数学发展史简介
- 格式:ppt
- 大小:4.58 MB
- 文档页数:7
中国数学发展史概述一、中国数学的起源与早期发展据《易·系辞》记载:「上古结绳而治,后世圣人易之以书契」。
在殷墟出土的甲骨文卜辞中有很多记数的文字。
从一到十,及百、千、万是专用的记数文字,共有13个独立符号,记数用合文书写,其中有十进制制的记数法,出现最大的数字为三万。
算筹是中国古代的计算工具,而这种计算方法称为筹算。
用算筹记数,有纵、横两种方式:表示一个多位数字时,采用十进位值制,各位值的数目从左到右排列,纵横相间﹝法则是:一纵十横,百立千僵,千、十相望,万、百相当﹞,并以空位表示零。
算筹为加、减、乘、除等运算建立起良好的条件。
筹算直到十五世纪元朝末年才逐渐为珠算所取代,中国古代数学就是在筹算的基础上取得其辉煌成就的。
在几何学方面《史记·夏本记》中说夏禹治水时已使用了规、矩、准、绳等作图和测量工具,并早已发现「勾三股四弦五」这个勾股定理﹝西方称勾股定理﹞的特例。
战国时期,齐国人着的《考工记》汇总了当时手工业技术的规范,包含了一些测量的内容,并涉及到一些几何知识,例如角的概念。
战国时期的百家争鸣也促进了数学的发展,一些学派还总结和概括出与数学有关的许多抽象概念。
著名的有《墨经》中关于某些几何名词的定义和命题。
墨家还给出有穷和无穷的定义。
《庄子》记载了惠施等人的名家学说和桓团、公孙龙等辩者提出的论题,强调抽象的数学思想。
这些许多几何概念的定义、极限思想和其它数学命题是相当可贵的数学思想,但这种重视抽象性和逻辑严密性的新思想未能得到很好的继承和发展。
此外,讲述阴阳八卦,预言吉凶的《易经》已有了组合数学的萌芽,并反映出二进制的思想。
二、中国数学体系的形成与奠基这一时期包括从秦汉、魏晋、南北朝,共400年间的数学发展历史。
秦汉是中国古代数学体系的形成时期,为使不断丰富的数学知识系统化、理论化,数学方面的专书陆续出现。
现传中国历史最早的数学专著是1984年在湖北江陵张家山出土的成书于西汉初的汉简《算数书》,与其同时出土的一本汉简历谱所记乃吕后二年,所以该书的成书年代至晚是公元前186年。
数系的发展史简介引言数学是一门古老而重要的学科,数系作为数学的基础,是数学研究中的核心概念之一。
数系的发展历程可以追溯到古代文明时期,经历了数千年的演变与发展。
本文将详细介绍数系的发展史,包括数系的起源、不同数系的出现以及数系的形式化建立等内容。
数系的起源人类最早的数学思想可以追溯到古代文明,如古埃及、古印度和古希腊等。
早期的人类主要通过手指、手掌、石头等物体来进行计数。
这种计数方法被称为自然计数法,属于原始的数系。
自然计数法的局限性在于只适用于小规模的计数,不方便进行大规模的计数和运算。
原始数系的限制原始的数系主要通过物体数量来进行计数,没有明确的数字符号和计算规则。
在原始数系中,数字的表示受到物体的限制,无法进行抽象和扩展。
例如,使用十指计数法,最多只能计到十个。
文字符号的出现随着人类社会的发展,人们逐渐认识到物体数量的局限性。
为了更方便地进行计数和运算,人们开始尝试使用文字符号来表示数值。
最早出现的文字符号可以追溯到古埃及时期的象形文字,其中包含了一些常见的数字符号。
这些象形文字为后来的数学符号的发展奠定了基础。
位值计数法的出现位值计数法是数系发展的一个重要里程碑,也是数学史上的一大突破。
位值计数法是指通过不同位置上的数字来表示不同的数值。
最早使用位值计数法的数系可以追溯到古印度,他们使用的是基于十进制的位值计数法。
随着位值计数法的出现,数字的表示能力大幅提升,大规模计数和运算变得更加容易和高效。
古希腊数学的贡献古希腊是数学发展史上一个重要的阶段,他们对数系的发展做出了重要贡献。
在古希腊,著名数学家毕达哥拉斯将数系视为一个独立的研究领域,并将其与几何学相结合。
他通过研究整数之间的关系,发现了许多数学规律和定理,为数系的进一步发展奠定了基础。
阿拉伯数字的引入阿拉伯数字的引入是数系发展史上的又一个重要里程碑。
阿拉伯数字是源自印度数字系统的一种数字表示方法,由于阿拉伯人将其传入欧洲,因此得名。
阿拉伯数字的特点是简单易懂、易于计数和计算。
数学发展简史数学发展史大致可以分为四个阶段:一、数学起源时期二、初等数学时期三、近代数学时期四、现代数学时期一、数学起源时期(远古——公元前5世纪)这一时期:建立自然数的概念;认识简单的几何图形;算术与几何尚未分开。
数学起源于四个“河谷文明”地域:非洲的尼罗河;这个区域主要是埃及王国:采用10进制,只有加法。
埃及的主要数学贡献:定义了基本的四则运算,并推广到了分数;给出了求近似平方根的方法;他们的几何知识主要是平面图形和立体图形的求积法。
西亚的底格里斯河与幼发拉底河;这个区域主要是巴比伦:采用10进制,并发明了60进制。
巴比伦王国的主要数学贡献可以归结为以下三点:度量矩形,直角三角形和等腰三角形的面积,以及圆柱体等柱体的体积;计数上,没有“零”的概念;天文学上,总结出很多天文学周期,但绝对不是科学。
中南亚的印度河与恒河;东亚的黄河与长江在四个“河谷文明”地域,当对数的认识(计数)变得越来越明确时,人们感到有必要以某种方式来表达事物的这一属性,于是导致了记数。
人类现在主要采用十进制,与“人的手指共有十个”有关。
而记数也是伴随着计数的发展而发展的。
四个“河谷文明”地域的记数归纳如下:刻痕记数是人类最早的数学活动,考古发现有3万年前的狼骨上的刻痕。
古埃及的象形数字出现在约公元前3400年;巴比伦的楔形数字出现在约公元前2400年;中国的甲骨文数字出现在约公元前1600年。
古埃及的纸草书和羊皮书及巴比伦的泥板文书记载了早期数学的内容,年代可以追溯到公元前2000年,其中甚至有“整勾股数”及二次方程求解的记录。
二、初等数学时期(前6世纪——公元16世纪)这个时期也称常量数学时期,这期间逐渐形成了初等数学的主要分支:算术、几何、代数、三角。
该时期的基本成果,构成现在中学数学的主要内容。
这一时期又分为三个阶段:古希腊;东方;欧洲文艺复兴。
下面我们分别介绍:1.古希腊(前6世纪——公元6世纪)毕达哥拉斯——“万物皆数”欧几里得——几何《原本》阿基米德——面积、体积阿波罗尼奥斯——《圆锥曲线论》托勒密——三角学丢番图——不定方程2.东方(公元2世纪——15世纪)1)中国西汉(前2世纪)——《周髀算经》、《九章算术》魏晋南北朝(公元3世纪——5世纪)——刘徽、祖冲之:出入相补原理,割圆术,算术。
数学史数学是一门古老的学科,它伴随着人类文明的产生而产生,至少有四、五千年的历史.但它不是某一个民族或某一个地区的产物,而是世界许多民族、诸多地区世世代代的产物,是人们在生产斗争和科学实践中逐渐形成和发展而成的。
数学的最初的概念和原理在远古时代就萌芽了,经过四千多年世界许多民族的共同努力,才发展到今天这样内容丰富、分支众多、应用广泛的庞大系统。
第一节发展历史一般认为,从远古到现在,数学经历了五个历史阶段.一、数学萌芽时期(公元6世纪以前)在人类历史上,这是原始社会和奴隶社会的初期。
这个时期数学的成就以巴比伦、埃及和中国的数学为代表。
古巴比伦是位于幼发拉底河和底格里斯河两河流域的一个文明古国。
巴比伦王国形成于约公元前19世纪,从出土的古巴比伦的泥板上的楔形文字中发现,古巴比伦人具有算术和代数方面的知识,建立了60进位制的记数系统,掌握了自然数的四则运算,广泛使用了分数,能进行平方、立方和简单的开平方、开立方运算.他们迈出了代数的第一步,能用一些特别的术语和符号代表未知数,能解特殊的几种一元一次、二元一次方程和一元二次方程,甚至某些三次、四次(可化为二次的)和个别指数方程,并且能够把它们应用于天文学和商业等实际问题中去。
几何方面掌握了简单平面图形的面积和简单立体体积的计算方法。
中国是最早使用十进位值制记数法的国家。
早在三千多年前的商代中期,在甲骨文中产生了一套十进制数字和记数法,最大的数字为三万.与此同时,殷人用十个天干和十二个地支组成六十甲子,用以记日、记月、记年。
用阴(——)、阳(一)符号构成八卦表示8种事物,后来发展为64卦。
春秋战国之际,筹算已普遍应用,其记数法是十进位值制。
数的概念从整数扩充到分数、负数,建立了数的四则运算的算术系统。
几何方面,4500年前就有测量工具规、矩、准、绳,有圆方平直的概念。
公元前1100年左右的商高知道“勾三股四弦五”的勾股定理.春秋末战国初的墨子在《墨经》中给出了一些数学定义,包含有许多算术、几何方面的知识和无穷、极限的概念。
数学的发展历史无理数的发现──第一次数学危机大约公元前5世纪,不可通约量的发现导致了毕达哥拉斯悖论。
当时的毕达哥拉斯学派重视自然及社会中不变因素的研究,把几何、算术、天文、音乐称为"四艺",在其中追求宇宙的和谐规律性。
他们认为:宇宙间一切事物都可归结为整数或整数之比,毕达哥拉斯学派的一项重大贡献是证明了勾股定理,但由此也发现了一些直角三角形的斜边不能表示成整数或整数之比(不可通约)的情形,如直角边长均为1的直角三角形就是如此。
这一悖论直接触犯了毕氏学派的根本信条,导致了当时认识上的"危机",从而产生了第一次数学危机。
到了公元前370年,这个矛盾被毕氏学派的欧多克斯通过给比例下新定义的方法解决了。
他的处理不可通约量的方法,出现在欧几里得《原本》第5卷中。
欧多克斯和狄德金于1872年给出的无理数的解释与现代解释基本一致。
今天中学几何课本中对相似三角形的处理,仍然反映出由不可通约量而带来的某些困难和微妙之处。
第一次数学危机对古希腊的数学观点有极大冲击。
这表明,几何学的某些真理与算术无关,几何量不能完全由整数及其比来表示,反之却可以由几何量来表示出来,整数的权威地位开始动摇,而几何学的身份升高了。
危机也表明,直觉和经验不一定靠得住,推理证明才是可靠的,从此希腊人开始重视演译推理,并由此建立了几何公理体系,这不能不说是数学思想上的一次巨大革命!无穷小是零吗?──第二次数学危机18世纪,微分法和积分法在生产和实践上都有了广泛而成功的应用,大部分数学家对这一理论的可靠性是毫不怀疑的。
1734年,英国哲学家、大主教贝克莱发表《分析学家或者向一个不信正教数学家的进言》,矛头指向微积分的基础--无穷小的问题,提出了所谓贝克莱悖论。
他指出:"牛顿在求xn的导数时,采取了先给x以增量0,应用二项式(x+0)n,从中减去xn以求得增量,并除以0以求出xn的增量与x 的增量之比,然后又让0消逝,这样得出增量的最终比。
数学发展简史数学发展史可以分为四个阶段。
第一阶段是数学形成时期,大约在公元前5世纪左右。
在这个时期,人们开始建立自然数的概念,创造简单的计算法,并认识了一些简单的几何图形。
算术和几何尚未分开。
第二阶段是常量数学时期,也称为初等数学时期,大约从前5世纪持续到公元17世纪。
在这个时期,形成了初等数学的主要分支:算术、几何、代数和三角。
这个时期的基本成果构成了中学数学的主要内容。
在古希腊时期,XXX提出了“万物皆数”的观点,XXX写出了《几何原本》,XXX研究了面积和体积,XXX写出了《圆锥曲线论》,XXX研究了三角学,丢番图研究了不定方程。
在东方,中国的XXX和XXX提出了出入相补原理和割圆术,还算出了π的近似值;宋元四大家XXX、XXX、XXX、XXX提出了天元术、正负开方术和大衍总数术;印度的XXX开创了弧度制度量,XXX提出了代数成就可贵的修正体系和XXX,婆什迦罗研究了算术、代数和组合学。
阿拉伯国家在吸收、融汇、保存古希腊、印度和中国数学成果的基础上,又有他们自己的创造,使阿拉伯数学对欧洲文艺复兴时期数学的崛起,作了很好的学术准备。
第三阶段是变量数学时期,大约从公元17世纪持续到19世纪。
在这个时期,家庭手工业、作坊转变为工场手工业,最终演变为机器大工业,对运动和变化的研究成了自然科学的中心。
第四阶段是现代数学时期,从19世纪末开始至今。
在这个时期,数学的发展呈现出高度多样化和高度专业化的趋势,涉及到各种领域,如数学物理学、数学生物学、数学金融学等等。
1.XXX的坐标系(1637年的《几何学》)XXX曾说:“数学中的转折点是XXX的变数。
有了变数,运动进入了数学。
有了变数,辩证法也进入了数学。
有了变数,微分和积分也就立刻成为必要的了。
”XXX的坐标系是数学发展史上的一个重要里程碑,它为数学的发展带来了新的思维方式。
2.XXX和莱布尼兹的微积分(17世纪后半期)17世纪后半期,XXX和XXX分别发明了微积分,这是数学发展史上的又一个重要里程碑。
数学史简介一、数的发展史正整数→(零,负整数)整数→(分数)有理数→(无理熟)实数→(虚数)复数1、正整数的形成你是否看过杂技团演出中"小狗做算术"这个节目?台下观众出一道10以内的加法题,比如"2+5",由演员写到黑板上。
小狗看到后就会"汪汪汪……"叫7声。
台下观众会报以热烈的掌声,对这只狗中的"数学尖子"表示由衷的赞许,并常常惊叹和怀疑狗怎么会这么聪明?因为在一般人看来狗是不会有数量概念的。
人类最初也完全没有数量的概念。
但人类发达的大脑对客观世界的认识已经达到更加理性和抽象的地步。
这样,在漫长的生活实践中,由于记事和分配生活用品等方面的需要,才逐渐产生了数的概念。
比如捕获了一头野兽,就用1块石子代表。
捕获了3头,就放3块石子。
"结绳记事"也是地球上许多相隔很近的古代人类共同做过的事。
我国古书《易经》中有"结绳而治"的记载。
传说古代波斯王打仗时也常用绳子打结来计算天数。
用利器在树皮上或兽皮上刻痕,或用小棍摆在地上计数也都是古人常用的办法。
这些办法用得多了,就逐渐形成数的概念和记数的符号。
数的概念最初不论在哪个国家地区都是1、2、3、4……这样的正整数开始的,但是记数的符号却大小相同。
古罗马的数字相当进步,现在许多老式挂钟上还常常使用。
实际上,罗马数字的符号一共只有7个:I(代表1)、V(代表5)、X(代表10)、L(代表50)、C代表100)、D(代表500)、M(代表1,000)。
这7个符号位置上不论怎样变化,它所代表的数字都是不变的。
它们按照下列规律组合起来,就能表示任何数:1.重复次数:一个罗马数字符号重复几次,就表示这个数的几倍。
如:"III"表示"3";"XXX"表示"30"。
2.右加左减:一个代表大数字的符号右边附一个代表小数字的符号,就表示大数字加小数字,如"VI"表示"6","DC"表示"600"。
数学的发展史
数学发展史可追溯到古人发现使用数字来统计物体数量的行为。
早在3000多年前,埃及人就发明了第一种数字系统。
公元前1700年,印度人发明了类似现代数学符号的符号系统,包括“ + ”、“-”、“ × ”、“÷”和根号等标记。
后来,古希腊人就利用其系统进行
形式化的数学研究,将数学从实际应用转变为理论抽象的学科。
经历了古希腊文明的发展,中世纪的数学受到了穆斯林的影响,
以独特的方法对数学进行了完善。
17世纪,1686年,英国的伽利略和
德国的斐波那契已经建立了新的数学理论体系,它不仅清晰明确地证
实了新发现的宇宙学,而且也是现代数学的基础。
18世纪,数学有了显著进步,德国数学家勃兰特开创了微积分,
拓展了古希腊时期的几何。
德国科学家博宁根据独特的方法,发现了
著名的博宁准则;而法国数学家和物理学家拉格朗日将分析几何的概
念应用到实际问题中,建立了令人惊叹的拉格朗日几何。
19世纪,海森堡、费马等俄罗斯数学家也有着重要贡献,运用所
谓的“数学分析方法”,他们把几何中的重要性质和属性抽象出来,
这就是现代数学研究的源泉。
20世纪之前,数学不断发展,深入探索
数理逻辑,发展不同类型的数论,大量新的数学定理也随之诞生。
而
20世纪以后,随着计算机的发展,数学研究也取得了非常大的进步,
数学的应用被实际应用到科学、工程、经济和社会等各个领域。
数学史数学是一门古老的学科,它伴随着人类文明的产生而产生,至少有四、五千年的历史.但它不是某一个民族或某一个地区的产物,而是世界许多民族、诸多地区世世代代的产物,是人们在生产斗争和科学实践中逐渐形成和发展而成的。
数学的最初的概念和原理在远古时代就萌芽了,经过四千多年世界许多民族的共同努力,才发展到今天这样内容丰富、分支众多、应用广泛的庞大系统。
第一节发展历史一般认为,从远古到现在,数学经历了五个历史阶段.一、数学萌芽时期(公元6世纪以前)在人类历史上,这是原始社会和奴隶社会的初期。
这个时期数学的成就以巴比伦、埃及和中国的数学为代表。
古巴比伦是位于幼发拉底河和底格里斯河两河流域的一个文明古国。
巴比伦王国形成于约公元前19世纪,从出土的古巴比伦的泥板上的楔形文字中发现,古巴比伦人具有算术和代数方面的知识,建立了60进位制的记数系统,掌握了自然数的四则运算,广泛使用了分数,能进行平方、立方和简单的开平方、开立方运算.他们迈出了代数的第一步,能用一些特别的术语和符号代表未知数,能解特殊的几种一元一次、二元一次方程和一元二次方程,甚至某些三次、四次(可化为二次的)和个别指数方程,并且能够把它们应用于天文学和商业等实际问题中去。
几何方面掌握了简单平面图形的面积和简单立体体积的计算方法。
中国是最早使用十进位值制记数法的国家。
早在三千多年前的商代中期,在甲骨文中产生了一套十进制数字和记数法,最大的数字为三万.与此同时,殷人用十个天干和十二个地支组成六十甲子,用以记日、记月、记年。
用阴(——)、阳(一)符号构成八卦表示8种事物,后来发展为64卦。
春秋战国之际,筹算已普遍应用,其记数法是十进位值制。
数的概念从整数扩充到分数、负数,建立了数的四则运算的算术系统。
几何方面,4500年前就有测量工具规、矩、准、绳,有圆方平直的概念。
公元前1100年左右的商高知道“勾三股四弦五”的勾股定理.春秋末战国初的墨子在《墨经》中给出了一些数学定义,包含有许多算术、几何方面的知识和无穷、极限的概念。
数学的发展历史数学,作为一门学科,经历了漫长的发展历程。
古希腊的毕达哥拉斯学派、我国古代的算学、近代的微积分学、现代的数理逻辑等都是数学史上的重要篇章,本文将从古希腊开始,简要介绍数学发展的历史。
一、古希腊时期古希腊是古代文明的重要代表之一,也是古代数学的重要中心之一。
毕达哥拉斯学派是古希腊时期的一个著名学派,他们强调数学的重要性,并对数学的基础做出了一些贡献。
古希腊时期数学的发展主要包括以下几个方面:(一)几何学古希腊时期,几何学得到了很好的发展。
欧几里德是古希腊时期最著名的数学家之一,他根据早期希腊的几何学知识,写出了一本名为《几何原本》的巨著。
这本书主要讲述了平面几何学和立体几何学的基本理论,被誉为几何学的圣经。
欧几里德的贡献包括从公理出发发展了平面几何学,建立了如今所使用的公理体系;他对于数学的分类,也影响至今;他提出几何的递推法以及对于平面坐标系的基础建立,都是几何学中不可或缺的重要概念。
(二)代数学古希腊时期,代数学也有了一定的发展。
毕达哥拉斯学派被认为是代数学的创始学派,他们强调数的本质和有理数的存在,提出了数的概念,并且探讨了数的基本性质,以此为基础开展了整体学和方程学研究。
我们可以说,毕达哥拉斯理论的提出,为后世的数字理论提供了丰富的内容。
(三)三角学古希腊时期,三角学的基本概念已经形成并有了一定的应用。
科学家提高了三角函数的性质、以及在图形学、建筑学、天文学、地图制作等领域的实际应用。
二、中世纪中世纪,数学的发展相对缓慢,离开了古代数学之光辉,但也有一些重要的成果和贡献。
主要集中于阿拉伯数学、欧洲的代数学和三角学。
(一)阿拉伯数学阿拉伯人是拜占庭帝国的扩张者,他们将一些古希腊的数学文献翻译为阿拉伯文,在中世纪的欧陆得以广泛传播。
并且他们开展了数学的研究,特别是代数学和三角学,做出了重要的贡献。
阿拉伯人发明了一种新的计算方法“阿拉伯数字”,即我们今天所了解的数字。
阿拉伯人的贡献之一是开展了三角函数的研究、这又为后来的微积分学提供了良好的基础。
数学发展简史数学发展史大致可以分为四个阶段。
一、数学形成时期(——公元前5 世纪)建立自然数的概念,创造简单的计算法,认识简单的几何图形;算术与几何尚未分开。
二、常量数学时期(前5 世纪——公元17 世纪)也称初等数学时期,形成了初等数学的主要分支:算术、几何、代数、三角。
该时期的基本成果,构成中学数学的主要内容。
1.古希腊(前5 世纪——公元17 世纪)毕达哥拉斯——“万物皆数”欧几里得——《几何原本》阿基米德——面积、体积阿波罗尼奥斯——《圆锥曲线论》托勒密——三角学丢番图——不定方程2.东方(公元2 世纪——15 世纪)1)中国西汉(前2 世纪)——《周髀算经》、《九章算术》魏晋南北朝(公元3 世纪——5 世纪)——刘徽、祖冲之出入相补原理,割圆术,算π宋元时期(公元10 世纪——14 世纪)——宋元四大家杨辉、秦九韶、李冶、朱世杰天元术、正负开方术——高次方程数值求解;大衍总数术——一次同余式组求解2)印度现代记数法(公元8 世纪)——印度数码、有0;十进制(后经阿拉伯传入欧洲,也称阿拉伯记数法)数学与天文学交织在一起阿耶波多——《阿耶波多历数书》(公元499 年)开创弧度制度量婆罗摩笈多——《婆罗摩修正体系》、《肯特卡迪亚格》代数成就可贵婆什迦罗——《莉拉沃蒂》、《算法本源》(12 世纪)算术、代数、组合学3)阿拉伯国家(公元8 世纪——15 世纪)花粒子米——《代数学》曾长期作为欧洲的数学课本“代数”一词,即起源于此;阿拉伯语原意是“还原”,即“移项”;此后,代数学的内容,主要是解方程。
阿布尔.维法奥马尔.海亚姆阿拉伯学者在吸收、融汇、保存古希腊、印度和中国数学成果的基础上,又有他们自己的创造,使阿拉伯数学对欧洲文艺复兴时期数学的崛起,作了很好的学术准备。
3.欧洲文艺复兴时期(公元16 世纪——17 世纪)1)方程与符号意大利-塔塔利亚、卡尔丹、费拉里三次方程的求根公式??? 法国-韦达引入符号系统,代数成为独立的学科2)透视与射影几何画家-布努雷契、柯尔比、迪勒、达.芬奇数学家-阿尔贝蒂、德沙格、帕斯卡、拉伊尔3)对数简化天文、航海方面烦杂计算,希望把乘除转化为加减。
数学的发展历史是怎么样的1.古代数学阶段这一时期又可以认为是"数学起源与早期发展时期",人类建立最基本的数学概念。
古代数学是指17世纪以前,主要是古希腊时期建立的欧几里得几何学,古代中国、古印度和古巴比伦时期建立的算术,欧洲文艺复兴时期发展起来的代数方程等,古代数学也称为初等数学。
一般来说,我们国家中小学数学知识属于初等数学范畴。
相对于以后时期的变量数学,初等数学又称为常量数学。
古希腊时期的数学与古希腊文化繁荣的时代一致,从公元前6世纪开始,到公元前3世纪前后,由最伟大的古代几何学家欧几里得、阿基米德、阿波罗尼奥斯推向顶峰,最辉煌的著作是欧几里得的《几何原本》。
尽管这部书是两千多年以前写成的,但是它的一般内容和表述的特征,却与近代长期通用的几何教科书非常接近。
古代希腊的数学家不但把当时已有的几何知识总结和表述为一种完整的体系,还发展了许多新的重要的几何结果。
例如,他们研究了圆锥曲线;证明了某些射影几何的定理;以天文学的需要为指南建立了球面几何;建立了初步的三角学,并计算出最初的正弦表;确定了许多复杂图形的面积和体积。
《九章算术》是中国古代最重要的数学著作,成书年代最迟在公元前1世纪,其中有些内容可以追溯到周代。
书中已给出了三元一次方程组的解法;同时在世界历史上第一次使用负数,叙述了对负数进行运算的规则;也给出了求平方根与立方根的方法。
魏晋南北朝时期的中国数学有了突出的发展,进入到"论证数学"的阶段,代表人物是刘徽和祖冲之。
公元3世纪的刘徽,是中国古代最杰出的数学家,他大量使用的"出入相补原理"是我国古代数学特有的推理论证方法。
三国时期的赵爽运用"面积的出入相补方法"证明了勾股定理,是世界数学史上对勾股定理最早的证明之一。
刘徽的另一重大贡献是发明了割圆术,并用割圆术计算圆周率π。
祖冲之是南北朝时期的一个小官,在历法和数学上都有重大贡献。
简述中国数学的发展史中国数学发展史:历史与传统一直保鲜中国数学的发展史可以追溯到两千多年前,是基于当时基于当时用数学领域发展出的算法和工具而演变而成。
中国数学 but 研究的深远性及其贡献享誉全球,令它在古代文明的巅峰时期占据重要地位。
本文将重点讨论近代中国数学发展史。
一、古代中国数学的起源古代中国数学的发展可以追溯到夏朝以前,一步步演变而来,从简单计数工具到绘制有规律图形。
其中有很多方面的研究,如分形计算、比例、极坐标、等值线、相似概念等,可以追溯到秦朝以前。
《九章算术》是古代中国数学的伟大成就,记载了中国古代研究数学的基础知识,并以此为基础发展出很多数学领域的算法和工具。
二、唐宋数学的复兴唐宋时期,中国的数学研究逐渐受到重视,诸如《郑玄算经》、《裴达森算经》、《支学算经》等著作相继推出,大大推动了中国数学的发展。
值得一提的是,巫马可以将数学技术应用到天文、地理和医学等领域,把它们作为辅助手段,让中国古代数学技术的发展取得了质的飞跃。
三、明清数学的蓬勃发展明清时期,中国数学技术受到国内外的瞩目,得到大幅提升。
榜样最高的是范仲淹,《流沙池记》、《定经》以及集大成的《算学启蒙》让中国数学技术具有世界性的影响力,被公认为是专业数学著作,有很高的学术地位。
另外,著名数学家周辩和穆蔚在回归分析、拉格朗日法及新型椭圆函数领域也做出了重要贡献。
四、近代中国数学的发展近代,中国的哲学数学发展遭受中国历史的沉重打击,不得不向西方学习数学知识,从而推动了中国储存数学知识的转变。
现在,数学大多由实验研究提供的数据进行计算,而不是像以前那样,通过计算机技术来求解问题。
20世纪,中国出现了一些著名的数学家,他们在微积分、线性代数和实分析等领域做出了卓越的贡献。
五、结论提及中国数学发展史,我们不得不从古代,从夏朝开始说起,历时上千年,中国数学系统地学习了很多西方数学知识,把它应用到了日常生活中。
中国数学的传承有着悠久的历史,它的传统一直保留良好,并给后人留下了无尽的财富和影响力。