15-16学年高考数学一轮复习极限知识点总结
- 格式:doc
- 大小:2.33 KB
- 文档页数:1
高三数学第一轮复习知识点总结高三数学第一轮复习知识点总结第一:高考数学中有函数、数列、三角函数、平面向量、不等式、立体几何等九大章节。
主要是考函数和导数,这是我们整个高中阶段里最核心的板块,在这个板块里,重点考察两个方面:第一个函数的性质,包括函数的单调性、奇偶性;第二是函数的解答题,重点考察的是二次函数和高次函数,分函数和它的一些分布问题,但是这个分布重点还包含两个分析就是二次方程的分布的问题,这是第一个板块。
第二:平面向量和三角函数。
重点考察三个方面:一个是划减与求值,第一,重点掌握公式,重点掌握五组基本公式。
第二,是三角函数的图像和性质,这里重点掌握正弦函数和余弦函数的性质,第三,正弦定理和余弦定理来解三角形。
难度比较小。
第三:数列。
数列这个板块,重点考两个方面:一个通项;一个是求和。
第四:空间向量和立体几何。
在里面重点考察两个方面:一个是证明;一个是计算。
第五:概率和统计。
这一板块主要是属于数学应用问题的范畴,当然应该掌握下面几个方面,第一……等可能的概率,第二………事件,第三是独立事件,还有独立重复事件发生的概率。
第六:解析几何。
这是我们比较头疼的问题,是整个试卷里难度比较大,计算量最高的题,当然这一类题,我总结下面五类常考的题型,包括第一类所讲的直线和曲线的位置关系,这是考试最多的内容。
考生应该掌握它的通法,第二类我们所讲的动点问题,第三类是弦长问题,第四类是对称问题,这也是2008年高考已经考过的一点,第五类重点问题,这类题时往往觉得有思路,但是没有答案,当然这里我相等的是,这道题尽管计算量很大,但是造成计算量大的原因,往往有这个原因,我们所选方法不是很恰当,因此,在这一章里我们要掌握比较好的算法,来提高我们做题的准确度,这是我们所讲的第六大板块。
第七:押轴题。
考生在备考复习时,应该重点不等式计算的方法,虽然说难度比较大,我建议考生,采取分部得分整个试卷不要留空白。
这是高考所考的七大板块核心的考点。
数学极限知识点总结一、极限的概念极限是一个重要的数学概念,它描述了一个函数在自变量趋近某个特定值时的行为。
具体地说,当自变量x在某一点a附近不断靠近,同时函数f(x)的取值也逐渐接近某个特定的数L时,我们就说函数f(x)在自变量x趋近于a时的极限为L,记作lim(x→a)f(x)=L。
这个定义可以用符号表示为:对于任意给定的正数ε,存在一个正数δ,使得当0<|x-a|<δ时,就有|f(x)-L|<ε。
在这个定义中,ε和δ分别表示"误差"和"变化范围",而当自变量x距离a足够近时,函数f(x)的取值与极限L的差异也会变得足够小。
换句话说,极限描述了函数在某点附近的稳定性和趋势。
在实际问题中,极限的概念常常用于描述随着自变量的变化,函数取值的趋势。
比如,在物理学中,我们可以用极限来描述速度、加速度、流体的流动等随着时间或空间的变化而变化的量。
而在工程中,极限也可以描述材料的强度、电路的稳定性等。
因此,极限是数学中一个十分重要、普遍且有广泛应用的概念。
二、极限的性质1.极限的唯一性如果一个函数在某点附近有极限,那么这个极限是唯一的。
换句话说,对于一个自变量x趋近于a的函数f(x),其极限只能有一个确定的值。
这个性质使得我们可以不用担心在计算函数的极限时会出现多个可能的结果,从而保证了极限的一致性和确定性。
2.极限的局部保号性如果函数f(x)在某点a的邻域内除a点外有定义,并且lim(x→a)f(x)=L,则当L>0时,存在a的某个邻域,使得邻域内的函数值都大于0;当L<0时,存在a的某个邻域,使得邻域内的函数值都小于0。
这个性质表明了在极限存在的情况下,函数在足够靠近极限点的地方都具有一致的正负性。
3.极限的局部有界性如果函数f(x)在某点a的邻域内除a点外有定义,并且lim(x→a)f(x)=L,则存在一个正数M,使得a的某个邻域内函数的取值都在区间(-M,M)之间。
高中数学中的极限运算知识点总结极限是高中数学中重要的概念和工具之一,具有广泛的应用领域。
本文将对高中数学中的极限运算知识点进行总结,包括极限的概念、性质、计算方法以及实际应用等方面。
一、极限的概念1. 定义:当自变量趋近于某个确定值时,函数的取值趋近于某个确定值。
即极限是函数在某一点附近的局部性质。
2. 记号:用lim来表示极限,例如lim(x→a) f(x) = L,表示当x趋近于a时,函数f(x)的极限为L。
3. 无穷大与无穷小:当x趋近于无穷大时,函数的极限可能是无穷大或无穷小。
二、极限的性质1. 唯一性:函数在某一点的极限若存在,则唯一。
2. 有界性:有界函数的极限存在,且极限值在该有界区间内。
3. 局部性:极限的存在只与该点附近的函数值有关,与整体函数的取值无关。
4. 保号性:如果函数在某一点的极限存在且不为零,且函数在该点附近连续,则函数在该点附近保持与极限相同的符号。
三、极限的计算方法1. 代数运算法则:极限具有代数运算的性质,可以通过极限的加减乘除法则进行计算。
2. 数列极限法则:对于递推公式给定的数列,可以通过将递推公式的项逐项求极限来计算数列的极限。
四、常用的极限运算知识点1. 常用极限:- sinx/x的极限lim(x→0) = 1;- a^x(x趋于无穷大)的极限lim(x→∞) = ∞;- e^x(x趋于无穷大)的极限lim(x→∞) = ∞;- ln(1+x)/x的极限lim(x→0) = 1。
2. 极限的四则运算:- 两个函数的和(差)的极限等于各自函数的极限之和(差);- 两个函数的乘积的极限等于各自函数的极限之积;- 两个函数的商的极限等于各自函数的极限之商,其中分母函数的极限不为0。
3. 极限的复合运算:- 实数函数与数列的极限运算;- 函数的函数与数列的极限运算。
五、极限的实际应用极限在数学、物理、经济等学科中具有广泛的应用,常见应用包括:1. 利用极限的概念和性质,推导出数学中的重要定理和公式;2. 在物理学中,通过极限,可以计算出物体在某一瞬间的速度、加速度等相关信息;3. 在经济学中,通过极限,可以计算出市场需求、供应等相关指标。
高考数学第一轮复习知识点总结高考数学第一轮复习知识点总结高考数学作为重中之重的一门课程,对于很多考生来说是一道难关。
数学题目难,考点多,所以在备考过程中复习知识点是非常关键的一环。
在高考数学中,第一轮复习是非常重要的,因为它是考生们对于数学知识点的回顾和积累过程,对于巩固基础打下坚实的基础非常关键。
在这篇文章中,我们将对高考数学第一轮复习的知识点进行总结,帮助考生们更好地备考。
一、集合和函数1. 集合的基本概念和表示方法。
2. 集合的运算:交、并、差、补、对称差。
3. 集合的关系:包含关系、相等关系。
4. 数学函数的定义。
5. 常用函数:幂函数、指数函数、对数函数、三角函数等。
6. 函数的性质:奇偶性、周期性、单调性、最值等。
7. 反函数。
二、数列1. 数列的定义。
2. 等差数列和等比数列的性质。
3. 数列的通项公式和前n项和公式。
4. 数列极限的定义和性质。
5. 数列的收敛和发散。
三、函数图像与方程1. 一次函数。
2. 二次函数。
3. 线性方程组。
4. 二元一次方程和一元二次方程。
5. 一元两次方程,求根公式,有理系数情况的根的奇偶性判断,一次两个根判别式,一元二次方程的最值问题。
四、三角函数1. 弧度制和角度制的互相转换。
2. 常用角的正弦、余弦、正切、余切。
3. 三角函数的基本关系式。
4. 三角函数的图像和性质。
5. 三角函数的反函数。
五、立体几何1. 空间向量的概念。
2. 空间向量之间的运算。
3. 空间中直线和平面的基本概念。
4. 平面与平面的位置关系:平行、共面、垂直等。
5. 空间中直线与直线、直线与平面的位置关系:共面、垂直等。
6. 空间向量与平面的位置关系:平行、垂直等。
七、概率统计1. 随机事件及其概率。
2. 条件概率及其应用。
3. 离散型随机变量及其概率分布。
4. 连续型随机变量及其概率密度函数。
5. 随机事件的运算。
以上是高考数学第一轮复习的知识点总结。
复习数学可以多练习题,特别是选择题,可以涉及到很多数学知识点。
数学极限公式知识点总结极限的数学定义是非常严格和精确的,它可以在多种情况下应用,比如在求导和积分中。
极限是微积分基本概念之一,也是微积分的核心内容之一。
所以,掌握极限的概念和计算方法对于学习微积分课程非常重要。
下面我将对极限的基本概念、常见的极限计算方法以及一些常见的极限公式进行总结和归纳,希望对大家学习极限有所帮助。
一、极限的基本概念1. 自变量趋于无穷大时的极限当自变量趋于无穷大时,函数的极限情况是我们经常遇到的一种情况。
在这种情况下,我们可以利用一些方法来求解函数的极限。
比如,可以利用函数的单调性和有界性来求解函数的极限值。
在计算自变量趋于无穷大时函数的极限值时,我们通常使用无穷小量的代换法,可以将函数化简成一个易于求解的形式。
此外,我们还可以利用夹逼定理来求解自变量趋于无穷大时函数的极限值。
2. 自变量趋于有限数值时的极限当自变量趋于有限数值时,函数的极限情况也是我们经常遇到的一种情况。
在这种情况下,我们可以利用函数的特性来求解函数的极限。
比如,可以利用函数的连续性和可导性来求解函数的极限值。
在计算自变量趋于有限数值时函数的极限值时,我们通常使用洛必达法则,可以将函数化简成一个易于求解的形式。
此外,我们还可以利用泰勒展开式和极坐标系等方法来求解自变量趋于有限数值时函数的极限值。
3. 无穷小量与极限无穷小量是微积分中一个非常重要的概念,它是用来描述函数在某一点附近的行为的。
在数学中,无穷小量是指在某一点附近(通常是无穷小范围内)取得非常小的值的变量。
无穷小量可以用来描述函数在某一点附近的变化情况,也可以用来求解函数的极限值。
在计算函数的极限值时,我们通常使用无穷小量的代换法,可以将函数化简成一个易于求解的形式。
此外,我们还可以利用函数的单调性和有界性来求解函数的极限值。
二、常见的极限计算方法1. 无穷大与无穷小的比较法在计算自变量趋于无穷大时函数的极限值时,我们可以利用无穷大与无穷小的比较法来求解。
高中常见极限知识点总结极限是数学分析中一个非常重要的概念,它是研究函数和数列的性质的基础。
在高中数学课程中,极限是一个重要的内容,学生需要深入理解和掌握它,因为它不仅是数学的基础,还在物理、工程、经济学等其他学科中有着广泛的应用。
本文将对高中常见的极限知识点进行总结,希望可以帮助学生更好地理解和掌握这一重要的数学概念。
一、极限的概念1. 定义:对于函数f(x),当x趋于某一数a时,如果当x充分靠近a时,函数值f(x)无限接近于一个定值L,则称L为函数f(x)当x趋于a时的极限,记作lim(x→a)f(x)=L。
2. 极限存在的条件:极限存在的条件是当x充分靠近a时,函数值能够无限接近于一个定值L。
也就是说,对于任意给定的正数ε,总存在另一个正数δ,使得当0<|x-a|<δ时,都有|f(x)-L|<ε成立。
3. 极限的表示:极限可以用符号lim表示,写成lim(x→a)f(x)=L,其中x→a表示x趋于a的过程,f(x)表示函数值,L表示极限的定值。
可以理解为,当x趋于a时,函数值f(x)趋于L。
二、极限的性质1. 唯一性:如果函数f(x)当x趋于a的时候极限存在,那么这个极限是唯一的。
2. 有界性:如果函数f(x)当x趋于a的时候极限存在,那么函数f(x)在x趋于a的邻域内有界。
3. 保序性:如果函数f(x)和g(x)当x趋于a的时候极限存在,且有f(x)≤g(x),那么极限也有lim(x→a)f(x)≤lim(x→a)g(x)。
4. 乘法性:如果函数f(x)和g(x)当x趋于a的时候极限存在,那么函数f(x)g(x)当x趋于a 的时候极限也存在,且有lim(x→a)f(x)g(x)=lim(x→a)f(x)·lim(x→a)g(x)。
5. 加法性:如果函数f(x)和g(x)当x趋于a的时候极限存在,那么函数f(x)+g(x)当x趋于a的时候极限也存在,且有lim(x→a)(f(x)+g(x))=lim(x→a)f(x)+lim(x→a)g(x)。
高中数学知识点归纳极限基础知识极限是高中数学中重要的概念之一,它不仅在数学中具有重要的应用价值,也为后续学习更深层次的数学知识打下了基础。
本文将对高中数学中的极限基础知识进行归纳总结,以帮助同学们更好地理解和掌握这一概念。
1. 函数极限函数极限是极限的一种常见形式,描述了函数在某一点趋于无穷或趋于某一特定值时的性质。
在计算函数极限时,可以使用极限的定义、极限的运算法则以及洛必达法则等方法。
2. 数列极限数列极限是极限的另一种形式,它描述了数列中的元素随着自变量趋于无穷或趋于某一特定值时的变化规律。
计算数列极限时,可以使用数列极限的定义、数列极限的性质以及常用的极限运算法则等方法。
3. 极限的性质极限具有一些基本的性质,对于计算和理解极限有着重要的帮助。
其中包括唯一性、局部有界性、保号性、保序性、夹逼准则等。
这些性质在具体的计算中经常被使用,能够简化计算过程,提高效率。
4. 极限的运算法则极限的运算法则是极限计算的重要工具,它包括了函数极限和数列极限的加法、减法、乘法、除法、乘方等基本运算法则。
熟练掌握这些运算法则可以快速准确地计算各种极限,并解决一些复杂的数学问题。
5. 无穷大与无穷小在极限的计算中,会遇到一些无穷大和无穷小的概念。
无穷大是指当自变量趋于无穷时函数值也趋于无穷大的情况,可以用来描述函数的增长趋势;无穷小是指当自变量趋于某一特定值时函数值趋于零的情况,可以用来描述函数在某一点附近的性质。
6. 极限的应用极限在现实世界中有广泛的应用,例如在物理学、工程学、经济学等领域。
通过对极限的研究和运用,人们可以更准确地描述和分析各种变化过程,找出规律并得出结论。
综上所述,高中数学中的极限基础知识包括函数极限、数列极限、极限的性质与运算法则、无穷大与无穷小以及极限的应用等。
掌握这些知识点,不仅可以帮助同学们理解和解决数学问题,还能为后续学习提供良好的基础。
通过不断巩固和实践,相信同学们能够更好地掌握和运用极限知识,取得优异的成绩。
高考数学第一轮复习知识点总结高考数学第一轮复习主要包括数与式、函数与方程、几何与测度三个部分内容。
下面将对每个部分的重要知识点进行总结说明。
一、数与式1. 整数与分数- 整数的概念及性质:包括整数的概念、绝对值及其性质,整数的比较和运算规则等。
- 分数的概念及性质:包括分数的概念、单位分数、真分数和假分数的关系,分数与整数的相互转化等。
- 整数与分数的四则运算:包括整数与分数的加减乘除运算,整数的乘方和分数的乘方等。
2. 百分数与比例- 百分数的概念及性质:包括百分数的概念、比例与百分数的关系,百分数的运算规则等。
- 百分数的应用:包括百分数在实际问题中的应用,如百分数的增长与减少、百分数的比较等。
- 比例的概念及应用:包括比例的概念、比例的性质与判断方法,比例在实际问题中的应用等。
3. 代数式与字母表达式- 代数式与项的概念:包括代数式的概念,项的概念与分类等。
- 字母表达式的概念及应用:包括字母表达式的概念与性质,代数式的运算法则,字母表达式在实际问题中的应用等。
4. 等式与方程- 等式的概念及性质:包括等式的概念、等式的性质和判断方法等。
- 方程的解与解方程:包括方程的解的概念及求解方法,一元一次方程与一元二次方程的解法,解方程在实际问题中的应用等。
二、函数与方程1. 函数的概念与性质- 函数的概念与表达:包括函数的定义、自变量和因变量的关系,函数关系的表示方法等。
- 函数的分类与性质:包括函数的分类(一次函数、二次函数、指数函数、对数函数等),函数的性质(奇偶性、单调性、周期性等)等。
2. 一次函数与二次函数- 一次函数的性质与应用:包括一次函数的一般式与斜率截距式,一次函数图像的性质与图像的应用等。
- 二次函数的性质与应用:包括二次函数的一般式、根式与顶点式,二次函数图像的性质(开口方向、顶点、对称轴等)与图像的应用等。
3. 指数函数与对数函数- 指数函数的性质与应用:包括指数函数的定义与性质,指数函数的图像和性质(增减性、单调性、对称性等)等。
高考数学数列极限知识点汇总在高考数学中,数列极限是一个重要的知识点,也是许多同学感到头疼的部分。
为了帮助大家更好地掌握这一知识点,下面就为大家详细汇总一下数列极限的相关内容。
一、数列极限的定义如果当项数n 无限增大时,数列的通项an 无限接近于某个常数A,那么就称 A 是数列{an}的极限,记作lim(n→∞) an = A 。
这里要注意“无限接近”的含义,并不是说数列的项最终等于这个常数,而是它们之间的距离可以任意小。
二、数列极限的性质1、唯一性:如果数列{an}有极限,那么这个极限是唯一的。
2、有界性:如果数列{an}有极限,那么数列{an}一定是有界的。
3、保号性:如果lim(n→∞) an = A,且 A > 0(或 A < 0),那么存在正整数 N,当 n > N 时,an > 0(或 an < 0)。
三、常见数列的极限1、常数列:若{an}为常数列,即 an = C(C 为常数),则lim(n→∞) an = C 。
2、等差数列:若{an}为等差数列,首项为 a1,公差为 d 。
当 d =0 时,lim(n→∞) an = a1 ;当d ≠ 0 时,数列{an}没有极限。
3、等比数列:若{an}为等比数列,首项为 a1,公比为 q 。
当|q| < 1 时,lim(n→∞) an = 0 ;当 q = 1 时,lim(n→∞) an = a1 ;当|q| > 1 时,数列{an}没有极限。
四、数列极限的运算1、四则运算:如果lim(n→∞) an = A,lim(n→∞) bn = B ,那么(1)lim(n→∞)(an ± bn) = A ± B ;(2)lim(n→∞)(an · bn) = A · B ;(3)当B ≠ 0 时,lim(n→∞)(an / bn) = A / B 。
2、指数运算:若lim(n→∞) an = A ,则lim(n→∞) an^k = A^k (k 为正整数)。
极限相关知识点总结一、极限的定义1.1 数列的极限数列是一连串数的有序集合,数学中常常用来研究连续变化的现象。
数列的极限定义如下:对于一个数列${a_n}$,如果对于任意给定的正数$\varepsilon$,都存在正整数$N$,使得当$n>N$时,$|a_n - A| < \varepsilon$,则称数列${a_n}$的极限为$A$,记作$\lim\limits_{n \to \infty} a_n = A$。
1.2 函数的极限函数的极限是指当自变量趋于某一特定值时,函数的取值趋于某一确定的值。
函数的极限定义如下:对于函数$f(x)$,如果对于任意给定的正数$\varepsilon$,都存在正数$\delta$,使得当$0<|x-a|<\delta$时,$|f(x)-L|<\varepsilon$,则称函数$f(x)$的极限为$L$,记作$\lim\limits_{x\to a}f(x)=L$。
1.3 无穷极限当自变量趋于无穷大时,函数的极限称为无穷极限。
无穷极限可以写成以下形式:$\lim\limits_{x \to \infty} f(x) = L$或$\lim\limits_{x \to \infty} f(x) = \infty$二、极限的性质2.1 极限的唯一性若一个函数存在极限,则其极限唯一。
2.2 有界性如果一个函数在某个区间内存在极限,则该函数在该区间内有界。
2.3 保号性如果一个函数在某个点的极限存在且大于(小于)零,则该点附近函数的取值也大于(小于)零。
2.4 保号性如果一个函数在某个点的极限存在且大于(小于)零,则该点附近函数的取值也大于(小于)零。
2.5 两个函数的极限之和等于两个函数极限的和$\lim\limits_{x \to a} [f(x) + g(x)] = \lim\limits_{x \to a} f(x) + \lim\limits_{x \to a} g(x)$ 2.6 两个函数的极限的乘积等于两个函数极限的乘积$\lim\limits_{x \to a} [f(x) \cdot g(x)] = \lim\limits_{x \to a} f(x) \cdot \lim\limits_{x \to a} g(x)$2.7 两个函数的商的极限等于两个函数极限的商$\lim\limits_{x \to a} \frac{f(x)}{g(x)} = \frac{\lim\limits_{x \to a} f(x)}{\lim\limits_{x \to a} g(x)}$,当$\lim\limits_{x \to a} g(x) \neq 0$时成立。
高等数学极限知识点总结
以下是高等数学极限知识点总结:
1. 极限的定义:极限是描述函数在某一点的行为的数学工具。
它包括数列的极限和函数的极限。
2. 极限的性质:包括唯一性,有界性,和收敛性。
3. 极限的四则运算法则:如果lim f(x),lim g(x)存在,那么对于加减乘除四种运算,极限都存在。
4. 极限的夹逼定理:如果一个数列被两个已知极限的数列夹在中间,那么这个数列的极限就是这两个数列的极限。
5. 函数极限的运算法则:如果lim f(x)存在,那么lim [f(x) + c] = lim f(x) + lim c,lim [f(x) c] = lim f(x) lim c,其中c是一个常数。
6. 无穷小和无穷大的概念:无穷小是一个趋于0的变量,无穷大是一个趋于无穷的变量。
7. 洛必达法则:当分子和分母的极限都存在时,可以求出函数的极限。
8. 泰勒级数:将一个函数表示为其各阶导数的无限和的方法。
9. 单侧极限和双侧极限:函数在某一点的单侧极限是指函数在该点的左侧或右侧的极限;双侧极限是指函数在这一点左侧和右侧的极限。
10. 连续性和可微性:如果一个函数在某一点的极限值等于该点的函数值,则称该函数在该点连续;如果一个函数在某一点的导数存在,则称该函数在该点可微。
以上就是高等数学极限的基本知识点,希望对你有所帮助。
极限重要知识点总结一、极限的定义1.1 函数的极限在数学中,函数的极限描述了当自变量趋于某一特定值时,函数的取值趋于的某一确切值。
数学上用符号“lim”表示函数的极限,具体定义如下:对于函数f(x),当x趋于a时,如果存在一个确定的常数L,使得对于任意小的正数ε,总存在着另一个正数δ,使得当0<|x-a|<δ时,就有|f(x)-L|<ε成立,那么就称函数f(x)在x趋于a时的极限为L,记作lim(x→a)f(x)=L。
1.2 数列的极限除了函数的极限,数列的极限也是极限的一种特殊情况。
对于数列{an},当n趋于无穷大时,如果存在一个确定的常数a,使得对于任意小的正数ε,总存在着自然数N,使得当n>N时,就有|an-a|<ε成立,那么就称数列{an}在n趋于无穷大时的极限为a,记作lim(n→∞)an=a。
1.3 极限的重要性极限对于微积分的发展具有非常重要的意义,它为导数和积分的定义提供了理论基础。
在实际问题中,极限也具有很高的应用价值,它可以帮助我们研究和描述诸如速度、加速度、概率等问题,因此对于学习微积分和实际问题的解决都具有非常重要的意义。
二、极限的性质2.1 极限的唯一性如果函数f(x)在x=a的极限存在,那么这个极限是唯一的。
这意味着在某一点的极限值是确定的,不会有多个不同的极限值。
2.2 极限的有界性如果函数f(x)在x=a的极限存在且有限,那么函数f(x)在x=a的某个邻域内是有界的。
在实际应用中,有界性可以帮助我们判断函数在某个点附近的变化规律。
2.3 极限的保号性如果函数f(x)在x=a的某个邻域内恒大于(或小于)一个有限数L,则函数f(x)在x=a的极限也恒大于(或小于)L。
这个性质在实际问题中也具有很高的应用价值,可以帮助我们快速判断函数在某一点附近的变化规律。
2.4 极限的四则运算法则如果函数f(x)和g(x)在x=a的极限分别存在,那么它们的和、差、积、商的极限也分别存在,并且有如下关系:lim(x→a)(f(x)±g(x))=lim(x→a)f(x)±lim(x→a)g(x),lim(x→a)(f(x)×g(x))=lim(x→a)f(x)×lim(x→a)g(x),lim(x→a)(f(x)÷g(x))=lim(x→a)f(x)÷lim(x→a)g(x)(其中lim(x→a)g(x)≠0)。
高考数学极限知识点总结高考复习已经开始,小编在此为大家整理了高考数学极限知识点,供大家参考,希望对高考生有所帮助。
预祝大家取得理想的成绩!考试内容:教学归纳法,数学归纳法应用,数列的极限. 函数的极限.根限的四则运算.函数的连续性.考试要求:(1)理解数学归纳法的原理,能用数学归纳法证明一些简单的数学命题.(2)了解数列极限和函数极限的概念.(3)掌握极限的四则运算法则;会求某些数列与函数的极限.(4)了解函数连续的意义,了解闭区间上连续函数有最大值和最小值的性质.13. 极限知识要点1. ⑴第一数学归纳法:①证明当取第一个时结论正确;②假设当 ( )时,结论正确,证明当时,结论成立.⑵第二数学归纳法:设是一个与正整数有关的命题,如果①当 ( )时,成立;②假设当 ( )时,成立,推得时,也成立.那么,根据①②对一切自然数时,都成立.2. ⑴数列极限的表示方法:②当时, .⑵几个常用极限:① ( 为常数)③对于任意实常数,当时,当时,若a = 1,则 ;若,则不存在当时,不存在⑶数列极限的四则运算法则:如果,那么特别地,如果C是常数,那么⑷数列极限的应用:求无穷数列的各项和,特别地,当时,无穷等比数列的各项和为 .(化循环小数为分数方法同上式)注:并不是每一个无穷数列都有极限.3. 函数极限;⑴当自变量无限趋近于常数 (但不等于 )时,如果函数无限趋进于一个常数,就是说当趋近于时,函数的极限为 .记作或当时, .注:当时,是否存在极限与在处是否定义无关,因为并不要求 .(当然,在是否有定义也与在处是否存在极限无关. 函数在有定义是存在的既不充分又不必要条件.) 如在处无定义,但存在,因为在处左右极限均等于零.⑵函数极限的四则运算法则:如果,那么特别地,如果C是常数,那么注:①各个函数的极限都应存在.②四则运算法则可推广到任意有限个极限的情况,但不能推广到无限个情况.⑶几个常用极限:② (0 ( 1)4. 函数的连续性:⑴如果函数f(x),g(x)在某一点连续,那么函数在点处都连续.⑵函数f(x)在点处连续必须满足三个条件:①函数f(x)在点处有定义;② 存在;③函数f(x)在点处的极限值等于该点的函数值,即 .⑶函数f(x)在点处不连续(间断)的判定:如果函数f(x)在点处有下列三种情况之一时,则称为函数f(x)的不连续点.①f(x)在点处没有定义,即不存在;② 不存在;③ 存在,但 .5. 零点定理,介值定理,夹逼定理:⑴零点定理:设函数在闭区间上连续,且 .那么在开区间内至少有函数的一个零点,即至少有一点 ( )使 .⑵介值定理:设函数在闭区间上连续,且在这区间的端点取不同函数值,,那么对于之间任意的一个数,在开区间内至少有一点,使得 ( ).⑶夹逼定理:设当时,有,且,则必有注::表示以为的极限,则就无限趋近于零.( 为最小整数)高考数学极限知识点就为大家分享到这里,更多精彩内容请持续关注。
极限知识点高三数学在高中数学的学习过程中,极限是一个十分重要且常出现的概念。
它不仅在解题过程中起到关键作用,而且在数学的其他分支中也有广泛的应用。
本文将重点介绍高三数学中的极限知识点,帮助同学们更好地理解和掌握这一概念。
一、极限的定义极限是指当自变量趋近于某个值时,函数值的变化趋势。
一般来说,我们用符号“lim”加上一个表达式来表示极限。
例如lim(x→a)f(x)表示当自变量x趋近于a时,函数f(x)的极限。
二、常见的极限运算法则1. 有界性定理:如果一个函数在一个区间内有定义并且有界,那么它在这个区间内必有极限。
2. 四则运算法则:对于两个函数f(x)和g(x),如果lim(x→a)f(x)和lim(x→a)g(x)存在且有限,则有以下极限运算法则:(1) lim(x→a)(f(x)+g(x)) = lim(x→a)f(x) + lim(x→a)g(x)(2) lim(x→a)(f(x)-g(x)) = lim(x→a)f(x) - lim(x→a)g(x)(3) lim(x→a)(f(x)g(x)) = lim(x→a)f(x) × lim(x→a)g(x)(4) lim(x→a)(f(x)/g(x)) = lim(x→a)f(x) / lim(x→a)g(x) (前提:lim(x→a)g(x) ≠ 0)3. 复合函数极限法则:设y=f[g(x)]为由f(u)和g(x)构成的复合函数,其中lim(x→a)g(x)=b,lim(u→b)f(u)=L,则有lim(x→a)f[g(x)]=L。
4. 已知函数极限与极限运算法则可以联合使用。
例如,如果lim(x→a)f(x)=A,lim(x→a)g(x)=B,则有lim(x→a)(f(x)^g(x))=A^B。
三、例题分析为了更好地理解和掌握极限的应用,我们来看几个例题:例题1:求极限lim(x→0)(sinx/x)。
解析:由于在x→0时,sinx和x都趋近于0,我们可以利用泰勒级数展开来计算该极限。
高考数学极限知识点大全高考数学是每位考生需要面对的重要科目之一,而数学中的极限是其中一个重要的知识点。
掌握极限知识对于高考数学的高分起着至关重要的作用。
本文将系统地介绍高考数学中与极限相关的重要知识点,帮助考生更好地理解和应用。
一、数列与极限数列是由一列数按照一定的顺序排列而成的,而极限则是数列中数值趋于无穷大或无穷小的特性。
数列的极限计算对于高考数学非常重要。
常用的方法有夹逼定理、单调有界数列的收敛性、数列的单调性以及等差数列和等比数列的极限计算。
掌握这些方法可以帮助考生在实际问题中灵活运用,并解决高考题。
同时,数列的极限还可以进一步拓展到函数的极限计算,从而应用到函数的连续性和导数计算中。
二、函数与极限函数是数学中的重要概念,而函数的极限则是了解函数性质和变化趋势的重要手段。
在高考中,函数的极限知识点主要包括函数的左右极限、无穷极限和反函数的极限计算。
通过掌握这些知识点,考生可以更好地理解函数的变化情况,并在解决实际问题时进行准确的分析和计算。
三、极限的运算与性质极限运算对于高考数学的解题非常重要。
熟练掌握极限的加法、减法、乘法和除法运算法则以及常用的极限性质,对于解决相关题目起着关键的作用。
同时,对于复杂函数的极限计算,可以通过运用极限的四则运算性质进行简化和求解。
四、极限的一些典型应用极限在解决实际问题中有着广泛的应用。
在高考中,极限的一些典型应用包括计算无穷小量的近似值、求解函数的渐近线、求曲线的弧长、判断函数的连续性以及利用极限计算定积分等。
这些应用题目旨在考察考生对极限的理解和应用能力,需要考生具备一定的数学思维和推理能力。
五、极限知识的拓展与应用在高考数学中,极限知识不仅仅局限于基本概念和计算,还可以应用到其他领域。
例如在物理学中,极限可以用于速度的计算和质点运动的描述;在经济学中,极限可以用于成本和收益的分析;在计算机科学中,极限可以用于算法的时间复杂度分析。
这些拓展和应用让极限知识更加综合和实用,考生在备考过程中可以结合实际问题进行拓展思考和实际运用。
归纳极限知识点总结高中一、极限的定义在介绍极限的相关知识之前,首先需要明确极限的定义。
在数学中,对于一个函数f(x),当x的取值趋于某个数a时,如果函数f(x)的取值也趋于某个数L,那么我们就说函数f(x)在x趋于a时的极限为L,记作lim(x→a)f(x)=L。
这个定义可以通过数学公式来表示,即对于任意的正实数ε,存在对应的正实数δ,使得当0<|x-a|<δ时,就有|f(x)-L|<ε成立。
二、极限存在与不存在的判定1. 无穷极限存在的条件当x的取值趋于正无穷或负无穷时,如果函数的取值有限且有确定的值L,那么函数在无穷处的极限存在,即lim(x→+∞)f(x)=L或lim(x→-∞)f(x)=L。
2. 极限不存在的情况当x趋于某个数a时,如果函数f(x)的极限不存在,可能有以下几种情况:a) 函数f(x)在a的邻域内没有定义;b) 函数f(x)在a的邻域内存在无穷大的值;c) 函数f(x)在a的邻域内振荡或者是分段函数的情况。
三、极限的性质1. 唯一性如果函数f(x)在x趋于a时的极限存在,并且是唯一的,那么就可以说函数f(x)在x趋于a时的极限存在。
如果函数在x趋于a时的极限不存在或者不唯一,那么就可以说函数在x趋于a时的极限不存在。
2. 夹逼定理对于一个函数f(x)和g(x),如果它们在x趋于a时的极限存在且等于相同的值L,并且在x趋于a时,有h(x)≤f(x)≤g(x),那么函数h(x)在x趋于a时的极限也存在且等于L。
3. 有界性如果函数f(x)在x趋于a时的极限存在且为L,那么对于任意的小于L的正数ε,存在对应的正数δ,使得当0<|x-a|<δ时,就有|f(x)|<ε成立。
四、无穷小量与无穷大量1. 无穷小量在微积分中,对于一个函数f(x),如果在x趋于某个数a时,极限为零,那么我们就说函数f(x)是x趋于a时的无穷小量。
通常情况下,我们记作lim(x→a)f(x)=0。
函数的极限●知识梳理1.函数极限的概念:(1)如果+∞→x lim f (x )=a 且-∞→x lim f (x )=a ,那么就说当x 趋向于无穷大时,函数f (x )的极限是a ,记作∞→x lim f (x )=a ,也可记作当x →∞时,f (x )→a.(2)一般地,当自变量x 无限趋近于常数x 0(但x 不等于x 0)时,如果函数f (x )无限趋近于一个常数a ,就说当x 趋近于x 0时,函数f (x )的极限是a ,记作0lim x x →f (x )=a ,也可记作当x →x 0时,f (x )→a .(3)一般地,如果当x 从点x =x 0左侧(即x <x 0)无限趋近于x 0时,函数f (x )无限趋近于常数a ,就说a 是函数f (x )在点x 0处的左极限,记作-→0lim x x f (x )=a .如果从点x =x 0右侧(即x >x 0)无限趋近于x 0时,函数f (x )无限趋近于常数a ,就说a 是函数 f (x )在点x 0处的右极限,记作+→0lim x x f (x )=a .2.极限的四则运算法则:如果0lim x x → f (x )=a , 0lim x x →g (x )=b ,那么lim x x →[f (x )±g (x )]=a ±b ; 0lim x x →[f (x )·g (x )]=a ·b ; 0lim x x →)()(x g x f =ba(b ≠0). 特别提示(1)上述法则对x →∞的情况仍成立; (2)0lim x x →[Cf (x )]=C 0lim x x →f (x )(C 为常数);(3)0lim x x →[f (x )]n =[0lim x x →f (x )]n (n ∈N *).●点击双基1.+→0lim x x f (x )=-→0lim x x f (x )=a 是f (x )在x 0处存在极限的A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件 答案:C 2.f (x )=⎩⎨⎧<≥,10,12x x x 下列结论正确的是A.)(lim 1x f x +→=-→1lim x f (x )B.)(lim 1x f x +→=2,)(lim 1x f x -→不存在C.+→1lim x f (x )=0, )(lim 1x f x -→不存在D.+→1lim x f (x )≠-→1lim x f (x )答案:D3.函数f (x )在x 0处连续是f (x )在点x 0处有极限的 A.充分不必要条件 B.必要不充分条件 C.充要条件D.既不充分也不必要条件 答案:A4.(2005年西城区抽样测试) 1lim →x x x x x --+222=________________.解析: 1lim →x xx x x --+222=1lim →x )1()2)(1(-+-x x x x =1lim →x x x 2+=3. 答案:35.若1lim →x 3322+++x ax x =2,则a =__________.解析: 1lim →x 3322+++x ax x =2, ∴44+a =2.∴a =4. 答案:4●典例剖析【例1】求下列各极限: (1) 2lim →x ()21442---x x ; (2)∞→x lim ())((b x a x ++-x ); (3) 0lim→x ||x x; (4) 2πlim→x .2sin2cos cos x x x-剖析:若f (x )在x 0处连续,则应有0lim x x → f (x )=f (x 0),故求f (x )在连续点x 0处的极限时,只需求f (x 0)即可;若f (x )在x 0处不连续,可通过变形,消去x -x 0因式,转化成可直接求f (x 0)的式子.解:(1)原式=2lim→x 4)2(42-+-x x =2lim→x 21+-x =-41.(2)原式=∞→x lim xab x b a x ab x b a ++++++)()(2=a +b .(3)因为+→0lim x ||x x =1,而=-→0lim x ||x x =-1,+→0lim x ||x x ≠-→0lim x ||x x , 所以0lim →x ||x x不存在.(4)原式=2πlim→x 2sin 2cos 2sin 2cos 22x x x x --=2πlim →x (cos 2x +sin 2x )=2.思考讨论数列极限与函数极限的区别与联系是什么?【例2】 (1)设f (x )=⎪⎪⎩⎪⎪⎨⎧<+=>+→,021;)(lim ,,00,020x x f b x x bx xx 存在使的值试确定;(2)f (x )为多项式,且∞→x lim x x x f 34)(-=1,0lim →x xx f )(=5,求f (x )的表达式.解:(1)+→0lim x f (x )= +→0lim x (2x +b )=b ,-→0lim x f (x )= -→0lim x (1+2x )=2,当且仅当b =2时, +→0lim x f (x )= -→0lim x f (x ),故b =2时,原极限存在.(2)由于f (x )是多项式,且∞→x lim xx x f 34)(-=1,∴可设f (x )=4x 3+x 2+ax +b (a 、b 为待定系数). 又∵0lim→x xx f )(=5, 即0lim →x (4x 2+x +a +xb )=5,∴a =5,b =0,即f (x )=4x 3+x 2+5x .评述:(1)函数在某点处有极限,与其在该点处是否连续不同.(2)初等函数在其定义域内每点的极限值就等于这一点的函数值,也就是对初等函数而言,求极限就是求函数值,使极限运算大大简化.【例3】 讨论函数f (x )= ∞→n limnn xx 2211+-·x (0≤x <+∞)的连续性,并作出函数图象.部析:应先求出f (x )的解析式,再判断连续性.解:当0≤x <1时,f (x )= ∞→n lim ⋅+-nnx x 2211x =x ;当x >1时,f (x )= ∞→n limnnx x 2211+-·x =∞→n lim 111122+-n n xx ·x =-x ; 当x =1时,f (x )=0.∴f (x )=⎪⎩⎪⎨⎧>-=<≤).1(),1(0),10(x x x x x i ∵+→1lim x f (x )=+→1lim x (-x )=-1,-→1lim x f (x )= -→1lim x x =1,∴1lim →x f (x )不存在.∴f (x )在x =1处不连续,f (x )在定义域内的其余点都连续. 图象如下图所示.评述:分段函数讨论连续性,一定要讨论在“分界点”的左、右极限,进而判断连续性. ●闯关训练 夯实基础1.已知函数f (x )是偶函数,且-∞→x lim f (x )=a ,则下列结论一定正确的是A. +∞→x lim f (x )=-a B. +∞→x lim f (x )=aC. +∞→x lim f (x )=|a | D. -∞→x lim f (x )=|a |解析:∵f (x )是偶函数,∴f (-x )=f (x ). 又-∞→x lim f (x )=a ,+∞→x lim f (-x )=a ,f (x )=f (-x ),∴+∞→x lim f (-x )= +∞→x lim f (x )=a .答案:B2.(2004年全国Ⅱ,理2)1lim →x 54222-+-+x x x x 等于A.21B.1C.52D.41解析:∵122lim ,52)5)(1()2)(1(542→∴++=+-+-=-+-+x x x x x x x x x x x 54222-+-+x x x x =21.答案:A3.已知函数y =f (x )在点x =x 0处存在极限,且+→0lim x x f (x )=a 2-2,-→0lim x x f (x )=2a +1,则函数y =f (x )在点x =x 0处的极限是____________.解析:∵y =f (x )在x =x 0处存在极限,∴+→0lim x x f (x )=-→0lim x x f (x ),即a 2-2=2a +1.∴a =-1或a =3.∴0lim x x → f (x )=2a +1=-1或7.答案:-1或7 4.若f (x )=11113-+-+x x 在点x =0处连续,则f (0)=__________________.解析:∵f (x )在点x =0处连续, ∴f (0)=0lim →x f (x ),lim →x f (x )= 0lim→x 11113-+-+x x= 0lim→x 1111)1(332++++++x x x =23.答案:235.已知函数f (x )=∞→n limnn n n x x +-22,试求:(1)f (x )的定义域,并画出图象;(2)求--→2lim x f (x )、+-→2lim x f (x ),并指出2lim -→x f (x )是否存在.解:(1)当|x |>2时,∞→n limn n nnx x +-22=∞→n lim 1)2(1)2(+-nnxx =-1; 当|x |<2时,∞→n lim n n n n x x +-22=∞→n lim nn x x )2(1)2(1+-=1; 当x =2时,∞→n lim nn nn x x +-22=0;当x =-2时,∞→n lim nn nn x x +-22不存在.∴f (x )=⎪⎩⎪⎨⎧<<-=-<>-).22(1),2(0),22(1x x x x 或∴f (x )的定义域为{x |x <-2或x =2或x >2}. 如下图:(2)∵--→2lim x f (x )=-1,+-→2lim x f (x )=1.∴2lim -→x f (x )不存在.6.设函数f (x )=ax 2+bx +c 是一个偶函数,且1lim →x f (x )=0,2lim -→x f (x )=-3,求出这一函数最大值.解:∵f (x )=ax 2+bx +c 是一偶函数, ∴f (-x )=f (x ), 即ax 2+bx +c =ax 2-bx +c . ∴b =0.∴f (x )=ax 2+c .又1lim →x f (x )= 1lim →x ax 2+c =a +c =0, 2lim -→x f (x )=2lim -→x ax 2+c =4a +c =-3,∴a =-1,c =1.∴f (x )=-x 2+1.∴f (x )max =f (0)=1. ∴f (x )的最大值为1. 培养能力7.在一个以AB 为弦的弓形中,C 为的中点,自A 、B 分别作弧AB 的切线,交于D 点,设x 为弦AB 所对的圆心角,求ABDABCx S S ∆∆→0lim.解:设所在圆圆心为O ,则C 、D 、O 都在AB 的中垂线上,∴∠AOD =∠BOD =2x .设OA =r .S △ABC =S 四边形AOBC -S △AOB =r 2sin 2x -21r 2sin x =r 2sin 2x (1-cos 2x),S △ABD =S 四边形AOBD -S △AOB =r 2tan 2x -21r 2sin x =r 22cos2sin 3x x.∴0lim→x ABD ABCS S ∆∆=0lim →x 2cos2sin )2cos 1(2sin322x xr xx r -=0lim→x 2cos 12cos x x +=21.8.当a >0时,求0lim→x bb x a a x -+-+2222.解:原式=0lim→x ))()(())()((222222222222a a x b b x b b x b b x a a x a a x ++++-+++++-+=0lim→x ))(())((2222222222a a x b b x b b x a a x ++-+++-+=0lim→x aa xb b x ++++2222=aa bb ++|||| =⎪⎩⎪⎨⎧>≤).0(),0(0时当时当b a b b探究创新9.设f (x )是x 的三次多项式,已知a x 2lim →=a x x f 2)(-=a x 4lim →ax x f 4)(-=1.试求a x 3lim →ax x f 3)(-的值(a 为非零常数).解:由于a x 2lim →ax x f 2)(-=1,可知f (2a )=0. ①同理f (4a )=0. ② 由①②,可知f (x )必含有(x -2a )与(x -4a )的因式,由于f (x )是x 的三次多项式,故可设f (x )=A (x -2a )(x -4a )(x -C ).这里A 、C 均为待定的常数.由ax 2lim→ax x f 2)(-=1,即 =a x 2lim →A (x -4a )(x -C )=1, 得A (2a -4a )(2a -C )=1, 即4a 2A -2aCA =- 1.③同理,由于ax 4lim→ax x f 4)(-=1, 得A (4a -2a )(4a -C )=1, 即8a 2A -2aCA =1.④由③④得C =3a ,A =221a,因而f (x )=221a (x -2a )(x -4a )(x -3a ). ∴a x 3lim →a x x f 3)(-=a x 3lim →221a (x -2a )(x -4a ) =221a·a ·(-a )=-21.●思悟小结1. ∞→x lim f (x )=A ⇔+∞→x lim f (x )= -∞→x lim f (x )=A ,lim x x →f (x )=A ⇔+→0lim x x f (x )=-→0lim x x f (x )=A .2.函数f (x )在x 0处连续当且仅当满足三个条件:(1)函数f (x )在x =x 0处及其附近有定义; (2)0lim x x →f (x )存在;(3) 0lim x x →f (x )=f (x 0).3.会熟练应用常见技巧求一些函数的极限. ●教师下载中心 教学点睛1.在讲解过程中,要讲清函数极限与数列极限的联系与区别,借助于函数图象讲清连续性的意义.2.函数极限比数列极限复杂之处在于它有左、右极限,并有趋近于无穷大和趋近于常数两类,需给予关注.3.在求函数极限时,需观察,对不能直接求的可以化简后求,但提醒学生要注意类似于+∞→x limxx 12+与-∞→x lim xx 12+的区别. 拓展题例【例1】 设f (x )=⎪⎩⎪⎨⎧>≤+),0(e ),0(25x k x k x x 为常数问k 为何值时,有0lim →x f (x )存在?解: -→0lim x f (x )=2k , +→0lim x f (x )=1,∴要使0lim →x f (x )存在,应有2k =1.∴k =21.【例2】 a 为常数,若+∞→x lim (12-x -ax )=0,求a 的值.解:∵+∞→x lim (12-x -ax )= +∞→x limaxx x a x +---112222=+∞→x limaxx x a +---11)1(222=0,∴1-a 2=0.∴a =±1.但a =-1时,分母→0, ∴a =1.。
高考数学第一轮复习系列极端知识点综述高考数学首轮复习系列中极端知识点的归纳第一,不连续点的极限1.连续点、间断点和间断点的分类:判断间断点类型的依据是在间断点处寻找函数的左右极限;2.可微和可微的。
分段函数在分段点处的导数或可微性由导数定义直接计算或检验。
存在的定义是极限存在。
3.渐近线,(垂直、水平或倾斜渐近线);4.多元函数积分学中,二重极限的讨论和计算比较困难,往往证明极限不存在。
第二,我们来说说数列极限的典型方法。
(1)重要问题及启示1.求数列的极限。
求数列的极限可以归纳为以下三种形式。
2.限制抽象序列。
这类问题通常以选择题的形式出现,可以通过引用反例排除。
此外,还可以根据定义、基本性质和算法直接验证。
(2)要求具体数列的极限,可以参考以下方法:用单调有界收敛准则求数列的极限。
首先通过数学归纳法或不等式缩放法判断序列的单调性和有界性,然后确定极限的存在性。
其次,通过取递归关系中的极限并求解方程,可以得到数列的极限值。
b、用函数极限求数列极限如果数列极限可以看作某个函数极限的特例,可以用函数极限与数列极限的关系来求解函数极限,然后用Robida规则来求解。
(3)求项的和或积序列的极限主要有以下几种方法:一、采用特殊级数求和法如果公式极限中的通项可以通过错位消除或转化为已知极限的某种形式,那么通过整理就可以直接得到极限结果。
b、采用幂级数求和法如果能找到这个级数对应的幂级数,就可以用幂级数函数的方法找到它对应的和函数,然后根据这个极限的形式代入对应的‘变量’就可以找到函数值。
c、用定积分定义求极限如果数列的每个项都可以给定一个因子,剩下的项可以用一个通项来表示,我们可以考虑用定积分的定义来求解数列的极限。
d、利用夹点定理求极限如果序列中的每一项都能提出一个因子,剩余项不能用一个通称来表示,而是剩余项按递增或递减的顺序排列,可以考虑用夹点定理来求解。
e、求项级数乘积的极限。
一般来说,对数首先转换成项和,然后通过求解项和数列极限来计算。
极限是微积分中的基础概念,查字典数学网小编在此为大家整理了极限知识点总结,供大家参考,希望对高考生有所帮助。
预祝大家取得理想的成绩!考试内容:教学归纳法,数学归纳法应用,数列的极限.函数的极限.根限的四则运算.函数的连续性.考试要求:(1)理解数学归纳法的原理,能用数学归纳法证明一些简单的数学命题.(2)了解数列极限和函数极限的概念.(3)掌握极限的四则运算法则;会求某些数列与函数的极限.(4)了解函数连续的意义,了解闭区间上连续函数有最大值和最小值的性质.13. 极限知识要点1. ⑴第一数学归纳法:①证明当取第一个时结论正确;②假设当 ( )时,结论正确,证明当时,结论成立.⑵第二数学归纳法:设是一个与正整数有关的命题,如果①当 ( )时,成立;②假设当 ( )时,成立,推得时,也成立.那么,根据①②对一切自然数时,都成立.2. ⑴数列极限的表示方法:①②当时, .⑵几个常用极限:① ( 为常数)②③对于任意实常数,当时,当时,若
a = 1,则 ;若,则不存在当时,不存在⑶数列极限的四则运算法则:如果,那么①②
③特别地,如果C是常数,那么.⑷数列极限的应用:求无穷数列的各项和,特别地,当时,无穷等比数列的各项和为 .(化循环小数为分数方法同上式)注:并不是每一个无穷数列都有极限.3. 函数极限;⑴当自变量无限趋近于常数 (但不等于 )时,如果函数无限趋进于一个常数,就是说当趋近于时,函数的极限为 .记作或当时, .注:当时,是否存在极限与在处是否定义无关,因为并不要求 .(当然,在是否有定义也与在处是否存在极限无关. 函数在有定义是存在的既不充分又不必要条件.)如在处无定义,但存在,因为在处左右极限均等于零.⑵函数极限的四则运算法则:如果,那么①②③特别地,如果C 是常数,那么.( )注:①各个函数的极限都应存在.②四则运算法则可推广到任意有限个极限的情况,但不能推广到无限个情况.⑶几个常用极限:①② (0 ( 1)③④, ( )4. 函数的连续性:⑴如果函数f(x),g(x)在某一点连续,那么函数在点处都连续.⑵函数f(x)在点处连续必须满足三个条件:①函数f(x)在点处有定义;②存在;③函数f(x)在点处的极限值等于该点的函数值,即 .⑶函数f(x)在点处不连续(间断)的判定:如果函数f(x)在点处有下列三种情况之一时,则称为函数f(x)的不连续点.①f(x)在点处没有定义,即不存在;
②不存在;③存在,但 .5. 零点定理,介值定理,夹逼定理:⑴零点定理:设函数在闭区间上连续,且 .那么在开区间内至少有函数的一个零点,即至少有一点 ( )使 .⑵介值定理:设函数在闭区间上连续,且在这区间的端点取不同函数值,,那么对于之间任意的一个数,在开区间内至少有一点,使得 ( ).⑶夹逼定理:设当时,有,且,则必有注::表示以为的极限,则就无限趋近于零.( 为最小整数)极限知识点总结就为大家分享到这里,更多精彩内容请持续关注查字典数学网。