人教A版选修2-2§1.6微积分基本定理.docx
- 格式:docx
- 大小:142.88 KB
- 文档页数:4
高中数学学习材料
马鸣风萧萧*整理制作
§1.6微积分基本定理
教学目标:
1、能说出微积分基本定理。
2、能运用微积分基本定理计算简单的定积分。
3、能掌握微积分基本定理的应用。
4、会用牛顿-莱布尼兹公式求简单的定积分。
教学重点: 通过探究变速直线运动物体的速度与位移的关系,使学生直观了解微积分基本定理的含义,并能正确运用基本定理计算简单的定积分;
教学难点:微积分基本定理的含义.
教学过程设计
(一)、复习引入,激发兴趣。
【教师引入】同学们,我们来复习一下上节课的内容,请同学们回答以下几个问题: 1. 我们如何确定曲线上一点处切线的斜率呢?
2. 如何求曲线下方的面积?
3. 用“以直代曲”解决问题的思想和具体操作过程是什么呢?
求由连续曲线y=f(x)对应的曲边梯形面积的方法。
我们讲过用定积分定义计算定积分,但其计算过程比较复杂,所以不是求定积分的一般方法。
我们必须寻求计算定积分的新方法,也是比较一般的方法。
(二)、探究新知,揭示概念
变速直线运动中位置函数与速度函数之间的联系
设一物体沿直线作变速运动,在时刻t 时物体所在位置为S(t),速度为v(t)(()v t o ),
则物体在时间间隔12[,]T T 内经过的路程可用速度函数表示为2
1()T T v t dt ⎰。
另一方面,这段路程还可以通过位置函数S (t )在12[,]T T 上的增量12()()S T S T -来表达,即 21()T T v t dt ⎰
=12()()S T S T -
而()()S t v t '=。
对于一般函数()f x ,设()()F x f x '=,是否也有
()()()
b a f x d x F b F a =-⎰
(三)、分析归纳,抽象概括
若上式成立,我们就找到了用()f x 的原函数(即满足()()F x f x '=)的数值差()()F b F a -来计算()f x 在[,]a b 上的定积分的方法。
注:1:定理 如果函数()F x 是[,]a b 上的连续函数()f x 的任意一个原函数,则
()()()b
a f x dx F
b F a =-⎰
证明:因为()x Φ=()x
a f t dt ⎰与()F x 都是()f x 的原函数,故
()F x -()x Φ=C (a x b ≤≤)
其中C 为某一常数。
令x a =得()F a -()a Φ=C ,且()a Φ=
()a a f t dt ⎰=0 即有C=()F a ,故()F x =()x Φ+()F a ∴ ()x Φ=()F x -()F a =()x a
f t dt ⎰ 令x b =,有()()()b
a f x dx F
b F a =-⎰
此处并不要求学生理解证明的过程 为了方便起见,还常用()|b a F x 表示()()F b F a -,即
()()|()()b
b a a f x dx F x F b F a ==-⎰
该式称之为微积分基本公式或牛顿—莱布尼兹公式。
它指出了求连续函数定积分的一般方法,把求定积分的问题,转化成求原函数的问题,是微分学与积分学之间联系的桥梁。
它不仅揭示了导数和定积分之间的内在联系,同时也提供计算定积分的一种有效方法,为后面的学习奠定了基础。
因此它在教材中处于极其重要的地位,起到了承上启下的作用,不仅如此,它甚至给微积分学的发展带来了深远的影响,
是微积分学中最重要最辉煌的成果。
(四)、知识应用,深化理解
例1.计算下列定积分:
(1)2
11dx x ⎰; (2)3211(2)x dx x
-⎰。
解:(1)因为'1(ln )x x
=,所以22111ln |ln 2ln1ln 2dx x x ==-=⎰。
(2))因为2''211()2,()x x x x
==-, 所以3332211111(2)2x dx xdx dx x x -=-⎰⎰⎰233111122||(91)(1)33x x =+=-+-=。
练习:计算
120x dx ⎰ 解:由于313
x 是2x 的一个原函数,所以根据牛顿—莱布尼兹公式有 120x d x ⎰=3101|3
x =33111033⋅-⋅=13 例2.计算下列定积分:
2200
sin ,sin ,sin xdx xdx xdx π
πππ⎰⎰⎰。
由计算结果你能发现什么结论?试利用曲边梯形的面积表示所发现的结论。
解:因为'(cos )sin x x -=,
所以
00sin (cos )|(cos )(cos 0)2xdx x ππ
π=-=---=⎰,
22sin (cos )|(cos 2)(cos )2xdx x ππππ
ππ=-=---=-⎰, 2
200sin (cos )|(cos 2)(cos 0)0xdx x πππ=-=---=⎰. 可以发现,定积分的值可能取正值也可能取负值,还可能是0:
( l )当对应的曲边梯形位于 x 轴上方时(图1.6一3 ) ,定积分的值取正值,且等于曲边梯形的面积;
图1 . 6 一 3 ( 2 )
(2)当对应的曲边梯形位于 x 轴下方时(图 1 . 6 一 4 ) ,定积分的值取负值,且等于曲边梯形的面积的相反数;
( 3)当位于 x 轴上方的曲边梯形面积等于位于 x 轴下方的曲边梯形面积时,定积分的值为0(图 1 .
6 一 5 ) ,且等于位于 x 轴上方的曲边梯形面积减去位于 x 轴下方的曲边梯形面积.
例3.汽车以每小时32公里速度行驶,到某处需要减速停车。
设汽车以等减速度a =1.8米/秒2刹车,问从开始刹车到停车,汽车走了多少距离?
解:首先要求出从刹车开始到停车经过了多少时间。
当t=0时,汽车速度0v =32公里/小时=
3210003600
⨯米/秒≈8.88米/秒,刹车后汽车减速行驶,其速度为0(t)=t=8.88-1.8t v v a -当汽车停住时,速度(t)=0v ,故从
(t)=8.88-1.8t=0v 解得8.88t= 4.931.8≈秒 于是在这段时间内,汽车所走过的距离是
4.93
4.9300(t)(8.88 1.8t)s v dt dt ==-⎰⎰= 4.93201(8.88 1.8t )21.902-⨯≈米,即在刹车后,汽车需走过21.90
米才能停住.
课堂练习
(五)、归纳小结、布置作业
1.微积分基本定理
2.基本初等函数的原函数公式
布置作业:。