第二章晶体衍射和倒格子案例
- 格式:ppt
- 大小:14.46 MB
- 文档页数:48
第⼆章++X射线衍射和倒格⼦第⼆章 X 射线衍射和倒格⼦⼤多数探测晶体中原⼦结构的⽅法都是以辐射的散射概念为基础的。
早在1895年伦琴发现X 射线不久,劳厄在1912年就意识到X 射线的波长量级与晶体中原⼦的间距相同,⼤约是0.1nm 量级,晶体必然可以成为X 射线的衍射光栅。
随后布拉格⽤X 射线衍射证明了NaCl 等晶体具有⾯⼼⽴⽅结构,从⽽奠定了⽤X 射线衍射测定晶体中的原⼦周期性长程有序结构的地位。
随着科学技术的不断发展,电⼦、中⼦衍射有为⼈类认识晶体提供了有效的探测⽅法。
但到⽬前为⽌,X 射线衍射仍然是确定晶体结构、甚⾄是只具有短程有序的⽆定形材料结构的重要⼯具。
本章以X 射线衍射为例介绍晶体的衍射理论,引⼊倒格⼦的概念,在此基础上介绍原⼦形状因⼦和⼏何结构因⼦,并介绍⼏种确定晶格结构的实验⽅法。
§2.1 晶体衍射理论⼀、布拉格定律(Bragg ’s Law )X 射线是⼀种可以⽤来探测晶体结构的辐射,其波长可以⽤下式来估算012.4()()hcE h A E KeV νλλ==?= (2.1.1)能量为2~10KeV 的X 射线适⽤于晶体结构的研究。
在固体中,X 射线与原⼦的电⼦壳层相互作⽤,电⼦吸收并重新发射X 射线,重新发射的X 射线可以探测得到,⽽原⼦核的质量相对较⼤,对这个过程没有响应。
X 射线的反射率⼤约是10-3~10-5量级,在固体中穿透⽐较深,所以X 射线可以作为固体探针。
1912年劳厄(/doc/eb1ccaba1a37f111f1855b71.html ul )等发现了X 射线通过晶体的衍射现象之后,布拉格(W.L.Bragg )⽗⼦测定了NaCl 、KCl 的晶体结构,⾸次给出了晶体中原⼦规则排列的实验数据,发现了晶态固体反射X 射线特征图像,推导出了⽤X 射线与晶体结构关系的第⼀个公式,著名的布拉格定律(Bragg ’s Law )。
布拉格对于来⾃晶体的衍射提出了⼀个简单的解释。
第二部分倒易点阵和晶体衍射-总结与习题指导教学文稿第二部分倒易点阵和晶体衍射-总结与习题指导竭诚为您提供优质文档/双击可除第二部分倒易点阵和晶体衍射-总结与习题指导篇一:第十二章习题答案new1、分析电子衍射与x衍射有何异同?答:相同点:①都是以满足布拉格方程作为产生衍射的必要条件。
②两种衍射技术所得到的衍射花样在几何特征上大致相似。
不同点:①电子波的波长比x射线短的多,在同样满足布拉格条件时,它的衍射角很小,约为10-2rad。
而x射线产生衍射时,其衍射角最大可接近2。
②在进行电子衍射操作时采用薄晶样品,增加了倒易阵点和爱瓦尔德球相交截的机会,使衍射条件变宽。
③因为电子波的波长短,采用爱瓦尔德球图解时,反射球的半径很大,在衍射角θ较小的范围内反射球的球面可以近似地看成是一个平面,从而也可以认为电子衍射产生的衍射斑点大致分布在一个二维倒易截面内。
④原子对电子的散射能力远高于它对x射线的散射能力,故电子衍射束的强度较大,摄取衍射花样时曝光时间仅需数秒钟。
2、倒易点阵与正点阵之间关系如何?倒易点阵与晶体的电子衍射斑点之间有何对应关系?答:倒易点阵是与正点阵相对应的量纲为长度倒数的一个三维空间点阵,通过倒易点阵可以把晶体的电子衍射斑点直接解释成晶体相对应晶面的衍射结果,可以认为电子衍射斑点就是与晶体相对应的倒易点阵某一截面上阵点排列的像。
关系:①倒易矢量ghkl垂直于正点阵中对应的(hkl)晶面,或平行于它的法向nhkl②倒易点阵中的一个点代表正点阵中的一组晶面③倒易矢量的长度等于点阵中的相应晶面间距的倒数,即ghkl=1/dhkl④对正交点阵有a*//a,b*//b,c*//c,a*=1/a,b*=1/b,c*=1/c。
⑤只有在立方点阵中,晶面法向和同指数的晶向是重合的,即倒易矢量ghkl是与相应指数的晶向[hkl]平行⑥某一倒易基矢量垂直于正交点阵中和自己异名的二基矢所成平面。
3、用爱瓦尔德图解法证明布拉格定律。