,则的值等于( )A. B. C. D.10.设函数在R上可导,其导函数为,且函数的图象如图所示,则下列结论中一定成立的是() A.函数有极大值和极小值B.函数有极大值和极小值C.函数有极大值和极小值D.函数有极大值和极小值11.已知双曲线,过其右焦点作圆的两条切线,切点记作,,双曲线的右顶点为,,其双曲线的离心率为( )A.B.C.D.12. 如图,已知正四棱锥所有棱长都为1,点是侧棱上一动点,过点垂直于的截面将正四棱锥分成上、下两部分.记,截面下面部分的体积为,则函数的图象大致为()二、填空题(本题4小题,每题5分,共20分)13.已知抛物线的焦点是双曲线的右焦点,则双曲线的渐近线方程为14. 将甲、乙、丙、丁四名学生分配到三个不同的班,每个班至少分到一名学生,且甲、乙两名学生不能分到同一个班,则不同分法的种数为__________.15.如图,由曲线和直线,,所围成的图形(阴影部分)的面积的最小值是__________16.我们把形如的函数称为幂指函数,幂指函数在求导时,可以利用对数法:在函数解析式两边取对数得,两边对x 求导数,得 于是()()()[()ln ()()]()x f x y f x x f x x f x ϕϕϕ'''=+, 运用此方法可以求得函数在(1,1)处的切线方程是 .三解答题(本题6小题,17题10分,18-22题各12分,共70分)17.已知的展开式中前三项的系数成等差数列.设.求:(1)的值; (2)的值;(3) 的值;18.平行四边形中,且以为折线,把折起,使平面平面,连接(1)求证:;(2)求二面角 的余弦值.19.已知关于的不等式对任意恒成立;,不等式成立.若为真,为假,求的取值范围.20.设函数(1)当时,求函数的单调区间;(2)当时,方程在区间内有唯一实数解,求实数的取值范围.21.椭圆E: 离心率为,且过.(1)求椭圆E 的方程;(2)已知直线过点,且与开口朝上,顶点在原点的抛物线C 相切于第二象限的一点,直线与椭圆E 交于两点,与轴交与点,若,,且,求抛物线C 的标准方程.22.已知函数在处取得极值2.(1)求的表达式;(2)设函数若对于任意的,总存在唯一的,使得,求实数的取值范围.xx 学年第二学期赣州市十二县(市)期中联考高二年级理科数学试卷答案一.选择题DCCAB DCBAD DA12.解析:选A.“分段”表示函数y =V (x ),根据解析式确定图象.y xD B O M NA ••当0<x <12时,截面为五边形,如图所示. 由SC ⊥平面QEPMN ,且几何体为正四棱锥,棱长均为1,可求得正四棱锥的高h =22,取MN 的中点O ,易推出OE ∥SA ,MP ∥SA ,NQ ∥SA ,则SQ =SP =AM =AN =2x ,四边形OEQN 和OEPM 为全等的直角梯形,则V S -AMN =13×12·AM ·AN ·h =23x 2, 此时V (x )=V S -ABCD -V S -AMN -V S -EQNMP =26-23x 2-13×(22x -32x 2)x =2x 3-2x 2+26⎝⎛⎭⎫0<x <12, 非一次函数形式,排除选项C ,D.当E 为SC 中点时,截面为三角形EDB ,且S △EDB =24. 当12<x <1时,S 截面24=(1-x 12)2 ⇒S 截面=2(1-x )2. 此时V (x )=23(1-x )3⇒V ′(x)=-2(1-x )2. 当x →1时,V ′→0,则说明V (x )减小越来越慢,排除选项B.二.填空题13. 14. 30 15. 14 16.16. 试题分析:仿照题目给定的方法,所以,所以,所以,即:函数在处的切线的斜率为1,故切线方程为:,即,故答案为:.三.解答题17解:(1) 由题设,得C 0n +14×C 2n =2×12×C 1n, 即n 2-9n +8=0,解得n =8,n =1(舍). (3)(2). ,令8-r =5r =3,所以a 5=7 (6)(3) 在等式的两边取x =-1,得a 0-a 1+a 2-a 3+…+a 8=1256…………….10 18.解:(1)在中,2222cos 603,BD AB AD AB AD =+-⋅⋅⋅=所以所以,因为平面平面,所以平面,所以(5分)(2)在四面体ABCD 中,以D 为原点,DB 为轴,DC 为轴,过D 垂直于平面BDC 的射线为轴,建立如图的空间直角坐标系. 则D (0,0,0),B (,0,0),C (0,1,0),A (,0,1)(6分)设平面ABC 的法向量为,而由得:取(8分)再设平面DAC 的法向量为而由得:取 (10分)所以即二面角B-AC-D 的余弦值是 (12分)19.解:关于的不等式对任意恒成立,即在上恒成立。
数学(理)试卷
一、选择题(每小题3分,共36分)
1.已知1
2,2
x y x x >=+-,则y 的最小值为( )
A .2
B .1
C .4
D .3
2.若f (x )=x 2-2x -4ln x ,则)(x f '>0的解集为( )
A .(0,+∞)
B .()∞+∞,),(21--Y
C .(-1,0)
D .(2,+∞) 3.若命题:0,
,tan 14p x x π⎡⎤
∀∈≤⎢⎥⎣⎦
,则命题p 的否定为( ) A .00,
,tan 14x x π⎡⎤∃∈≤⎢⎥⎣⎦ B .00,,tan 14x x π⎡⎤
∃∈<⎢⎥⎣⎦
C .00,
,tan 14x x π⎡⎤
∃∈≥⎢⎥⎣⎦ D .00,
,tan 14x x π⎡⎤
∃∈>⎢⎥⎣⎦
4.如果方程22
154
x y m m +=--表示焦点在y 轴上的椭圆,则m 的取值范围是( ).
A .45m <<
B .92
m > C .942m <<
D .
9
52
m << 5.在正方体ABCD -A 1B 1C 1D 1中,点M 为棱C 1D 1的中点,则异面直线AM 与BD 所成角的余弦值为( )
A .
2
B C .
6
D 6.双曲线22
221(0,0)x y a b a b
-=>>的渐近线方程为2y x =±,则双曲线的离心率为( )
A B C D 7.已知a ,b 均为实数,则下列说法一定成立....
的是( ) A .若a b >,c d >,则ab cd > B .若
11
a b
>,则a b < C .若a b >,则22a b >
D .若||a b <,则0a b +>
8.
1
1 1d
e
x
x
⎛⎫
-
⎪
⎝⎭
⎰的值为()
A.e2
-B.e C.e1
+D.e1-
9.已知m是直线,α,β是两个不同平面,且m∥α,则m⊥β是α⊥β的()
A.充分不必要条件B.必要不充分条件
C.充分必要条件D.既不充分也不必要条件
10.已知抛物线22(0)
x py p
=>的焦点F是椭圆
22
22
1(0)
y x
a b
a b
+=>>的一个焦点,且该抛物线的准线与椭圆相交于A、B两点,若FAB
∆是正三角形,则椭圆的离心率为()A.
1
2
B.
2
C.
3
D.
3
11.如图,正方体ABCD-A1B1C1D1的棱长为2,E是棱AB的中点,F是侧面AA1D1D内一点,若EF∥平面BB1D1D,则EF长度的范围为()
A.2,3]B.2,5]C.2,6]D.2,7]
12.函数
1
()e ax
f x x
x
-
=-在()
0,∞
+上有两个零点,则实数a的取值范围是()
A.
2
,
e
⎛⎫
-∞
⎪
⎝⎭
B.
2
0,
e
⎛⎫
⎪
⎝⎭
C.()
1,e D.12,
e e
⎛⎫
⎪
⎝⎭
二、填空题(每小题3分,共12分)
13.设,x y满足约束条件
20
220
220
x y
x y
x y
+-≤
⎧
⎪
--≤
⎨
⎪-+≥
⎩
,则3
z x y
=-的最小值为_______.
14
.设抛物线上一点到轴的距离是,则点到该抛物线焦点的距离是____.
15.记S n 为等比数列{a n }的前n 项和.若2
14613
a a a ==,,则S 5=____________. 16.已知y kx
b =+是函数()ln f x x x =+的切线,则2k b +的最小值为______.
三、解答题(前两题每题各8分,后三题每题各12分,共52分)
17.已知数列{}n a 为等差数列,公差0d >,且1427a a =,424S =. (1)求数列{}n a 的通项公式; (2)令1
1
n n n b a a +=⋅,求数列{}n b 的前n 项和n T .
18.在四棱锥P ABCD -中,平面PAD ⊥平面ABCD ,PAD △为等边三角形,
1
2
AB AD CD ==,AB AD ⊥,AB CD ∥,点M 是PC 的中点.
(1)求证:平面PAD ;
(2)求二面角P ﹣BC ﹣D 的余弦值.
数,导函数为 ,已知()2 0f '=. 19.已知函(1)求a 的值;
(2)求函数()f x 在区间[33]-,
上的最值.
//
BM )(x f ',)(13
1)(3
R a ax x x f ∈+-=
20.己知椭圆()2222:10x y M a b a b
+=>>的一个顶点坐标为()2,0y x m =+交椭圆于不同的两点,A B .
(1)求椭圆M 的方程;
(2)设点()1,1C ,当ABC ∆的面积为1时,求实数m 的值.
21.已知函数()ln (1)f x x a x =--,R a ∈. (1)讨论函数()f x 的单调性; (2)当1x ≥时,ln ()1
x
f x x ≤+恒成立,求实数a 的取范围.
参考答案
1.C2.C3.D4.D5.C6.D7.D8.A9.A10.C11.C12.B
取212ln (0)11()e
0e e ax
ax ax f x x x x x x a x x x
---=-
=∴=∴=>∴= 设2ln ()x g x x =,2
1ln '()2x
g x x -=,()g x 在(0,)e 上单调递增,(,)e +∞上单调递减
max 2
()()g x g e e
==
画出函数图像:
根据图像知:20,
e a ⎛⎫∈ ⎪⎝⎭
13.6- 14. 15.
121
3
. 16.2ln2+ 16.根据题意,直线y =kx +b 与函数f (x )=lnx +x 相切,设切点为(m ,lnm +m ),
函数f (x )=lnx +x ,其导数f ′(x )1x =+1,则f ′(m )1
m =+1, 则切线的方程为:y ﹣(lnm +m )=(1m +1)(x ﹣m ),变形可得y =(1
m
+1)x +lnm ﹣1,
又由切线的方程为y =kx +b ,
则k 1
m =
+1,b =lnm ﹣1, 则2k +b 2m =+2+lnm ﹣1=lnm 2
m
++1,
设g (m )=lnm 2m ++1,其导数g ′(m )22
122
m m m m -=-=,
在区间(0,2)上,g ′(m )<0,则g (m )=lnm 2
m ++1为减函数,
在(2,+∞)上,g ′(m )>0,则g (m )=lnm 2
m
++1为增函数,
则g (m )min =g (2)=ln 2+2,即2k +b 的最小值为ln 2+2; 故答案为ln 2+2.。