高中数学选修2-3 (48)
- 格式:pdf
- 大小:3.23 MB
- 文档页数:47
高中数学选修2-3答案【篇一:高中数学选修2-3所有试卷含答案】每章分三个等级:[基础训练a组], [综合训练b组], [提高训练c 组] 建议分别适用于同步练习,单元自我检查和高考综合复习。
(数学选修2--3) 第一章计数原理[基础训练a组]一、选择题1.将3个不同的小球放入4个盒子中,则不同放法种数有()a.81 b.64c.12d.142.从4台甲型和5台乙型电视机中任意取出3台,其中至少有甲型与乙型电视机各1台,则不同的取法共有()a.140种 b.84种 c.70种 d.35种3.5个人排成一排,其中甲、乙两人至少有一人在两端的排法种数有() a.a3 b.4a3 c.a5?a3a3 d.a2a3?a2a3a3 4.a,b,c,d,e共5个人,从中选1名组长1名副组长,但a不能当副组长,不同的选法总数是()a.20 b.16 c.10 d.65.现有男、女学生共8人,从男生中选2人,从女生中选1人分别参加数学、物理、化学三科竞赛,共有90种不同方案,那么男、女生人数分别是() a.男生2人,女生6人 b.男生3人,女生5人 c.男生5人,女生3人 d.男生6人,女生2人. ?x6.在??的展开式中的常数项是() ?283352323113a.7 b.?7 c.28 d.?287.(1?2x)(2?x)的展开式中x3的项的系数是() a.120 b.?120 c.100 d.?100 ?8.??2??2?展开式中只有第六项二项式系数最大,则展开式中的常数项是() x?n5a.180 b.90 c.45 d.360二、填空题1.从甲、乙,??,等6人中选出4名代表,那么(1)甲一定当选,共有种选法.(2)甲一定不入选,共有种选法.(3)甲、乙二人至少有一人当选,共有种选法.2.4名男生,4名女生排成一排,女生不排两端,则有. 3.由0,1,3,5,7,9这六个数字组成_____个没有重复数字的六位奇数.4.在(x?的展开式中,x的系数是1062205.在(1?x)展开式中,如果第4r项和第r?2项的二项式系数相等,则r?,t4r?6.在1,2,3,...,9的九个数字里,任取四个数字排成一个首末两个数字是奇数的四位数,这样的四位数有_________________个?7.用1,4,5,x四个不同数字组成四位数,所有这些四位数中的数字的总和为288,则x. 8.从1,3,5,7,9中任取三个数字,从0,2,4,6,8中任取两个数字,组成没有重复数字的五位数,共有________________个?三、解答题1.判断下列问题是排列问题还是组合问题?并计算出结果.(1)高三年级学生会有11人:①每两人互通一封信,共通了多少封信?②每两人互握了一次手,共握了多少次手?(2)高二年级数学课外小组10人:①从中选一名正组长和一名副组长,共有多少种不同的选法?②从中选2名参加省数学竞赛,有多少种不同的选法?(3)有2,3,5,7,11,13,17,19八个质数:①从中任取两个数求它们的商可以有多少种不同的商?②从中任取两个求它的积,可以得到多少个不同的积?2.7个排成一排,在下列情况下,各有多少种不同排法?(1)甲排头,(2)甲不排头,也不排尾,(3)甲、乙、丙三人必须在一起,(4)甲、乙之间有且只有两人,(5)甲、乙、丙三人两两不相邻,(6)甲在乙的左边(不一定相邻),(7)甲、乙、丙三人按从高到矮,自左向右的顺序,(8)甲不排头,乙不排当中。
基本计数原理(1)分类加法计数原理:做一件事情,完成它有n类办法,在第一类办法中有m1种不同的方法,在第二类办法中有m2种不同的方法,……,在第n类办法中有m n种不同的方法.那么完成这件事情共有N=m1+m2 +……+m n种不同的方法。
(2)分步乘法计数原理:做一件事情,完成它需要n个步骤,做第一个步骤有m1种不同的方法,做第二个步骤有m2种不同的方法……做第n个步骤有m n种不同的方法,那么完成这件事情共有N= m1 ×m2 ×……× m n种不同的方法。
计数问题是数学中的重要研究对象,解决计数问题,其基本方法是列举法、列表法、树形图法等:其中级方法是分类加法原理和分步乘法原理:其高级方法是排列组合,基本计数原理是连接初级方法和高级方法的“桥梁”,是核心的方法,是解决计数问题的最重要的方法,而排列组合问题的方法:①特殊元素、特殊位置优先法。
②间接法。
③相邻问题捆绑法。
④不相邻(相间)问题插空法。
⑤有序问题组合法。
⑥选取问题先选后排法。
⑦至多至少问题间接法。
⑧相同元素分组可采用隔板法。
⑨分组问题等。
[例1]用0, 1, ..9十个数字,可以组成有重复数字的三位数的个数为()。
A.243B.252C.261D.279[解析]0,1, 2,…,9共能组成9×10×10=900 (个)三位数,其中无重复数字的三位数有9×9×8=648 (个),∴有重复数字的三位数有900-648=252 (个)。
故选B。
[注意]三位数一定要保证最高位不为0.[例2] 6名同学排成一排照相,要求同学甲既不站在最左边又不站在最右边,共有()种不同站法。
[解析]法一: (位置分析法)先从其他5人中安排2人站在最左边和最右边,再安排余下4人的位置,分为两步:第1步,从除甲外的5人中选2人站在最左边和最右边,有25A 种站法:第2步,余下4人(含甲)站在剩下的4个位置上,有44A 种站法。
排列与组合知识集结知识元排列与排列数公式知识讲解1.排列及排列数公式【考点归纳】1.定义(1)排列:一般地,从n个不同的元素中任取m(m≤n)个元素,按照一定的顺序排成一列,叫做从n个不同元素中取出m个元素的一个排列.(其中被取的对象叫做元素)(2)排列数:从n个不同的元素中取出m(m≤n)个元素的所有排列的个数,叫做从n个不同元素中取出m个元素的排列数,用符号表示.2.相关定义:(1)全排列:一般地,n个不同元素全部取出的一个排列,叫做n个不同元素的一个全排列.(2)n的阶乘:正整数由1到n的连乘积,叫做n的阶乘,用n!表示.(规定0!=1)3.排列数公式(1)排列计算公式:=.m,n∈N+,且m≤n.(2)全排列公式:=n•(n﹣1)•(n﹣2)•…•3•2•1=n!.例题精讲排列与排列数公式例1.(x-2)(x-3)(x-4)…(x-15)(x∈N+,x>15)可表示为()A.A B.A C.A D.A例2.若=12,则n=()A.8B.7C.6D.4例3.已知=15,那么=()A.20B.30C.42D.72组合与组合数公式知识讲解1.组合及组合数公式【考点归纳】1.定义(1)组合:一般地,从n个不同元素中,任意取出m(m≤n)个元素并成一组,叫做从n个元素中任取m个元素的一个组合.(2)组合数:从n个不同元素中,任意取出m(m≤n)个元素的所有组合的个数,叫做从n 个不同元素中,任意取出m个元素的组合数,用符号表示.2.组合数公式:=.m,n∈N+,且m≤n.3.组合数的性质:性质1性质2.例题精讲组合与组合数公式例1.'排球单循环赛南方球队比北方球队多9支南方球队总得分是北方球队的9倍求证冠军是一支南方球队(胜得1分败得0分).'例2.'一个袋子里装有大小相同且标有数字1~5的若干个小球,其中标有数字1的小球有1个,标有数字2的小球有2个,…,标有数字5的小球有5个.(Ⅰ)从中任意取出1个小球,求取出的小球标有数字3的概率;(Ⅱ)从中任意取出3个小球,求其中至少有1个小球标有奇数数字的概率;(Ⅲ)从中任意取出2个小球,求小球上所标数字之和为6的概率.'例3.'求C3n38-n+C21+n3n的值.'排列组合的简单计数问题知识讲解1.排列、组合及简单计数问题【知识点的知识】1、排列组合问题的一些解题技巧:①特殊元素优先安排;②合理分类与准确分步;③排列、组合混合问题先选后排;④相邻问题捆绑处理;⑤不相邻问题插空处理;⑥定序问题除法处理;⑦分排问题直排处理;⑧“小集团”排列问题先整体后局部;⑨构造模型;⑩正难则反、等价转化.对于无限制条件的排列组合问题应遵循两个原则:一是按元素的性质分类,二是按时间发生的过程进行分步.对于有限制条件的排列组合问题,通常从以下三个途径考虑:①以元素为主考虑,即先满足特殊元素的要求,再考虑其他元素;②以位置为主考虑,即先满足特殊位置的要求,再考虑其他位置;③先不考虑限制条件,计算出排列或组合数,再减去不符合要求的排列或组合数.2、排列、组合问题几大解题方法:(1)直接法;(2)排除法;(3)捆绑法:在特定要求的条件下,将几个相关元素当作一个元素来考虑,待整体排好之后再考虑它们“局部”的排列.它主要用于解决“元素相邻问题”;(4)插空法:先把一般元素排列好,然后把待定元素插排在它们之间或两端的空档中,此法主要解决“元素不相邻问题”;(5)占位法:从元素的特殊性上讲,对问题中的特殊元素应优先排列,然后再排其他一般元素;从位置的特殊性上讲,对问题中的特殊位置应优先考虑,然后再排其他剩余位置.即采用“先特殊后一般”的解题原则;(6)调序法:当某些元素次序一定时,可用此法;(7)平均法:若把kn个不同元素平均分成k组,每组n个,共有;(8)隔板法:常用于解正整数解组数的问题;(9)定位问题:从n个不同元素中每次取出k个不同元素作排列规定某r个元素都包含在内,并且都排在某r个指定位置则有;(10)指定元素排列组合问题:①从n个不同元素中每次取出k个不同的元素作排列(或组合),规定某r个元素都包含在内.先C后A策略,排列;组合;②从n个不同元素中每次取出k个不同元素作排列(或组合),规定某r个元素都不包含在内.先C后A策略,排列;组合;③从n个不同元素中每次取出k个不同元素作排列(或组合),规定每个排列(或组合)都只包含某r个元素中的s个元素.先C后A策略,排列;组合.例题精讲排列组合的简单计数问题例1.的展开式中,x的系数为___(用数字作答)例2.在的展开式中,x4的系数是____.例3.若,则n的展开式中,含x2项的系数为_______.当堂练习单选题练习1.计算2+3的值是()A.72B.102C.5070D.5100练习2.=()A.30B.24C.20D.15练习3.6本不同的书在书桌上摆成一排,要求甲,乙两本书必须放在两端,丙、丁两本书必须相邻,则不同的摆放方法有()种。
第二章 2.1 2.1.1离散型随机变量【基础练习】1.下面给出三个变量:①2018年10月北京市下雨的天数ξ;②从学校回家要经过5个红绿灯口,可能遇到红灯的次数η;③一同学放学后到食堂就餐,到达某个窗口时已经在此排队的学生数X.其中是随机变量的是()A.②B.①③C.②③D.①②③【答案】C2.袋中有2个黑球,6个红球,从中任取两个,可以作为随机变量的是()A.取到的球的个数B.取到红球的个数C.至少取到一个红球D.至少取到一个红球的概率【答案】B3.抛掷2颗骰子,所得点数之和记为ξ,那么“ξ=4”表示的随机试验的结果是() A.2颗都是4点B.1颗是1点,另1颗是3点C.2颗都是2点D.1颗是1点,另一颗是3点,或者2颗都是2点【答案】D4.(2019年西安月考)抛掷两枚骰子一次,ξ为第一枚骰子掷出的点数与第二枚骰子掷出的点数之差,则ξ的所有可能的取值为( )A.0≤ξ≤5,ξ∈NB.-5≤ξ≤0,ξ∈ZC.1≤ξ≤6,ξ∈ND.-5≤ξ≤5,ξ∈Z【答案】D5.一盒乒乓球共15个,其中有4个是已用过的,在比赛时,某运动员从中随机取2个使用,比赛结束后又放回盒中,则此盒中已用过的乒乓球个数的所有可能取值是________.【答案】4,5,66.连续不断地射击某一目标,首次击中目标需要的射击次数X是一个随机变量,则X =4表示的试验结果是________.【答案】前3次未击中目标,第4次击中目标7.某校为学生定做校服,规定凡身高(精确到1 cm )不超过160 cm 的学生交校服费80元;凡身高超过160 cm 的学生,身高每超出1 cm 多交5元钱.若学生应交校服费为η,学生身高用ξ表示,则η和ξ是否为离散型随机变量?【解析】由于该校的每一个学生对应着唯一的身高,并且ξ取整数值,因此ξ是一个离散型随机变量.而η=⎩⎪⎨⎪⎧80,ξ≤160,(ξ-160)×5+80,ξ>160,所以η也是一个离散型随机变量. 8.写出下列随机变量ξ可能取的值,并说明随机变量ξ=4所表示的随机试验的结果.(1)从10张已编号的卡片(编号从1号到10号)中任取2张(一次性取出),被取出的卡片的较大编号为ξ;(2)某足球队在点球大战中5次点球射进的次数为ξ.【解析】(1)ξ的所有可能取值为2,3,4,…,10.其中“ξ=4”表示的试验结果为“取出的两张卡片中的较大号码为4”.基本事件有如下三种:取出的两张卡片编号分别为1和4,2和4,3和4.(2)ξ的所有可能取值为0,1,2,3,4,5.其中“ξ=4”表示的试验结果为“5次点球射进4个球”.【能力提升】9.某人进行射击,共有5发子弹,击中目标或子弹打完就停止射击,射击次数为ξ,则“ξ=5”表示的试验结果是( )A .第5次击中目标B .第5次未击中目标C .前4次均未击中目标D .前4次击中目标 【答案】C【解析】ξ=5表示射击5次,即前4次均未击中,否则不可能射击第5次,但第5次是否击中目标,就不一定,因为他只有5发子弹.故选C.10.袋中装有号码分别为1,2,3,4,5的5张卡片,从中有放回地抽2张卡片,记顺次抽出的2张卡片号码之和为X ,则“X =4”所表示的试验结果是( )A .抽到4号卡片B .抽到4张号码为1的卡片C .第一次抽到1号,第二次抽到3号;或第一次抽到3号,第二次抽到1号D .第一次抽到1号,第二次抽到3号;或第一次抽到3号,第二次抽到1号;或两次都抽到2号【答案】D【解析】“x =4”表示抽出的2张卡号码之和为4,有1+3,3+1,2+2共3种情况.11.在考试中,需回答三个问题,考试规则规定:每题回答正确得100分,回答不正确得-100分,则这名同学回答这三个问题的总得分ξ的所有可能取值是________.【答案】100,-100,300,-300【解析】由题意得,结果有4种情况,①答对3题,得300分;②答对2题,得100分;③答对1题,得-100分;④全部答错,得-300分.12.某同学的钱夹只剩有20元、10元、5元、2元和1元人民币各1张,他决定随机抽出2张.用ξ表示这两张金额之和.写出ξ的可能取值,并说明所取值表示的随机试验结果.【解析】ξ的可能取值为3,6,7,11,12,15,21,22,25,30.ξ=3表示抽到的是1元和2元;ξ=6表示抽到的是1元和5元;ξ=7表示抽到的是2元和5元;ξ=11表示抽到的是1元和10元;ξ=12表示抽到的是2元和10元;ξ=15表示抽到的是5元和10元;ξ=21表示抽到的是1元和20元;ξ=22表示抽到的是2元和20元;ξ=25表示抽到的是5元和20元;ξ=30表示抽到的是10元和20元.。
中学教材全解:高中数学(选修2-3)(人教版b)电子版篇一:P121-180 中学教材全解高中数学选修2-3P121知识点1 条件概率在很多实际问题中,需要考虑一个事件在“某事件已发生”这个附加条件下的概率,我们来看下面的问题.抛掷红、蓝两颗骰子,设事件A?“蓝骰子的点数为3或6”,事件B?“两颗骰子的点数之和大于8”.我们用x代表抛掷红骰子所得到的点数,用y代表抛掷蓝骰子所得到的点数,则这个试验的基本事件空间为S?{(x,y)|x?N,y?N,1?x?6,1?y?6}.作图2?2?1,容易看出,基本事件空间的元素与图中的点一一对应,所以抛掷红、蓝两颗骰子这一试验的基本事件总数为36,事件B所包含的基本事件对应图中10三角实线所包围的点,个数为10.所以,事件B发生的概率P(B)?. 36当已知蓝色骰子的点数为3或6时,事件B所发生的概率是多少呢?也就是要求事件B在“事件A已发生”这个附加条件下的概率是多少.事件A已发生的所有可能的结果对应图中长条虚线所包围的12个点.其中三角实线框内的5个点的5“点数之和大于8”,所以事件B在“事件A已发生”条件下的概率是. 12一般地,设A、B为两个事件,且P(A)0,称P(B|A)=P(AB)事件A发生的P(A)条件下,事件B发生的条件概率.一般地,把P(B|A)读作“A发生的条件下B发生的概率”.条件概率具有概率的性质,任何事件的条件概率都在0和1之间,即0?P(B|A)?1如果B和C是两个互斥事件,则P(B?C|A)=P(B|A)+P(C|A)评注(1)事件B在“事件A已发生”这个附加条件下的概率与没有这个附加条件的概率是不同的.(2)应该说,每一个随机试验都是在一定条件下进行的.而这里所说的条件概率,则是当试验结果的一部分信息已知(即在原随机试验的条件上,再加上一定的条件),求另一事件在此条件下发生的概率.(3)已知A发生,在此条件下B发生,相当于发生,要求P(B|A)相当于把A看做新的基本事件空间来计算AB发生的概率,即n(AB)n(AB)P(AB)n(?)P(B|A). n(A)n(A)P(A)n(?)例1一个家庭中有两个小孩,假定生男、生女是等可能的,已知这个家庭有一个女孩,问这是另一个小孩是男孩的概率是多少?解:一个家庭的两个小孩只有4种可能:{两个都是男孩},{第一个是男孩,第二个是女孩},{第一个是女孩,第二个是男孩},{两个都是女孩},3题意可知这4个基本事件发生是等可能的.根据题意,设基本事件空间为?,A表示“其中一个是女孩”,B表示“其中一个是男孩”,则{(男,男),(男,女),(女,男),(女,女)},A?{(男,女),(女,男),(女,女) )},B?{(男,男),(男,女),(女,男)},A?B?{(男,女),(女,男)}.问题是求在事件A发生的条件下,事件B发生的概率,即求P(B|A).32P(A)?,P(A?B)?,44 P(AB)2?P(B|A)??.P(A)3因此所求条件概率为2.3P122知识点2事件的相互独立性我们知道,当事件A的发生对事件B的发生有影响时,条件概率P(B|A).和概率P(B)一般是不相等的,但有时事件A 的发生看上去对事件B的发生没有影响,比如依次抛掷两枚硬币,抛掷第1枚硬币的结果(事件A)对抛掷第2枚硬币的结果(事件B)没有影响,这时P(B|A)与P(B)相等吗?让我们先来看一个例子.2个白皮蛋,例2 在大小均匀的5个鸡蛋中有3个红皮蛋,每次取一个,有放回地取两次,求在已知第一次取到红皮蛋的条件下,第二次取到红皮蛋的概率.解:设A一“第一次取到红皮蛋”,B一“第二次取到红皮蛋”,则33P(A)?,由于是有放回的抽取,所以P(B)?. 55 A?B?“两次都取到红皮蛋”,由于第一次取一个鸡蛋有5种取法,第二次取一个鸡蛋也有5种取法,于是两次共有5?5种取法.其中都取到红皮蛋的取法有3?3种,因此,两次都取到红皮蛋的概率为3?39?. P(A?B)?5?525所以P(B|A)?P(AB)3?. P(A)5在该列中,事件A是否发生对事件B发生的概率没有影响,即p(B|A)?P(B).设A、B为两个事件,如果P(AB)?P(A)P(B),则称事件A 与事件B相互独立.P123评注(1)对于事件A、B,如果事件A (或) B是否发生对事件B (或A)发生的概率没有影响,则称这两个事件为相互独立事件.如果甲袋中装有3个白球,2个黑球,乙袋中装有2个白球,2个黑球,从这两个袋中分别摸出一个球,把“从甲袋中摸出1个球,得到白球”记为事件A,把“从乙袋中摸出1个球,得到白球”记为事件B,显然A与B互相独立.(2)一般地,如果事件A与B相互独立,那么A与B,A 与B,万与百也都是相互独立的.(3)两个相互独立事件同时发生的概率,等于每个事件发生的概率的积,即P(AB)?P(A)?P(B) ____在实际问题中,对于竹个事件,通常是考虑这些事件的含义,用日常生活或生产中得到的经验来分析它们之间有没有影响,如果没有影响,或者影响可以忽略不计,就可以判断这”个事件是相互独立的.如果事件A1,A2…An相互独立,那么这”个事件都发生的概率,等于每个事件发生的概率的积,即P(A1?A2?…An)?PA(1?)PA(2?…)?PAn( )并且上式中任意多个事件A。
2014新编人教A高中数学选修2-3全册教案导学案含答案目录1. 1. 两个原理 11. 2.1 排列的概念 61.2.2 排列应用题 131.2.3组合181.2.4组合应用题231.2.5排列组合综合应用271.2.6排列组合综合应用35§1.3.1 二项式定理42§1.3.2 “杨辉三角”与二项式系数的性质482. 1.1离散型随机变量552.?1.2离散型随机变量的分布列612.?2.1条件概率与事件的相互独立性682.?2.1条件概率与事件的相互独立性712.2.2独立重复实验与二项分布732.2.2独立重复实验与二项分布772. 3.1离散型随机变量的期望 802.3.2离散型随机变量的方差902. 4.1正态分布99小结与复习1103. 1.1回归分析的基本思想及其初步应用1153.1.2回归分析的基本思想及其初步应用回归分析的基本思想及其初步应用1243. 2.1独立性检验的基本思想及其初步应用1273.2.2独立性检验的基本思想及其初步应用1321. 1. 两个原理【教学目标】准确理解两个原理,弄清它们的区别;会用两个原理解决一些简单问题。
【教学重难点】教学重点:两个原理的理解与应用教学难点:学生对事件的把握【教学过程】情境设计1、从学校南大门到图艺中心有多少种不同的走法?2、从学校南大门经图艺中心到食堂有多少种不同的走法?(请画分析图)3、课件中提供的生活实例。
新知教学引出原理:分类计数原理:完成一件事, 有n类方式, 在第一类方式,中有m1种不同的方法,在第二类方式,中有m2种不同的方法,……,在第n类方式,中有mn种不同的方法. 那么完成这件事共有 Nm1+m2+…+mn种不同的方法.分步计数原理:完成一件事,需要分成n个步骤,做第1步有m1种不同的方法,做第2步有m2种不同的方法,……,做第n步有mn种不同的方法,那么完成这件事共有Nm1×m2×…×mn种不同的方法。
复习课(一)计数原理对应学生用书P48(1)两个计数原理是学习排列与组合的基础,高考中一般以选择题、填空题的形式出现,难度中等.(2)运用两个计数原理解题的关键在于正确区分“分类”与“分步”.分类就是能“一步到位”——任何一类中任何一种方法都能完成这件事情,而分步则只能“局部到位”——任何一步中任何一种方法都不能完成这件事情,只能完成事件的某一部分,只有当各步全部完成时,这件事情才完成.[考点精要]计数原理(1)分类加法计数原理:N=n1+n2+n3+…+n m;(2)分步乘法计数原理:N=n1·n2·n3·…·n m.[典例]如图所示,花坛内有五个花池,有五种不同颜色的花卉可供栽种,每个花池内只能种同种颜色的花卉,相邻两池的花色不同,则最多的栽种方案有()A.180种B.240种C.360种D.420种[解析]由题意知,最少用三种颜色的花卉,按照花卉选种的颜色可分为三类方案,即用三种颜色,四种颜色,五种颜色.①当用三种颜色时,花池2,4同色和花池3,5同色,此时共有A35种方案.②当用四种颜色时,花池2,4同色或花池3,5同色,故共有2A45种方案.③当用五种颜色时有A55种方案.因此所有栽种方案为A35+2A45+A55=420(种).[答案] D[类题通法]使用两个原理解决问题时应注意的问题(1)对于一些比较复杂的既要运用分类加法计数原理又要运用分步乘法计数原理的问题,我们可以恰当地画出示意图或列出表格,使问题更加直观、清晰.(2)当两个原理混合使用时,一般是先分类,在每类方法里再分步.[题组训练]1.从黄瓜、白菜、油菜、扁豆4种蔬菜品种中选出3种,分别种在不同土质的三块土地上,其中黄瓜必须种植,不同的种植方法有()A.24种B.18种C.12种D.6种解析:选B法一:(直接法)若黄瓜种在第一块土地上,则有3×2=6种不同的种植方法.同理,黄瓜种在第二块、第三块土地上均有3×2=6种不同的种植方法.故不同的种植方法共有6×3=18种.法二:(间接法)从4种蔬菜中选出3种种在三块地上,有4×3×2=24种方法,其中不种黄瓜有3×2×1=6种方法,故共有不同的种植方法24-6=18种.2.有红、黄、蓝旗各3面,每次升一面、二面或三面在旗杆上纵向排列表示不同的信号,顺序不同则表示不同的信号,共可以组成的信号有________种.解析:每次升1面旗可组成3种不同的信号;每次升2面旗可组成3×3=9种不同的信号;每次升3面旗可组成3×3×3=27种不同的信号.根据分类加法计数原理,共可组成3+9+27=39种不同的信号.答案:39(1)高考中往往以实际问题为背景,考查排列与组合的综合应用,同时考查分类讨论的思想方法,常以选择题、填空题形式出现,有时与概率结合考查.(2)解决排列组合问题的关键是掌握四项基本原则①特殊优先原则:如果问题中有特殊元素或特殊位置,优先考虑这些特殊元素或特殊位置的解题原则.②先取后排原则:在既有取出又需要对取出的元素进行排列中,要先取后排,即完整地把需要排列的元素取出后,再进行排列.③正难则反原则:当直接求解困难时,采用间接法解决问题的原则.④先分组后分配原则:在分配问题中如果被分配的元素多于位置,这时要先进行分组,再进行分配.[考点精要]1.排列与组合的概念2.排列数与组合数的概念3.排列数与组合数公式 (1)排列数公式①A m n =n (n -1)…(n -m +1)=n !(n -m )!;②A n n =n !. (2)组合数公式C mn =A m n A m m =n (n -1)(n -2)…(n -m +1)m !=n !m !(n -m )!.4.组合数的性质(1)C m n =C n-mn;(2)C m n +C m -1n=C mn +1. [典例] (1)一排9个座位坐了3个三口之家,若每家人坐在一起,则不同的坐法种数为( )A .3×3!B .3×(3!)3C .(3!)4D .9!(2)(重庆高考)某次联欢会要安排3个歌舞类节目、2个小品类节目和1个相声类节目的演出顺序,则同类节目不相邻的排法种数是( )A .72B .120C .144D .168(3)从6位同学中选出4位参加一个座谈会,要求张、王两同学中至多有一个人参加,则不同选法的种数为( )A .9B .14C .12D .15[解析] (1)把一家三口看作一个排列,然后再排列这3家,所以有(3!)4种.(2)依题意,先仅考虑3个歌舞类节目互不相邻的排法种数为A 33A 34=144,其中3个歌舞类节目互不相邻但2个小品类节目相邻的排法种数为A 22A 22A 33=24,因此满足题意的排法种数为144-24=120,选B .(3)法一:(直接法)分两类,第一类张、王两同学都不参加,有C 44种选法;第二类张、王两同学中只有1人参加,有C 12C 34种选法.故共有C 44+C 12C 34=9种选法.法二:(间接法)C46-C24=9种.[答案](1)C(2)B(3)A[类题通法]排列与组合综合问题的常见类型及解题策略(1)相邻问题捆绑法.在特定条件下,将几个相关元素视为一个元素来考虑,待整个问题排好之后,再考虑它们“内部”的排列.(2)相间问题插空法.先把一般元素排好,然后把特定元素插在它们之间或两端的空当中,它与捆绑法有同等作用.(3)特殊元素(位置)优先安排法.优先考虑问题中的特殊元素或位置,然后再排列其他一般元素或位置.[题组训练]1.有5盆各不相同的菊花,其中黄菊花2盆、白菊花2盆、红菊花1盆,现把它们摆放成一排,要求2盆黄菊花必须相邻,2盆白菊花不能相邻,则这5盆花的不同摆放种数是()A.12 B.24C.36 D.48解析:选B2盆黄菊花捆绑作为一个元素与一盆红菊花排列,2盆白菊花采用插空法,所以这5盆花的不同摆放共有A22A22A23=24种.2.某班准备从含甲、乙的7名男生中选取4人参加4×100米接力赛,要求甲、乙两人至少有一人参加,且若甲、乙同时参加,则他们在赛道上顺序不能相邻,那么不同的排法种数为()A.720 B.520C.600 D.360解析:选C根据题意,分2种情况讨论.①只有甲乙其中一人参加,有C12C35A44=480种情况;②若甲乙两人都参加,有C22C25A44=240种情况,其中甲乙相邻的有C22C25A33A22=120种情况,不同的排法种数为480+240-120=600种,故选C.(1)求二项展开式中的项或项的系数是高考的热点,通常以选择题、填空题形式考查,难度中低档.(2)解决此类问题常遵循“知四求一”的原则在二项式的通项公式中共含有a, b,n,k,T k+1这五个元素,只要知道其中的4个元素,便可求第5个元素的值,在有关二项式定理的问题中,常常会遇到这样的问题:知道这5个元素中的若干个(或它们之间的关系),求另外几个元素.这类问题一般是利用通项公式,把问题归结为解方程(组)或不等式(组).这里要注意n为正整数,k为自然数,且k≤n.[考点精要]1.二项式定理2.二项式系数的性质[典例](1)已知(1+ax)(1+x)5的展开式中x2的系数为5,则a=()A.-4 B.-3C.-2 D.-1(2)设m为正整数,(x+y)2m展开式的二项式系数的最大值为a,(x+y)2m+1展开式的二项式系数的最大值为b,若13a=7b,则m=()A.5 B.6C.7 D.8(3)若(1-2x)4=a0+a1x+a2x2+a3x3+a4x4,则a1+a2+a3+a4=________.[解析](1)展开式中含x2的系数为C25+a C15=5,解得a=-1,故选D.(2)由题意得:a=C m2m,b=C m2m+1,所以13C m2m=7C m2m+1,∴13·(2m)!m!·m!=7·(2m+1)!m!·(m+1)!,∴7(2m+1)m+1=13,解得m=6,经检验为原方程的解,选B.(3)令x=1可得a0+a1+a2+a3+a4=1,令x=0,可得a0=1,所以a1+a2+a3+a4=0.[答案](1)D(2)B(3)0[类题通法]求二项式展开式有关问题的常见类型及解题策略(1)求展开式中的特定项.可依据条件写出第r +1项,再由特定项的特点求出r 值即可. (2)已知展开式的某项,求特定项的系数.可由某项得出参数项,再由通项公式写出第r +1项,由特定项得出r 值,最后求出其参数.(3)与二项式各项系数的和有关的问题一般用赋值法求解.[题组训练]1.在x (1+x )6的展开式中,含x 3项的系数为( ) A .30 B .20 C .15D .10解析:选C 只需求(1+x )6的展开式中含x 2项的系数即可,而含x 2项的系数为C 26=15,故选C .2.若(x -1)4=a 0+a 1x +a 2x 2+a 3x 3+a 4x 4,则a 0+a 2+a 4的值为( ) A .9 B .8 C .6D .5解析:选B 令x =1,则a 0+a 1+a 2+a 3+a 4=0,令x =-1,则a 0-a 1+a 2-a 3+a 4=16,∴a 0+a 2+a 4=8.1.设二项式⎝⎛⎭⎪⎫3x +3x n 的展开式各项系数的和为a ,所有二项式系数的和为b ,若a +2b =80,则n 的值为( )A .8B .4C .3D .2解析:选C 由题意a =4n ,b =2n ,∵a +2b =80, ∴4n +2×2n -80=0,即(2n )2+2×2n -80=0,解得n =3.2.教室里有6盏灯,由3个开关控制,每个开关控制2盏灯,则不同的照明方法有( ) A .63种 B .31种 C .8种D .7种解析:选D 由题意知,可以开2盏、4盏、6盏灯照明,不同方法有C 13+C 23+C 33=7(种).3.分配4名水暖工去3户不同的居民家里检查暖气管道.要求4名水暖工都分配出去,且每户居民家都要有人去检查,那么分配的方案共有( )A .A 34种B .A 33A 13种 C .C 24A 33种D .C 14C 13A 33种解析:选C 先将4名水暖工选出2人分成一组,然后将三组水暖工分配到3户不同的居民家,故有C 24A 33种.4.(x +2)2(1-x )5中x 7的系数与常数项之差的绝对值为( ) A .5 B .3 C .2D .0解析:选A 常数项为C 22·22·C 05=4,x 7系数为C 02·C 55(-1)5=-1,因此x 7系数与常数项之差的绝对值为5.5.⎝⎛⎭⎫x 2-12x 6的展开式中,常数项是( ) A .-54B .54C .-1516D .1516解析:选D T r +1=C r 6(x 2)6-r ⎝⎛⎭⎫-12x r =⎝⎛⎭⎫-12r C r 6x 12-13r ,令12-3r =0,解得r =4. ∴常数项为⎝⎛⎭⎫-124C 46=1516.故选D . 6.将4个颜色互不相同的球全部放入编号为1和2的两个盒子里,使得放入每个盒子里球的个数不小于该盒子的编号,则不同的放球方法有( )A .10种B .20种C .36种D .52种解析:选A 分为两类:①1号盒子放入1个球,2号盒子放入3个球,有C 14=4种放球方法;②1号盒子放入2个球,2号盒子放入2个球,有C 24=6种放球方法.∴共有C 14+C 24=10种不同的放球方法.7.若将函数f (x )=x 5表示为f (x )=a 0+a 1(1+x )+a 2(1+x )2+…+a 5(1+x )5,其中a 0,a 1,a 2,…,a 5为实数,则a 3=________.解析:不妨设1+x =t ,则x =t -1,因此有(t -1)5=a 0+a 1t +a 2t 2+a 3t 3+a 4t 4+a 5t 5,则a 3=C 25(-1)2=10.答案:108.农科院小李在做某项试验中,计划从花生、大白菜、大豆、玉米、小麦、高粱这6种种子中选出4种,分别种植在4块不同的空地上(1块空地只能种1种作物),若小李已决定在第1块空地上种玉米或高粱,则不同的种植方案有________种.(用数字作答)解析:由已知条件可得第1块地有C 12种种植方法,则第2~4块地共有A 35种种植方法,由分步乘法计数原理可得,不同的种植方案有C 12A 35=120种.答案:1209.(北京高考)把5件不同产品摆成一排,若产品A 与产品B 相邻,且产品A 与产品C 不相邻,则不同的摆法有________种.解析:将A ,B 捆绑在一起,有A 22种摆法,再将它们与其他3件产品全排列,有A 44种摆法,共有A 22A 44=48种摆法,而A ,B ,C 3件在一起,且A ,B 相邻,A ,C 相邻有CAB ,BAC 两种情况,将这3件与剩下2件全排列,有2×A 33=12种摆法,故A ,B 相邻,A ,C不相邻的摆法有48-12=36种.答案:3610.若(2x +3)3=a 0+a 1(x +2)+a 2(x +2)2+a 3(x +2)3,求a 0+a 1+2a 2+3a 3的值. 解:由(2x +3)3=[2(x +2)-1]3=C 03[2(x +2)]3(-1)0+C 13[2(x +2)]2(-1)1+C 23[2·(x +2)]1(-1)2+C 33[2(x +2)]0(-1)3=8(x +2)3-12(x +2)2+6(x +2)-1 =a 0+a 1(x +2)+a 2(x +2)2+a 3(x +2)3. 则a 0=-1,a 1=6,a 2=-12,a 3=8. 则a 0+a 1+2a 2+3a 3=5.11.将7个相同的小球放入4个不同的盒子中. (1)不出现空盒时的放入方式共有多少种? (2)可出现空盒时的放入方式共有多少种?解:(1)将7个相同的小球排成一排,在中间形成的6个空当中插入无区别的3个“隔板”将球分成4份,每一种插入隔板的方式对应一种球的放入方式,则共有C 36=20种不同的放入方式.(2)每种放入方式对应于将7个相同的小球与3个相同的“隔板”进行一次排列,即从10个位置中选3个位置安排隔板,故共有C 310=120种放入方式.12.已知(3x 2+3x 2)n 展开式中各项的系数和比各项的二项式系数和大992. (1)求展开式中二项式系数的最大项; (2)求展开式中系数最大的项.解:(1)令x =1,则二项式各项系数和为(1+3)n =4n , 展开式中各项的二项式系数之和为2n . 由题意,知4n -2n =992.∴(2n )2-2n -992=0.∴(2n +31)(2n -32)=0. ∴2n =-31(舍)或2n =32,∴n =5. 由于n =5为奇数,∴展开式中二项式系数最大项为中间两项,它们是 T 3=C 25(x 23)3(3x 2)2=90x 6,T 4=C 35(x 23)2(3x 2)3=270x 223.(2)展开式通项公式为T r +1=C r 53r·(x 23)5-r (x 2)r =C r 5·3r ·x 103+4r 3.假设T r +1项系数最大,则有⎩⎪⎨⎪⎧C r 53r ≥C r -15·3r -1,C r 53r ≥C r +15·3r +1, ∴⎩⎪⎨⎪⎧5!(5-r )!r !×3≥5!(6-r )!(r -1)!,5!(5-r )!r !≥5!(4-r )!(r +1)!×3.∴⎩⎨⎧3r ≥16-r ,15-r ≥3r +1.∴72≤r ≤92. ∵r ∈N *,∴r =4.∴展开式中系数最大项为T 5=C 45·34·x 103+4×43=405x 263.。
一.基本原理1.加法原理:做一件事有n类办法,则完成这件事的方法数等于各类方法数相加。
2.乘法原理:做一件事分n步完成,则完成这件事的方法数等于各步方法数相乘。
注:做一件事时,元素或位置允许重复使用,求方法数时常用基本原理求解。
二.排列:从n个不同元素中,任取m(m≤n)个元素,按照一定的顺序排成一列,叫做从n个不同元素中取出m个元素的一个排列,所有排列的个数记为。
四.处理排列组合应用题1.①明确要完成的是一件什么事(审题)②有序还是无序③分步还是分类。
2.解排列、组合题的基本策略(1)两种思路:①直接法:②间接法:对有限制条件的问题,先从总体考虑,再把不符合条件的所有情况去掉。
这是解决排列组合应用题时一种常用的解题方法。
分类处理:当问题总体不好解决时,常分成若干类,再由分类计数原理得出结论。
注意:分类不重复不遗漏。
即:每两类的交集为空集,所有各类的并集为全集。
(3)分步处理:与分类处理类似,某些问题总体不好解决时,常常分成若干步,再由分步计数原理解决。
在处理排列组合问题时,常常既要分类,又要分步。
其原则是先分类,后分步。
(4)两种途径:①元素分析法;②位置分析法。
3.排列应用题:(1)穷举法(列举法):将所有满足题设条件的排列与组合逐一列举出来;(2) 特殊元素优先考虑、特殊位置优先考虑;例1. 电视台连续播放6个广告,其中含4个不同的商业广告和2个不同的公益广告,要求首尾必须播放公益广告,则共有种不同的播放方式(结果用数值表示).解:分二步:首尾必须播放公益广告的有种;中间4个为不同的商业广告有种,从而应当填=48. 从而应填48.例2. 6人排成一行,甲不排在最左端,乙不排在最右端,共有多少种排法?解一:间接法:即解二:(1)分类求解:按甲排与不排在最右端分类.(3)相邻问题:捆邦法:对于某些元素要求相邻的排列问题,先将相邻接的元素“捆绑”起来,看作一“大”元素与其余元素排列,然后再对相邻元素内部进行排列。
解排列组合问题的四大原则排列、组合是高中数学的重要内容,新教材中概率与统计的增加更突出了排列、组合的重要性.高考对排列组合的考查以两个基本原理——分类加法计数原理和分步乘法计数原理为出发点,侧重检测解题思想和解题技巧,因而对解题策略和思维模式的培养和提炼是平时训练的核心.下面通过具体的例题来解析排列组合问题的解题策略之“四大原则”.一、特殊优先原则该原则是指在有限制的排列组合问题中优先考虑特殊元素或特殊位置. 例1 (2003年北京市西城区一模题(文))甲、乙、丙三个同学在课余时间负责一个计算机房的周一至周六的值班工作,每天1人值班,每人值班2天,如果甲同学不值周一的班,则可以排出不同的值班表有( )A .90种B .89种C .60种D .59种解析:特殊元素优先考虑,甲同学不值周一的班,则先考虑甲,分步完成:①从除周一的5天中任取2天安排甲有25C 种;②从剩下的4天中选2天安排乙有24C 种;③仅剩2天安排丙有22C 种.由分步乘法计数原理可得一共有22254260C C C =··种,即选C .评注:特殊优先原则是解有限制的排列组合问题的总原则,对有限制的元素和有限制的位置一定要优先考虑.二、先取后排原则该原则充分体现了m m m n m n C A A =·的精神实质,先组合后排列,从而避免了不必要的重复与遗漏.例2 (2004年高考全国卷Ⅲ)将4名教师分配到3所中学任教,每所中学至少1名教师,则不同的分配方案共有( ).A .12种B .24种C .36种D .48种解析:先分组再排列:将4名教师分成3组有24C 种分法,再将这三组分配到三所学校有33A 种分法,由分步乘法计数原理知一共有234336C A =·种不同分配方案.评注:先取后排原则也是解排列组合问题的总原则,尤其是排列与组合的综合问题.若本例简单分步:先从4名教师中取3名教师分给3所学校有34A 种方法,再将剩下的1名教师分给3所学校有3种选择,则共有34372A =·种分配方案,则有明显重复(如:甲、乙、丙、丁和甲、乙、丁、丙).因此,处理多元素少位置问题时一般采用先取后排原则.三、正难则反原则若从正面直接解决问题有困难时,则考虑事件的对立事件,从不合题意要求的情况入手,再整体排除.例3 (2004年北京市春招卷)在100件产品中有6件次品,现从中任取3件产品,至少取到1件次品的不同取法的种数是( )A .12694C CB .12699C C C .3310094C C -D .3310094A C -解析:从100件次品中取3件产品,至少有1件次品的对立事件是取到3件全部是正品,即从94件正品中取3件正品有394C 种取法,所以满足条件的不同取法是3310094C C -,故选C .如果从正面考虑,则必须分取到1,2,3件次品这三类,没有应用排除法来得简单.而本例最易迷惑人的是B :12699C C ,即从6件次品中取1件确保了至少有1件次品,再从剩下的99件产品中任取2件即可.事实上这样分步并不相互独立,第一步对第二步有明显影响,设次品为ABCDEF ,正品为甲乙丙丁戊…则12699C C 可以是AB甲,也可能是BA甲,因而重复. 评注:正难则反原则也是解决排列组合问题的总原则,如果从正面考虑不易突破,一般寻找反面途径.利用正难则反原则的语境有其规律,如当问题中含有“至少”,“最多”等词语时,易用此原则.四、策略针对原则不同类型的排列、组合问题有着不同的应对策略,不同的限制条件要采用不同的解题方法.1.相邻问题捆绑法(整体法),相隔问题插空法例4 (2004年高考重庆卷(理))某校高三年级举行一次演讲比赛,共有10位同学参赛,其中一班有3位,二班有2位,其他班有5位.若采用抽签的方式确定他们的演讲顺序,则一班的3位同学恰好被安排到一起(演讲序号相连),而2班的2位同学没有被排在一起的概率为( )A .110B .120C .140D .1120解析:10人的全排列数是1010A ,即所有的演讲顺序有1010A 种.符合要求的演讲顺序有两个限制:一班的3位同学相邻,而2班的2位同学不相邻,因此分步完成:①把一班的3位同学看成一个整体,他们自身全排列有33A 种安排;②把这个整体当成1个元素与其他班5个元素一起排列有66A 种安排;③把这6个元素排定后有7个空位(包含两端),从这7个空位中任取2个空位安排2班的2位同学有27A 种排法(这样确保2位同学不相邻).满足条件的排列共有362367A A A ··种,即所求概率是3623671010120A A A A ··,故选B . 评注:处理相邻问题和不相邻问题时易采用整体法(确保相邻)和插空法(确保相隔),只是要注意是先整体后插空(相邻与不邻的综合问题)或先排后插(单纯的相隔问题),再就是要注意整体元素的排列顺序问题.2.合理分类直接分步法例5 (2004年高考全国卷Ⅱ)在由数字1,2,3,4,5组成的所有没有重复数字的5位数中,大于23145且小于43521的数共有( )个. ( )A .56B .57C .58D .60解析:所有大于23145且小于43521的数由以下几类构成:由分类加法计数原理可得,一共有234322343212222158A A A A A ++++++=个,故选C .评注:合理分类与直接分步是两个基本原理———分类加法计数原理和分步乘法计数原理最直接的体现,是解排列组合问题的最原始的方法.诸多排列组合问题总是从合理分类,直接分步得到解决的.3.顺序一定消序法(用除法)例6 (2003年北京市春招卷)某班新年联欢会原定的5个节目已排成节目单,开演前又增加了两个新节目,如果将这两个节目插入原节目中,那么不同插法的种数为( ).A .42B .30C .20D .12解析:新插入两个节目,而原来的5个节目顺序不变,从结果考虑,7个节目的全排列是77A ,而顺序不变的5个节目的全排列是55A ,不变的顺序是总体的551A ,则一共有775542A A =种不同的插入种数,故选A . 评注:某些元素顺序不变的排列用除法解决,即若共有n 个元素,其中m 个元素顺序不变,则其不同的排列数为.当然本题可以这样考虑:最终有7个节目位置,从7个位置中任选2个位置安排新增节目有27A 种方法,其他5个位置按原5个节目的固定顺序排列,因此共有2742A =种不同的插入方法.4.对象相同隔板法例7 (1)(2004年湖北省四校联考卷)高二年级要从3个班级抽取10人参加数学竞赛,每班至少1人,一共有______种不同的安排方法.(2)(2003年荆州市质检卷Ⅱ)10个相同的小球放到3个不同的盒中,每个盒不空,一共有______种不同的放法.解析:两例的实质一样,属于同一模型———对象相同,这类问题处理方式较多,但隔板法简单易操作:10个相同的小球有9个空档(确保盒子不空).从9个空档中选2个空档放入两块隔板,将小球分成三部分(每一种放档板的放法对应着10个小球分成3部分的分法),每部分一一对应着一个不同的小盒.因此一共有29C 种不同的放法,即2936C =种.而把10个竞赛名额分配给3个班,每班至少1个名额的方法与此一模一样.评注:研究的对象是不加区别的元素时,一般考虑隔板法.这是一个基本的数学模型,由此变形的问题是:10++=有多少组正整数解?而解法不变.x y z。
排列组合方法精讲——思维方法的衍生法或派生法我们在高中数学中已经学了排列组合的基础知识了,因此大家对“排列组合”这概念应该不会是陌生的。
宇宙中的万事万物严格地说就是元素、分子、细胞等基本单元排列组合的结果,如所有分子都是由原子排列组合而成的,复杂的化学反应也是由简单的化学反应排列组合而成的;所有生物都是由不同的细胞排列组合而成的,可见排列组合知识是多么的重要 !为此下面就简单介绍一下高中代数中所讲到的排列组合的一些基础知识元素通常人们把被取的对象 (不管它是什么)叫做元素。
如若我们研究对象为数字 (如1、2、3、4、5等)那么,这些数字也叫做元素;若我们研究的对象为地名(如:北京、上海、广州、南京等),那么这些地名也一样可叫做元素;若我们研究的对象为字母(如:a、b、c、d等),那么这些字母也可叫做元素;若我们研究的对象为分子(如:Cl2、Br2、H2、HCl等),那么这些分子也一样可叫做元素;若我们研究的对象为一个人(如:张三、李四、王五等),那么这些人也可叫做元素……排列那么,一般地说,从 n个不同元素中,任取m(m≤n)个元素,按照一定的顺序排成一列,这就叫做从几个不同元素中取m个元素的一个排列。
例如:已知 a、b、c、d这四个元素,写出每次取出3个元素的所有排列。
对于初学者可以先画下图来算出:看上图 V所指的字母及第二排字母三个排成一列即可得到下列排列(这就是a、b、c、d这四个元素中每次取3个元素所得的所有排列):有共 24个排列,这个数值24是可以根据乘法原理算出来的。
数学中的乘法原理为:做一件事,完成它需要分成几个步骤,做第一步有m1种不同的方法,做第二步有m2种不同的方法……,做第n步有m n 种不同的方法,那么完成这件事共有N=m2×m1×m3×……×m n种不同的方法。
据此从a、b、c、d这四个元素中每次取出三个排成三位数的方法共有N=4×3×2=24种。
描述:例题:高中数学选修2-3(人教B版)知识点总结含同步练习题及答案第一章 计数原理 1.3计数模型(补充)一、学习任务掌握计数的几种模型,并能处理一些简单的实际问题.二、知识清单数字组成模型 条件排列模型 分组分配模型染色模型计数杂题三、知识讲解1.数字组成模型与顺序相关的数字问题,通常是计算满足某些特征的数字的个数.常见特征比如各个数位的数字不同、四位数、奇数、比某数大的数、某个数位满足某种条件的数等等,其中各个数位数字可以相同的问题通常借助乘法原理分步解决,各个数位数字不相同通常是与排列相关的问题.由 、、、、 这五个数字可组成多少个无重复数字的五位数?解:首位不能是 ,有 种,后四位数有 种排列,所以这五个数可以组成 个无重复的五位数.012340C 14A 44=96C 14A 44用数字 、 组成四位数,且数字 、 至少都出现一次,这样的四位数共有______个(用数字作答).解:因为四位数的每个数位上都有两种可能性,其中四个数字全是 或 的情况不合题意,所以符合题意的四位数有 个.23231423−2=1424从 , 中选一个数字,从 、、 中选两个数字,组成无重复数字的三位数,其中奇数的个数为( )A. B. C. D.解:B当选 时,先从 、、 中选 个数字有 种方法,然后从选中的 个数字中选 个排在末位有 种方法,剩余 个数字排在首位,共有 种方法;当选 时,先从 、、 中选 个数字有 种方法,然后从选中的 个数字中选 个排在末位有 种方法,其余 个数字全排列,共有 种方法.依分类加法计数原理知共有 个奇数.02135241812601352C 2321C 121=6C 23C 1221352C 2321C 122=12C 23C 12A 226+12=18用 , ,, , , 这 个数字,可以组成______个大于 且小于 的012345630005421描述:例题:2.条件排列模型计算满足某些限制条件的排列的个数,常见的如相邻问题、不相邻问题、某位置不能排某人、某人只能或不能排在某些位置的问题等等.不重复的四位数.解:分四类:①千位数字为 , 之一时,百十个位数只要不重复即可,有 (个);②千位数字为 ,百位数字为 ,,, 之一时,共有 (个);③千位数字是 ,百位数字是 ,十位数字是 , 之一时,共有 (个);④最后还有 也满足条件.所以,所求四位数共有 (个).175342=120A 3550123=48A 14A 245401=6A 12A 135420120+48+6+1=175 名男生, 名女生,按照不同的要求排队,求不同的排队方案的方法种数.(1)全体站成一排,其中甲只能在中间或两端;(2)全体站成一排,男生必须排在一起;(3)全体站成一排,甲、乙不能相邻.解:(1)先考虑甲的位置,有 种方法,再考虑其余 人的位置,有 种方法.故有种方法;(2)(捆绑法)男生必须站在一起,即把 名男生进行全排列,有 种排法,与 名女生组成 个元素全排列,故有 种不同的排法;(3)(插空法)甲、乙不能相邻,先把剩余的 名同学全排列,有 种排法,然后将甲、乙分别插到 个空中,有 种排法,故有 种不同的排法.34A 136A 66=2160A 13A 663A 3345=720A 33A 555A 556A 26=3600A 55A 26有甲、乙、丙在内的 个人排成一排照相,其中甲和乙必须相邻,丙不排在两头,则这样的排法共有______种.解:甲和乙必须相邻,可将甲、乙捆绑,看成一个元素,与丙除外的另三个元素构成四个元素,自由排列,有 种方法;丙不排在两头,可对丙插空,插四个元素生成的中间的三个空中的任何一个,有 种方法;最后甲、乙两人的排法有 种方法.综上,总共有 种排法.6144A 44A 13A 22=144A 44A 13A 22 把椅子摆成一排, 人随机就座,任何两人不相邻的坐法种数为( )A. B. C. D.解:D“不相邻”应该用“插空法”,三个空椅子,形成 个空,三个坐人的椅子插入空中,因为人不同,所以需排序,所以有 种不同坐法.6314412072244=24A 34某一天的课程表要排入政治、语文、数学、物理、体育、美术共六节课,如果第一节不排体育,最后一节不排数学,那么共有多少种不同课程的排法?解:法一: 门课程总的排法是 种,其中不符合要求的可分为:体育排在第一节有 种排法,数学排在最后一节有 种排法,但这两种方法,都包括体育在第一节,数学排在最后一节,这种情况有 种排法,因此符合条件的排法应是: 种.法二:① 体育、数学即不排在第一节也不排在最后一节,这种情况有 种排法;② 数学6A 66A 55A 55A 44−2+=504A 66A 55A 44⋅A 24A 44⋅144种颜色可供选择,则不同的着色方法共有______种.(以数字作答)72种花,且相邻的96高考不提分,赔付1万元,关注快乐学了解详情。
第二章随机变量及其分布2.2 二项分布及其应用2.2.2 事件的相互独立性课时分层作业当 堂 达 标•固 双 基自 主 预 习•探 新 知合 作 探 究•攻 重 难返首学习目标:1.在具体情境中,了解两个事件相互独立的概念.(难点)2.能利用相互独立事件同时发生的概率公式解决一些简单的实际问题.(重点)3.综合运用互斥事件的概率加法公式及独立事件的乘法公式解决一些问题.(重点、难点)课时分层作业当堂 达 标•固 双 基自 主 预 习•探 新 知合 作 探 究•攻 重 难返首[自 主 预 习·探 新 知]1.相互独立事件的定义和性质(1)定义:设A ,B 为两个事件,如果P (AB )=__________,那么称事件A 与事件B 相互独立.(2)性质:①如果A 与B 相互独立,那么A 与B ,A 与B ,A 与B 也都相互独立.②如果A 与B 相互独立,那么P (B |A )=______,P (A |B )=______. 思考:互斥事件与相互独立事件的区别是什么?P (A )P (B ) P (B ) P (A )课时分层作业当 堂 达 标•固 双 基自 主 预 习•探 新 知合 作 探 究•攻 重 难返首[提示] 相互独立事件互斥事件条件事件A (或B )是否发生对事件B (或A )发生的概率没有影响不可能同时发生的两个事件符合 相互独立事件A ,B 同时发生,记作:AB互斥事件A ,B 中有一个发生,记作:A ∪B (或A +B )计算公式P (AB )=P (A )P (B )P (A ∪B )=P (A )+P (B )课时分层作业当堂 达 标•固 双 基自 主 预 习•探 新 知合 作 探 究•攻 重 难返首2.n 个事件相互独立对于n 个事件A 1,A 2,…,A n ,如果其中_____________发生的概率不受其他事件是否发生的影响,则称n 个事件A 1,A 2,…,A n 相互独立.3.独立事件的概率公式(1)若事件A ,B 相互独立,则P (AB )=P (A )×P (B ); (2)若事件A 1,A 2,…,A n 相互独立,则P (A 1A 2…A n )=P (A 1)×P (A 2)×…×P (A n ).任一个事件课时分层作业当 堂 达 标•固 双 基自 主 预 习•探 新 知合 作 探 究•攻 重 难返首[基础自测]1.判断(正确的打“√”,错误的打“×”)(1)对事件A 和B ,若P (B |A )=P (B ),则事件A 与B 相互独立; ( ) (2)若事件A ,B 相互独立,则P (A -B -)=P (A )×P (B ). ( ) (3)如果事件A 与事件B 相互独立,则P (B |A )=P (B ). ( ) (4)若事件A 与B 相互独立,则B 与B 相互独立.()课时分层作业当 堂 达 标•固 双 基自 主 预 习•探 新 知合 作 探 究•攻 重 难返首[解析] (1)√ 若P (B |A )=P (B ),则P (AB )=P (A )·P (B ),故A ,B 相互独立,所以(1)正确;(2)√ 若事件A ,B 相互独立,则A 、B 也相互独立,故(2)正确; (3)√ 若事件A ,B 相互独立,则A 发生与否不影响B 的发生,故(3)正确;(4)× B 与B 相互对立,不是相互独立,故(4)错误. [答案] (1)√ (2)√ (3)√ (4)×课时分层作业当 堂 达 标•固 双 基自 主 预 习•探 新 知合 作 探 究•攻 重 难返首2.坛中有黑、白两种颜色的球,从中进行有放回地摸球,用A 1表示第一次摸得白球,A 2表示第二次摸得白球,则A 1与A 2是( )【导学号:95032153】A .相互独立事件B .不相互独立事件C .互斥事件D .对立事件A [由概率的相关概念得A 1与A 2是互不影响的两个事件,故是相互独立的事件.]课时分层作业当 堂 达 标•固 双 基自 主 预 习•探 新 知合 作 探 究•攻 重 难返首3.一个学生通过一种英语能力测试的概率是12,他连续测试两次,那么其中恰有一次通过的概率是( )A.14B.13C.12D.34C [由题意知,恰有一次通过的概率为12× 1-12+1-12×12=12.]课时分层作业当 堂 达 标•固 双 基自 主 预 习•探 新 知合 作 探 究•攻 重 难返首4.在某道路A ,B ,C 三处设有交通灯,这三盏灯在一分钟内开放绿灯的时间分别为25秒、35秒、45秒,某辆车在这条道路上匀速行驶,则三处都不停车的概率为________.35192 [由题意可知,每个交通灯开放绿灯的概率分别为512,712,34.在这条道路上匀速行驶,则三处都不停车的概率为P =512×712×34=35192.]课时分层作业当 堂 达 标•固 双 基自 主 预 习•探 新 知合 作 探 究•攻 重 难返首[合 作 探 究·攻 重 难]相互独立事件的判断判断下列各对事件是否是相互独立事件.(1)甲组3名男生,2名女生;乙组2名男生,3名女生,现从甲、乙两组中各选1名同学参加演讲比赛,“从甲组中选出1名男生”与“从乙组中选出1名女生”;(2)容器内盛有5个白乒乓球和3个黄乒乓球,“从8个球中任意取出1个,取出的是白球”与“从剩下的7个球中任意取出1个,取出的还是白球”;(3)掷一颗骰子一次,“出现偶数点”与“出现3点或6点”.课时分层作业当 堂 达 标•固 双 基自 主 预 习•探 新 知合 作 探 究•攻 重 难返首[思路探究] (1)利用独立性概念的直观解释进行判断.(2)计算“从8个球中任取一球是白球”发生与否,事件“从剩下的7个球中任意取出一球还是白球”的概率是否相同进行判断.(3)利用事件的独立性定义判断.课时分层作业当堂 达 标•固 双 基自 主 预 习•探 新 知合 作 探 究•攻 重 难返首[解] (1)“从甲组中选出1名男生”这一事件是否发生,对“从乙组中选出1名女生”这一事件发生的概率没有影响,所以它们是相互独立事件.(2)“从8个球中任意取出1个,取出的是白球”的概率为58,若这一事件发生了,则“从剩下的7个球中任意取出1个,取出的仍是白球”的概率为47;若前一事件没有发生,则后一事件发生的概率为57发生,对后一事件发生的概率有影响,所以二者不是相互独立事件.课时分层作业当 堂 达 标•固 双 基自 主 预 习•探 新 知合 作 探 究•攻 重 难返首(3)记A :出现偶数点,B :出现3点或6点,则A ={2,4,6},B ={3,6},AB ={6},所以P (A )=36=12,P (B )=26=13,P (AB )=16. 所以P (AB )=P (A )·P (B ), 所以事件A 与B 相互独立.课时分层作业当 堂 达 标•固 双 基自 主 预 习•探 新 知合 作 探 究•攻 重 难返首[规律方法] 判断事件是否相互独立的方法1.定义法:事件A ,B 相互独立⇔P (AB )=P (A )·P (B ).2.直接法:由事件本身的性质直接判定两个事件发生是否相互影响. 3.条件概率法:当P (A )>0时,可用P (B |A )=P (B )判断.课时分层作业当 堂 达 标•固 双 基自 主 预 习•探 新 知合 作 探 究•攻 重 难返首[跟踪训练]1.(1)下列事件中,A ,B 是相互独立事件的是()A .一枚硬币掷两次,A =“第一次为正面”,B =“第二次为反面” B .袋中有2白,2黑的小球,不放回地摸两球,A =“第一次摸到白球”,B =“第二次摸到白球”C .掷一枚骰子,A =“出现点数为奇数”,B =“出现点数为偶数”D .A =“人能活到20岁”,B =“人能活到50岁”课时分层作业当 堂 达 标•固 双 基自 主 预 习•探 新 知合 作 探 究•攻 重 难返首(2)甲、乙两名射手同时向一目标射击,设事件A :“甲击中目标”,事件B :“乙击中目标”,则事件A 与事件B ()A .相互独立但不互斥B .互斥但不相互独立C .相互独立且互斥D .既不相互独立也不互斥课时分层作业当 堂 达 标•固 双 基自 主 预 习•探 新 知合 作 探 究•攻 重 难返首(1)A (2)A [(1)把一枚硬币掷两次,对于每次而言是相互独立的,其结果不受先后影响,故A 是独立事件;B 中是不放回地摸球,显然A 事件与B 事件不相互独立;对于C ,A ,B 应为互斥事件,不相互独立;D 是条件概率,事件B 受事件A 的影响.故选A.(2)对同一目标射击,甲、乙两射手是否击中目标是互不影响的,所以事件A 与B 相互独立;对同一目标射击,甲、乙两射手可能同时击中目标,也就是说事件A 与B 可能同时发生,所以事件A 与B 不是互斥事件.故选A.]课时分层作业当 堂 达 标•固 双 基自 主 预 习•探 新 知合 作 探 究•攻 重 难返首相互独立事件同时发生的概率甲、乙两人破译一密码,他们能破译的概率分别为13和14.求: (1)两人都能破译的概率; (2)两人都不能破译的概率; (3)恰有一人能破译的概率; (4)至多有一人能够破译的概率.【导学号:95032154】课时分层作业当 堂 达 标•固 双 基自 主 预 习•探 新 知合 作 探 究•攻 重 难返首[解] 设“甲能破译”为事件A ,“乙能破译”为事件B ,则A 、B 相互独立,从而A 与B -、A -与B 、A -与B -均相互独立.(1)“两人都能破译”为事件AB ,则 P (AB )=P (A )P (B )=13×14=112.(2)“两人都不能破译”为事件A B ,则P (A B )=P (A -)P (B -)=[1-P (A )][1-P (B )]= 1-13×1-14=12.课时分层作业当堂 达 标•固 双 基自 主 预 习•探 新 知合 作 探 究•攻 重 难返首(3)“恰有一人能破译”为事件(A B )∪(A B ),又A B 与A B 互斥,所以P [(A B )∪(A B )]=P (A B )+P (A B )=P (A )P (B )+P (A )P (B )=13× 1-14+1-13×14=512. (4)“至多一人能破译”为事件(A B )∪(A B )∪(A B ),而A B 、A B 、A B 互斥,故P [(A B )∪(A B )∪(A B )]=P (A B )+P (A B )+P (A B )=P (A )P (B )+P (A )·P (B )+P (A )P (B )=13× 1-14+ 1-13×14+ 1-13×1-14=1112.课时分层作业当 堂 达 标•固 双 基自 主 预 习•探 新 知合 作 探 究•攻 重 难返首[规律方法]1.求相互独立事件同时发生的概率的步骤: (1)首先确定各事件是相互独立的; (2)再确定各事件会同时发生;(3)先求每个事件发生的概率,再求其积.2.公式P (AB )=P (A )P (B )可推广到一般情形,即如果事件A 1,A 2,…,A n 相互独立,那么这n 个事件同时发生的概率等于每个事件发生的概率的积,即P (A 1A 2…A n )=P (A 1)P (A 2)…P (A n ).课时分层作业当 堂 达 标•固 双 基自 主 预 习•探 新 知合 作 探 究•攻 重 难返首[跟踪训练]2.一个袋子中有3个白球,2个红球,每次从中任取2个球,取出后再放回,求:(1)第1次取出的2个球都是白球,第2次取出的2个球都是红球的概率; (2)第1次取出的2个球1个是白球、1个是红球,第2次取出的2个球都是白球的概率.课时分层作业当堂 达 标•固 双 基自 主 预 习•探 新 知合 作 探 究•攻 重 难返首[解] 记“第1次取出的2个球都是白球”的事件为A ,“第2次取出的2个球都是红球”的事件为B ,“第1次取出的2个球中1个是白球、1个是红球”的事件为C ,很明显,由于每次取出后再放回,A ,B ,C 都是相互独立事件.(1)P (AB )=P (A )P (B )=C 23C 25×C 22C 25=310×110=3100.故第1次取出的2个球都是白球,第2次取出的2个球都是红球的概率是3100.(2)P (CA )=P (C )P (A )=C 13·C 12C 25·C 23C 25=610·310=950.故第1次取出的2个球中1个是白球、1个是红球,第2次取出的2个球都是白球的概率是950.课时分层作业当 堂 达 标•固 双 基自 主 预 习•探 新 知合 作 探 究•攻 重 难返首事件的相互独立性与互斥性[探究问题]1.甲、乙二人各进行一次射击比赛,记A =“甲击中目标”,B =“乙击中目标”,试问事件A 与B 是相互独立事件,还是互斥事件?事件A B 与A B 呢?[提示] 事件A 与B ,A 与B ,A 与B 均是相互独立事件,而A B 与A B 是互斥事件.课时分层作业当 堂 达 标•固 双 基自 主 预 习•探 新 知合 作 探 究•攻 重 难返首2.在探究1中,若甲、乙二人击中目标的概率均是0.6,如何求甲、乙二人恰有一人击中目标的概率?[提示] “甲、乙二人恰有1人击中目标”记为事件C ,则C =A B +A B .所以P (C )=P (A B +A B )=P (A B )+P (A B ) =P (A )·P (B )+P (A )·P (B )=(1-0.6)×0.6+0.6×(1-0.6)=0.48.课时分层作业当 堂 达 标•固 双 基自 主 预 习•探 新 知合 作 探 究•攻 重 难返首 小王某天乘火车从重庆到上海去办事,若当天从重庆到上海的三列火车正点到达的概率分别为0.8,0.7,0.9,假设这三列火车之间是否正点到达互不影响.求:(1)这三列火车恰好有两列正点到达的概率. (2)这三列火车至少有一列正点到达的概率.【导学号:95032155】课时分层作业当 堂 达 标•固 双 基自 主 预 习•探 新 知合 作 探 究•攻 重 难返首[思路探究] (1)这三列火车之间是否正点到达互不影响,因此本题是相互独立事件同时发生的概率问题,注意两列正点到达所包含的情况.(2)这三列火车至少有一列正点到达的对立事件是三列火车都没正点到达,这种情况比正面列举简单些,因此利用对立事件的概率公式求解.课时分层作业当堂 达 标•固 双 基自 主 预 习•探 新 知合 作 探 究•攻 重 难返首[解] 用A ,B ,C 分别表示这三列火车正点到达的事件,则P (A )=0.8,P (B )=0.7,P (C )=0.9,所以P (A -)=0.2,P (B -)=0.3,P (C -)=0.1.(1)由题意得A ,B ,C 之间互相独立,所以恰好有两列正点到达的概率为P 1=P (A -BC )+P (A B -C )+P (AB C -)=P (A -)P (B )P (C )+P (A )P (B -)P (C )+P (A )P (B )P (C -) =0.2×0.7×0.9+0.8×0.3×0.9+0.8×0.7×0.1=0.398.课时分层作业当堂 达 标•固 双 基自 主 预 习•探 新 知合 作 探 究•攻 重 难返首(2)三列火车至少有一列正点到达的概率为P 2=1-P (A -B -C -) =1-P (A -)P (B -)P (C -) =1-0.2×0.3×0.1=0.994.课时分层作业当堂 达 标•固 双 基自 主 预 习•探 新 知合 作 探 究•攻 重 难返首母题探究:1.(改变问法)本例条件下,求恰有一列火车正点到达的概率.[解] 恰有一列火车正点到达的概率P 3=P (A B -C -)+P (A -B C -)+P (A -B -C ) =P (A )P (B -)P (C -)+P (A -)P (B )P (C -)+P (A -)P (B -)P (C ) =0.8×0.3×0.1+0.2×0.7×0.1+0.2×0.3×0.9=0.092.课时分层作业当堂 达 标•固 双 基自 主 预 习•探 新 知合 作 探 究•攻 重 难返首2.(变换条件,改变问法)若一列火车正点到达计5分,用¾表示三列火车的总得分,求P (¾≤10).[解] 事件“¾≤10”表示“至多两列火车正点到达”其对立事件为“三列火车都正点到达”,所以P (¾≤10)=1-P (ABC ) =1-P (A )P (B )P (C ) =1-0.8×0.7×0.9=0.496.课时分层作业当 堂 达 标•固 双 基自 主 预 习•探 新 知合 作 探 究•攻 重 难返首[规律方法] 与相互独立事件有关的概率问题求解策略明确事件中的“至少有一个发生”“至多有一个发生”“恰好有一个发生”“都发生”“都不发生”“不都发生”等词语的意义.一般地,已知两个事件A ,B ,它们的概率分别为P (A ),P (B ),那么: (1)A ,B 中至少有一个发生为事件A +B . (2)A ,B 都发生为事件AB .(3)A ,B 都不发生为事件A -B -.(4)A ,B 恰有一个发生为事件A B -+A -B .(5)A ,B 中至多有一个发生为事件A B -+A -B +A -B -.它们之间的概率关系如表所示:课时分层作业当堂 达 标•固 双 基自 主 预 习•探 新 知合 作 探 究•攻 重 难返首 A ,B 互斥 A ,B 相互独立P (A +B ) P (A )+P (B )1-P (A -)P(B -) P (AB )P (A)P(B )P (A -B -) 1-[P (A )+P (B )] P (A -)P(B -) P (A B -+A -B ) P (A )+P (B )P (A )P (B -)+P (A -)P (B )P (A -·B -+A·B -+A -·B )11-P (A )·P (B )课时分层作业当 堂 达 标•固 双 基自 主 预 习•探 新 知合 作 探 究•攻 重 难返首[跟踪训练]3.某田径队有三名短跑运动员,根据平时训练情况统计甲、乙、丙三人100米跑(互不影响)的成绩在13 s 内(称为合格)的概率分别为25,34,13,若对这三名短跑运动员的100米跑的成绩进行一次检测,则求:(1)三人都合格的概率; (2)三人都不合格的概率; (3)出现几人合格的概率最大.课时分层作业当 堂 达 标•固 双 基自 主 预 习•探 新 知合 作 探 究•攻 重 难返首[解] 记甲、乙、丙三人100米跑成绩合格分别为事件A ,B ,C ,显然事件A ,B ,C 相互独立,则P (A )25,P (B )=34,P (C )=13.设恰有k 人合格的概率为P k (k =0,1,2,3). (1)三人都合格的概率:P 3=P (ABC )=P (A )·P (B )·P (C )=25×34×13=110. (2)三人都不合格的概率:P 0=P (A B C )=P (A )·P (B )·P (C )=35×14×23=110.课时分层作业当 堂 达 标•固 双 基自 主 预 习•探 新 知合 作 探 究•攻 重 难返首(3)恰有两人合格的概率: P 2=P (AB C )+P (A B C )+P (A BC ) =25×34×23+25×14×13+35×34×13=2360. 恰有一人合格的概率:P 1=1-P 0-P 2-P 3=1-110-2360-110=2560=512. 综合(1)(2)可知P 1最大.所以出现恰有一人合格的概率最大.课时分层作业当 堂 达 标•固 双 基自 主 预 习•探 新 知合 作 探 究•攻 重 难返首[当 堂 达 标·固 双 基]1.袋内有3个白球和2个黑球,从中不放回地摸球,用A 表示“第一次摸得白球”,用B 表示“第二次摸得白球”,则A 与B 是( )A .互斥事件B .相互独立事件C .对立事件D .不相互独立事件D [P (A )=35,P (B )=12,事件A 的结果对事件B 有影响.根据互斥事件、对立事件和相互独立事件的定义可知,A 与B 不是相互独立事件.]课时分层作业当 堂 达 标•固 双 基自 主 预 习•探 新 知合 作 探 究•攻 重 难返首2.甲、乙两人各进行一次射击,如果两人击中目标的概率都是0.8,则其中恰有一人击中目标的概率为()【导学号:95032156】A .0.64B .0.32C .0.56D .0.48课时分层作业当堂 达 标•固 双 基自 主 预 习•探 新 知合 作 探 究•攻 重 难返首B [“两人各射击一次,恰好有一人击中目标”包括两种情况:一种是甲击中乙未击中(即A B -),另一种是甲未击中乙击中(即A -B ),根据题意,这两种情况在各射击一次时不可能同时发生,即事件A B -与A -B 是互斥的,所以所求概率为P =P (A B -)+P (A -B )=P (A )P (B -)+P (A -)P (B )=0.8×(1-0.8)+(1-0.8)×0.8=0.32.]课时分层作业当 堂 达 标•固 双 基自 主 预 习•探 新 知合 作 探 究•攻 重 难返首3.袋中装有红、黄、蓝3种颜色的球各1个,从中每次任取1个,有放回地抽取3次,则3次全是红球的概率为( )A.14B.19C.13D.127D [有放回地抽取3次,每次可看作一个独立事件.每次取出的球为红球的概率为13,“3次全是红球”为三个独立事件同时发生,其概率为13×13×13=127.]课时分层作业当 堂 达 标•固 双 基自 主 预 习•探 新 知合 作 探 究•攻 重 难返首4.国庆节放假,甲去北京旅游的概率为13,乙、丙去北京旅游的概率分别为14,15.假定三人的行动相互之间没有影响,那么这段时间内至少有1人去北京旅游的概率为________.35 [因甲、乙、丙去北京旅游的概率分别为13,14,15.因此,他们不去北京旅游的概率分别为23,34,45,所以,至少有1人去北京旅游的概率为P =1-23×34×45=35.]课时分层作业当 堂 达 标•固 双 基自 主 预 习•探 新 知合 作 探 究•攻 重 难返首5.某班甲、乙、丙三名同学竞选班委,甲当选的概率为45,乙当选的概率为35,丙当选的概率为710.(1)求恰有一名同学当选的概率; (2)求至多有两人当选的概率.【导学号:95032157】课时分层作业当 堂 达 标•固 双 基自 主 预 习•探 新 知合 作 探 究•攻 重 难返首[解] 设甲、乙、丙当选的事件分别为A ,B ,C ,则有 P (A )=45,P (B )=35,P (C )=710.(1)因为事件A ,B ,C 相互独立,所以恰有一名同学当选的概率为P (A B C )+P (A B C )+P (A B C )=P (A )·P (B )·P (C )+P (A )·P (B )·P (C )+ P (A )·P (B )·P (C )=45×25×310+15×35×310+15×25×710=47250.课时分层作业当 堂 达 标•固 双 基自 主 预 习•探 新 知合 作 探 究•攻 重 难返首(2)至多有两人当选的概率为1-P (ABC )=1-P (A )·P (B )·P (C )=1-45×35×710=83125.课时分层作业当 堂 达 标•固 双 基自 主 预 习•探 新 知合 作 探 究•攻 重 难返首课时分层作业(十二)点击上面图标进入…谢谢观看。