古巴比伦数学史
- 格式:pptx
- 大小:1.36 MB
- 文档页数:7
古巴比伦数学的故事
古巴比伦数学的发展
古巴比伦数学,即古代巴比伦数学,是数学史上的一个重要篇章。
巴比伦数学主要起源于公元前18世纪左右的古巴比伦时期,其发展历程与古巴比伦文明的兴衰紧密相连。
在这一时期,巴比伦数学取得了令人瞩目的成就,为后世数学的发展奠定了基础。
古巴比伦数学的发展主要集中在两个时期:古巴比伦时期和亚述时期。
在古巴比伦时期,数学主要是为了满足农业、商业和土地测量等方面的需求。
这一时期的数学涉及到算术、代数和几何等方面,其成就主要体现在以下几个方面:
1.算术方面:古巴比伦时期的算术已经相当发达,他们掌握了基本的加减乘
除运算,还能够解决一些较为复杂的算术问题。
2.代数方面:古巴比伦人已经掌握了基本的代数知识,能够解决一些线性方
程和二次方程的问题。
3.几何方面:古巴比伦人在几何方面也有一定的发展,他们通过测量土地、
修建水利等方式发展出了平面几何和立体几何的相关知识。
而在亚述时期,巴比伦数学得到了进一步的发展。
这一时期的数学成果主要体现在以下几个方面:
1.发现了圆周率:通过使用圆内接正多边形的方法,古巴比伦人逐渐逼近了
圆周率,这一发现对于后来的数学发展具有重要意义。
2.代数方程的解决:亚述时期的数学家已经能够解决一些较为复杂的代数方
程,例如一元二次方程等。
3.平面和立体几何的发展:在亚述时期,古巴比伦人在平面几何和立体几何
方面也有所发展,他们能够计算一些基本的面积、体积等问题。
总的来说,古巴比伦数学的发展历程是一个不断探索和创新的过程,其成就是后世数学发展的基石。
古巴比伦、古埃及、古印度文明中的数学起源与发展公元前600年到前300年之间古典希腊学者的登场标志数学作为一门独立、理性的科学的开端。
事实上,原始人早在公元前一万多年前就开始定居在一个地方发展农业或者畜牧业,但是直到公元前三四千年左右,古中国、巴比伦、埃及才逐渐产生了数学的萌芽。
如今,古代非洲的尼罗河(埃及数学)、西亚的底格里斯河和幼发拉底河(巴比伦数学)、中南亚的印度河和恒河(印度数学)以及东亚的黄河和长江(中国数学)都位于大河流域,被默认为是数学的发源地,其他古文明甚至没有产生过数学的痕迹。
下面就古巴比伦、古埃及、古印度文明中数学的起源与发展来看在数学成为独立的科学之前在各文明中已经存在哪些萌芽。
一、巴比伦数学在古巴比伦、古埃及、古印度三个古代文明社会当中,巴比伦人先对数学主流做出了贡献。
古巴比伦位于底格里斯河和幼发拉底河之间及其流域这区域在古代叫美索不达米亚,是今天伊拉克的一部分,公元前4000年左右,苏美尔人来这里定居建立起苏美尔文明,后来由于战争等因素被阿卡得文化淹没。
公元前2000年左右,阿卡得人在泥版上留下的楔形文字记录了巴比伦人采用六十进位制表示整数。
最开始与古中国十进制计法一样,他们用空位表示0,公元前330年至公元前64年引入了特别的符号表示0,但是最右端仍然用空位表示,还是不能准确读出符号表示的数。
他们常用分数,分数也采用60进位制。
除了1/2、2/3、1/3用特别的符号表示外,他们的分数与整数符号混用,人们必须依靠文件内容才能准确读数,而且他们的分数是等同于整数一样的整体,并没有分数分整数的份数这样的概念。
实际上巴比伦人并不是只用60进制,也有十进制、十二进制、各进制混合使用。
不过在数学和天文上,他们这一贯用60进制。
在古巴比伦计数制中,代表一和十的记号是基本记号,从1~59这些数都是用几个甚至更多一些基本记号结合而成。
所以数的加减法就是加上或者去掉这个记号。
他们也做整数的乘法,如果要计算36乘以5,他们的做法是30×5+6×5。
数学史的重要事件与人物总结数学作为一门古老而重要的学科,其历史跨越了几千年。
在这漫长的历程中,数学经历了许多重要的事件和由杰出人物创造的重大成就。
本文将对数学史中的一些重要事件和人物进行总结。
一、古代数学1. 古埃及与古巴比伦数学古埃及与古巴比伦是人类历史上最早发展数学的文明。
古埃及人用于计量土地的方法促进了早期几何的发展,而古巴比伦人则研究了一些基本的代数概念,如线性方程和平方根。
2. 古希腊数学在古希腊时期,一些重要的数学思想被提出。
毕达哥拉斯学派关注几何和数论,他们发现了勾股定理,认为数是宇宙的基本构成元素。
欧几里得的几何原理成为数学教材的基础,对后来的数学发展产生了深远影响。
3. 阿拉伯数学古希腊的数学思想通过阿拉伯人的翻译活动传入伊斯兰世界。
在这一时期,阿拉伯数学家对代数学有了重大贡献,如穆罕默德·本·穆斯阿尔·哈拉齐为代数学奠定了基础,同时阿拉伯人还引入了十进制的数字系统,并通过这一发明推动了数学的发展。
二、近代数学1. 文艺复兴时期的科学革命随着欧洲文艺复兴的兴起,数学作为一门独立的学科开始发展。
法国数学家笛卡尔提出了坐标几何学,成为解析几何的奠基人。
伽利略的物理实验和理论研究推动了数学与自然科学之间的紧密联系,为物理学、力学和天文学的发展做出了贡献。
2. 新的数学分支的出现17世纪后期至18世纪初期,微积分被独立地发现和发展。
牛顿和莱布尼茨同时独立地发明了微积分,该发现极大地推动了物理学、工程学和其他学科的进展。
此外,概率论、统计学以及数学分析等新的数学分支也在这一时期出现。
3. 数学的形式化19世纪数学的一个重要事件是数学的形式化。
数学家如贝尔纳德·卡尔诺和乔治·庞加莱为数学建立了公理化的基础,并使之成为一门严密的学科。
形式化推动了数学的快速发展,使得许多新的数学分支的发展成为可能。
三、现代数学1. 20世纪的数学革命20世纪是数学发展的重要阶段之一。
古巴比伦数学巴比伦人是指曾居住在底格里斯河与幼发拉底河西河之间及其流域上的一些民族,大约在公元前1800年,他们创建了自己的国家──巴比伦王国。
首都巴比伦是今日伊拉克的一部分,到了公元前1700年左右,在汉穆拉比王统治时期国势强盛,文化得到了高度的发展。
尽管巴比伦统治者频繁更替,但是,他们对数学知识的传播和使用,从远古时代起到亚历山大时代却始终没有间断。
一百多年前,人们发现巴比伦人是用楔形文字来记数的。
他们是用头部呈三角形的木笔把字刻写在软泥板上,然后,用火烧或晒干使它坚韧如石,以便保存下来进行知识交流。
由于字的形状像楔子,所以人们称为楔形文字。
由于泥版书需要靠太阳或火烧烘干,遇到风吹雨淋,难于保存原样,所以流传到现在的泥版书并不多见,并且楔形文字的书写也阻碍了长篇论著的编制。
巴比伦人从远古时代开始,已经积累了一定的数学知识,并能应用于解决实际问题。
从数学本身看,他们的数学知识也只是观察和经验所得,没有综合结论和证明。
在算术方面,他们对整数和分数有了较系统的写法,在记数中,已经有了位值制的观念,从而把算术推进到一定的高度,并用之于解决许多实际问题,特别是天文方面的问题。
在代数方面,巴比伦人用特殊的名称和记号来表示未知量,采用了少数运算记号,解出了含有一个或较多个未知量的几种形式的方程,特别是解出了二次方程,这些都是代数的开端。
在几何方面,巴比伦人认识到了关于平行线间的比例关系和初步的毕达哥拉斯定理,会求出简单几何图形的面积和体积。
并建立了在特定情况下的底面是正方形的棱台体积公式。
我们可以看出,巴比伦人对初步数学几个方面都有一定的贡献。
但是他们对圆面积度量时,取π=3计算结果不是很精确。
数学史与数学思想数学,作为一门抽象而精确的科学,扮演着推动人类文明进步的重要角色。
本文将从数学史的角度,探讨数学思想的演进与影响。
第一部分:古代数学古代数学源远流长,最早的数学思想可以追溯到古巴比伦、古埃及和古印度。
这些古代文明的数学成就,在农业、建筑和天文学等领域都发挥了重要作用。
1. 古巴比伦数学古巴比伦人发展了一套基于60进制的计数系统,并开发了用于计算乘法和除法的算法。
他们还提出了一些几何问题,并发现了勾股定理的特例。
2. 古埃及数学古埃及人主要应用数学知识于土地测量、建筑和商业交易。
他们制定了计算面积和体积的方法,并发展了以10为基数的计数系统。
3. 古印度数学古印度人在数学领域有许多重要贡献,这些贡献对现代数学产生了深远影响。
他们首先提出了零的概念,并发展了一套精确的计数系统。
此外,他们还发现了平方根、立方根,以及一些三角函数的近似值。
第二部分:古希腊数学古希腊数学是数学史上一个重要的里程碑,它代表着理性思维的巅峰,并为后世数学家提供了许多启示。
1. 毕达哥拉斯学派毕达哥拉斯学派强调数与形的关系,提出了许多几何定理,如勾股定理。
他们还发现了数学中的整数、有理数和无理数的概念,为数论的发展奠定了基础。
2. 现代几何的奠基人:欧几里得欧几里得的《几何原本》被视为几何学的经典之作。
他以严谨的推理方式,系统整理了古希腊几何学的知识,并提出了许多著名的定理,如平行线之间的角度和等角定理。
第三部分:近代数学革命自17世纪开始,数学经历了一系列革命性的变革,这些变革深刻地改变了人们对数学的认识。
1. 微积分的创立牛顿和莱布尼茨同时独立发现了微积分的基本原理,从而为数学打开了新的大门。
微积分的发展和应用,解决了众多自然科学和工程学中的问题,为现代科学的发展做出了重要贡献。
2. 非欧几何学在19世纪,黎曼和庞加莱提出了非欧几何学的概念,打破了古希腊几何学的局限性。
他们探索了曲线和曲面的性质,为后来的广义相对论等科学理论的发展奠定了基础。
第二章:巴比伦数学第一节巴比伦数学产生的社会背景巴比伦人是指曾居住在底格里斯河与幼发拉底河两河之间及其流域上的一些民族,他们创造了文化,也创造了具有本民族特色的数学.大约在公元前1800年前,在两河流域建立了巴比伦王国Babylonia),首都巴比伦(Babylon)是今日伊拉克的一部分,位于巴格达南面约100公里.大约在公元前4000年左右,苏默人(Sumerians)开始在两河流域(古代称美索波达米亚Mesopotamia)定居,大约在公元前3000年创造了自己的文化.到了公元前1700年左右,在汉穆拉比(Hammurabi)王统治期间国势强盛,文化得到了高度发展,以制定一部法典而垂名后世.汉穆拉比把自己称为“苏默人和阿卡德人的大王”,把一切权力集于一身.汉穆拉比作为最高统治者,非常关心灌溉系统的发展,采取各种灌溉措施,制造抽水机,并在全国范围内划分土地,分配收获的粮食,修建谷仓储存粮米,发展贸易,向邻近国家输出农产品,同时也带来了高利贷的发展.所有这些都是促使数学得以产生与发展的社会因素.促进巴比伦数学发展的另一个因素是货币交换制度的初步建立.开始时,巴比伦人把实物或者银器作为货币单位,国家征收税务、民间物资交换都用规定的实物或银器进行支付.后来,采用银币代替了实物交换,这样就需要进行各种单位换算,从而推进了数学的发展.尽管巴比伦统治者频繁更替,而对数学知识的传播和使用,从远古时代直到亚里山大时代却始终没有间断.古代巴比伦人是用祖传的泥板书记载数学内容的,然而,保存下来的泥板书却没有埃及纸草书那样多.可能是因为泥板书靠太阳或火烧烘干,遇到风吹雨淋,难于保存原样.另外,巴比伦人的书写字迹也阻碍了长篇论著的编撰.在巴比伦泥板书中,引人注目的是普林顿322号.这是哥伦比亚大学普林顿(G.A.Plimpton)收集馆的第322号收藏品.此泥板书是在公元前1900年至前1600年间用古巴比伦字体写的.普林顿322号是保存下来的一块残缺不全的泥板书,但仍然保存着大体形状,只是左边掉下一块,靠右边中间部分也有一个很深的洞,左上角也脱落了一片,但可以清楚地看到,有三列比较完整的数字,不妨用现代符号(10进位)表出,如图2.1.经过对图表的认真分析,就会发现:两列中的对应数字(除了4个例外)构成一个边长为整数的直角三角形的斜边和一个直角边.现在人们把象(3,4,5)这样的,能组成直角三角形三条边的一组正整数称为毕氏三数(Pythagorean triple).在这样一组数中,若除1以外,没有其它因子,就称它为素毕氏三数.在普林顿泥板书之后的1000多年后,人们证明了素毕氏三数(a,b,c)能用下列参数式表示:a=2αβ,b=α2-β2,c=α2+β2.其中α,β互素,奇偶相异,且α>β.若α=2,β=1,则得素毕氏三数a =4,b=3,c=5.我们若用普林顿泥板书上给出的斜边c和直角边b来确定那个边为整数的直角三角形的另一边,则可得到下列毕氏三数:应该指出,上表中的毕氏三数,除第11行和第15行外,都是素毕氏三数.为了便于讨论,我们又列出了这些毕氏三数的参数值.通过普林顿322号泥板书,不难看出,古巴比伦人早就知道素毕氏三数的一般参数表达式.在书写古巴比伦数学简略历史时,我们首先举出了普林顿322号泥板书,作为在那样的社会背景之下,数学研究的重要结晶,使读者形成初步印象,以便进一步探索古巴比伦的数学内容.第二节巴比伦的数学巴比伦人和埃及人一样,是首先对数学的萌芽作出贡献的民族,对其原始数学内容的考证,大部分来自近百年来考古研究的结果.一、记数法与进位制一百多年前,人们发现巴比伦人是用楔形文字(Cuneiform)来记数的.他们是用头部呈三角形的木笔把字刻写在软泥板上,然后,用火烧或晒干使它坚如石,以便保存下来进行数学知识交流.由于字的形状象楔子,所以人们称为楔形文字.他们用垂直的楔形来表示1,如.用末端二个横向楔形表示10,如.用记号表示35.用记号表示9,后来简化为.以上可以看出,巴比伦人创建的数的体系与埃及、罗马数字颇为相似.但是,值得我们注意的是巴比伦人已经有了位值制的观念,通常为60进制.这种认识的主要根据是地质学家劳夫特斯(W.K.Loftus)于1854年在森开莱(现在的拉山或拉莎)发掘出汉穆拉比时代的泥板书,上面记载着一串数字,前7个是1,4,9,16,25,36,49,之后中断,而在应该是64的地方,看到的却是1·4,其后接着写出1·21,再后是2·24,直到最后写的是58·1.这个数列只有假定其为60进位时,才能很自然接续,即:1·4=60+4=64=82,1·21=60+21=81=92,……………………58·1=58×60+1=3481=592.应该指出,巴比伦人的位值制有时也不甚明确;因为完整的位值制记数法,必须有表示零的记号,但在早期的泥板书上尚没有发现零号.例如,(5·6·3)可表示5×602+6×60+3=18363,也可表下文来分析、确定.古巴比伦的60进位法之产生年代是相当久远的.但据有的材料记载,早期的苏默人是不知道60进位制的.从他们所用的数学符号中可以看出,大约在公元前3000年以前,是用以下记号来记数的:1,10,60的记号是用头部是圆形的木笔刻成,而1和60的记号都是半圆形,只是大小不一样,10的记号是圆形,600的记号是10和到了公元前2000年左右,开始使用楔形文字,以此又建立一套数的记号,不妨做如下比较:通过如上二种数码的表示法之比较,不难看出,巴比伦采用60进制是很自然的①.二、算术运算由于巴比伦从1到59的数码都是以1和10或更多一些数的记号为基本记号结合而成的,因此,在此范围内的加减法不过是加上或去掉某种记号罢了.巴比伦人对整数的乘法,采取了“分乘相加”的方法.例如,某数乘以27,他们先乘20,再乘7,然后把结果相加,最后得出结果.他们还造出了一些乘法表.(左边是巴比伦人的记号,右边用现代符号表示)巴比伦人在做整数除以整数时,采用了乘以倒数的方法,并且还造出了倒数表.巴比伦人研究了数的平方和开平方、立方和开立方的问题.当方根是整数时,给出了准确的值.对于其它方根,由于采用60进位制,只能是近似值.并造出了简单的平方、平方根、立方、立方根表.巴比伦人也曾给出了求a2+b型的方根近似公式:数大.到了希腊时期,著名数学家阿基米德(Archi-medes)、海伦(Heron)创造出了平方后比原数小的近似公式.三、代巴比伦人不但具有数系和数字运算的一些知识,他们也具有处理一般代数问题的能力.例如:在赛凯莱(Senkereh)出土的古巴比伦(汉穆拉比王朝时期)的原典AO8862,记载着下面的问题:(用现代语言叙述)一块长方形土地面积加上长与宽之差为3.3①(即183),而长与宽之和为27,这块地的长、宽、面积各几何?(1)古巴比伦人的解法:(按60进制计算)27+3.3=3.302+27=2929÷2=14.3014;30×14;30=3.30;153.30;15-3.30=0;150;15的平方根是0;3014;30+0;30=15 (长)14;30-0;30=14因为原来是将27加上2,现在应从14减2,则宽是14-2= 12故得到,15×12=3.0(面积)15-2=133.0+3=3.读者可以辨认,以上例题的解法是从6行到29行之间,是用楔形文字书写的.(2)如果用现代的列二元一次方程组的方法解,则很简便.设长为x,宽为y,可列成如下方程组:从AO8862原典的最后一行的结果看出,x=15,y=12是满足方程组(1)的解的.在前面解题时,实际上是用新的宽y'代替原宽y,即:y'=y+2,y=y'-2.使用如上这种代换方法,使问题简单化了.代换后,可得到新的二元一次方程组:把方程组(2)的第1式加到方程组(1)的第2式,可立刻得出(在原典中,清楚地写着)27+3.3=3.302+27=29之后,继续解方程组(2).从上边的具体问题求解中,我们可以悟出解方程组的一般方法,用现代符号表示,可谓:其解为:巴比伦人求解的各个步骤是符合解方程组的一般方法的,但是,他们没有给出求解的一般公式.在巴比伦人利用楔形文字撰写的原典中,也有解一元二次方程的例子.例如:由两正方形并组成一个面积为1000,一正方形边为另一正方形边的巴比伦人是按如下方法求解的:(用现代符号表示)设两个正方形边长分别为x,y.得到一个正整数解为:x=30.以上说明巴比伦人在汉穆拉比时代已经掌握了解二元一次和一元二次方程的方法,但仍然是用算术方法求解.巴比伦人对简单的三次和四次方程也求解过.例如在原典中有这样的题目:一个立方体,其体积为长、宽、高分别为x、y、z,体积为V,实际上是求解方程组解此方程组,涉及算立方根问题,巴比伦人用数表来求解(见算术运算部分的数表).四、几何在古巴比伦时期,常常把几何问题化为代数问题来解决.在他们心目中,几何似乎不占有重要位置.但是,在20世纪中叶布尔昂(E.M.Buuins)博士和鲁达(M.Rutten)撰写的《斯萨数学书》(Textes mathèmatiques de Suse,MèmoiresMission archèol en lran XXXIV,Paris,1961)中,指出了在斯萨出土的古巴比伦的楔形文字原典中,含有求正多边形和圆的面积的近似公式,说明古巴比伦人对几何问题也有一定的兴趣.例如,在拉尔萨(Larsa)出土的古巴比伦原典VAT8512中,有下面的问题(用现代符号和语言叙述).已知底边b=30的三角形,由平行于底的直线把其分成两部分,即高分别为h1、h2的梯形F1和三角形F2,且面积F1-F2=S=7.0 h2-h1=h=20,求割线长(x).由以上条件,可建立如下关系式:由图2.3可知,比例式h2∶h1=x∶(b-x)(5)成立.根据以上条件,可解出x,即:由上可知,巴比伦人建立的关于x,h1,h2的关系式是正确的.但是,还没有理由(证据)说明以上是一种纯粹代数的推演.数学史家尤伯尔(P.Huber)对(4)式做了如下解释(Isis Vol46,p104):如果在三角形一边加一个长为h1+h2的长方形,拼成一个上、下底边长分别为c和a=c+b的梯形,延长割线x,把此梯形分成两部分,如图2.4其面积差为:(F1-F2)-c(h2-h1)=s-ch.的面积分成二等分z,并给出(参考MKT I,p131)可得到(6)式的证明:按照尤伯尔的解释,以上的解法思路是几何学的思想,而不是代数的.巴比伦人很早就知道毕达哥拉斯定理(勾股定理),并能应用此定理解决具体的、比较简单的问题,在古巴比伦的数学原典中有记载,并使用了1500年之久,直到赛莱乌科斯王朝时代(公元前310年以后)的著作中,仍有记载.巴比伦人也会求棱柱、圆柱、棱台、圆台的体积,他们用高乘以两底面积和的一半的方法进行计算.五、数论巴比伦人不仅在代数中的工作显得很出色,在算术中,也不断推广研究范围,在《楔形文字的数学书》(Cuneiform Te-xtesmathématigues)中,也记载了一些关于初等数论的内容,有人认为,希腊的毕达哥拉斯学派继承和发展了古巴比伦人的工作.巴比伦人能够求出简单的级数和.例如,可求出公比为2的等比级数的和1+2+4+……+29=29+(29-1)=210-1.他们还给出了从1到10的整数平方和,似乎应用了下列公式:巴比伦人的代数中,也含有一些数论.他们求出了好几组毕达哥拉斯三元数组,还求出了x2+y2=2z2的整数解.第三节巴比伦人对数学的应用及对数学发展的贡献一、巴比伦人对数学的应用尽管巴比伦人的数学知识是粗浅的、有限的,但在他们的生产、生活中的很多方面都应用了数学.1.巴比伦人把数学应用到商业方面.巴比伦位于古代贸易的通道上,为便于商品交换、发展经济,他们用简单的算术和代数知识测量长度和重量,来兑换钱币和交换商品,计算单利和复利,计算税额以及分配粮食,划分土地和分配遗产等等.2.把数学应用到兴修水利上.巴比伦人应用数学知识计算挖运河、修堤坝所需人数和工作日数,也把数学应用到测定谷仓和房屋的容积,计算修筑时所需用的砖数等.3.把数学应用到天文研究方面.大约在亚述时代(公元前700年左右)开始用数学解决天文学的实际问题.在公元前3世纪之后,用数学知识来计算月球和行星的运动,并通过记录的数据,确定太阳和月球的特定位置和亏蚀时间.也应该注意到,巴比伦人观察天文现象,直接得出了作为以后三角学的基础概念.当时巴比伦人观察在天空中运行的星体,看它们在夭空中的位移情况.他们把天空看作半球面,因此测量不是在平面上,而必须是在球面上进行的.鉴于此,巴比伦人较早考察的是球面三角的概念,而不是平面三角的概念.也应该指出,在古巴比伦时期,当产生各种科学领域基本概念的同时,假科学也获得了发展.这种假科学与天文学、数学都有密切的关系,它们阻碍了数学的发展.这种假科学主要指星相术和数的神秘论.星相术认为单个人的生活和整个人类社会,都依赖于天空中的行星相互间的排列.即行星在人的生活中有“影响”,并且把它们崇拜为神.由此,他们作出了进一步的结论,由行星在天空中的相互排列,在一个人出生时就能够预言他将来的命运如何.这种星相术又从巴比伦传播到其他民族,阻碍了科学的发展.巴比伦人也曾把“数”神秘化.例如,当巴比伦人崇拜三个天体(太阳、月亮、金星)时,数码3便被看作“幸福的”.更晚一些时间,当已经崇拜7个天体时,数7就被当作“幸福的”.实际上,许多民族都赋予数3和7以神秘的意义.总之,星相术和数的神秘化,阻碍了人类的正确认识的发展.二、古巴比伦人对数学发展的贡献巴比伦人从远古时代开始,已经积累了一定的数学知识,并能应用于解决实际问题.从数学本身看,他们的数学知识也只是观察和经验所得,没有综合结论和证明,但是,也要充分认识他们对数学所做出的贡献.1.在算术方面,他们对整数和分数有了较系统的写法,在记数中,已经有了位值制的观念,从而把算术推进到一定的高度,并用之于解决许多实际问题,特别是天文方面的问题.2.在代数方面,巴比伦人用特殊的名称和记号来表示未知量,采用了少数几个运算记号,解出了含有一个或较多个未知量的几种形式的方程,特别是解出了二次方程,这些都是代数的开端.巴比伦人能够求解的方程类型可简略归纳如下:ax=b,x2=a,x2+ax=b,x2-ax=b,x3=a,x2(x+1)=a.在解决实际问题中,他们能够通过算术运算方法解二元一次方程组,例如以下几种类型:3.在几何方面,巴比伦人认识到了关于平行线间的比例关系和初步的毕达哥拉斯定理,会求出简单几何图形的面积和体积,并建立了在特定情况下的底面是正方形的棱台体积公式4.在天文学方面,他们已有一系列长期观察记录,并且已经发现了许多准确性很高的天文学周期.他们计算月球和行星的运动,给出天体在不同时期所处位置的数表,并计算天文历书等.综上,可以看出巴比伦人对初等数学的几个方面都有一定贡献.但是,他们对圆面积度量时,常取π=3,计算结果不如古埃及人精确.。
古代巴比伦人的数学成就灿烂的古巴比伦文化发源于现在土耳其境内的底格里斯河(Tigris)和幼发拉底河(Euphrates),向东南方流入波斯湾。
河流经过现在的叙利亚和伊拉克。
5000多年前这两河流域称为“米索不达米亚”(Mesopotamia)的地方,就有具有高文化水平的巴比伦民族在这里生活。
巴比伦人建立的巴比伦国在古代曾经非常强盛,它的国王曾建立令后人惊异的著名古代七大奇迹之一——空中花园。
现在我们生活的“星期制度”是源于古代巴比伦。
巴比伦人把1年分为12个月,7天组成一个星期,一个星期的最后一天减少工作,用来举行宗教礼拜,称为安息日——这就是我们现在的礼拜日。
我们现在1天有24小时,1小时有60分,1分有60秒这种时间分法就是巴比伦人创立的。
在数学上把圆分成360度,1度有60分这类60进位制的角度衡量也是巴比伦人的贡献。
古代巴比伦人的书写工具是很奇特的,他们利用到处可见的粘泥,制成一块块长方薄饼,这就是他们的“纸”。
然后用一端磨尖的金属棒当“笔”写成了“楔形文字”(cuneiform),形成泥板书。
希腊的旅行家曾记载巴比伦人为农业的需要而兴建的运河,工程的宏大令人惊叹。
而城市建筑的豪美,商业贸易的频繁,有许多人从事法律、宗教、科学、艺术、建筑、教育及机械工程的研究,这是当时其他国家少有的。
可是巴比伦盛极一时,以后就衰亡了,许多城市埋葬在黄土沙里,巴比伦成为传说神话般的国土,人们在地面上找不到这国家的痕迹,曾是闻名各地的“空中花园”埋在几十米的黄土下,上面只有野羊奔跑的荒原。
到了19世纪40年代,法国和英国考古学家发掘了古城及获得很多文物,世人才能重新目睹这个在地面上失踪的古国,了解其文化兴盛的情况。
特别是英国人拉雅(Loyard)在尼尼微(Nineveh)挖掘到皇家图书馆,两间房藏有二万六千多件泥板书,包含历史、文学、外交、商业,科学、医药的记录。
巴比伦人知道500种药,懂得医治像耳痛及眼炎,而生物学家记载几百种植物的名字,及其性质。
古巴比伦的数学与天文学巴比伦人的科学智慧古巴比伦的数学与天文学:巴比伦人的科学智慧在人类历史的长河中,古巴比伦是一个备受瞩目的文明。
作为世界上最早的城市之一,巴比伦为我们留下了许多宝贵的文化遗产。
其中,数学和天文学是巴比伦人的瑰宝,展现了他们在科学领域中的卓越智慧。
一、数学的发展1. 基数与计算在古巴比伦,数学的发展可以追溯到公元前3千年。
巴比伦人使用的记数系统基于六十进制,这是一种为我们所不常见的基数。
他们将数字表示为符号,并且可以进行加法、减法和乘法运算。
2. 错位号法巴比伦人还发明了一种称为"错位号法"的记数系统,用于解决实际问题中的计算难题。
这种方法类似于我们今天使用的十进制计算法,但在计算过程中需要注意数位的错位。
3. 平方根和立方根巴比伦人研究了平方根和立方根的计算方法,并且发展出了一种近似计算的技巧。
这些技巧在他们的建筑和土木工程中得到广泛应用。
二、天文学的研究1. 日月星辰观测巴比伦人对日月星辰的观测非常精确,他们记录了许多恒星的位置和行星的运动。
这些观测数据成为今天研究天文学的重要参考资料。
2. 月食和日食巴比伦人研究了月食和日食的出现规律,并发现了一些周期性的现象。
他们的观测结果不仅对于了解宇宙的运行规律有重要意义,而且对于预测天象也具有实用价值。
3. 星座巴比伦人将星星组成了各种星座,这些星座的名称和形状在今天的天文学中仍然存在。
他们利用星座来指导农业和航海等活动,这展示了他们深厚的天文学知识和实际运用能力。
三、科学智慧的意义古巴比伦的数学和天文学成就不仅代表了巴比伦人的科学智慧,也对于后世的科学发展产生了巨大影响。
首先,巴比伦人的记数系统为后来的数学研究提供了基础。
他们所使用的六十进制系统不仅方便计算,而且成为了后来使用的六十进制时钟和地理坐标系统的基础。
其次,巴比伦人的观测数据为天体物理学的发展提供了宝贵资料。
他们记录下的星星、行星和恒星位置的数据成为了后来天文学家研究行星运动和宇宙结构的重要依据。
数学历史小故事数学历史小故事是人类记录数学发展历程的一种方式,它通过叙述数学的重大发现和突破,向读者生动展示了人类智慧的辉煌历程。
以下,我们将通过几个小故事来展示数学历史的发展。
小故事一:古代巴比伦数学公元前2000年左右,位于现今伊拉克境内的巴比伦王国涌现出了令人惊叹的数学成就。
根据当时的信用贷款需求,巴比伦人发明了简单易懂的计数和计算系统,记录在泥板上,保存至今。
这些泥板上的数学公式被研究者认为是最早的代数公式,它们含有一些未知数,巴比伦人试图通过一些简单的代数学规则来求解这些未知数。
因此,巴比伦数学成为了代数学的先驱,为后来的数学发展打下了基础。
小故事二:希腊几何学几何学是数学的一个分支,它的历史可以追溯到公元前的古希腊。
古希腊的数学家欧几里得创作了一本名为《几何原本》的书,这本书中提供了一套完整的几何学体系,其中有许多重要的几何概念和证明,如平行线公理和勾股定理等。
这本书一经发表,便成为了几乎所有后来几何学家的基本参考书,直到今天它仍被广泛地使用着。
欧几里得对几何学的贡献为后来的数学发展奠定了基础。
小故事三:阿拉伯数学公元700年,阿拉伯数学家穆罕默德·本·穆萨·阿尔·霍拉尼开始将印度数学中的数字系统和计算法引入到阿拉伯世界中,这一颇为重要的数学发明成为了现在日常计算中我们常用的十位数字以及小数点的起源。
阿拉伯数学家还发明了一种新型的代数技巧,使得代数学的理论更加完备。
在不久之后,阿拉伯数学成为了领先的数学强国,并将数学的应用扩展到了化学、天文和地理等领域。
小故事四:牛顿和莱布尼茨的微积分学17世纪时,计算杠杆以及天文规律的发现让数学家们面对一个难题:如何求导和积分。
这时,牛顿和莱布尼茨同时发明了微积分学,这是数学中一项重要的发明,可以说,它是现代数学的基石。
微积分学被广泛应用于物理、天文、统计和工程学等领域,在科学技术的快速发展中,微积分学成为了不可或缺的工具。
数学的历史演变从古代巴比伦开始的数学计算数学作为一门古老而广泛应用的学科,其历史可以追溯至古代巴比伦。
巴比伦人在公元前18世纪至公元前6世纪期间,发展了一套完整的数学计算系统,为后来数学的发展奠定了基础。
巴比伦的数学最初源于对实际应用的需求,他们的经济与贸易活动需要计算。
为了管理土地、纳税和贸易等事务,巴比伦人发展了一套计算方法,包括计算长度、面积和体积的技巧。
他们使用了一种被称为“六十进制”的计数系统,这种进制方式在现代数学中仍然有所应用。
巴比伦人的数学计算中最著名的成就之一是他们对勾股定理的发现。
尽管勾股定理在古希腊时期被普遍认为是由毕达哥拉斯提出的,但巴比伦人在公元前18世纪就已经掌握了三角形的边与角之间的关系。
通过解决房屋建筑中的实际问题,他们有可能在不知道具体数值的情况下确定三角形的比例关系。
与巴比伦的数学相比,古埃及的数学则更偏向于应用性质。
古埃及人经常需要使用数学来处理土地的测量与分配,以及建筑物和水坝的施工。
他们开发了一套计算长度、面积和体积的方法,并在建筑设计中使用几何原理。
在埃及的金字塔建设中,数学发挥了至关重要的作用。
在古希腊时期,数学被认为是一门纯粹的学科,并具备了更加抽象与理论化的属性。
古希腊数学家如毕达哥拉斯、欧几里得和阿基米德,开创了许多数学分支,包括几何学、代数学和算术学。
他们提出了许多重要的数学原理和定理,其中包括毕达哥拉斯定理、欧几里得算法和阿基米德原理。
数学的发展在文艺复兴时期迎来了一个重要的突破。
随着阿拉伯世界与西方的交流,阿拉伯人为数学的发展做出了重要贡献。
通过从古希腊和印度的数学传统中汲取灵感,阿拉伯数学家创造了一套新的代数学和算术学方法。
其中最重要的成就之一是他们的十进制数系统,这一数制在世界范围内得到了广泛应用。
从18世纪开始,数学经历了一系列重大的变革与发展。
欧洲的数学家如牛顿、莱布尼茨、费马和欧拉,奠定了现代数学的基础。
他们提出了微积分、概率论、数论和数学分析等重要概念和原理。
古巴比伦的数学与天文学发展历程分析古代巴比伦是数学与天文学的重要发源地之一。
通过对其数学与天文学发展历程的分析可以了解到古巴比伦人在这两个领域的创新与贡献。
本文将从数学和天文学两个方面对古巴比伦的发展历程进行探讨。
一、古巴比伦的数学发展历程古巴比伦人在数学方面做出了许多重要的贡献。
他们首先发展了一套计数系统,使用六十进制,即我们所称的“基数为六十”的系统。
这个系统使得他们有能力进行更复杂的计算。
在几何学方面,古巴比伦人也有独到的见解。
他们研究了三角形、长方形等基本形状,并且发现了一些基本的几何定理。
例如,他们发现了勾股定理的一种特殊情况,即在直角三角形中,斜边的平方等于两个直角边的平方之和。
古巴比伦人还对线性方程有深入研究。
他们发展了一种称为“巴比伦算法”的解线性方程的方法。
这种方法通过不断逼近实际解来得到近似解,为后来的数值解法奠定了基础。
二、古巴比伦的天文学发展历程古巴比伦人对天空中的天文现象有着浓厚的兴趣,并且进行了详细的观测与记录。
他们发展了一套基于观测数据的天文预测方法,并且编制了一份名为《星历》的详细表格。
古巴比伦人在天文学方面取得了许多重要的发现。
他们首次观测到了大约550个天体,其中包括太阳、月亮、行星、恒星等。
通过对这些天体的观测,他们建立了一套天文学模型,用于预测日食、月食等天文现象。
古巴比伦人还对天文学的观测数据进行了整理和统计分析。
他们发现了一些周期性的天文现象,比如月食和太阳食的周期性。
他们制定了一套复杂的日食和月食的预测方法,并且成功预测了一些日食和月食的发生时间。
三、数学与天文学的联系古巴比伦的数学与天文学有着密切的联系。
在古巴比伦人看来,数学是天文学的一部分,而天文学则需要数学的支持。
他们通过对观测数据的记录和分析,将天文学问题转化为数学问题,并且利用数学方法来解决。
例如,古巴比伦人通过观测月亮的运动和日食的发生情况,发现了周期性的规律。
他们用数学的方法将这些规律总结出来,并且开发了预测日食和月食的算法。
古代巴比伦人对微分方程的贡献文献(原创版)目录一、古代巴比伦文明概述二、巴比伦人对数学的应用三、巴比伦人对微分方程的贡献四、巴比伦文明的传承与影响正文一、古代巴比伦文明概述古代巴比伦文明,位于底格里斯河和幼发拉底河之间的流域,即两河流域文明。
这个文明最早可以追溯到公元前 1894 年,阿摩利人建立以巴比伦城为首都的王国。
公元前 1792 年,汉谟拉比即位,他征服了苏美尔人和阿卡德人,统一了美索不达米亚平原,并颁布了《汉谟拉比法典》,这是世界上第一部较为完备的成文法典。
巴比伦人在数学、天文学、冶铁等领域都有很高的成就,对后世产生了重要影响。
二、巴比伦人对数学的应用尽管巴比伦人的数学知识是粗浅的、有限的,但在他们的生产、生活中的很多方面都应用了数学。
他们把数学应用到商业方面,如计算长度和重量,来兑换钱币和交换商品,计算单利和复利,计算税额以及分配粮食,划分土地和分配遗产等等。
同时,他们把数学应用到兴修水利上,如计算挖运河等方面的问题。
三、巴比伦人对微分方程的贡献巴比伦人在数学领域的贡献中,最具代表性的是他们对微分方程的研究。
他们发现了一些关于微分方程的解法,比如,他们可以通过对两个正弦函数的差进行积分,得到一个新的正弦函数,从而解决了一些实际问题,如计算水井中的水位、测量日晷的影子等。
他们的这一发现,为后来的微积分学奠定了基础。
四、巴比伦文明的传承与影响巴比伦文明在历史上的影响力不容忽视。
他们的数学成就,特别是对微分方程的研究,为后来的数学家提供了宝贵的启示。
比如,古希腊的数学家欧几里得和阿基米德都受到巴比伦数学的影响。
此外,巴比伦人发明的太阳历,以及他们所创造的 10 进位法和 16 进位法等,对后世的历法和计数制度也有深远的影响。
综上所述,古代巴比伦人在数学、天文学、冶铁等领域都有很高的成就,特别是他们对微分方程的贡献,为后来的数学家提供了宝贵的启示。
探索数学历史了解数学的历史和重要人物数学作为一门科学,已经有着悠久的历史。
在我们的日常生活中,数学无处不在。
从简单的计数到复杂的微积分和统计学,数学为我们解决问题和探索世界提供了强大的工具。
本文将带领读者一起探索数学的历史,了解一些重要的数学历史事件和人物。
1. 古代数学的起源数学的起源可以追溯到古代文明。
在古埃及,人们使用数学来测量土地和建筑,解决日常生活中的实际问题。
而在古希腊,人们开始研究几何学,探索形状和空间的性质。
这些早期的数学发展奠定了数学的基础。
2. 重要的数学历史事件2.1 古代巴比伦人的数学古巴比伦人是古代最早研究数学的文明之一。
他们使用基于60的计数系统,开发了数学表和计算技巧。
他们对代数和几何学的发展做出了重要贡献,例如解线性方程和计算三角形面积。
2.2 古代希腊的几何学古希腊是数学发展的另一个重要时期。
欧几里得是古希腊最著名的数学家之一,他的《几何原本》被认为是几何学的里程碑之作。
该书系统地介绍了几何学的基本概念和证明方法,成为后世数学学习的基础。
2.3 文艺复兴时期的数学革命文艺复兴时期是数学发展的重要时期。
数学家斐波那契将阿拉伯数字引入欧洲,并广泛推广使用。
同时,代数学和解析几何学得到了飞速发展,拉格朗日、欧拉和牛顿等数学家的工作对现代数学的发展产生了深远影响。
3. 数学史上的重要人物3.1 毕达哥拉斯毕达哥拉斯是古希腊数学家和哲学家。
他建立了毕达哥拉斯学派,该学派提出了许多数学定理和数学原理。
毕达哥拉斯定理是他最著名的贡献之一,它揭示了直角三角形的关系。
3.2 牛顿和莱布尼茨伊萨克·牛顿和戈特弗里德·莱布尼茨是微积分的创始人。
他们几乎在同一时间独立地发展了微积分的基本原理,为数学和物理学的发展开辟了新的道路。
3.3 高斯卡尔·高斯是19世纪最伟大的数学家之一。
他对数论、代数学和几何学做出了突出贡献。
高斯在数论中发现了许多重要的定理,包括二次剩余定理和高斯定理等。
第一个发明位值制的国家,是古巴比伦。
古巴比伦是古埃及的近邻,他们没有纸草,更没有纸,而是在土上做记录。
他们拿楔子等在软泥板上刻字,等泥板晒干或烧干后,就变成了坚硬的泥板书,泥板书上的文字就称为楔形文字。
泥板书远比纸草保存长久,所以在今天,古埃及的纸草已所存无几,但古巴比伦泥板书却大量留存下来,其中约有300块泥板书是数学方面的。
考古学家和数学史学家研究表明,古巴比伦人不但为1,2,3,…,10,…等很多数字专门制造了符号,还发明了位值制,这要比古埃及人高明。
所谓位值制,就是同一个数字在不同位置上表示的数值不一样,比如在十进位值制中,同样一个数字“2”,放在个位上表示2,放在十位上就表示20,放在百位上就表示200,放在千位上就表示2000……因此,867 569这个用6个数字表示的数就表示8个10万、6个1万、7个1千、5个1百、6个10和9个1之和,其中同样两个数码6,表示的的意义并不一样。
古巴比伦人的数字与今天的数字在写法上最为显著的不同有两点:一点是符号写法上的差异;另一点就是古巴比伦人使用其特有的六十进制,而不是十进制。
这是基数最高的一种位值制。
古思比伦人之所以要选择60,是因为60的因子非常多,正好是2,3,4,5,6的最小公倍数(若还要把7拉进来,就必须采用四百二十进制,那就太大了,除非人和蜈蚣一样长42只脚),所以可以将数字表示得非常精确和顺手,无限小数出现的可能性就会减小。
中国农历纪年中,天干地支的最小公倍数即一周期为60年,其实也是六十进制。
看来,人类在周期现象的表示上比较喜欢采用六十进制。
(古巴比伦六十进制里的59个数字符号)六十进制在今天仍很有用处,在计算或表达时间时,1小时等于60分,1等于60秒;但在体育竞赛中,低于秒的计数又变成十进制的了,比如刘翔的110米跨栏纪录是12″88,此处六十进制与十进制混用也不会引起歧义。
我们在计算角度时,采用的也是六十进制,一个圆周记做360度(°),1度等于60分(′),1分等于60秒(″),比如30度15分28秒就可以写成30°15′28″。
四大古国数学发展史数学作为一门古老而又重要的学科,在人类历史上扮演着重要的角色。
在过去的几千年里,有四个古国对数学的发展做出了突出的贡献,它们分别是古埃及、古巴比伦、古印度和古希腊。
本文将从这四个古国的数学发展历程入手,介绍它们的数学成就和对后世的影响。
古埃及数学发展史古埃及被公认为是最早进行数学研究的文明之一。
早在公元前3000年左右,古埃及人就开始使用简单的计数系统,他们用一种称为“法老九法”的记数法来表示数字。
这种记数法基于九个不同的符号,分别代表1、10、100等。
另外,古埃及人还开发了一种称为“海米奇”的计算工具,类似于现代的计算尺,用来进行简单的加减乘除运算。
古埃及人的数学主要应用于土地测量、建筑施工等实际问题。
他们熟练掌握了平方根和倒数的计算方法,能够精确计算出土地的面积和体积。
此外,古埃及人还发展了一种称为“方法”的数学手段,用来解决线性方程组和二次方程等问题。
这些数学成果为古埃及人的农业生产和社会管理提供了重要的支持。
古巴比伦数学发展史古巴比伦是古代中东地区的一个重要文明,他们的数学成就也非常突出。
公元前2000年左右,古巴比伦人已经掌握了基本的算术运算和几何知识。
他们使用的计数系统采用60为基数,这种计数方法被称为“六十进制”,并且被广泛应用于时间和角度的计量中。
古巴比伦人在代数学、几何学和三角学方面都有很高的造诣。
他们发展了一种称为“巴比伦数表”的数学表格,其中包含了一系列数字和运算符号,用来解决各种数学问题。
古巴比伦人还发明了用直角三角形的边比值来表示角度的方法,这一概念后来为希腊数学家所继承和发展。
古印度数学发展史古印度是数学发展史上的又一个重要角色。
早在公元前1000年左右,古印度人就开始进行高级的数学研究。
他们发展了一种称为“印度数表”的计数系统,其中包含了一系列数字和运算符号,用来进行复杂的数学运算。
这种计数系统后来被阿拉伯人引入到欧洲,成为现代数学的基础。
古印度人在代数学、几何学和算术学方面都有独特的贡献。
文明古国的早期数学巴比伦篇
文明古国的早期数学——巴比伦篇(一)巴比伦篇——泥版的故事
19世纪前期,人们在亚洲西部伊拉克境内发现了50万块泥版,上面密密麻麻地刻有奇怪的符号。
这些符号实际上就是巴比伦人所用的文字,人们称它为“楔形文字”。
科学家经过研究发现,泥版上记载的,是巴比伦人已获得的知识,其中有大量的数学知识。
古人最初用石块、绳结记事,后来又用手指计数。
一个指头代表1,两个指头代表2,…,到数到10时,就要重新开始。
由此巴比伦人产生了“逢十进一”的概念。
又因为,一年中月亮有12次圆缺,一只手又有5个手指头,12×5=60,这样他们就又有了每隔60进一的计数法。
在泥版上,巴比伦人用“▼”表示1,用“”表示10,其他数通过▼和的组合实现。
比如35,就用:
来表示。
这种计数方法也影响了后人,我们现在的十进制和六十进制,就是从这里来的。
比如,1米=10分米,1分钟=60秒。
巴比伦人还掌握了许多计算方法,并且编制了各种数表帮助计算。
在这些泥版上就发现了乘法表、倒数表、平方和立方表、平方根表和立方根表。
像乘法表,现在的学生还在背诵呢!
巴比伦泥版上有这样一个问题:兄弟10人分5/3米那的银。