一次函数和反比例函数_有答案
- 格式:doc
- 大小:1.07 MB
- 文档页数:11
一次函数与反比例函数的综合应用一、选择题1. (2011四川凉山,12,4分)二次函数2y ax bx c =++的图象如图所示,反比列函数ay x=与正比列函数y bx =在同一坐标系内的大致图象是( )考点:二次函数的图象;正比例函数的图象;反比例函数的图象. 专题:数形结合.分析:由已知二次函数y =ax 2+bx +c 的图象开口方向可以知道a 的取值范围,对称轴可以确定b 的取值范围,然后就可以确定反比例函数xay =与正比例函数y =bx 在同一坐标系内的大致图象.解答:解:∵二次函数y =ax 2+bx +c 的图象开口方向向下,∴a <0,对称轴在y 轴的左边,∴x =-ab2<0,∴b <0, ∴反比例函数xay =的图象在第二四象限, 正比例函数y =bx 的图象在第二四象限. 故选B .点评:此题主要考查了从图象上把握有用的条件,准确选择数量关系解得a 的值,简单的图象最少能反映出2个条件:开口向下a <0;对称轴的位置即可确定b 的值. 2. (2011•青海)一次函数y=﹣2x+1和反比例函数y=的大致图象是( )O xy O yxAO yxBO yxDO yxCA、B、C、D、考点:反比例函数的图象;一次函数的图象。
分析:根据一次函数的性质,判断出直线经过的象限;再根据反比例函数的性质,判断出反比例函数所在的象限即可.解答:解:根据题意:一次函数y=﹣2x+1的图象过一、二、四象限;反比例函数y=过一、三象限.故选:D.点评:此题主要考查了一次函数的图象及反比例函数的图象,重点是注意y=k1x+b中k1、b及y=中k2的取值.3.(2011山东青岛,8,3分)已知一次函数y1=kx+b与反比例函数y2=kx在同一直角坐标系中的图象如图所示,则当y1<y2时,x的取值范围是()A.x<﹣1或0<x<3 B.﹣1<x<0或x>3 C.﹣1<x<0 D.x>3 考点:反比例函数与一次函数的交点问题。
反比例函数与一次函数的综合应用1.已知一次函数y1=kx﹣b与反比例函数y2=,在同一平面直角坐标系中的图象如图所示,则当kx<+b时,x的取值范围是()A.x<﹣1或0<x<3B.﹣1<x<0或x>3C.﹣3<x<0或x>1D.x>32.如图,一次函数y=k1x+b的图象与x轴,y轴分别交于A,B两点,与反比例函数y=的图象分别交于C,D两点,若点C坐标是(3,6),且AB=BC.(1)求一次函数y=k1x+b与反比例函数y=的解析式;(2)求△COD的面积;(3)直接写出当x取何值时,k1x+b<.3.如图,在平面直角坐标系中,一次函数与反比例函数相交于A(2,m)和B(6,2).(1)求直线AB的表达式;(2)△AOB的面积是;(3)点A到OB的距离AH的长度是.4.如图,一次函数y1=﹣2x+b的图象分别交x轴,y轴于D,C两点,交反比例函数y2=图象于A(﹣1,6),B(m,﹣2)两点.(1)求k,b的值;(2)点E是y轴上点C下方一点,若S=,求E点的坐标;△AEB(3)当y1>y2时,x的取值范围是.5.如图,一次函数y=k1x+b的图象与反比例函数y=的图象相交于A(1,2)、B(﹣2,n)两点.(1)求一次函数和反比例函数的解析式;(2)根据图象,直接写出满足k1x+b>的x的取值范围;(3)若点P在线段AB上,且S:S△BOP=1:4,求点P的坐标.△AOP参考答案与试题解析1.已知一次函数y1=kx﹣b与反比例函数y2=,在同一平面直角坐标系中的图象如图所示,则当kx<+b时,x的取值范围是()A.x<﹣1或0<x<3B.﹣1<x<0或x>3C.﹣3<x<0或x>1D.x>3【解答】解:根据题意得:当y1<y2时,x的取值范围是﹣1<x<0或x>3,∴当kx<+b时,x的取值范围是﹣1<x<0或x>3.故选:B.2.如图,一次函数y=k1x+b的图象与x轴,y轴分别交于A,B两点,与反比例函数y=的图象分别交于C,D两点,若点C坐标是(3,6),且AB=BC.(1)求一次函数y=k1x+b与反比例函数y=的解析式;(2)求△COD的面积;(3)直接写出当x取何值时,k1x+b<.【解答】解:(1)∵点C(3,6)在反比例函数y=的图象上,∴k2=3×6=18,∴反比例函数的解析式为y=;如图,作CE⊥x轴于E,∵C(3,6),AB=BC,∴B(0,3),∵B、C在y=k1x+b的图象上,∴,解得,∴一次函数的解析式为y=x+3;(2)由,解得或,∴D(﹣6,﹣3),=S△BOC+S△BOD=×3×3+×3×6=;∴S△COD(3)由图象可得,当0<x<3或x<﹣6时,k1x+b<.3.如图,在平面直角坐标系中,一次函数与反比例函数相交于A(2,m)和B(6,2).(1)求直线AB的表达式;(2)△AOB的面积是16;(3)点A到OB的距离AH的长度是.【解答】解:(1)设反比例函数的解析式为y=,由题意可知:k=6×2=12,∴y=,∵A(2,m)在反比例函数y=的图象上,∴m==6,∴A(2,6),∵A(2,6)、B(6,2)在一次函数y=ax+b的图象上,∴,解得,∴直线AB的表达式为y=﹣x+8;(2)设直线AB与x轴的交点为C,令y=0,则﹣x+8=0,解得x=8,∴C(8,0),=S△AOC﹣S△BOC=﹣=16,∴S△AOB故答案为:16;(3)∵B(6,2),∴OB==2,∵S=OB•AH=16,△AOB∴AH==,故答案为:.4.如图,一次函数y1=﹣2x+b的图象分别交x轴,y轴于D,C两点,交反比例函数y2=图象于A(﹣1,6),B(m,﹣2)两点.(1)求k,b的值;=,求E点的坐标;(2)点E是y轴上点C下方一点,若S△AEB(3)当y1>y2时,x的取值范围是x<﹣1或0<x<3.【解答】解:(1)将A(﹣1,6)代入一次函数y=﹣2x+b,得b=4;将A(﹣1,6)代入,得k=﹣6.(2)设E(a,0),将B(m,﹣2)代入,得m=3,∴B(3,﹣2)∴)=2CE=2(4﹣a)=,∴E(0,);(3)观察图象,当y1>y2时,x的取值范围是x<﹣1或0<x<3,故答案为:x<﹣1或0<x<3.5.如图,一次函数y=k1x+b的图象与反比例函数y=的图象相交于A(1,2)、B(﹣2,n)两点.(1)求一次函数和反比例函数的解析式;(2)根据图象,直接写出满足k1x+b>的x的取值范围;:S△BOP=1:4,求点P的坐标.(3)若点P在线段AB上,且S△AOP【解答】解:(1)∵反比例函数y=经过A(1,2),∴k2=1×2=2,∴反比例函数解析式为y=,∵B(﹣2,n)在比例函数y=的图象上,∴n==﹣1,∴B(﹣2,﹣1),∵直线y=k1x+b经过A(1,2),B(﹣2,﹣1),∴,解得,∴一次函数的解析式为y=x+1;(2)观察图象,k1x+b>的x的取值范围是﹣2<x<0或x>1;(3)设P(x,x+1),:S△BOP=1:4,∵S△AOP∴AP:PB=1:4,即PB=4PA,∴(x+2)2+(x+1+1)2=16[(x﹣1)2+(x+1﹣2)2],解得x1=,x2=2(舍去),∴P点坐标为(,).。
反比例函数与一次函数不等关系一.选择题(共23小题)1.如图,一次函数y=kx+b(k≠0)的图象与反比例函数y=(m≠0)的图象相交于点A (2,3),B(﹣6,﹣1),则关于x的不等式kx+b>的解集是()A.x>﹣6B.﹣6<x<0C.﹣6<x<0且x>2D.﹣6<x<0或x>22.已知函数y=x与y=在同一平面直角坐标系内的图象如图所示,由图象可知,x取什么值时,x>()A.x<﹣1或x>1B.x<﹣1或0<x<1C.﹣1<x<0或x>1D.﹣1<x<0或0<x<13.如图,已知一次函数y=﹣x+b与反比例函数y=的图象相交于点P,则关于x的方程﹣x+b=的解是()A.x=1B.x=2C.x1=1,x2=2D.x1=1,x2=3 4.如图,正比例函数y=x与反比例函数y=的图象交于A、B两点,其中A(2,2),则不等式x>的解集为()A.x>2B.x<﹣2C.﹣2<x<0或0<x<2D.﹣2<x<0或x>25.如图,函数y1=x+1与函数y2=的图象相交于点M(1,m),N(﹣2,n).若y1>y2,则x的取值范围是()A.x<﹣2或0<x<1B.x<﹣2或x>1C.﹣2<x<0或0<x<1D.﹣2<x<0或x>16.如图,函数y=kx+b(k≠0)与y=(m≠0)的图象相交于点A(﹣2,3),B(1,﹣6)两点,则不等式kx+b>的解集为()A.x>﹣2B.﹣2<x<0或x>1C.x>1D.x<﹣2或0<x<17.如图,正比例函数y1=mx,一次函数y2=ax+b和反比例函数y3=的图象在同一直角坐标系中,若y3>y1>y2,则自变量x的取值范围是()A.x<﹣1B.﹣0.5<x<0或x>1C.0<x<1D.x<﹣1或0<x<18.在同一平面直角坐标系中,一次函数y1=k1x+b与反比例函数y2=(x>0)的图象如图所示,则当y1>y2时,自变量x的取值范围为()A.x<1B.x>3C.0<x<1D.1<x<39.一次函数y1=k1x+b和反比例函数y2=(k1•k2≠0)的图象如图所示,若y1>y2,则x的取值范围是()A.﹣1<x<0或x>4B.﹣1<x<4C.x<﹣1或x>4D.x<﹣1或0<x<410.如图直线y1=ax+b与双曲线y2=相交于A、B两点,则不等式y1>y2的解集是()A.﹣1<x<0或0<x<2B.x<﹣1或0<x<2C.x<﹣1或x<2D.﹣1<x<0或x>211.如图,已知一次函数y1=kx+b(k≠0)的图象与反比例函数y2=(m≠0)的图象都经过A(﹣1,2),B(2,﹣1).观察图象可知:不等式kx+b<的解是()A.x<﹣1B.﹣1<x<0C.x<﹣1或0<x<2D.﹣1<x<0或x>212.如图,一次函数y=‒x+4的图象与反比例函数y=‒的图象交于A,B两点,则不等式|‒x+4|>‒的解集为()A.﹣1<x<0或x>5B.x<﹣1或x>0C.x<﹣1或0<x<5D.x<﹣1或x>513.如图,一次函数y1=ax+b和反比例函数y2=的图象交于A(﹣2,m),B(1,n)两点,若不等式ax+b≤,则x的取值范围在数轴上表示正确的是()A.B.C.D.14.如图,直线y=ax+b(a≠0)与双曲线y=(k≠0)交于点A(﹣2,3)和点B(m,﹣1),则不等式ax+b<的解集是()A.x>﹣2B.x>6C.x<﹣2或0<x<6D.﹣2<x<0或x>615.如图,正比例函数y=ax的图象与反比例函数y=的图象相交于A,B两点,其中点A的横坐标为2,则不等式ax<的解集为()A.x<﹣2或x>2B.x<﹣2或0<x<2C.﹣2<x<0或0<x<2D.﹣2<x<0或x>216.如图直线y1=x+1与双曲线y2=交于A(2,m)、B(﹣3,n)两点.则当y1>y2时,x的取值范围是()A.x>﹣3或0<x<2B.﹣3<x<0或x>2C.x<﹣3或0<x<2D.﹣3<x<217.如图,反比例函数y1=和正比例函数y2=k2x的图象交于A,B两点,已知A点坐标为(﹣1,﹣3).若y1<y2,则x的取值范围是()A.﹣1<x<0B.﹣1<x<1C.x<﹣1或0<x<1D.﹣1<x<0或x>118.如图,直线y1=x+1与双曲线y2=交于A(2,m)、B(﹣6,n)两点.则当y1<y2时,x的取值范围是()A.x>﹣6或0<x<2B.﹣6<x<0或x>2C.x<﹣6或0<x<2D.﹣6<x<219.如图,函数y=kx+b(k≠0)与y=(m≠0)的图象相交于点A(1,4),B(﹣2,﹣2)两点,则不等式kx+b>的解集为()A.x>﹣2B.﹣2<x<0或x>1C.x>1D.x<﹣2或0<x<120.一次函数y1=ax+b(a≠0)与反比例函数y2=(k≠0)在同一平面直角坐标系xOy 中的图象如图所示,当y1>y2时,x的取值范围是()A.﹣1<x<3B.x<﹣1或0<x<3C.x<﹣1或x>3D.﹣1<x<0或x>321.如图,已知一次函数y=ax+b与反比例函数y=图象交于M、N两点,则不等式ax+b >解集为()A.x>2或﹣1<x<0B.﹣1<x<0C.﹣1<x<0或0<x<2D.x>222.如图,在同一平面直角坐标系中,一次函数y1=kx+b(k、b是常数,且k≠0)与反比例函数y2=(c是常数,且c≠0)的图象相交于A(﹣3,﹣2),B(2,m)两点,则不等式y1>y2的解集是()A.﹣3<x<2B.x<﹣3或x>2C.﹣3<x<0或x>2D.0<x<223.如图,正比例函数y1与反比例函数y2相交于点E(﹣1,2),若y1>y2>0,则x的取值范围是()A.x<﹣1B.﹣1<x<0C.x>1D.0<x<1二.填空题(共7小题)24.已知如图,一次函数y=ax+b和反比例函数y=的图象相交于A、B两点,不等式ax+b >的解集为______.25.如图,正比例函数y1=ax(a≠0)与反比例函数的图象相交于A,B两点,其中点A的坐标为(1,3).当y1<y2时,x的取值范围是______.26.如图,直线y=2x与双曲线y=交于A(m,4)、B两点,则不等式2x>的解集为______.27.如图,一次函数为y1=kx+b(k≠0)的图象与反比例函数y2=(m≠0)的图象交于A (1,t+1),B(t﹣5,﹣1)两点,当y1>y2时,自变量x的取值范围为______.28.如图,一次函数y=k1x+b与反比例函数y=的图象交于A、B两点,其横坐标分别为1和5,则关于x的不等式k1x+b﹣<0的解集是______.29.如图,若反比例函数y1=与一次函数y2=ax+b交于A、B两点,当y1>y2时,则x 的取值范围是______.30.如图,正比例函数y=k1x与反比例函数y=的图象交于点A、B,若点A的坐标为(1,2),则关于x的不等式k1x>的解集是______.反比例函数与一次函数不等关系参考答案与试题解析一.选择题(共23小题)1.解:由图象可知,关于x的不等式kx+b>的解集为:﹣6<x<0或x>2,故选:D.2.解:根据图象得,y=x的图象在反比例函数的图象的上边,x比大,即当﹣1<x<0或x>1时,x>,故选:C.3.解:由图象,得:y=﹣x+b与反比例函数y=(k≠0)的图象相交于点P(1,2),把P点坐标代入函数解析式,得:﹣1+b=2,k=1×2=2,解得b=3,k=2,关于x的方程﹣x+b=,即﹣x+3=,解得x1=1,x2=2,故选:C.4.解:∵正比例函数y=x与反比例函数y=的图象交于A、B两点,其中A(2,2),∴B(﹣2,﹣2),观察函数图象,发现:当﹣2<x<0或x>2时,正比例函数图象在反比例函数图象的上方,∴不等式x>的解集为是﹣2<x<0或x>2,故选:D.5.解:由一次函数和反比例函数的图象可知,当一次函数图象在反比例函数图象之上时,所对应的x的取值范围为﹣2<x<0或x>1,故选:D.6.解:∵函数y=kx+b(k≠0)与的图象相交于点A(﹣2,3),B(1,﹣6)两点,∴不等式的解集为:x<﹣2或0<x<1,故选:D.7.解:由图象可知,当x<﹣1或0<x<1时,双曲线y3落在直线y1上方,且直线y1落在直线y2上方,即y3>y1>y2,所以若y3>y1>y2,则自变量x的取值范围是x<﹣1或0<x<1.故选:D.8.解:由图象可得,当y1>y2时,自变量x的取值范围为1<x<3,故选:D.9.解:观察函数图象知,若y1>y2,则x的取值范围是:x<﹣1或0<x<4,故选:D.10.解:由函数图象知,点A、B的横坐标分别为2、﹣1,从图象看,﹣1<x<0或x>2时,直线在双曲线上方,即y1>y2,故选:D.11.解:由函数图象可知,当一次函数y1=kx+b(k≠0)的图象在反比例函数y2=(m为常数且m≠0)的图象上方时,x的取值范围是:﹣1<x<0或x>2,∴不等式kx+b>的解集是:﹣1<x<0或x>2,故选:D.12.解:解方程组得,,则A(﹣1,5),B(5,﹣1),∵|‒x+4|>‒,函数图象如下:∴不等式|‒x+4|>‒的解集为:x<﹣1或x>0.故选:B.13.解:当﹣2≤x<0或x≥1时,ax+b≤.故选:A.14.解:把A点的坐标(﹣2,3)代入y=得:k=﹣6,即y=﹣,把B(m,﹣1)代入y=﹣得:m=﹣=6,即B(6,﹣1),所以不等式ax+b<的解集是﹣2<x<0或x>6,故选:D.15.解:∵正比例函数y=ax的图象与反比例函数y=的图象相交于A,B两点,∴A,B两点坐标关于原点对称,∵点A的横坐标为2,∴B点的横坐标为﹣2,∵ax<,∴在第一和第三象限,正比例函数y=ax的图象在反比例函数y=的图象的下方,∴x<﹣2或0<x<2,故选:B.16.解:根据图象可得当y1>y2时,x的取值范围是:﹣3<x<0或x>2.故选:B.17.解:∵正比例函数与反比例函数的图象均关于原点对称,A点坐标为(﹣1,﹣3),∴点B的坐标为(1,3),观察函数图象,发现:当﹣1<x<0或x>1时,正比例函数图象在反比例函数图象的上方,∴当y1<y2时,x的取值范围是﹣1<x<0或x>1.故选:D.18.解:根据图象可得当y1<y2时,x的取值范围是:x<﹣6或0<x<2.故选:C.19.解:不等式kx+b>的解集为﹣2<x<0或x>1.故选:B.20.解:由图象得,当y1>y2时,x的取值范围是x<﹣1或0<x<3,故选:B.21.解:由图可知,x>2或﹣1<x<0时,ax+b>.故选:A.22.解:∵一次函数y1=kx+b(k、b是常数,且k≠0)与反比例函数y2=(c是常数,且c≠0)的图象相交于A(﹣3,﹣2),B(2,m)两点,∴不等式y1>y2的解集是﹣3<x<0或x>2.故选:C.23.解:当x<﹣1时,y1>y2>0,故选:A.二.填空题(共7小题)24.解:观察函数图象,当x>1或﹣3<x<0时,ax+b>,故答案为x>1或﹣3<x<0.25.解:∵正比例函数y1=ax的图象与反比例函数y2=的图象相交于A、B两点,其中点A的坐标为(1,3),∴A,B两点坐标关于原点对称,∵点A的横坐标为1,∴B点的横坐标为﹣1,∵y1<y2,且在第一和第三象限,正比例函数y1=ax的图象在反比例函数y2=的图象的下方,∴x<﹣1或0<x<1,故答案为:x<﹣1或0<x<1.26.解:∵将点A(m,4)代入y=2x,得:4=2m,解得:m=2,∴点A(2,4).∵正比例函数y=2x与反比例函数y=的图象相交于A(m,4),B两点,∴B(﹣2,﹣4).∵x>1或﹣2<x<0时,正比例函数落在反比例函数图象上方,即2x>,∴不等式2x>的解集为x>2或﹣2<x<0,故答案为x>2或﹣2<x<0.27.解:∵A(1,t+1),B(t﹣5,﹣1)两点在反比例函数y2=(m≠0)的图象上,∴t+1=﹣(t﹣5)=m,即t+1=5﹣t,解得t=2.当t=2时,A(1,3),B(﹣3,﹣1),由图象可知,当y1>y2时,自变量x的取值范围为﹣3<x<0或x>1,故答案为﹣3<x<0或x>1.28.解:如图所示:关于x的不等式k1x+b﹣<0的解集是:x<0或1<x<5.故答案为:x<0或1<x<5.29.解:观察图象可知,当y1>y2时,则x的取值范围是﹣1<x<0或x>2.故答案为﹣1<x<0或x>2.30.解:∵正比例函数y=k1x与反比例函数y=的图象交于点A(1,2),∴正比例函数y=k1x与反比例函数y=的图象的另一个交点坐标为(﹣1,﹣2),∴不等式k1x>的解集为﹣1<x<0或x>1.故答案为﹣1<x<0或x>1.。
反比例函数和一次函数专项练习30题(有答案)1.如图,已知一次函数与反比例函数的图象交于A,B两点,且点A的横坐标为4.(1)求k的值;(2)根据正比例函数与反比例函数的性质直接写出B点坐标;(3)根据图象写出使一次函数的值小于反比例函数的值的x的取值范围.2.正比例函数y=kx和反比例函数的图象相交于A,B两点,已知点A的横坐标为1,纵坐标为3.(1)写出这两个函数的表达式;(2)求B点的坐标;(3)在同一坐标系中,画出这两个函数的图象.3.反比例函数与一次函数y=2x+1的图象都过点(1,a).(1)确定a的值以及反比例函数解析式;(2)求反比例函数和一次函数的图象的另一个交点坐标.4.已知一次函数y=kx+b的图象经过点A(0,1)和点B(a,﹣3a)(a>0),且点B在反比例函数的图象上,求a的值和一次函数的解析式.5.如图正比例函数与反比例函数的图象在第一象限内的交点A的横坐标为4.(1)求k值;(2)求它们另一个交点B的坐标;(3)利用图象直接写出:当x在什么范围内取值时,y1>y2.6.已知一次函数y=kx+b与反比例函数的图象交于点(﹣1,﹣1),求这两个函数的解析式及它们图象的另一个交点的坐标.7.如图所示,一次函数y=kx+b的图象与反比例函数的图象交于M、N两点.(1)根据图中条件求出反比例函数和一次函数的解析式;(2)当x为何值时一次函数的值大于反比例函数的值.8.如图,已知反比例函数的图象与一次函数y2=k2x+b的图象交于A,B两点,且A(2,n),B(﹣1,﹣2).(1)求反比例函数和一次函数的关系式;(2)利用图象直接写出当x在什么范围时,y1>y2.9.如图,正比例函数y1=k1x的图象与反比例函数的图象相交于A、B两点,其中点A的坐标为(1,2).(1)分别求出这两个函数的表达式;(2)请你观察图象,写出y1>y2时,x的取值范围;(3)在y轴上是否存在点P,使△AOP为等腰三角形?若存在,请你直接写出点P的坐标;若不存在,请说明理由.10.已知反比例函数y=﹣和一次函数y=kx﹣2都经过点A(m,﹣3).(1)求m的值和一次函数的关系式.(2)若点M(a,y1)和N(a+2,y2)都在这个反比例函数的图象上,试通过计算或利用反比例函数的图象性质比较y1与y2的大小.11.如图,函数y=3x的图象与反比例函数的图象的一个交点为A(1,m),点B(n,1)在反比例函数的图象上.(1)求反比例函数的解析式;(2)求n的值;(3)若P是y轴上一点,且满足△POB的面积为6,求P点的坐标.12.如图,已知反比例函数的图象经过点A(﹣2,1),一次函数y2=kx+b(k≠0)的图象经过点C(0,3)与点A,且与反比例函数的图象相交于另一点B.(1)分别求出反比例函数与一次函数的解析式;(2)求点B的坐标.(3)根据图象写出使y1>y2的x的取值范围.13.直线y1=2x﹣7与反比例函数的图象相交于点P(m,﹣3).(1)求反比例函数的解析式.(2)试判断点Q是否在这个反比例函数的图象上?14.如图,一次函数y=kx+b的图象与反比例函数y=的图象相交于A(1,a)、B(﹣2,1)两点.(1)求反比例函数和一次函数的解析式;(2)求△AOB的面积.15.如图,一次函数y=kx+b的图象与反比例函数的图象相交于A、B两点.(1)根据图象,分别写出点A、B的坐标;(2)求出反比例函数的解析式;(3)求出线段AB的长度.16.如图,已知A(n,2),B(2,﹣4)是一次函数y1=kx+b的图象和反比例函数y2=的图象的两个交点.(1)求反比例函数和一次函数的解析式;(2)当x取何值时,y1<y2?17.已知反比例函数的图象,经过一次函数y=x+1与的交点,求反比例函数的解析式.18.如图,一次函数y=kx+2与x轴交于点A(﹣4,0),与反比例函数y=的图象的一个交点为B(2,a).(1)分别求出一次函数与反比例函数的解析式;(2)作BC⊥x轴,垂足为C,求S△ABC.19.如图,一次函数y1=kx+b与反比例函数.(m、k≠0)图象交于A(﹣4,2),B(2,n)两点.(1)求m、n的值及反比例函数的表达式;(2)当x取非零的实数时,试比较一次函数值与反比例函数值的大小.20.一次函数y1=kx+b与反比例函数的图象相交于点A(﹣1,4)、B(﹣4,n),(1)求n的值;(2)连接OA、OB,求△OAB的面积;(3)利用图象直接写出y1>y2时x的取值范围.21.已知:如图,一次函数y=ax+b的图象与反比例函数的图象交于点A(m,4)和点B(﹣4,﹣2).(1)求一次函数y=ax+b和反比例函数的解析式;(2)求△AOB的面积;(3)根据图象,直接写出不等式的解集.22.如图,一次函数y=kx+b的图象与反比例函数的图象相交于A、B两点.(1)利用图中条件,求反比例函数和一次函数的解析式;(2)根据图象写出使一次函数的值大于反比例函数的值的x的取值范围;(3)你能求出图中△AOB的面积吗?若不能,请说明理由;若能,请写出求解过程.23.如图,直线y=kx+2k(k≠0)与x轴交于点B,与双曲线y=交于点A、C,其中点A在第一象限,点C在第三象限.(1)求点B的坐标;(2)若,求点A的坐标.24.已知一次函数与反比例函数y=﹣的图象交于点P(﹣3,m),Q(2,﹣3).求一次函数的解析式.25.已知正比例函数y=k1x(k1≠0)的图象经过A(2,﹣4)、B(m,2)两点.(1)求m的值;(2)如果点B在反比例函数(k2≠0)的图象上,求反比例函数的解析式.26.如图,已知正比例函数y=﹣3x与反比例函数的图象相交于A和B两点,如果有一个交点A的横坐标为2.(1)求k的值;(2)求A,B两点的坐标;(3)当_________时,.27.如图,已知A(﹣4,2)、B(n,﹣4)是一次函数y=kx+b的图象与反比列函数的图象的两个交点.(1)求m、n的值;(2)求一次函数的关系式;(3)根据图象写出使一次函数的值小于反比例函数的值的x的取值范围.28.如图,一次函数y=x+3的图象与x轴、y轴分别交于点A、点B,与反比例函数的图象交于点C,CD⊥x轴于点D,求四边形OBCD的面积.29.如图,已知反比例函数的图象与一次函数y=k2+b的图象交于A、B两点,A(2,n),B(﹣l,﹣2).(1)求反比例函数和一次函数的关系式;(2)试证明线段AB分别与x轴、y轴分成三等分;(3)利用图象直接写出不等式的解集.30.如图,在平面直角坐标系xOy中,一次函数y=kx+b(k≠0)的图象与反比例函数的图象交于二、四象限内的A、B两点,点B的坐标为(6,n).线段OA=5,E为x轴负半轴上一点,且sin∠AOE=,求该反比例函数和一次函数的解析式.参考答案:1.(1)由x=4,得y=2;则k=xy=4×2=8;(2)∵A,B两点是正比例函数和反比例函数的交点,点A(4,2),∴B(﹣4,﹣2);(3)由图象可得在两个交点的左边,一次函数的值小于反比例函数的值,∴x<﹣4或0<x<42.(1)∵正比例函数y=kx 与反比例函数,的图象都过点A(1,3),则k=3,∴正比例函数是y=3x ,反比例函数是.(2)∵点A与点B关于原点对称,∴点B的坐标是(﹣1,﹣3).(3)∵正比例函数的图象过原点,所以令x=1,则y=3,图象过(1,3),描出此点即可;∵反比例函数的图象是双曲线,∴应在每一个双曲线上描出3各点,即可画出函数图象.3.(1)由题意得,2+1=a,解得,a=3,(1分)由题意得,,解得,k=3.(2分)反比例函数解析式为.(3分)(2)由题意得,,(4分)解得,,∴反比例函数和一次函数图象的另一个交点坐标是(﹣4.∵点B(a,﹣3a)在反比例函数图象上,∴﹣=﹣3a,解得a=1,a=﹣1(舍去),∴点B的坐标为(1,﹣3),∵一次函数y=kx+b图象经过点A(0,1),B(1,﹣3),∴,解得,∴一次函数解析式为y=﹣4x+1.5.(1)将A的横坐标4代入y1=x,得y1=×4=2,由题意可得A点坐标为(4,2),由于反比例函数y=的图象经过点A,∴k=2×4=8.(5分)(2)将两个函数的解析式组成方程组得:,解得,.所以A(4,2),B(﹣4,﹣2).所以B点坐标为B(﹣4,﹣2).(3分)(3)由于A点横坐标4,B点横坐标为﹣4,由图可知:当x>4或﹣4<x<0时,y1>y2.6.由已知得,(2分)解得.(4分)∴一次函数的解析式为y=2x+1,(5分)反比例函数的解析式为.(6分)由,解得x=﹣1或.(7分)当时,y=2.∴函数图象的另一个交点的坐标为()∴m=6,a=﹣6即N(﹣1,﹣6)且,解得∴反比例函数和一次函数的解析式的解析式分别为y=.y=2x﹣4.(2)由图象可知,当﹣1<x<0或x>3时一次函数的值大于反比例函数的值.8.(1)∵双曲线过点(﹣1,﹣2),∴k1=﹣1×(﹣2)=2.∵双曲线y1=,过点(2,n),∴n=1.由直线y2=k2x+b过点A,B 得,解得.∴反比例函数关系式为y1=,一次函数关系式为y2=x﹣1.(2)当x<﹣1或0<x<2时,y1>y2.9.(1)解:∵y1=k1x过点A(1,2),∴k1=2.(2分)∴正比例函数的表达式为y1=2x.(3分)∵反比例函数过点A(1,2),∴k2=2.(5分)∴反比例函数的表达式为y=.(6分)(2)﹣1<x<0或x>1.(8分)(3)∵点A的坐标为(1,2),∴OA=,当OA为腰时,OA=OP2=,P2点坐标为(0,4),当AP1=OA=,可知P1坐标为(0,),当OA=OP3=时,可得P3坐标为(0,﹣)由图可知,P1(0,),P2(0,﹣),P3(0,4),当OA为底时,OP4==,故P1(0,),P2(0,﹣),P3(0,4),P4(0,).10.(1)∵反比例函数y=﹣经过点A(m,﹣3).∴﹣3m=﹣6,∴m=2;∵一次函数y=kx﹣2经过点A(m,﹣3).∴2k﹣2=﹣3,∴k=﹣,∴一次函数的关系式为y=﹣x﹣2.(2)当a>0时,则a<a+2,∵反比例函数y=﹣的图象在第四象限内是增函数,∴y1<y2;当﹣2<a<0时,则a+2>0,由图象知y1>y2;当a<﹣2时,则a<a+2,∵反比例函数y=﹣的图象在第二象限内是增函数,∴y1<y211.(1)∵函数y=3x的图象过点A(1,m),∴m=3,∴A(1,3);∵点A(1,3)在反比例函数的图象上,∴k=1×3=3,∴反比例函数的解析式为y=;(2)∵点B(n,1)在反比例函数的图象上,(3)依题意得PO•3=6∴OP=4,∴P点坐标为(0,4)或(0,﹣4).12.(1)∵点A(﹣2,1)在反比例函数y1=mx的图象上,∴1=m﹣2,即m=﹣2,又A(﹣2,1),C(0,3)在一次函数y2=kx+b图象上,∴即k=1,b=3,∴反比例函数与一次函数解析式分别为:y=与y=x+3;(2)由得x+3=﹣,即x2+3x+2=0,∴x=﹣2或x=﹣1,∴点B的坐标为(﹣1,2).(3)当x<﹣2或﹣1<x<0时,反比例函数在一次函数图象的上方,即y1>y2…13.(1)把(m,﹣3)分别代入和y1=2x﹣7,得,解得m=2,k=﹣6,∴反比例函数的解析式.(2)把点Q代入反比例函数的解析式中,即=﹣=.故点Q在反比例函数的图象上14.(1)把B(﹣2,1)代入得:m=﹣2×1=﹣2,∴y=﹣,把A(1,a)代入得:a=﹣2,∴A(1,﹣2),把A(1,﹣2),B(﹣2,1)代入得:,解得:k=﹣1,b=﹣1,∴y=﹣x﹣1,答:一次函数和反比例函数的解析式分别是y=﹣,y=﹣x﹣1.(2)令y=0,则0=﹣x﹣1,∴x=﹣1,∴C(﹣1,0),∴OC=1,∴S△AOB=S△AOC+S△BOC =×1×2+×1×1=1.5 15.(1)A点坐标为(﹣6,﹣2),B点坐标为(4,3);(2)把B(4,3)代入y=得m=3×4=12,所以反比例函数的解析式为y=;(3)分别过点A、点B作y轴、x轴的垂线,两线交于点C,即AC⊥BC,如图,则点C的坐标为C(4,﹣2),在Rt△ACB中,AC=10,BC=5,∵AB2=BC2+AC2,∴AB==5.16.(1)∵B(2,﹣4)在函数y2=的图象上,∴m=﹣8.∴反比例函数的解析式为:y2=﹣.∵点A(n,2)在函数y2=﹣的图象上∴n=﹣4∴A(﹣4,2)∵y1=kx+b经过A(﹣4,2),B(2,﹣4),∴,解得.∴一次函数的解析式为:y1=﹣x﹣2(2)由交点坐标和图象可知,当﹣4<x<0或x>2取何值时,y1<y217.把y=x+1代入得:x+1=x+,解得:x=1,把x=1代入y=x+1得:y=2,把(1,2)代入y=得:k=2,即反比例函数的解析式是y=18.(1)将A(﹣4,0)代入y=kx+2得:﹣4k+2=0,即k=0.5,∴一次函数解析式为y=0.5x+2,将B(2,a)代入一次函数解析式得:a=1+2=3,即B (2,3),将B(2,3)代入反比例解析式得:m=2×3=6,则反比例解析式为y=;(2)∵OC=2,OA=4,∴AC=OC+OA=2+4=6,∵BC=3,∴S△ABC =AC•BC=919.(1)∵A(﹣4,2)在上,∴m=﹣8,∴反比例函数的解析式是y=﹣,∵B(2,n )在上,∴n=﹣4.(2)当x<﹣4或0<x<2时,y1>y2;当x=﹣4或x=2时,y1=y2;当﹣4<x<0或x>2时,y1<y2.20.(1)根据题意,反比例函数y2=的图象过(﹣1,4),(﹣4,n),易得m=﹣4,n=1;则y1=kx+b的图象也过点(﹣1、4),(﹣4,1);代入解析式可得k=1,b=5;∴y1=x+5;(2)设直线AB交x轴于C点,由y1=x+5得,∴C(﹣5,0),∵S△AOC =×5×4=10,S△BOC =×5×1=2.5,∴S△AOB=S△AOC﹣S△BOC=10﹣2.5=7.5;(3)根据图象,两个图象只有两个交点,根据题意,找一次函数的图象在反比例函数图象上方的部分;易得当x>0或﹣4<x<﹣1时,有y1>y2,故当y1>y2时,x的取值范围是x>0或﹣4<x<﹣1 21.(1)∵点B(﹣4,﹣2)在反比例函数的图象上,∴,k=8.∴反比例函数的解析式为.﹣﹣﹣﹣﹣﹣﹣﹣(1分)∵点A(m,4)在反比例函数的图象上,∴,m=2.∵点A(2,4)和点B(﹣4,﹣2)在一次函数y=ax+b 的图象上,∴解得∴一次函数的解析式为y=x+2.(2)设一次函数y=x+2的图象与y轴交于点C,分别作AD⊥y轴,BE⊥y轴,垂足分别为点D,E.(如图)∵一次函数y=x+2,当x=0时,y=2,∴点C的坐标为(0,2).∴S△AOB=S△AOC+S△BOC ===6(3)﹣4<x<0或x>2.阅卷说明:第(3)问两个范围各(1分)22.(1)设反比例函数的解析式是y=(a≠0),把A(﹣2,1)代入得:k=﹣2,即反比例函数的解析式是y=﹣;把B(1,n)代入反比例函数的解析式得:n=﹣2,即B的坐标是(1,﹣2),把A(﹣2,1)和B(1,﹣2)代入y=kx+b得:,解得:k=﹣1,b=﹣1.即一次函数的解析式是y=﹣x﹣1;(2)根据图象可知:一次函数的值大于反比例函数的值的x的取值范围是x<﹣2或0<x<1;(3)能求出△AOB的面积,把y=0代入y=﹣x﹣1得:0=﹣x﹣1,x=﹣1,即C的坐标是(﹣1,0),OC=1,∵A(﹣2,1),B(1,﹣2),∴△AOB的面积S=S△AOC+S△BOC=×1×1+×1×|﹣2|=1.523.(1)当y=0时,则kx+2k=0,又∵k≠0∴x=﹣2,∴点B坐标为(﹣2,0);(2)设点A的坐标为(x、y),∴S△AOB =•|﹣2|•|y|=,∴y=±,∵点A在第一象限,∴y=,把y=代入y=得x=,∴点A 的坐标为(,)24.∵把P(﹣3,m)代入反比例函数y=﹣得:m=2,∴点P的坐标为(﹣3,2),设一次函数的关系式为y=kx+b,∴把Q和P 的坐标代入得:,解得:k=﹣1,b=﹣1.故所求一次函数的关系式为y=﹣x﹣125.(1)因为函数图象经过点A(2,﹣4),所以2k1=﹣4,得k1=﹣2.(2分)所以,正比例函数解析式:y=﹣2x.(1分)(2)根据题意,当y=2时,﹣2m=2,得m=﹣1.(1分)于是,由点B 在反比例函数的图象上,得,解得k2=﹣2.所以,反比例函数的解析式是.26.(1)把x=2代入y=﹣3x得:y=﹣6,即A的坐标是(2,﹣6),把A的坐标代入y=得:﹣6=,解得:k=﹣13;(2)解方程组得:,,即A的坐标是(2,﹣6),B的坐标是(﹣2,6);(3)当﹣2<x<0或x>2时,>﹣3x,故答案为:﹣2<x<0或x>227.(1)把A(﹣4,2)代入y=得:m=﹣8,即反比例函数的解析式为y=﹣,把B(n,﹣4)代入得:n=2,即B(2,﹣4),即m=﹣8,n=2;(2)把A、B的坐标代入一次函数的解析式得:解得:k=﹣1,b=﹣2,即一次函数的解析式是y=﹣x﹣2;(3)一次函数的值小于反比例函数的值的x的取值范围是x>2或﹣4<x<028.解方程组得或,∴C点坐标为(1,4),∵CD⊥x轴,∴D点坐标为(1,0)对y=x+3,令x=0,y=3,∴B点坐标为(0,3),∴四边形OBCD的面积=(OB+CD)•OD=(3+4)×1=29.1)解:把B(﹣1,﹣2)分别代入反比例函数∴k1=﹣1×(﹣2)=2,∴反比例函数的解析式为y=;把A(2,n)代入上式,得n=1,∴A点坐标为(2,1),把A(2,1)和B(﹣l,﹣2)分别代入一次函数y=k2x+b 得,2k2+b=1,﹣k2+b=﹣2,解得k2=1,b=﹣1,∴一次函数的关系式为y=x﹣1;(2)证明:过A作AE⊥x轴于E,BF⊥y轴与F,AB 与坐标轴相交于C、D,如图,对于y=x﹣1,令x=0,y=﹣1;令y=0,x=1,∴C(1,0),D(0,﹣1),AC===,CD===,BD===,∴AC=CD=BD,∴线段AB分别与x轴、y轴分成三等分;(3)解:x<﹣1或0<x<230.过点A作AC⊥x轴于点C.∵sin∠AOE=,OA=5,∴AC=OA•sin∠AOE=4,由勾股定理得:CO==3,∴A(﹣3,4),把A(﹣3,4)代入到中得m=﹣12,∴反比例函数解析式为,∴6n=﹣12,∴n=﹣2,∴B(6,﹣2),∴有,解得:,∴,一次函数的解析式为。
第一讲 一次函数、反比例函数(附详细答案,打印出来很清晰)1.(2008年贵阳市)对任意实数x ,点2(2)P x x x -,一定不在..( ) A .第一象限B .第二象限C .第三象限D .第四象限2 .(茂名)已知反比例函数y =xa (a ≠0)的图象,在第一,三象限内,则一次函数y =-a x +a 的图象不经过...( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限 3.(2008年芜湖市)函数2y a x b y a x b x c =+=++和在同一直角坐标系内的图象大致是()4.(2008年扬州市)函数xk1y-=的图象与直线x y =没有交点,那么k 的取值范围是( ) A 、1k > B 、1k < C 、1k -> D 、1k -<5.(2008年自贡市)如图1,在四边形ABCD 中,动点P 从点A 开始沿A B C D 的路径匀速前进到D 为止。
在这个过程中,的变化关系用图象表示正确的是( )6.(2008年芜湖市)在平面直角坐标系xoy 中,直线y x =向上平移1个单位长度得到直线.直线l 与反比例函数ky x=的图象的一个交点为(2)A a ,,则k 的值等于 .7..若直线y =k x +4 与两坐标轴所围成的三角形的面积为18,则k =_________. 8.(2008年遵义市)在平面直角坐标系中,函数ky x=(0x >,常数0k >)的图象经过点(12)A ,,()B m n ,,(1m >),过点B 作y 轴的垂线,垂足为C .若ABC △的面积为2,则点B 的坐标为 .9.如图2,一次函数y kx b =+的图象与反比例函数my x=的图象相交于A 、B 两点 (1)根据图象,分别写出A 、B 的坐标;(2)求出两函数解析式;(3)根据图象回答:当x 为何值时,一次函数的函数值大于反比例函数的函数值10.(2008龙岩)如图3,在平面直角坐标系xOy 中,⊙O 交x 轴于A 、B 两点,直线FA ⊥x 轴于点A ,点D 在FA 上,且DO 平行⊙O 的弦MB ,连DM 并延长交x 轴于点C . (1)判断直线DC 与⊙O 的位置关系,并给出证明;(2)设点D 的坐标为(-2,4),试求MC 的长及直线DC 的解析式.图111.(2008年泰州市)2008年5月12日14时28分四川汶川发生里氏8.0级强力地震.某市接到上级通知,立即派出甲、乙两个抗震救灾小组乘车沿同一路线赶赴距出发点480千米的灾区.乙组由于要携带一些救灾物资,比甲组迟出发1.25小时(从甲组出发时开始计时).图中的折线、线段分别表示甲、乙两组的所走路程y 甲(千米)、y 乙(千米)与时间x (小时)之间的函数关系对应的图像.请根据图像所提供的信息,解决下列问题:(1)由于汽车发生故障,甲组在途中停留了 小时;(2分)(2)甲组的汽车排除故障后,立即提速赶往灾区.请问甲组的汽车在排除故障时,距出发点的路程是多少千米?(6分)(3)为了保证及时联络,甲、乙两组在第一次相遇时约定此后两车之间的路程不超过25千米,请通过计算说明,按图3所表示的走法是否符合约定.(4分)12.(2008年巴中市)已知:如图,抛物线2334y x =-+与x 轴交于点A ,点B ,与直线34y x b =-+相交于点B ,点C ,直线34y x b =-+与y 轴交于点E .(1)写出直线BC 的解析式.(2)求ABC △的面积. (3)若点M 在线段AB 上以每秒1个单位长度的速度从A 向B 运动(不与A B ,重合),同时,点N 在射线BC 上以每秒2个单位长度的速度从B 向C 运动.设运动时间为t 秒,请写出MNB △的面积S 与t 的函数关系式,并求出点M 运动多少时间时,MNB △的面积最大,最大面积是多少?13.(2008黄冈市)已知:如图,在直角梯形COAB 中,OC ∥AB ,以O 为原点建立平面直角坐标系,A ,B ,C 三点的坐标分别为A(8,0),B(8,10),C(0,4),点D 为线段BC 的中点,动点P 从点O 出发,以每秒1个单位的速度,沿折线OABD 的路线移动,移动的时间为t 秒.(1)求直线BC 的解析式;(2)若动点P 在线段OA 上移动,当t 为何值时,四边形OPDC 的面积是梯形COAB 面积的27? (3)动点P 从点O 出发,沿折线OABD 的路线移动过程中,设△OPD 的面积为S ,请直接写出S 与t 的函数关系式,并指出自变量t 的取值范围;(4)当动点P 在线段AB 上移动时,能否在线段OA 上找到一点Q ,使四边形CQPD 为矩形?若能,请求出此时动点P 的坐标;若不能,请说明理由.14.(河南12分)如图,直线434+-=x y 和x 轴、y 轴的交点分别为B 、C ,点A 的坐标是(-2,0).(1)试说明△ABC 是等腰三角形;(2)动点M 从A 出发沿x 轴向点B 运动,同时动点N 从点B 出发沿线段BC 向点C 运动,运动的速度均为每秒1个单位长度.当其中一个动点到达终点时,他们都停止运动.设M 运动t 秒时,△MON 的面积为S .① 求S 与t 的函数关系式;② 设点M 在线段OB 上运动时,是否存在S =4的情形?若存在,求出对应的t 值;若不存在请说明理由; ③在运动过程中,当△MON 为直角三角形时,求t 的值.(图3)第一讲一次函数、反比例函数答案1~5 C C C A B 6. 2 7. 49- 或 49 8. (3, 23) 9.(1)A (-6,-2) ,B (4,3) ,(2)12y x =,112y x =+,(3)-6<x<0或x>410.(13分)(1)答:直线DC 与⊙O 相切于点M . 证明如下:连OM , ∵DO ∥MB ,∴∠1=∠∵OB =OM ,∴∠1=∠3 ,∴∠2=∠4 . 在△DAO 与△DMO 中,⎪⎩⎪⎨⎧DO=DO =∠∠AO=OM42∴△DAO ≌△DMO . ∴∠OMD =∠OAD .由于FA ⊥x 轴于点A ,∴∠OAD =90°.∴∠OMD =90°. 即OM ⊥DC . ∴DC 切⊙O 于M .(2)解:由D (-2,4)知OA =2(即⊙O 的半径),AD =4 .由(1)知DM =AD =4,由△OMC ∽△DAC ,知MC AC = OM AD = 24 = 12 .∴AC =2MC . 在Rt △ACD 中,CD =MC +4.由勾股定理,有(2MC )2+42=(MC +4)2,解得MC = 83 或MC =0(不合,舍去)。
反比例函数与一次函数综合题针对演练1. 已知正比例函数y =2x 的图象与反比例函数y =k x(k ≠0)在第一象限内的图象交于点A ,过点A 作x 轴的垂线,垂足为点P ,已知△OAP 的面积为1. (1)求反比例函数的解析式;(2)有一点B 的横坐标为2,且在反比例函数图象上,则在x 轴上是否存在一点M ,使得MA +MB 最小若存在,请求出点M 的坐标;若不存在,请说明理由.第1题图2. 如图,反比例函数2y x=的图象与一次函数y =kx +b 的图象交于点A 、B ,点A 、B 的横坐标分别为1、-2,一次函数图象与y 轴交于点C ,与x 轴交于点D . (1)求一次函数的解析式;(2)对于反比例函数2y x=,当y <-1时,写出x 的取值范围;(3)在第三象限的反比例函数图象上是否存在一点P,使得S△ODP=2S△OCA若存在,请求出点P的坐标;若不存在,请说明理由.第2题图3. 已知,如图,一次函数y=kx+b(k、b为常数,k≠0)的图象与x轴、y轴分别交于A、B两点,且与反比例函数y=nx(n为常数且n≠0)的图象在第二象限交于点⊥x轴,垂足为D.若OB=2OA=3OD=6.(1)求一次函数与反比例函数的解析式;(2)求两函数图象的另一个交点坐标;(3)直接写出不等式:kx+b≤nx的解集.4. 如图,点A (-2,n ),B(1,-2)是一次函数y =kx +b 的图象和反比例函数y=mx的图象的两个交点. (1)求反比例函数和一次函数的解析式;(2)根据图象写出使一次函数的值小于反比例函数的值的x 的取值范围;(3)若C 是x 轴上一动点,设t =CB -CA ,求t 的最大值,并求出此时点C 的坐标.第4题图5. 如图,直线y 1=14x +1与x 轴交于点A ,与y 轴交于点C ,与反比例函数y 2=m x (x >0)的图象交于点P ,过点P 作PB ⊥x 轴于点B ,且AC =BC . (1)求点P 的坐标和反比例函数y 2的解析式; (2)请直接写出y 1>y 2时,x 的取值范围;(3)反比例函数y 2图象上是否存在点D ,使四边形BCPD 为菱形如果存在,求出点D 的坐标;如果不存在,说明理由.第5题图6. 如图,直线y=x+b与x轴交于点C(4,0),与y轴交于点B,并与双曲线y=mx(x<0)交于点A(-1,n).(1)求直线与双曲线的解析式;(2)连接OA,求∠OAB的正弦值;(3)若点D在x轴的正半轴上,是否存在以点D、C、B构成的三角形△OAB相似若存在求出D点的坐标,若不存在,请说明理由.第6题图7. 如图,直线y=33x-3与x,y轴分别交于点A,B,与反比例函数y=kx(k>0)图象交于点C,D,过点A作x轴的垂线交该反比例函数图象于点E.(1)求点A的坐标;(2)若AE=AC.①求k的值;②试判断点E与点D是否关于原点O成中心对称并说明理由.第7题图8. 如图,已知双曲线y=kx经过点D(6,1),点C是双曲线第三象限上的动点,过点C作CA⊥x轴,过点D作DB⊥y轴,垂足分别为A,B,连接AB,BC.(1)求k的值;(2)若△BCD的面积为12,求直线CD的解析式;(3)判断AB与CD的位置关系,并说明理由.第8题图9. 如图,点B 为双曲线y =kx(x >0)上一点,直线AB 平行于y 轴,交直线y =x于点A ,交x 轴于点D ,双曲线y =k x与直线y =x 交于点C ,若OB 2-AB 2=4.(1)求k 的值;(2)点B 的横坐标为4时,求△ABC 的面积;(3)双曲线上是否存在点P ,使△APC ∽△AOD 若存在,求出点P 的坐标;若不存在,请说明理由.第9题图答案1.解:(1)设A点的坐标为(x,y),则OP=x,PA=y,∵△OAP的面积为1,∴12xy=1,∴xy=2,即k=2,∴反比例函数的解析式为2yx;(2)存在,如解图,作点A关于x轴的对称点A′,连接A′B,交x轴于点M,此时MA+MB最小,∵点B的横坐标为2,∴点B的纵坐标为y=22=1,即点B的坐标为(2,1).又∵两个函数图象在第一象限交于A点,∴2 2xx=,解得x1=1,x2=-1(舍去).∴y=2,∴点A的坐标为(1,2),∴点A关于x轴的对称点A′(1,-2),设直线A′B的解析式为y=kx+b,代入A′(1,-2),B(2,1)得,23,215k b kk b b+=-=⎧⎧⎨⎨+==-⎩⎩解得,∴直线A′B的解析式为y=3x-5,令y=0,得x=53,∴直线y=3x-5与x轴的交点为(53,0),即点M的坐标为(53,0).第1题解图2.解:(1)∵反比例函数y=2x图象上的点A、B的横坐标分别为1、-2,∴点A的坐标为(1,2),点B的坐标为(-2,-1),∵点A (1,2)、B (-2,-1)在一次函数y =kx +b 的图象上,∴21,211k b k k b b +==⎧⎧⎨⎨-+=-=⎩⎩解得,∴一次函数的解析式为y =x +1;(2)由图象知,对于反比例函数2y x=,当y <-1时,x 的取值范围是-2<x<0;(3)存在.对于y =x +1,当y =0时,x =-1,当x =0时,y =1, ∴点D 的坐标为(-1,0),点C 的坐标为(0,1), 设点P (m ,n ),∵S △ODP =2S △OCA ,∴12×1×(-n )=2×12×1×1,∴n =-2,∵点P (m ,-2)在反比例函数图象上,∴-2= 2m, ∴m =-1,∴点P 的坐标为(-1,-2). 3.解:(1)∵OB =2OA =3OD =6, ∴OA =3,OD =2.∴A (3,0),B (0,6),D (-2,0).将点A (3,0)和B (0,6)代入y =kx +b 得,302,66k b k b b +==-⎧⎧⎨⎨==⎩⎩解得, ∴一次函数的解析式为y =-2x +6. ……………………(3分) 将x =-2代入y =-2x +6,得y =-2×(-2)+6=10, ∴点C 的坐标为(-2,10).将点C (-2,10)代入y =nx ,得10=2n -,解得n =-20,∴反比例函数的解析式为20y x=-;………………………(5分) (2)将两个函数解析式组成方程组,得26,20y x y x =-+⎧⎪⎨=-⎪⎩解得x 1=-2,x 2=5. ………………………………………(7分)将x =5代入204,y x=-=- ∴两函数图象的另一个交点坐标是(5,-4); …………… (8分) (3)-2≤x<0或x≥5. …………………………………… (10分)【解法提示】不等式kx +b ≤nx的解集,即是直线位于双曲线下方的部分所对应的自变量x 的取值范围,也就是-2≤x <0或x ≥5.4.解:(1)∵点A (-2,n ),B (1,-2)是一次函数y =kx +b 的图象和反比例函数y =mx的图象的两个交点,∴m =-2,∴反比例函数解析式为2y x=-,∴n =1,∴点A (-2,1),将点A (-2,1),B (1,-2)代入y =kx +b ,得211,21k b k k b b -+==-⎧⎧⎨⎨+=-=-⎩⎩解得, ∴一次函数的解析式为y =-x -1;(2)结合图象知:当-2<x <0或x >1时,一次函数的值小于反比例函数的值;(3)如解图,作点A 关于x 轴的对称点A ′,连接BA ′延长交x 轴于点C ,则点C 即为所求,∵A (-2,1), ∴A ′(-2,-1),设直线A ′B 的解析式为y =mx +n ,1123,253m m n m n n ⎧=-⎪-=-+⎧⎪⎨⎨-=+⎩⎪=-⎪⎩解得, ∴y =-13x -53,令y=0,得x=-5,则C点坐标为(-5,0),∴t的最大值为A′B=(-2-1)2+(-1+2)2=10.第4题解图5.解:(1)∵一次函数y1=14x+1的图象与x轴交于点A,与y轴交于点C,∴A(-4,0),C(0,1),又∵AC=BC,CO⊥AB,∴O为AB的中点,即OA=OB=4,且BP=2OC=2,∴点P的坐标为(4,2),将点P(4,2)代入y2=mx,得m=8,∴反比例函数的解析式为y2=8 x;(2)x>4;【解法提示】由图象可知,当y1>y2时,即是直线位于双曲线上方的部分,所对应的自变量x的取值范围是x>4.(3)存在.假设存在这样的D点,使四边形BCPD为菱形,如解图,连接DC 与PB交于点E,∵四边形BCPD为菱形,∴CE=DE=4,∴CD=8,∴D点的坐标为(8,1),将D(8,1)代入反比例函数8yx=,D点坐标满足函数关系式,即反比例函数图象上存在点D,使四边形BCPD为菱形,此时D点坐标为(8,1).第5题解图6.解:(1)∵直线y=x+b与x轴交于点C(4,0),∴把点C(4,0)代入y=x+b,得b=-4,∴直线的解析式为y=x-4,∵直线也过A点,∴把点A(-1,n)代入y=x-4,得n=-5,∴A(-1,-5),将A(-1,-5)代入y=mx(x<0),得m=5,∴双曲线的解析式为5yx=;(2)如解图,过点O作OM⊥AC于点M,∵点B是直线y=x-4与y轴的交点,∴令x=0,得y=-4,∴点B(0,-4),∴OC=OB=4,∴△OCB是等腰直角三角形,∴∠OBC=∠OCB=45°,∴在△OMB中,sin45°=OMOB=4OM,∴OM=22,∵AO=12+52=26,∴在△AOM中,sin∠OAB=OMOA=2226=21313;第6题解图(3)存在.如解图,过点A作AN⊥y轴于点N,则AN=1,BN=1,∴AB=12+12=2,∵OB=OC=4,∴BC=42+42=42,又∵∠OBC=∠OCB=45°,∴∠OBA=∠BCD=135°,∴△OBA∽△BCD或△OBA∽△DCB,∴OBBC=BACD或OBDC=BABC,即442=2CD或4DC=242,∴CD=2或CD=16,∵点C(4,0),∴点D的坐标是(6,0)或(20,0).7.解:(1)当y =0时,得0=33x -3,解得x =3.∴点A 的坐标为(3,0); ……………………………………(2分) (2)①如解图,过点C 作CF ⊥x 轴于点F . 设AE =AC =t , 点E 的坐标是(3,t ).在Rt △AOB 中, tan ∠OAB =OB OA =33,∴∠OAB =30°.在Rt △ACF 中,∠CAF =30°,∴CF =12t ,AF =AC ·cos30°=32t ,∴点C 的坐标是(3+32t ,12t ).∵点C 、E 在y =kx 的图象上,∴(3+32t )×12t =3t ,解得t 1=0(舍去),t 2=23,∴k =3t =63; …………………………………………… (5分) ②点E 与点D 关于原点O 成中心对称,理由如下: 由①知,点E 的坐标为(3,23), 设点D 的坐标是(x ,33x -3),∴x (33x -3)=63,解得x 1=6(舍去),x 2=-3, ∴点D 的坐标是(-3,-23),∴点E 与点D 关于原点O 成中心对称.…………………(8分)第7题解图8.解:(1)∵双曲线y =kx 经过点D (6,1),∴6k =1,解得k =6;(2)设点C 到BD 的距离为h ,∵点D 的坐标为(6,1),DB ⊥y 轴, ∴BD =6,∴S △BCD =12×6×h =12,解得h =4,∵点C 是双曲线第三象限上的动点,点D 的纵坐标为1,∴点C 的纵坐标为1-4=-3,∴6x=-3,解得x =-2,∴点C 的坐标为(-2,-3),设直线CD 的解析式为y =kx +b ,则123,2612k b k k b b ⎧-+=-=⎧⎪⎨⎨+=⎩⎪=-⎩解得,∴直线CD 的解析式为y =12x -2; (3)AB ∥CD .理由如下:∵CA ⊥x 轴,DB ⊥y 轴,点D 的坐标为(6,1),设点C 的坐标为(c ,6c),∴点A 、B 的坐标分别为A (c ,0),B (0,1), 设直线AB 的解析式为y =mx +n ,则10,11mc n m c n n ⎧+==-⎧⎪⎨⎨=⎩⎪=⎩解得,∴直线AB 的解析式为y =-1x c+1,设直线CD 的解析式为y =ex +f ,则16,661e ec f cc c e f f c ⎧=-⎧⎪+=⎪⎪⎨⎨+⎪⎪+==⎩⎪⎩解得, ∴直线CD 的解析式为y =-1x c +6c c +,∵AB 、CD 的解析式中k 都等于1c-,∴AB 与CD 的位置关系是AB ∥CD . 9.解:(1)设D 点坐标为(a ,0),∵AB ∥y 轴,点A 在直线y =x 上,B 为双曲线y =kx(x >0)上一点,∴A 点坐标为(a ,a ),B 点坐标为(a ,k a),∴AB =a -k a ,BD =k a ,在Rt △OBD 中,OB 2=BD 2+OD 2=(k a)2+a 2,∵OB 2-AB 2=4,∴(k a )2+a 2-(a -k a)2=4,∴k =2;(2)如解图,过点C 作CM ⊥AB 于点M ,,2y xy x =⎧⎪⎨=⎪⎩联立2222x x y y ⎧⎧==⎪⎪⎨⎨==⎪⎪⎩⎩解得(舍去),∴C 点坐标为(2,2), 第9题解图∵点B 的横坐标为4,∴A 点坐标为(4,4),B 点坐标为(4,12),∴AB =4-12=72,CM =4-2,∴S △ABC =12CM ·AB =12×(4-2)×72 =7-724;(3)不存在,理由如下:若△APC ∽△AOD ,∵△AOD 为等腰直角三角形,∴△APC 为等腰直角三角形,∠ACP =90°,∴CM =12AP ,设P 点坐标为(a ,2a ),则A 点坐标为(a ,a ),∴AP =|a -2a|,∵C 点坐标为(2,2),∴CM =|a -2|,∴|a -2|=12|a -2a|,∴(a -2)2=14×222(2)a a -,即(a -2)2=14×222((a a a +⨯-,∴4a 2-(a +2)2=0,解得a =2或a =-23(舍去),∴P 点坐标为(2,2),则此时点C 与点P 重合,所以不能构成三角形,故不存在.。
一次函数和反比例函数测试题(考试时间70分钟 试卷满分100分)一、选择题(每题4分,共24分)1.如图,已知直线y =k 1x (k 1≠0)与反比例函数y =k 2x (k 2≠0)的图象交于M ,N 两点.若点M 的坐标是(1,2),则点N 的坐标是( )A .(-1,-2)B .(-1,2)C .(1,-2)D .(-2,-1)2.如图,已知反比例函数y =-3x 与正比例函数y =kx (k <0)的图象相交于A ,B 两点,AC 垂直x 轴于点C ,则△ABC 的面积为( )A .3B .2C .kD .k 2 3. 已知函数1y x=的图象如图所示,当1x -≥时,y 的取值范围是( ) A. 1y <- B. 1y -≤ C. 1y -≤或0y > D. 1y -<或0y ≥ 4.若点A(-6,y 1),B(-2,y 2),C(3,y 3)在反比例函数y =2k 2+3x (k 为常数)的图象上,则y 1,y 2,y 3的大小关系为( )A .y 1>y 2>y 3B .y 2>y 3>y 1C .y 3>y 2>y 1D .y 3>y 1>y 2 5.在同一直角坐标系中,函数y =kx 和y =kx -3的图象大致是( )y xO 1-1-第3题图6.如图,已知一次函数y =ax +b 和反比例函数y =kx 的图象相交于A (-2,y 1),B (1,y 2)两点,则不等式ax +b <kx 的解集为( )A .x <-2或0<x <1B .x <-2C .0<x <1D .-2<x <0或x >1 二、填空题(每小题4分,共16分)7.已知反比例函数y =k -1x (k 是常数,k ≠1)的图象有一支在第二象限,那么k 的取值范围是 .8.已知A(-4,y 1),B(-1,y 2)是反比例函数y =-4x 图象上的两个点,则y 1与y 2的大小关系为 .9.如果一次函数y =kx +3(k 是常数,k ≠0)的图象经过点(1,0),那么y 的值随x 值的增大而 .(填“增大”或“减小”) 10.(2018•东营)如图,B (3,﹣3),C (5,0),以OC ,CB 为边作平行四边形OABC ,则经过点A 的反比例函数的解析式为 .三、解答题(共6小题,共60分)11.(8分)正比例函数 y =kx 和一次函数 y =ax +b 的图象都经过点A(1,2),且一次函数的图象交 x 轴于点 B(4,0).求正比例函数和一次函数的表达式.12.(12分)已知函数y =(2m +1)x +m -3 (1)若函数图象经过原点,求m 的值;第6题图第10题图(2)若函数的图象平行直线y =3x -3,求m 的值;(3)若这个函数是一次函数,且y 随着x 的增大而减小,求m 的取值范围.13.(12分)如图,一次函数y =kx +b 的图象与反比例函数y =xm的图象交于A (-2,1)B (1,n )两点.(1)试确定上述反比例函数和一次函数的表达式; (2)求△ABO 的面积;(3)根据图像直接写出当一次函数的值大于反比例函数的值时x 的取值范围。
反比例函数与一次函数图像判断一.选择题(共30小题)1.函数y=kx+k与y=(k≠0)在同一平面直角坐标系的图象可能是()A.B.C.D.2.如图,函数y=与y=﹣kx+2(k≠0)在同一平面直角坐标系中的大致图象是()A.B.C.D.3.一次函数y=﹣kx+k与反比例函数y=(k≠0)在同一坐标系中的图象可能是()A.B.C.D.4.在同一直角坐标系中,反比例函数y=与一次函数y=ax+b的图象可能是()A.B.C.D.5.如图,函数y=﹣与y=kx+1(k≠0)在同一平面直角坐标系中的图象大致()A.B.C.D.6.一次函数y=kx﹣k与反比例函数y=在同一直角坐标系中的图象可能是()A.B.C.D.7.函数y=与y=kx﹣k(k为常数且k≠0)在同一平面直角坐标系中的图象可能是()A.B.C.D.8.一次函数y=ax﹣a与反比例函数y=(a≠0)在同一坐标系中的图象可能是()A.B.C.D.9.若ab<0,则正比例函数y=ax与反比例函数y=在同一平面直角坐标系中的大致图象可能是()A.B.C.D.10.如图所示,y=mx+m与y=(m<0)在同一坐标系中的图象可能是图中的()A.B.C.D.11.函数y=和y=﹣kx+2(k≠0)在同一平面直角坐标系中的大致图象可能是()A.B.C.D.12.当k>0时,函数y=与y=﹣kx在同一平面直角坐标系内的大致图象是()A.B.C.D.13.若关于x的方程x2﹣2(m+1)x+m2+3=0有实数根,则反比例函数y=与一次函数y =﹣mx+m的图象大致是()A.B.C.D.14.一次函数y=kx+b和反比例函数y=的部分图象在同一坐标系中可能为()A.B.C.D.15.在同一平面直角坐标系中,函数y=x﹣k与y=(k为常数,且k≠0)的图象大致是()A.B.C.D.16.函数y=kx+k与y=(k≠0)在同一坐标系内的图象可能是()A.B.C.D.17.若ab>0,则正比例函数y=﹣ax与反比例函数y=在同一平面直角坐标系中的大致图象可能是()A.B.C.D.18.函数y=的图象可能是()A.B.C.D.19.函数y=和一次函数y=﹣ax+1(a≠0)在同一平面直角坐标系中的图象可能是()A.B.C.D.20.函数y=与y=kx﹣k(k≠0)在同一平面直角坐标系中的图象可能是()A.B.C.D.21.已知k1<0<k2,则函数y=k1x和y=的图象在同一平面直角坐标系中大致位置是()A.B.C.D.22.函数y=kx﹣k(k≠0)和y=﹣(k≠0)在同一平面直角坐标系中的图象可能是()A.B.C.D.23.下图中反比例函数y=与一次函数y=kx﹣k在同一直角坐标系中的大致图象是()A.B.C.D.24.在同一平面直角坐标系xOy中,函数y=kx+1与y=(k≠0)的图象可能是()A.B.C.D.25.函数y=(k≠0)的图象如图所示,那么函数y=kx﹣k的图象大致是()A.B.C.D.26.反比例函数y=与y=﹣kx+1(k≠0)在同一坐标系的图象可能为()A.B.C.D.27.在同一平面直角坐标系中,函数y=x+k与y=(k为常数,k≠0)的图象大致是()A.B.C.D.28.在同一平面直角坐标系中,反比例函数y=与一次函数y=kx﹣k的图象可能是下面的()A.B.C.D.29.已知一次函数y=mx+n与反比例函数y=其中m、n为常数,且mn<0,则它们在同一坐标系中的图象可能是()A.B.C.D.30.若ab>0,则一次函数y=ax﹣b与反比例函数y=在同一坐标系中的大致图象是()A.B.C.D.反比例函数与一次函数图像判断参考答案与试题解析一.选择题(共30小题)1.解:①当k>0时,y=kx+k过一、二、三象限;y=(k≠0)过一、三象限;②当k<0时,y=kx+k过二、三、四象象限;y=(k≠0)过二、四象限.观察图形可知,只有B选项符合题意.故选:B.2.解:在函数y=和y=﹣kx+2(k≠0)中,当k>0时,函数y=的图象在第一、三象限,函数y=﹣kx+2的图象在第一、二、四象限,故选项A、D错误,选项B正确,当k<0时,函数y=的图象在第二、四象限,函数y=﹣kx+2的图象在第一、二、三象限,故选项C错误,故选:B.3.解:A、∵由反比例函数的图象在一、三象限可知,k>0,∴一次函数y=﹣kx+k的图象经过一、二、四象限,故本选项错误;B、∵由反比例函数的图象在一、三象限可知,k>0,∴一次函数y=﹣kx+k的图象经过一、二、四象限,故本选项正确;C、∵由反比例函数的图象在二、四象限可知,k<0,∴一次函数y=﹣kx+k的图象经过一、三、四象限,故本选项错误;D、∵由反比例函数的图象在一、三象限可知,k>0,∴一次函数y=﹣kx+k的图象经过一、二、四象限,故本选项错误.故选:B.4.解:A、∵一次函数图象应该过第一、二、四象限,∴a<0,b>0,∴ab<0,∴反比例函数的图象经在二、四象限,故A错误;B、∵一次函数图象应该过第一、三、四象限,∴a>0,b<0,∴ab<0,∴反比例函数的图象经在二、四象限,故B错误;C、∵一次函数图象应该过第一、二、三象限,∴a>0,b>0,∴ab>0,∴反比例函数的图象经在一、三象限,故C错误;D、∵一次函数图象应该过第二、三、四象限,∴a<0,b<0,∴ab>0,∴反比例函数的图象经在一、三象限,故D正确;故选:D.5.解:k>0时,一次函数y=kx+1的图象经过第一、二、三象限,反比例函数的两个分支分别位于第二、四象限;当k<0时,函数y=kx+1的图象经过一、二、四象限,反比例函数的图象分布在一、三象限,B选项正确,故选:B.6.解:当k>0时,一次函数y=kx﹣k的图象过一、三、四象限,反比例函数y=的图象在一、三象限,当k<0时,一次函数y=kx﹣k的图象过一、二、四象限,反比例函数y=的图象在二、四象限,∴A、C、D不符合题意,B符合题意;故选:B.7.解:A、∵由反比例函数的图象在一、三象限可知,k>0,∴﹣k<0,∴一次函数y=kx ﹣k的图象经过一、三、四象限,故本选项错误;B、∵由反比例函数的图象在二、四象限可知,k<0,∴﹣k>0,∴一次函数y=kx﹣k的图象经过一、二、四象限,故本选项错误;C、∵由反比例函数的图象在一、三象限可知,k>0,∴﹣k<0,∴一次函数y=kx﹣k的图象经过一、三、四象限,故本选项正确;D、∵由反比例函数的图象在一、三象限可知,k>0,∴﹣k<0,∴一次函数y=kx﹣k的图象经过一、三、四象限,故本选项错误;故选:C.8.解:A、由函数y=ax﹣a的图象可知a>0,﹣a>0,由函数y=(a≠0)的图象可知a>0,矛盾,错误;B、由函数y=ax﹣a的图象可知a<0,由函数y=(a≠0)的图象可知a>0,相矛盾,故错误;C、由函数y=ax﹣a的图象可知a>0,由函数y=(a≠0)的图象可知a<0,故错误;D、由函数y=ax﹣a的图象可知a<0,﹣a>0,由函数y=(a≠0)的图象可知a<0,故正确;故选:D.9.解:∵ab<0,∴分两种情况:(1)当a>0,b<0时,正比例函数y=ax的图象过原点、第一、三象限,反比例函数y =图象在第二、四象限,无选项符合.(2)当a<0,b>0时,正比例函数y=ax的图象过原点、第二、四象限,反比例函数y =图象在第一、三象限,故B选项正确;故选:B.10.解:∵y=中的m<0,∴反比例函数y=(m<0)的图象经过第二、四象限.故选项A,C不符合题意.∵y=mx+m中的m<0,∴一次函数y=mx+m的图象经过第二、三、四象限.故选项B不符合题意,选项D符合题意.故选:D.11.解:在函数y=和y=﹣kx+2(k≠0)中,当k>0时,函数y=的图象在第一、三象限,函数y=﹣kx+2的图象在第一、二、四象限,故选项A、B错误,选项D正确,当k<0时,函数y=的图象在第二、四象限,函数y=﹣kx+2的图象在第一、二、三象限,故选项C错误,故选:D.12.解:∵k>0,∴函数y=的图象在第一、三象限,函数y=﹣kx的图象在第二、四象限且经过原点,故选:B.13.解:∵关于x的方程x2﹣2(m+1)x+m2+3=0有实数根,∴△=[﹣2(m+1)]2﹣4(m2+3)≥0.解得m≥1,∴反比例函数y=的图象在一三象限,一次函数y=﹣mx+m的图象经过一二四象限,故选:B.14.解:A、一次函数y=kx+b中k>0,b<0,则<0,反比例函数y=在二、四象限,故此选项不符合题意;B、一次函数y=kx+b中k>0,b=0,则=0,函数y=无意义,故此选项不符合题意;C、一次函数y=kx+b中k<0,b>0,则<0,反比例函数y=应该在第二、四象限,故此选项符合题意;D、一次函数y=kx+b中k>0,b>0,则>0,反比例函数y=在第一、三象限,故此选项不符合题意;故选:C.15.解:∵函数y=x﹣k与y=(k为常数,且k≠0)∴当k>0时,y=x﹣k经过第一、三、四象限,y=经过第一、三象限,故选项A符合题意,选项B不符合题意,当k<0时,y=x﹣k经过第一、二、三象限,y=经过第二、四象限,故选项C、D不符合题意,故选:A.16.解:①当k>0时,y=kx+k过一、二、三象限;y=过一、三象限;②当k<0时,y=kx+k过二、三、四象象限;y=过二、四象限.观察图形可知只有A符合①.故选:A.17.解:∵ab>0,∴分两种情况:(1)当a>0,b>0时,正比例函数y=﹣ax数的图象过原点、第二、四象限,反比例函数y=图象在第一、三象限,故B选项正确;(2)当a<0,b<0时,正比例函数y=﹣ax的图象过原点、第一、三象限,反比例函数y=图象在第二、四象限,无选项符合.故选:B.18.解:函数y=的图象可以由反比例函数的图象向左平移2个单位得到,而反比例函数y=的图象在一三象限,故选:C.19.解:∵函数y=和一次函数y=﹣ax+1(a≠0),∴当a>0时,函数y=在第一、三象限,一次函数y=﹣ax+1经过一、二、四象限,故选项A、B错误,选项C正确;当a<0时,函数y=在第二、四象限,一次函数y=﹣ax+1经过一、二、三象限,故选项D错误;故选:C.20.解:A、∵由反比例函数的图象在二、四象限可知,k<0,∴﹣k>0,∴一次函数y=kx﹣k的图象经过一、二、四象限,故本选项正确;B、∵由反比例函数的图象在二、四象限可知,k<0,∴﹣k>0,∴一次函数y=kx﹣k的图象经过一、二、四象限,故本选项错误;C、∵由反比例函数的图象在一、三象限可知,k>0,∴﹣k<0,∴一次函数y=kx﹣k的图象经过一、三、四象限,故本选项错误;D、∵由反比例函数的图象在一、三象限可知,k>0,∴﹣k<0,∴一次函数y=kx﹣k的图象经过一、三、四象限,故本选项错误;故选:A.21.解:∵k1<0<k2,∴函数y=k1x的经过第二、四象限,反比例和y=的图象分布在第一、三象限.故选:B.22.解:由反比例函数y=﹣(k≠0)的图象在一、三象限可知,﹣k>0,∴k<0,∴一次函数y=kx﹣k的图象经过一、二、四象限,故A、B选项错误;由反比例函数y=﹣(k≠0)的图象在二、四象限可知,﹣k<0,∴k>0,∴一次函数y=kx﹣k的图象经过一、三、四象限,故C选项错误,D选项正确;故选:D.23.解:(1)当k>0时,一次函数y=kx﹣k经过一、三、四象限,反比例函数经过一、三象限,如图所示:(2)当k<0时,一次函数y=kx﹣k经过一、二、四象限,反比例函数经过二、四象限.如图所示:故选:B.24.解:当k>0时,函数y=kx+1的图象经过一、二、三象限,反比例函数y=的图象分布在一、三象限,没有正确的选项;当k<0时,函数y=kx+1的图象经过一、二、四象限,反比例函数y=的图象分布在二、四象限,D选项正确,故选:D.25.解:∵反比例函数y=的图象位于第二、四象限,∴k<0,﹣k>0.∵k<0,∴函数y=kx﹣k的图象过二、四象限.又∵﹣k>0,∴函数y=kx﹣k的图象与y轴相交于正半轴,∴一次函数y=kx﹣k的图象过一、二、四象限.故选:B.26.解:A、由反比例函数的图象可知,k>0,一次函数图象呈上升趋势且交与y轴的正半轴,﹣k>0,即k<0,故本选项错误;B、由反比例函数的图象可知,k>0,一次函数图象呈下降趋势且交与y轴的正半轴,﹣k<0,即k>0,故本选项正确;C、由反比例函数的图象可知,k<0,一次函数图象呈上升趋势且交与y轴的负半轴(不合题意),故本选项错误;D、由反比例函数的图象可知,k<0,一次函数图象呈下降趋势且交与y轴的正半轴,﹣k<0,即k>0,故本选项错误.故选:B.27.解:∵一次函数解析式为y=x+k,这里比例系数为,∴图象经过一三象限.排除C,D选项.对于A、一次函数的k<0,反比例函数k>0,错误.对于B、一次函数的k>0,反比例函数k>0,正确.故选:B.28.解:当k>0时,∵k>0,﹣k<0,∴反比例函数y=的图象在第一、三象限,一次函数y=kx﹣k的图象经过第一、三、四象限;当k<0时,∵k<0,﹣k>0,∴反比例函数y=的图象在第二、四象限,一次函数y=kx﹣k的图象经过第一、二、四象限.故选:B.29.解:A、由一次函数图象过二、三、四象限,得m<0,交y轴负半轴,则n<0,此时mn>0,不合题意;故本选项错误;B、由一次函数图象过一、二、四象限,得m<0,交y轴正半轴,则n>0,满足mn<0,∵m<0,n>0,∴n﹣m>0,∴反比例函数y=的图象过一、三象限,故本选项正确;C、由一次函数图象过一、二、三象限,得m>0,交y轴正半轴,则n>0,此时,mn>0,不合题意;故本选项错误;D、由一次函数图象过一、二、三象限,得m>0,交y轴正半轴,则n>0,此时,mn>0,不合题意;故本选项错误;故选:B.30.解:A、根据一次函数可判断a>0,b<0,即ab<0,故不符合题意,B、根据一次函数可判断a<0,b>0,即ab<0,故不符合题意,C、根据一次函数可判断a<0,b<0,即ab>0,根据反比例函数可判断ab>0,故符合题意,D、根据反比例函数可判断ab<0,故不符合题意;故选:C.。
反比例函数解析含答案一、选择题1.如图,一次函数1y ax b =+和反比例函数2k y x=的图象相交于A ,B 两点,则使12y y >成立的x 取值范围是( )A .20x -<<或04x <<B .2x <-或04x <<C .2x <-或4x >D .20x -<<或4x >【答案】B【解析】【分析】 根据图象找出一次函数图象在反比例函数图象上方时对应的自变量的取值范围即可.【详解】观察函数图象可发现:2x <-或04x <<时,一次函数图象在反比例函数图象上方, ∴使12y y >成立的x 取值范围是2x <-或04x <<,故选B .【点睛】本题考查了反比例函数与一次函数综合,函数与不等式,利用数形结合思想是解题的关键.2.如图,ABDC Y 的顶点,A B 的坐标分别是()(), 0,3 1, 0A B -,顶点,C D 在双曲线k y x=上,边BD 交y 轴于点E ,且四边形ACDE 的面积是ABE ∆面积的3倍,则k 的值为:( )A .6-B .4-C .3-D .12-【答案】A【解析】【分析】 过D 作DF//y 轴,过C 作//CF x 轴,交点为F ,利用平行四边形的性质证明,DCF ABO ∆≅∆利用平移写好,C D 的坐标,由四边形ACDE 的面积是ABE ∆面积的3倍,得到2,DB BE =利用中点坐标公式求横坐标,再利用反比例函数写D 的坐标,列方程求解k .【详解】解:过D 作DF//y 轴,过C 作//CF x 轴,交点为F ,则,CF DF ⊥ABDC QY ,,CDF BAO ∴∠∠的两边互相平行,,AB DC =CDF BAO ∴∠=∠,90,DFC BOA ∠=∠=︒Q,DCF ABO ∴∆≅∆,,CF BO DF AO ∴== 设(,),k C m m由()(), 0,3 1, 0A B -结合平移可得:(1,3)k D m m ++, Q 四边形ACDE 的面积是ABE ∆面积的3倍,11()322BD BE DE CA h h BE ∴+=⨯⨯, ,,BD BE h h AC BD ==Q3DE AC BE ∴+=,4,DE BD BE BE ∴++=2,DB BE ∴=(1,3),(1,0),0,E k D m B x m++=Q ∴ 由中点坐标公式知:110,2m ++= 2m ∴=- ,(1,)1k D m m ++Q , 3212k k ∴=+-+-, 6.k ∴=-故选A .【点睛】本题考查的是反比例函数的图像与性质,平行四边形的性质,平移性质,中点坐标公式,掌握以上知识点是解题关键.3.如图,菱形OABC 的顶点C 的坐标为(3,4),顶点A 在x 轴的正半轴上.反比例函数k y x=(x>0)的图象经过顶点B ,则k 的值为A .12B .20C .24D .32【答案】D【解析】【分析】【详解】如图,过点C 作CD ⊥x 轴于点D ,∵点C 的坐标为(3,4),∴OD=3,CD=4.∴根据勾股定理,得:OC=5.∵四边形OABC 是菱形,∴点B 的坐标为(8,4).∵点B 在反比例函数(x>0)的图象上, ∴. 故选D.4.如图,反比例函数y =2x的图象经过矩形OABC 的边AB 的中点D ,则矩形OABC 的面积为( )A .1B .2C .4D .8【答案】C【解析】【分析】 由反比例函数的系数k 的几何意义可知:2OA AD g ,然后可求得OA AB g 的值,从而可求得矩形OABC 的面积.【详解】解:Q 反比例函数2y x =, 2OA AD ∴=g . D Q 是AB 的中点,2AB AD ∴=.∴矩形的面积2224OA AB AD OA ===⨯=g g .故选:C .【点睛】本题主要考查的是反比例函数k 的几何意义,掌握反比例函数系数k 的几何意义是解题的关键.5.在同一直角坐标系中,函数y=k(x -1)与y=(0)k k x<的大致图象是 A . B . C . D .【答案】B【解析】【分析】【详解】解:k<0时,y=(0)k k x<的图象位于二、四象限, y=k(x -1)的图象经过第一、二、四象限,观察可知B 选项符合题意,故选B.6.如图直线y =mx 与双曲线y=k x交于点A 、B ,过A 作AM ⊥x 轴于M 点,连接BM ,若S △AMB =2,则k 的值是( )A .1B .2C .3D .4【答案】B【解析】【分析】此题可根据反比例函数图象的对称性得到A、B两点关于原点对称,再由S△ABM=2S△AOM并结合反比例函数系数k的几何意义得到k的值.【详解】根据双曲线的对称性可得:OA=OB,则S△ABM=2S△AOM=2,S△AOM=12|k|=1,则k=±2.又由于反比例函数图象位于一三象限,k>0,所以k=2.故选B.【点睛】本题主要考查了反比例函数y=kx中k的几何意义,即过双曲线上任意一点引x轴、y轴垂线,所得矩形面积为|k|,是经常考查的一个知识点.7.在反比例函数y=93mx+图象上有两点A(x1,y1)、B(x2,y2),y1<0<y2,x1>x2,则有()A.m>﹣13B.m<﹣13C.m≥﹣13D.m≤﹣13【答案】B【解析】【分析】先根据y1<0<y2,有x1>x2,判断出反比例函数的比例系数的正负,求出m的取值范围即可.【详解】∵在反比例函数y=93mx+图象上有两点A(x1,y1)、B(x2,y2),y1<0<y2,x1>x2,∴反比例函数的图象在二、四象限,∴9m+3<0,解得m<﹣13.故选:B.【点睛】此题主要考查了反比例函数的性质,以及反比例函数图象上点的坐标特点,关键是掌握反比例函数的性质8.函数kyx=与y kx k=-(0k≠)在同一平面直角坐标系中的大致图象是()A.B.C.D.【答案】C【解析】【分析】分k>0和k<0两种情况确定正确的选项即可.【详解】当k:>0时,反比例函数的图象位于第一、三象限,一次函数的图象交 y轴于负半轴,y 随着x的增大而增大,A选项错误,C选项符合;当k<0时,反比例函数的图象位于第二、四象限,一次函数的图象交y轴于正半轴,y 随着x的增大而增减小,B. D均错误,故选:C.【点睛】此题考查反比例函数的图象,一次函数的图象,熟记函数的性质是解题的关键.9.如图,点P是反比例函数y=kx(x<0)图象上一点,过P向x轴作垂线,垂足为M,连接OP.若Rt△POM的面积为2,则k的值为()A.4 B.2 C.-4 D.-2【答案】C【解析】【分析】根据反比例函数的比例系数k的几何意义得到S△POD=12|k|=2,然后去绝对值确定满足条件的k的值.【详解】解:根据题意得S△POD=12|k|,所以12|k||=2,而k<0,所以k=-4.故选:C.【点睛】本题考查了反比例函数的比例系数k的几何意义:在反比例函数y=kx图象中任取一点,过这一个点向x轴和y轴分别作垂线,与坐标轴围成的矩形的面积是定值|k|.10.如图,四边形OABF中,∠OAB=∠B=90°,点A在x轴上,双曲线kyx=过点F,交AB于点E,连接EF.若BF2OA3=,S△BEF=4,则k的值为()A.6 B.8 C.12 D.16【答案】A【解析】【分析】由于23BFOA=,可以设F(m,n)则OA=3m,BF=2m,由于S△BEF=4,则BE=4m,然后即可求出E(3m,n-4m),依据mn=3m(n-4m)可求mn=6,即求出k的值.【详解】如图,过F作FC⊥OA于C,∵23BF OA =, ∴OA=3OC ,BF=2OC∴若设F (m ,n )则OA=3m ,BF=2m∵S △BEF =4∴BE=4m则E (3m ,n-4m) ∵E 在双曲线y=k x 上 ∴mn=3m (n-4m) ∴mn=6即k=6.故选A .【点睛】 此题主要考查了反比例函数的图象和性质、用坐标表示线段长和三角形面积,表示出E 点坐标是解题关键.11.如图,矩形ABCD 的顶点A ,B 在x 轴的正半轴上,反比例函数k y x =在第一象限内的图象经过点D ,交BC 于点E .若4AB =,2CE BE =,34AD OA =,则线段BC 的长度为( )A .1B .32C .2D .23【答案】B【解析】【分析】 设OA 为4a ,则根据题干中的比例关系,可得AD=3a ,CE=2a ,BE=a ,从而得出点D 和点E 的坐标(用a 表示),代入反比例函数可求得a 的值,进而得出BC 长.【详解】设OA=4a根据2CE BE =,34AD OA =得:AD=3a ,CE=2a ,BE=a ∴D(4a ,3a),E(4a+4,a)将这两点代入解析得; 3444k a a k a a ⎧=⎪⎪⎨⎪=⎪+⎩解得:a=12∴BC=AD=32 故选:B【点睛】本题考查反比例函数和矩形的性质,解题关键是用含有字母的式子表示出点D 、E 的坐标,然后代入解析式求解.12.对于反比例函数2y x=-,下列说法不正确的是( ) A .图象分布在第二、四象限B .当0x >时,y 随x 的增大而增大C .图象经过点(1,-2)D .若点()11,A x y ,()22,B x y 都在图象上,且12x x <,则12y y <【答案】D【解析】【分析】根据反比例函数图象的性质对各选项分析判断后利用排除法求解.【详解】A. k=−2<0,∴它的图象在第二、四象限,故本选项正确;B. k=−2<0,当x>0时,y 随x 的增大而增大,故本选项正确;C.∵221-=-,∴点(1,−2)在它的图象上,故本选项正确; D. 若点A (x 1,y 1),B (x 2,y 2)都在图象上,,若x 1<0< x 2,则y 2<y 1,故本选项错误. 故选:D.【点睛】本题考查了反比例函数的图象与性质,掌握反比例函数的性质是解题的关键.13.如图,在平面直角坐标系中,菱形ABCD 在第一象限内,边BC 与x 轴平行,A ,B 两点的纵坐标分别为4,2,反比例函数y k x =(x >0)的图象经过A ,B 两点,若菱形ABCD 的面积为25,则k 的值为( )A .2B .3C .4D .6【答案】C【解析】【分析】 过点A 作x 轴的垂线,交CB 的延长线于点E ,根据A ,B 两点的纵坐标分别为4,2,可得出横坐标,即可求得AE ,BE 的长,根据菱形的面积为25,求得AE 的长,在Rt △AEB 中,即可得出k 的值.【详解】过点A 作x 轴的垂线,交CB 的延长线于点E ,∵A ,B 两点在反比例函数y k x =(x >0)的图象,且纵坐标分别为4,2, ∴A (4k ,4),B (2k ,2), ∴AE =2,BE 12=k 14-k 14=k , ∵菱形ABCD 的面积为5∴BC×AE =5BC 5=∴AB =BC 5=在Rt △AEB 中,BE 22AB AE =-=1 ∴14k =1,∴k=4.故选:C.【点睛】本题考查了菱形的性质以及反比例函数图象上点的坐标特征,熟记菱形的面积公式是解题的关键.14.如图,在平面直角坐标系中,函数y =kx 与y =-2x的图象交于 A、B 两点,过 A 作 y轴的垂线,交函数4yx=的图象于点 C,连接 BC,则△ABC 的面积为()A.2 B.4 C.6 D.8【答案】C【解析】【分析】连接OC,根据图象先证明△AOC与△COB的面积相等,再根据题意分别计算出△AOD与△ODC的面积即可得△ABC的面积.【详解】连接OC,设AC⊥y轴交y轴为点D,如图,∵反比例函数y=-2x为对称图形,∴O为AB 的中点,∴S△AOC=S△COB,∵由题意得A点在y=-2x上,B点在y=4x上,∴S △AOD =12×OD×AD=12xy=1; S △COD =12×OC×OD=12xy=2; S △AOC = S △AOD + S △COD =3,∴S △ABC = S △AOC +S △COB =6.故答案选C.【点睛】本题考查了一次函数与反比例函数的交点问题与三角形面积公式,解题的关键是熟练的掌握一次函数与反比例函数的交点问题与三角形面积运算.15.若A (-3,y 1)、B (-1,y 2)、C (1,y 3)三点都在反比例函数y=k x (k >0)的图象上,则y 1、y 2、y 3的大小关系是( )A . y 1>y 2>y 3B . y 3>y 1>y 2C . y 3>y 2>y 1D . y 2>y 1>y 3 【答案】B【解析】【分析】反比例函数y=k x(k >0)的图象在一、三象限,根据反比例函数的性质,在每个象限内y 随x 的增大而减小,而A (-3,y 1)、B (-1,y 2)在第三象限双曲线上的点,可得y 2<y 1<0,C (1,y 3)在第一象限双曲线上的点y 3>0,于是对y 1、y 2、y 3的大小关系做出判断.【详解】∵反比例函数y=k x(k >0)的图象在一、三象限, ∴在每个象限内y 随x 的增大而减小,∵A (-3,y 1)、B (-1,y 2)在第三象限双曲线上,∴y 2<y 1<0,∵C (1,y 3)在第一象限双曲线上,∴y 3>0,∴y 3>y 1>y 2,故选:B .【点睛】此题考查反比例函数的图象和性质,解题关键在于当k >0,时,在每个象限内y 随x 的增大而减小;当k <0时,y 随x 的增大而增大,注意“在每个象限内”的意义,这种类型题目用图象法比较直观得出答案.16.如图,若直线2y x n =-+与y 轴交于点B ,与双曲线()20y x x=-<交于点(),1A m ,则AOB V 的面积为( )A .6B .5C .3D .1.5【答案】C【解析】【分析】 先根据题意求出A 点坐标,再求出一次函数解析式,从而求出B 点坐标,则问题可解.【详解】解:由已知直线2y x n =-+与y 轴交于点B ,与双曲线()20y x x =-<交于点(),1A m ∴21m=-则m=-2 把A (-2,1)代入到2y x n =-+,得()122n =-⨯-+∴n=-3∴23y x =--则点B (0,-3)∴AOB V 的面积为132=32⨯⨯ 故应选:C【点睛】本题考查的是反比例函数与一次函数的综合问题,解题关键是根据题意应用数形结合思想.17.如图,点A ,B 是双曲线18y x=图象上的两点,连接AB ,线段AB 经过点O ,点C 为双曲线k y x=在第二象限的分支上一点,当ABC V 满足AC BC =且:13:24AC AB =时,k 的值为( ).A.2516-B.258-C.254-D.25-【答案】B【解析】【分析】如图作AE⊥x轴于E,CF⊥x轴于F.连接OC.首先证明△CFO∽△OEA,推出2()COFAOES OCS OA∆∆=,因为CA:AB=13:24,AO=OB,推出CA:OA=13:12,推出CO:OA=5:12,可得出2()COFAOES OCS OA∆∆==25144,因为S△AOE=9,可得S△COF=2516,再根据反比例函数的几何意义即可解决问题.【详解】解:如图作AE⊥x轴于E,CF⊥x轴于F.连接OC.∵A、B关于原点对称,∴OA=OB,∵AC=BC,OA=OB,∴OC⊥AB,∴∠CFO=∠COA=∠AEO=90°,∴∠COF+∠AOE=90°,∠AOE+∠EAO=90°,∴∠COF=∠OAE,∴△CFO∽△OEA,∴2()COFAOES OCS OA∆∆=,∵CA:AB=13:24,AO=OB,∴CA:OA=13:12,∴CO:OA=5:12,∴2()COF AOE S OC S OA ∆∆==25144, ∵S △AOE =9,∴S △COF =2516, ∴||25216k =, ∵k <0, ∴258k =- 故选:B .【点睛】本题主要考查反比例函数图象上的点的特征、等腰三角形的性质、相似三角形的判定和性质等知识,解题的关键是学会添加常用辅助线,根据相似三角形解决问题,属于中考选择题中的压轴题.18.当0x <时,反比例函数2y x=-的图象( ) A .在第一象限,y 随x 的增大而减小 B .在第二象限,y 随x 的增大而增大C .在第三象限,y 随x 的增大而减小D .在第四象限,y 随x 的增大而减小 【答案】B【解析】【分析】 反比例函数2y x =-中的20k =-<,图像分布在第二、四象限;利用0x <判断即可. 【详解】解:Q 反比例函数2y x=-中的20k =-<, ∴该反比例函数的图像分布在第二、四象限;又0x <Q ,∴图象在第二象限且y 随x 的增大而增大.故选:B .【点睛】 本题主要考查的是反比例函数的性质,对于反比例函数()0k y k x=≠,(1)0k >,反比例函数图像分布在一、三象限;(2)k 0< ,反比例函数图像分布在第二、四象限内.19.在函数()0k y k x=<的图象上有()11,A y ,()21,B y -,()32,B y -三个点,则下列各式中正确的是( )A .123y y y <<B .132y y y <<C .321y y y <<D .231y y y <<【答案】B【解析】【分析】 根据反比例函数图象上点的坐标特征得到11y k ⨯=,21y k -⨯=,32y k -⨯=,然后计算出1y 、2y 、3y 的值再比较大小即可.【详解】 解:(0)k y k x=<Q 的图象上有1(1,)A y 、2(1,)B y -、3(2,)C y -三个点, 11y k ∴⨯=,21y k -⨯=,32y k -⨯=,1y k ∴=,2y k =-,312y k =-, 而k 0<,132y y y ∴<<.故选:B .【点睛】 本题考查了反比例函数图象上点的坐标特征:反比例函数k y x=(k 为常数,且0k ≠)的图象是双曲线,图象上的点(),x y 的横纵坐标的积是定值k ,即xy k =.20.已知点()1,3M -在双曲线k y x =上,则下列各点一定在该双曲线上的是( ) A .()3,1-B .()1,3--C .()1,3D .()3,1 【答案】A【解析】【分析】先求出k=-3,再依次判断各点的横纵坐标乘积,等于-3即是在该双曲线上,否则不在.【详解】∵点()1,3M -在双曲线k y x=上, ∴133k =-⨯=-,∵3(1)3⨯-=-,∴点(3,-1)在该双曲线上,∵(1)(3)13313-⨯-=⨯=⨯=,∴点()1,3--、()1,3、()3,1均不在该双曲线上,故选:A.【点睛】此题考查反比例函数解析式,正确计算k值是解题的关键.。
一次函数和反比例函数一.选择题(共10小题)1.(•上海)下列y关于x的函数中,是正比例函数的为()2.(•甘孜州)函数y=x﹣2的图象不经过()3.(•陕西)设正比例函数y=mx的图象经过点A(m,4),且y的值随x值的增大而减小,则m=()4.(•北海)正比例函数y=kx的图象如图所示,则k的取值范围是()5.(•牡丹江)在同一直角坐标系中,函数y=﹣与y=ax+1(a≠0)的图象可能是()B=6.(•柳州)下列图象中是反比例函数y=﹣图象的是().B..﹣7.(•兰州)在同一直角坐标系中,一次函数y=kx﹣k与反比例函数y=(k≠0)的图象大致是()B8.(•黑龙江)关于反比例函数y=﹣,下列说法正确的是()(9.(•天津)己知反比例函数y=,当1<x<3时,y的取值范围是()10.(•厦门)反比例函数y=的图象是()=二.填空题(共15小题)11.(•凉山州)已知函数y=2x2a+b+a+2b是正比例函数,则a=,b=﹣..故答案为:;﹣.12.(•连云港)已知一个函数,当x>0时,函数值y随着x的增大而减小,请写出这个函数关系式y=﹣x+2(写出一个即可).,13.(•福建)在一次函数y=kx+3中,y的值随着x值的增大而增大,请你写出符合条件的k 的一个值:2.14.(•菏泽)直线y=﹣3x+5不经过的象限为第三象限.15.(•无锡)一次函数y=2x﹣6的图象与x轴的交点坐标为(3,0).16.(•柳州)直线y=2x+1经过点(0,a),则a=1.17.(•六盘水)正方形A1B1C1O和A2B2C2C1按如图所示方式放置,点A1,A2在直线y=x+1上,点C1,C2在x轴上.已知A1点的坐标是(0,1),则点B2的坐标为(3,2).18.(•滨州)把直线y=﹣x﹣1沿x轴向右平移2个单位,所得直线的函数解析式为y=﹣x+1.19.(•沈阳)如图1,在某个盛水容器内,有一个小水杯,小水杯内有部分水,现在匀速持续地向小水杯内注水,注满小水杯后,继续注水,小水杯内水的高度y(cm)和注水时间x (s)之间的关系满足如图2中的图象,则至少需要5s能把小水杯注满.,解得:,20.(•大连)在平面直角坐标系中,点A,B的坐标分别为(m,3),(3m﹣1,3),若线段AB与直线y=2x+1相交,则m的取值范围为≤m≤1.,解得≤的取值范围为21.(•永州)已知一次函数y=kx+b的图象经过两点A(0,1),B(2,0),则当x≥2时,y≤0.,解得:x解不等式﹣x22.(•湖州)已知y是x的一次函数,当x=3时,y=1;当x=﹣2时,y=﹣4,求这个一次函数的解析式.代入得:,解得:23.(•武汉)如图所示,购买一种苹果,所付款金额y(元)与购买量x(千克)之间的函数图象由线段OA和射线AB组成,则一次购买3千克这种苹果比分三次每次购买1千克这种苹果可节省2元.)代入得:,解得:24.(•威海)如图,点A、B的坐标分别为(0,2),(3,4),点P为x轴上的一点,若点B 关于直线AP的对称点B′恰好落在x轴上,则点P的坐标为().=x﹣﹣时,﹣x,∴点()25.(•广州)某水库的水位在5小时内持续上涨,初始的水位高度为6米,水位以每小时0.3米的速度匀速上升,则水库的水位高度y米与时间x小时(0≤x≤5)的函数关系式为y=6+0.3x.三.解答题(共5小题)26.(•孝感)某服装公司招工广告承诺:熟练工人每月工资至少3000元.每天工作8小时,一个月工作25天.月工资底薪800元,另加计件工资.加工1件A型服装计酬16元,加工1件B型服装计酬12元.在工作中发现一名熟练工加工1件A型服装和2件B型服装需4小时,加工3件A型服装和1件B型服装需7小时.(工人月工资=底薪+计件工资)(1)一名熟练工加工1件A型服装和1件B型服装各需要多少小时?(2)一段时间后,公司规定:“每名工人每月必须加工A,B两种型号的服装,且加工A型服装数量不少于B型服装的一半”.设一名熟练工人每月加工A型服装a件,工资总额为W 元.请你运用所学知识判断该公司在执行规定后是否违背了广告承诺?由题意得:,解得:…≥27.(•新疆)某超市预购进A、B两种品牌的T恤共200件,已知两种T恤的进价如表所示,设购进A中T恤x件,且所购进的良好总T恤全部卖出,获得的总利润为W元.(1)求W关于x的函数关系式;(2)如果购进两种T恤的总费用不超过9500元,那么超市如何进货才能获得最大利润?并求出最大利润.(提示:利润=售价﹣进价)28.(•威海)为绿化校园,某校计划购进A、B两种树苗,共21课.已知A种树苗每棵90元,B种树苗每棵70元.设购买B种树苗x棵,购买两种树苗所需费用为y元.(1)y与x的函数关系式为:y=﹣20x+1890;(2)若购买B种树苗的数量少于A种树苗的数量,请给出一种费用最省的方案,并求出该方案所需费用.29.(•乌鲁木齐)一辆货车和一辆小轿车同时从甲地出发,货车匀速行驶至乙地,小轿车中途停车休整后提速行驶至乙地.货车的路程y1(km),小轿车的路程y2(km)与时间x(h)的对应关系如图所示.(1)甲乙两地相距多远?小轿车中途停留了多长时间?(2)①写出y1与x的函数关系式;②当x≥5时,求y2与x的函数解析式;(3)货车出发多长时间与小轿车首次相遇?相遇时与甲地的距离是多少?,解得:,∴30.(•徐州)为加强公民的节水意识,合理利用水资源.某市对居民用水实行阶梯水价,居民家庭每月用水量划分为三个阶梯,一、二、三级阶梯用水的单价之比等于1:1.5:2.如图折线表示实行阶梯水价后每月水费y(元)与用水量xm3之间的函数关系.其中线段AB 表示第二级阶梯时y与x之间的函数关系(1)写出点B的实际意义;(2)求线段AB所在直线的表达式;(3)某户5月份按照阶梯水价应缴水费102元,其相应用水量为多少立方米?,则解得,,解得﹣。
2020年中考数学压轴题专题复习:一次函数与反比例函数一、选择题(本大题共6道小题)1. 如图,A 、B 两点在反比例函数y =k 1x 的图象上,C 、D 两点在反比例函数y =k 2x的图象上,AC ⊥x 轴于点E ,BD ⊥x 轴于点F ,AC =2,BD =3,EF =103,则k 2-k 1=( )A. 4B.143 C. 163D. 62. 已知一次函数y =kx +b -x 的图象与x 轴的正半轴相交,且函数值y 随自变量x 的增大而增大,则k ,b 的取值情况为( )A. k >1,b <0B. k >1,b >0C. k >0,b >0D. k >0,b <03. 下列函数中,满足y 的值随x 的值增大而增大的是( )A. y =-2xB. y =3x -1C. y =1xD. y =x 24. 设函数y =kx (k ≠0,x >0)的图象如图所示,若z =1y,则z 关于x 的函数图象可能为( )5. 二次函数y =ax 2+bx +c (a ,b ,c 为常数且a ≠0)的图象如图所示,则一次函数y =ax+b 与反比例函数y =cx的图象可能是( )6. 若式子k-1+(k-1)0有意义,则一次函数y=(1-k)x+k-1的图象可能是()二、填空题(本大题共5道小题)7. 已知反比例函数y =k x的图象在每一个象限内y 随x 的增大而增大,请写一个符合条件的反比例函数解析式____________.8. 如图所示,已知点C (1,0),直线y =-x +7与两坐标轴分别交于A ,B 两点,D ,E分别是AB ,OA 上的动点,则△CDE 周长的最小值是________.9. 将函数y =2x +b (b 为常数)的图象位于x 轴下方的部分沿x 轴翻折至其上方后,所得的折线是函数y =|2x +b |(b 为常数)的图象,若该图象在直线y =2下方的点的横坐标x 满足0<x <3,则b 的取值范围为____________.10. 如图,一次函数y =kx +b 的图象分别与反比例函数y =a x的图象在第一象限交于点A (4,3),与y 轴的负半轴交于点B ,且OA =OB .(1)求函数y =kx +b 和y =ax的表达式;(2)已知点C (0,5),试在该一次函数图象上确定一点M ,使得MB =MC .求此时点M 的坐标.11. 如图,已知点A ,C 在反比例函数y =a x的图象上,点B ,D 在反比例函数y =b x的图象上,a >b >0,AB ∥CD ∥x 轴,AB ,CD 在x 轴的两侧,AB =34,CD =32,AB 与CD 间的距离为6,则a -b 的值是________.三、解答题(本大题共4道小题)12. 如图,在平面直角坐标系xOy 中,直线y =-x +3与x 轴交于点C ,与直线AD 交于点A (43,53),点D 的坐标为(0,1). (1)求直线AD 的解析式;(2)直线AD 与x 轴交于点B ,若点E 是直线AD 上一动点(不与点B 重合),当△BOD 与△BCE相似时,求点E的坐标.13. 九年级(3)班数学兴趣小组经过市场调查整理出某种商品在第x天(1≤x≤90,且x为整数)的售价与销售量的相关信息如下,已知商品的进价为30元/件,设该商品的售价为y(单位:元/件),每天的销售量为p(单位:件),每天的销售利润为w(单位:元).(1)求出w与x的函数关系式;(2)问销售该商品第几天时,当天的销售利润最大?并求出最大利润;(3)该商品在销售过程中,共有多少天每天的销售利润不低于5600元?请直接写出结果.14. 如图,已知抛物线y=x2-(m+3)x+9的顶点C在x轴正半轴上,一次函数y=x+3与抛物线交于A、B两点,与x、y轴分别交于D、E两点.(1)求m的值;(2)求A、B两点的坐标;(3)点P(a,b)(-3<a<1)是抛物线上一点,当△P AB的面积是△ABC面积的2倍时,求a、b的值.15. 如图,二次函数y=ax2+bx的图象经过点A(2,4)与B(6,0).(1)求a,b的值;(2)点C是该二次函数图象上A、B两点之间的一动点,横坐标为x(2<x<6).写出四边形OACB的面积S关于点C的横坐标x的函数表达式,并求S的最大值.答案一、选择题(本大题共6道小题)1. 【答案】A 【解析】设E (x 1,0),F (x 2,0),则A (x 1,k 1x 1),D (x 2,k 2x 2),B (x 2,k 1x 2),C (x 1,k 2x 1),∴AC =k 1-k 2x 1=2,BD =k 2-k 1x 2=3,∴k 1-k 2=2x 1,k 2-k 1=3x 2,∴2x 1+3x 2=0,又∵EF =x 2-x 1=103,∴x 2=43,∴k 2-k 1=3x 2=3×43=4.2. 【答案】A 【解析】原解析式可变形为y =(k -1)x +b ,∵函数值y 随自变量x 的增大而增大,∴k -1>0,∴k >1,∵图象与x 轴正半轴相交,∴b <0,∴满足题意的k 、b 情况为k >1,b <0.3. 【答案】B 【解析】一次函数y =-2x 中,y 随x 增大而减小;一次函数y =3x -1中,y 随x 的增大而增大;反比例函数y =1x 中,在每一个分支上,y 随x 的增大而减小;二次函数y =x 2中,当x >0时,y 随x 增大而增大,当x <0时,y 随x 的增大而减小,故答案为B .4. 【答案】D 【解析】函数y =k x(k ≠0,x >0)的图象在第一象限,则k >0,x >0.由已知得z =1y =1k x=xk,所以z 关于x 的函数图象是一条射线,且在第一象限,故选D.5. 【答案】C 【解析】抛物线开口向上,所以a >0,对称轴在y 轴右侧,所以a 、b异号,所以b <0,抛物线与y 轴交于负半轴,所以c <0,所以直线y =ax +b 过第一、三、四象限,反比例函数y =cx位于第二、四象限,故答案为C.6. 【答案】C 【解析】式子k -1+(k -1)0有意义,则k >1,所以1-k <0,k -1>0,所以一次函数y =(1-k )x +k -1的图象经过第一、二、四象限.二、填空题(本大题共5道小题)7. 【答案】y =-2x(答案不唯一) 【解析】∵反比例函数的图象在每一个象限内y 随x的增大而增大,∴k <0,∴k 可取-2(答案不唯一).8. 【答案】10 【解析】作点C 关于y 轴的对称点C 1(-1,0),点C 关于直线AB 的对称点C 2,连接C 1C 2交OA 于点E ,交AB 于点D ,则此时△CDE 的周长最小,且最小值等于C 1C 2的长.∵OA =OB =7,∴CB =6,∠ABC =45°.∵AB 垂直平分CC 2,∴∠CBC 2=90°,∴C 2的坐标为(7,6).在Rt △C 1BC 2中,C 1C 2=C 1B 2+C 2B 2=82+62=10.即△CDE 周长的最小值是10.9. 【答案】-4<b<-2 【解析】先求出直线y =2与y =|2x +b|的交点的横坐标,再由已知条件列出关于b 的不等式组,便可求出结果.由⎩⎪⎨⎪⎧y =2y =|2x +b|,得⎩⎪⎨⎪⎧y =2y =2x +b或⎩⎪⎨⎪⎧y =2y =-2x -b ,解得x =2-b 2或x =-2+b2,∵0<x<3,∴⎩⎨⎧2-b2<3-b +22>0,解得-4<b<-2.10. 【答案】(1)【思路分析】由点A 的坐标和OA =OB 可得点B 的坐标,用待定系数法即可求出一次函数的解析式;将点A 的坐标代入反比例函数解析式中即可求出反比例函数的解析式.解:∵点A(4,3),∴OA =42+32=5,∴OB =OA =5, ∴B(0,-5),将点A(4, 3),点B(0, -5)代入函数y =kx +b 得,⎩⎪⎨⎪⎧4k +b =3b =-5,解得⎩⎪⎨⎪⎧k =2b =-5,(2分) ∴一次函数的解析式为y =2x -5, 将点A(4, 3)代入y =ax 得,3=a 4, ∴a =12,∴反比例函数的解析式为y =12x, ∴所求函数表达式分别为y =2x -5和y =12x.(4分) (2)【思路分析】由题意可知,使MB =MC 的点在线段BC 的垂直平分线上,故求出线段BC 的垂直平分线和一次函数的交点即可.解:如解图,∵点B 的坐标为(0, -5),点C 的坐标为(0, 5),∴x 轴是线段BC 的垂直平分线, ∵MB =MC ,∴点M 在x 轴上,又∵点M 在一次函数图象上,∴点M 为一次函数的图象与x 轴的交点,如解图所示, 令2x -5=0,解得x =52,(6分)∴此时点M 的坐标为(52, 0).(8分)11. 【答案】3 【解析】设点A 的纵坐标为y 1,点C 的纵坐标为y 2,∵AB ∥CD ∥x轴,∴点B 的纵坐标为y 1,点D 的纵坐标为y 2,∵点A 在函数y =ax 的图象上,点B 在函数y =b x 的图象上,且AB =34,∴a y 1-b y 1=34,∴y 1=4(a -b )3,同理y 2=2(b -a )3,又∵AB与CD 间的距离为6,∴y 1- y 2=4(a -b )3-2(b -a )3=6,解得a -b =3.三、解答题(本大题共4道小题)12. 【答案】解:(1)设直线AD 的解析式为y =kx +b(k≠0), 将D(0,1)、A(43,53)代入解析式得⎩⎪⎨⎪⎧b =143k +b =53, 解得⎩⎪⎨⎪⎧b =1k =12,∴直线AD 的解析式为y =12x +1.(3分) (2)直线AD 的解析式为y =12x +1,令y =0,得x =-2, ∴B(-2,0),即OB =2.∵直线AC 的解析式为y =-x +3,令y =0,得x =3,∴C(3,0),即BC =5,设E(x ,12x +1), ①当E 1C ⊥BC 时,∠BOD =∠BCE 1=90°,∠DBO =∠E 1BC ,∴△BOD ∽△BCE 1,此时点C 和点E 1的横坐标相同,将x =3代入y =12x +1, 解得:y =52, ∴E 1(3,52).(6分) ②当CE 2⊥AD 时,∠BOD =∠BE 2C =90°,∠DBO =∠CBE 2,∴△BOD ∽△BE 2C ,如解图,过点E 2作E 2F ⊥x 轴于点F ,则∠E 2FC =∠BFE 2=90°.∵∠E 2BF +∠BE 2F =90°,∠CE 2F +∠BE 2F =90°,∴∠E 2BF =∠CE 2F ,∴△E 2BF ∽△CE 2F ,则E 2F BF =CF E 2F, 即E 2F 2=CF·BF ,(12x +1)2=(3-x)(x +2),解得:x 1=2,x 2=-2(舍去),∴E 2(2,2);(9分)③当∠EBC =90°时,此情况不存在.综上所述,点E 的坐标为E 1(3,52)或E 2(2,2).(10分)13. 【答案】解:(1)当0≤x≤50时,设商品的售价y 与时间x 的函数关系式为y =kx +b(k 、b 为常数且k≠0),∵y =kx +b 经过点(0,40),(50,90),∴⎩⎪⎨⎪⎧b =4050k +b =90, 解得⎩⎪⎨⎪⎧k =1b =40, ∴y =x +40,∴y 与x 的函数关系式为:y =⎩⎨⎧x +40 (0≤x≤50,且x 为整数)90 (50<x≤90,且x 为整数),(2分) 由数据可知每天的销售量p 与时间x 成一次函数关系.设每天的销售量p 与时间x 的函数关系式为p =mx +n(m ,n 为常数,且m≠0), ∵p =mx +n 过点(60,80),(30,140),∴⎩⎪⎨⎪⎧60m +n =8030m +n =140,解得⎩⎪⎨⎪⎧m =-2n =200, ∴p =-2x +200(0≤x≤90,且x 为整数),(3分)当0≤x≤50时,w =(y -30)·p=(x +40-30)(-2x +200),=-2x 2+180x +2000,当50<x≤90时,w =(90-30)×(-2x +200)=-120x +12000,综上所述,每天的销售利润w 与时间x 的函数关系式是:w =⎩⎨⎧-2x 2+180x +2000 (0≤x≤50,且x 为整数)-120x +12000 (50<x≤90,且x 为整数).(5分) (2)当0≤x≤50时,w =-2x 2+180x +2000=-2(x -45)2+6050,∵a =-2<0且0≤x≤50,∴x =45时,w 最大=6050(元),(6分)当50<x≤90时,w =-120x +12000,∵k =-120<0,∴w 随x 增大而减小.∴x =50时,w 最大=6000(元),∵6050>6000,∴x =45时,w 最大=6050(元),即销售第45天时,当天获得的销售利润最大,最大利润是6050元.(8分)(3)24天.(10分)【解法提示】①当0≤x ≤50,若w 不低于5600元,则w =-2x 2+180x +2000≥5600,解得30≤x ≤60,∴30≤x ≤50;②当50<x ≤90时,若w 不低于5600元,则w =-120x +12000≥5600,解得x ≤1603, ∴50<x ≤1603, 综合①②可得30≤x ≤1603, ∴从第30天到第53天共有24天利润不低于5600元.14. 【答案】解:(1)∵抛物线y =x 2-(m +3)x +9的顶点在x 轴的正半轴上,∴方程x 2-(m +3)x +9=0有两个相等的实数根,∴b 2-4ac =[-(m +3)]2-4×9=0,解得m =3或m =-9,又∵抛物线对称轴大于0,即m +3>0,∴m =3.(3分)(2)由(1)可知抛物线解析式为y =x 2-6x +9,联立一次函数y =x +3,可得⎩⎪⎨⎪⎧y =x 2-6x +9y =x +3, 解得⎩⎪⎨⎪⎧x =1y =4或⎩⎪⎨⎪⎧x =6y =9, ∴A(1,4),B(6,9).(6分)(3)如解图,分别过A 、B 、P 三点作x 轴的垂线,垂足分别为R 、S 、T ,∵A(1,4),B(6,9),C(3,0),P(a ,b),∴AR =4,BS =9,RC =3-1=2,CS =6-3=3,RS =6-1=5,PT =b ,RT =1-a ,ST =6-a ,∴S △ABC =S 梯形ABSR -S △ARC -S △BCS =12×(4+9)×5-12×2×4-12×3×9=15, S △PAB =S 梯形PBST -S 梯形ARTP -S 梯形ARSB =12(9+b)(6-a)-12(b +4)(1-a)-12×(4+9)×5=12(5b -5a -15).(8分)又∵S △PAB =2S △ABC ,∴12(5b -5a -15)=30,即b -a =15, ∴b =15+a ,∵P 点在抛物线上,∴b =a 2-6a +9,∴15+a =a 2-6a +9,解得a =7±732, ∵-3<a<1,∴a =7-732, ∴b =15+7-732=37-732.(10分)15. 【答案】解:(1)∵二次函数y =ax 2+bx 的图象经过点A(2,4)与B(6,0).∴⎩⎪⎨⎪⎧4a +2b =436a +6b =0, 解得⎩⎪⎨⎪⎧a =-12b =3.(4分) (2)如解图①,过点A 作x 轴的垂线,垂足为点D(2,0),连接CD ,过点C 作CE ⊥AD ,CF ⊥x 轴,垂足分别为点E ,点F ,则S △OAD =12OD·AD =12×2×4=4, S △ACD =12AD·CE =12×4×(x -2)=2x -4, S △BCD =12BD·CF =12×4×(-12x 2+3x)=-x 2+6x , 则S =S △OAD +S △ACD +S △BCD =4+(2x -4)+(-x 2+6x)=-x 2+8x.∴S 关于x 的函数表达式为S =-x 2+8x(2<x<6).(10分)∵S =-(x -4)2+16,∴当x =4时,四边形OACB 的面积S 取最大值,最大值为16.(12分)图①【一题多解】解法一:由(1)知y =-12x 2+3x ,如解图②,连接AB ,则 S =S △AOB +S △ABC ,其中S △AOB =12×6×4=12, 设直线AB 解析式为y 1=k 1x +b 1,将点A(2,4),B(6,0)代入,易得,y 1=-x +6,过C 作直线l ⊥x 轴交AB 于点D ,∴C(x ,-12x 2+3x),D(x ,-x +6), ∴S △ABC =S △ADC +S △BDC =12·CD·(x -2)+12·CD·(6-x)=12·CD·4=2CD , 其中CD =-12x 2+3x -(-x +6)=-12x 2+4x -6, ∴S △ABC =2CD =-x 2+8x -12,∴S =S △ABC +S △AOB =-x 2+8x -12+12=-x 2+8x =-(x -4)2+16(2<x<6), 即S 关于x 的函数表达式为S =-x 2+8x(2<x<6),∴当x =4时,四边形OACB 的面积S 取最大值,最大值为16.图②解法二:∵点C 在抛物线y =-12x 2+3x 上, ∴点C(x ,-12x 2+3x), 如解图③,过点A 作AD ⊥x 轴,垂足为点D ,过点C 作CE ⊥x 轴,垂足为点E ,则 点D 的坐标为(2,0),点E 的坐标为(x ,0),∴S =S △OAD +S 梯形ADEC +S △CEB =12×2×4+12(4-12x 2+3x)(x -2)+12(6-x)(-12x 2+3x)=-x 2+8x ,∵S =-x 2+8x =-(x -4)2+16(2<x<6),∴当x =4时,四边形OACB 的面积S 取最大值,最大值为16.图③。
专题训练7 一次函数及反比例函数一、选择题(每小题3分,共24分)1.函数y kx =-与y kx =(k ≠0)的图象的交点个数是( )A. 2B.1C. 0D.不确定2.若点(3,4)是反比例函数xm m y 122++=图象上一点,则此函数图象必经过点( )A.(3,-4)B.(2,-6)C.(4,-3)D. (2,6) 3. 函数y kx b =+与y kxkb =≠()0的图象可能是( )A B C D4.已知反比例函数)0(<=k xky 的图像上有两点A(1x ,1y ),B(2x ,2y ),且21x x <,则21y y -的值是 ( )A.正数B.负数C.非正数D. 不能确定5..在同一坐标系中,函数x ky =和3+=kx y 的图像大致是 ( )A B C D6.骆驼被称为“沙漠之舟”,它的体温随时间的变化而发生较大的变化,其体温(℃)与时间(时)之间的关系如右图所示.若y (℃)表示0时到t 时内骆驼体温的温差(0时到t 时最高温度与最低温度的差).则y 与t 之间的函数关系用图象表示,大致正确的是( )(A ) (B ) (C ) (D ) (第6题)7.李老师骑自行车上班,最初以某一速度匀速行进,中途由于自行车故障,停下修车耽误了几分钟,为了按时到校,李老师加快了速度,仍保持匀速行进,结果准时到校。
在课堂上,李老师请学生画出自行车行进路程s 千米与行进时间t 的函数图像的示意图,同学们画出的示意图如下,你认为正确的是 ( )A B C D8.正比例函数与反比例函数的图象都经过点(1,4),在第一象限内正比例函数的图象在反比例函数图象上方的自变量x 的取值范围是( )(A )1x >. (B )01x <<. (C )4x >. (D )04x <<. 二、填空题(每小题3分,共18分)9.函数4y x =-与4y x=-的图象交于A 、B 两点,过点A 作AC 垂直于y 轴,垂足为点C ,则△BOC 的面积为___________. 10、若函数y=4x 与y=x 1的图象有一个交点是(21,2),则另一个交点坐标是 _。
中考数学总复习《反比例函数与一次函数交点问题》专题训练-附答案学校:___________班级:___________姓名:___________考号:___________ 1.如图,一次函数y x b =+的图像与反比例函数ky x=的图像交于(2,3)A ,(,2)B n -两点.(1)求一次函数与反比例函数的表达式.(2)过点B 作BC y ⊥轴,垂足为C ,连接AC ,求点B 的坐标,并直接写出ABC 的面积.2.如图,反比例函数8y x=-与一次函数2y x =-+的图像交于A B 、两点.求:(1)A B 、两点的坐标; (2)直接写出82x x-<-+的解集.3.如图,已知直线4y x =-+与反比例函数ky x=的图象相交于点()2A a -,,并且与x 轴相交于点B .(1)求反比例函数的表达式; (2)求AOB 的面积;(3)根据图象写出使一次函数的值大于反比例函数的值的x 的取值范围.4.如图,已知直线4y x =-+与反比例函数ky x=的图象相交于点(2)A a -,,并且与x 轴相交于点B .(1)求a 的值;求反比例函数的表达式; (2)求AOB 的面积; (3)求不等式40kx x-+-<的解集(直接写出答案).5.在直角坐标系中,已知120k k ≠,设函数11k y x=与函数()2225y k x =-+的图象交于点A 和点B .已知点A 的横坐标是2,点B 的纵坐标是4-.(1)求12,k k 的值.(2)过点A 作y 轴的垂线,过点B 作x 轴的垂线,在第二象限交于点C ;过点A 作x 轴的垂线,过点B 作y 轴的垂线,在第四象限交于点D .求证:直线CD 经过原点.6.如图,一次函数26y x =-+的图象与x 轴、y 轴分别交于A 、B 两点且与反比例函数my x=(m 是不为0的常数)的图象在第二象限交于点C ,CD x ⊥轴,垂足为D ,若3BO DO =.(1)求m 的值;(2)求两个函数图象的另一个交点E 的坐标; (3)请观察图象,直接写出不等式26mx x-+≥的解集.7.如图,已知反比例函数11k y x=的图象与直线22y k x b =+相交于()1,3A -,(3,)B n 两点.(1)求反比例函数与一次函数的解析式; (2)求△AOB 的面积;(3)直接写出当12y y >时,对应的x 的取值范围.8.如图,直线22y x =+与x 轴交于点C ,与y 轴交于点B ,在直线上取点()2,A a ,过点A 作反比例函数()0ky x x=>的图象.(1)求a 的值及反比例函数的表达式; (2)根据图象,直接写出满足22kx x>+在第一象限内x 的取值范围. (3)点Q 在x 轴负半轴上,满足BOA OAQ ∠=∠,求点Q 的坐标.9.如图,在平面直角坐标系中,点(3,5)A 与点C 关于原点O 对称,分别过点A 、C 作y 轴的平行线,与反比例函数(015)k y k x=<<的图象交于点B 、D ,连接AD 、BC ,AD 与x 轴交于点(2,0)E -.求(1)直线AD 的解析式及k 值; (2)直接写出阴影部分面积之和.10.如图,直线y kx b =+(,k b 为常数)与双曲线my x=(m 为常数)相交于()2,A a ,()1,2B -两点.(1)求直线y kx b=+的解析式;(2)在双曲线myx=上任取两点()11,M x y和()22,N x y,若12x x<,试确定1y和2y的大小关系,并写出判断过程11.如图,一次函数y kx b=+的图象与反比例函数myx=的图象相交于(1,)A n-和(2,1)B-两点,与y轴相交于点C.(1)求一次函数与反比例函数的解析式;(2)若点D与点C关于x轴对称,求ABD△的面积;(3)观察图象直接写出不等式mkx b x>+的解集.12.已知,矩形OCBA 在平面直角坐标系中的位置如图所示,点C 在x 轴的正半轴上,点A 在y 轴的正半轴上,已知点B 的坐标为()4,2,反比例函数ky x=的图象经过AB 的中点D ,且与BC 交于点E ,设直线DE 的解析式为y mx n =+,连接OD OE ,.(1)求反比例函数ky x=的表达式和点E 的坐标; (2)直接写出不等式kmx n x>+的解集; (3)点M 为y 轴正半轴上一点,若MBO △的面积等于ODE 的面积,求点M 的坐标;13.如图1,反比例函数ky x=与一次函数y x b =+的图象交于A B ,两点,已知()2,3B .(1)求反比例函数和一次函数的表达式;(2)一次函数y x b =+的图象与x 轴交于点C ,点D (未在图中画出)是反比例函数图象上的一个动点,若3OCDS=,求点D 的坐标:(3)若点M 是坐标轴上一点,点N 是平面内一点,是否存在点M N ,,使得四边形ABMN 是矩形?若存在,请求出所有符合条件的点M 的坐标;若不存在,请说明理由.14.综合与实践如图,一次函数133y x =+的图象与x 轴交于点A ,与y 轴交于点B ,把线段AB 绕点B 逆时针旋转90︒得到BC ,过点C 作CD y ⊥轴于点D ,反比例函数2ky x=的图象经过点C ,与直线AB 交于两点E 和F .(1)求反比例函数的解析式;(2)如图2,若点E 的横坐标是1,点F 的纵坐标是3-.△直接写出线段BE 和AF 的数量关系和当21y y >时,x 的取值范围; △连接CE 和CF ,求ECF △的面积;(3)当点M 在x 轴上运动,点N 在反比例函数2ky x=的图象上运动,以点A ,D ,M 和N 为顶点的四边形是平行四边形,直接写出点M 的坐标.15.如图1,在平面直角坐标系中,OABC 的一个顶点与坐标原点重合,OA 边落在x 轴上,且4OA =,22OC =和45COA ∠=︒.反比例函数()0,0ky k x x=>>的图象经过点C ,与AB 交于点D ,连接AC CD ,.(1)试求反比例函数的解析式;(2)求证:CD 平分ACB ∠;(3)如图2,连接OD ,在反比例函数图象上是否存在一点P ,使得12POC COD S S =?如果存在,请直接写出点P 的坐标.如果不存在,请说明理由.1.(1)1y x =+ 6y x =(2)1522.(1)A 点坐标为()2,4-,B 点坐标为()4,2-(2)<2x -或04x <<3.(1)12y x =-(2)12(3)2x <-或06x <<4.(1)6a =;12y x=-(2)12 (3)20x <<-或6x >5.(1)110k = 22k =6.(1)20-(2)()5,4-(3)2x ≤-或 05x <≤7.(1)13y x=- 22y x =-+; (2)4;(3)10x -<<或3x >.8.(1)6a =,反比例函数解析式为()120y x x=>; (2)02x <<(3)()2.5,0Q -9.(1)2y x =+,3(2)1210.(1)1y x =-+;(2)当M N 、在双曲线的同一支上时,12y y <;当M N 、在双曲线的不同的一支上时12y y >.11.(1)2y x =- 1y x =-+ (2)ABD △的面积为3(3)10x -<<或2x >12.(1)4y x= ()41, (2)02x <<和4x >(3)302M ⎛⎫ ⎪⎝⎭,13.(1)反比例函数和一次函数的表达式分别为:61y y x x==+, (2)()1,6D --或()1,6D(3)存在,其坐标分别为()()125,00,5M M ,14.(1)6y x= (2)△01x <<或<2x -;△15(3)(4,0)-或(4,0)或(2,0).15.(1)4y x= (2)存在,点P 的坐标为()5151-+,或()5151+-,。
y-52x13-4123-1-2-3-1-2O一次函数与反比例函数1.已知直线3y kx =-经过M (2,1),且与x 轴交于点A ,与y 轴交于点B . (1)求k 的值;(2)求A 、B 两点的坐标;(3)过点M 作直线MP 与y 轴交于点P , 且△MPB 面积为2,求点P 的坐标.解:(1)∵直线y =k x -3过点M(2,1)∴123k =- ,∴2k =---------------------------- 1分 (2)∵2k =,∴23y x =-∴A (32,0),B (0,-3)----------- 3分 (3)∵P 、B 两点在y 轴上,∴点M 到y 轴的距离为2 ∵△MPB 的面积为2,∴PB=2 ------------------------- 4分∵B (0,-3)∴点P 的坐标为:1(0,1)P -,2(0,5)P - -------- 5分2、如图所示,已知一次函数y =x +b (b>0)的图象与x 轴、y 轴分别交于A 、B 两点,且与反比例函数y =mx(m ≠0)的图象在第一象限交于C 点, CD 垂直于x 轴,垂足为D .若AB=1OD =.(1)求点A 、B 的坐标;(2)求一次函数和反比例函数的解析式.解:(1)依题意,有(,0)A b -,(0,)B b .OA OB b ∴==.222OA OB AB += ,222b b ∴+=解得 1b =±,又0,b >∴ 1b =.(1,0)A ∴-的坐标为,(0,1)B 的坐标为.yOxDC B A(2)由(1)可知,一次函数的解析式为1y x =+.CD 垂直于x 轴,1OD =.∴C 的横坐标为1.C AB 点在直线上,112C y ∴=+=点的纵坐标 . C 点在反比例函数y =mx(m ≠0)的图象上, 2m xy ∴==.∴反比例函数的解析式为2y x=. 3、将直线1y x =+向左平移2个单位后得到直线l ,若直线l 与反比例函数ky x=的图象的交点为(2,-m ).(1)求直线l 的解析式及直线l 与两坐标轴的交点; (2)求反比例函数的解析式.解:(1)直线1y x =+向左平移2个单位后得到直线l 的解析式为:y=x+3 - ----1分 直线l 与y 轴的交点为:(0,3),与x 轴的交点为:(-3,0) ---------------3分 (2)∵直线l 与反比例函数ky x=的图象的交点为(2,-m ) ∴m=-5 -----------------------4分 ∴k=10∴反比例函数的解析式为:10y x= -----------------------5分4.在平面直角坐标系中,直线y =-2x 沿y 轴向上平移两个单位得到直线l ,直线l 与反比例函数xky =的图象的一个交点为A (a ,4),试确定反比例函数的解析式. 解:∵ 直线y = -2x 沿y 轴向上平移两个单位得到直线l ,∴直线l 过点(0,2),∴ 直线l 的解析式为 y =-2x +2, …………………………………2分 ∵ A (a ,4)在直线y =-2x +2上, ∴ a =-1,……………………………3分 ∴ 点A 的坐标为(-1,4),∵点A (-1,4)在y =k x 的图象上,∴41k-=, ……………………………………………4分 ∴ k =-4,∴反比例函数的解析式为 y =- 4x. ……………………………5分yOxDC B A5、如图, 点A 在反比例函数xky =的图象上, AB ⊥x 轴于B , 点C 在x 轴上, 且CO =OB , S △ABC =2, 确定此反比例函数的解析式.解: 设A (x , y ), 连接OA , 则OB =x , BA =y . (1)∵ CO =OB ,∴ S △AOB =S △ACO . ……………………2分∴ S △AOB =21S △ABC =1. ……………………3分∴ S △AOB =12121==⋅xy BA OB .∴ k =xy =2. ……………………………………………………………………4分∴ 反比例函数的解析式为xy 2=. …………………………………………………5分6、已知一次函数2y x =+与反比例函数k y x=,一次函数2y x =+图象经过点P(k ,5). (1)试确定反比例函数的表达式;(2)若点Q 是上述一次函数与反比例函数图象在第三象限的交点,求点Q 的坐标. 解:(1)∵一次函数y=x+2的图像经过点P ∴5=k+2∴k=3………………………………………………………………1分 ∴反比例函数解析式为y=x3……………………………………2分 (2)由⎪⎩⎪⎨⎧=+=x y x y 32,解得⎩⎨⎧-=-=13y x 或⎩⎨⎧==13y x ……………………………………4分∵点Q 在第三象限∴Q(-3,-1) ……………………………………………………………5分7、如图,反比例函数xky =(x >0)的图象过点A . (1)求反比例函数的解析式; (2)若点B 在xky =(x >0)的图象上, 求直线AB 的解析式. 解:(1)∵ 反比例函数xky =(x >0)的图象过点A , ∴ k=6. ……………………………………………………………………… 1分∴ 反比例函数的解析式为x6y =. ………………………………………… 2分 (2)∵ 点B 在x6y =的图象上,且其横坐标为6, ∴ 点B 的坐标为(6,1). ………………………………………………… 3分 设直线AB 的解析式为)0k (b kx y ≠+=,把点A 和点B 的坐标分别代入)0k (b kx y ≠+=,⎩⎨⎧+=+=.b k 61,b k 23 解得 ,.4b 21k ⎪⎩⎪⎨⎧=-= …………………………………………… 4分 ∴直线AB 的解析式为4x 21y +-= ……………………………………… 5分8、如图,在平面直角坐标系中,点A 在第一象限,它的纵坐标是横坐标的2倍,反比例函数xy 8=的图象经过点A .正比例函数y=kx 的图象绕原点顺时针旋转90°后,恰好经过点A ,求k 的值. 解:根据题意设A 点坐标为(a ,2 a ),其中a >0. 将(a ,2 a )代入反比例函数xy 8=解析式.∴aa 82=, 2=a . -------------- 1分 ∴.42=a ∴A (2,4).--- 2分∵正比例函数y kx =的图象绕原 点顺时针旋转90°,恰好经过点A , ∴将点A 绕原点逆时针旋转90°后 得到点A ’(-4,2). -------3分∴2=-4k . ------------- 4分∴k =12-. -------------5分9.已知直线l 与直线y =2x 平行,且与直线y = -x +m 交于点(2,0), 求m 的值及直线l的解析式.解:依题意,点(2,0)在直线y = -x +m 上,∴ 0= -1×2+m . ………………………1分∴ m =2. ………………2分 由直线l 与直线y =2x 平行,可设直线l 的解析式为y =2x +b. ………………3分 ∵ 点(2,0)在直线l 上, ∴ 0=2×2+b.∴ b= -4. …………………………………………………………………4分 故直线l 的解析式为 y =2x -4. …………………………………………………5分10.已知正比例函数y kx =(0)k ≠与反比例函数(0)my m x=≠的图象交于A B 、两点,且点A 的坐标为(23),.(1)求正比例函数及反比例函数的解析式;(2)在所给的平面直角坐标系中画出两个函数的图象,根据图象直接写出点B 的坐标及不等式mkxx>的解集. 解:(1)∵点A (2,3)在正比例函数y kx =的图象上,∴ 23k =. 解得 32k =. ∴ 正比例函数的解析式为 32y x =. ……………………………… 1分 ∵点A (2,3)在反比例函数my x=的图象上,∴ 32m =.解得 6m =.∴ 反比例函数的解析式为6y x=.…… 2分 (2)点B 的坐标为(2,3)--, …………… 3分 不等式mkx x>的解集为20x -<<或2x >. ………………………… 5分11.如图,将直线x y 4=沿y 轴向下平移后,得到的直线与x 轴交于点A (0,49),与双曲线k y x=(0x >)交于点B .(1)求直线AB 的解析式;(2)若点B 的纵坐标为m , 求k 的值(用含m 的代数式表示).解:(1)将直线x y 4=沿y 轴向下平移后经过x 轴上点A (0,49), 设直线AB 的解析式为b x y +=4. ·············································· 1分则0494=+⨯b . 解得9-=b . ································· 2分 ∴直线AB 的解析式为94-=x y . ······· 3分(2)设点B 的坐标为(x B ,m ), ∵直线AB 经过点B ,∴94-=B x m . ∴49+=m x B . ∴B 点的坐标为(49+m ,m ), ··········· 4分 ∵点B 在双曲线ky x=(0x >)上, ∴49+=m km .∴492m m k +=. ······································································· 5分12.如图,点A 是直线2y x =与曲线1m y x-=(m 为常数)一支的交点.过点A 作x 轴的垂线,垂足为B ,且OB =2.求点A 的坐标及m 的值.解:由题意,可知点A 的横坐标是2,由点A 在正比例函数2y x =的图象上,∴点A 的坐标为()24,.又 点A 在反比例函数1m y x-=的图象上, 142m -∴=,即9m =.13.已知反比例函数ky x=的图象经过点(22)P ,,直线y x =-沿y 轴向上平移后,与反比例函数图象交于点(1)Q m ,. (1)求k 的值;(2)求平移后直线的解析式. 解:(1)由题意得,22=k………………………1分 解得,k=4 ………………………2分 (2)反比例函数解析式为xy 4=由题意得,m =14解得,m=4 ………………………….3分 设平移后直线解析式为y=-x+b ∵直线过Q (1,4) -1+b=4解得,b=5 ………………………………4分∴平移后直线解析式为y=-x+5 …………………………5分14.如图,一次函数b kx y +=1的图象与反比例函数xmy =2的图象相交于A 、B 两点.(1)求出这两个函数的解析式;(2)结合函数的图象回答:当自变量x 的取值范围满足什么条件时,21y y <?解:(1)由图象知反比例函数xmy =2的图象经过点B (4,3), ∴43m=. ∴m =12. ---------- 1分 ∴反比例函数解析式为212y x=. ---------- 2分 由图象知一次函数b kx y +=1的图象经过点A (-6,-2) , B (4,3),∴⎩⎨⎧=+-=+-.3426 ,b k b k 解得⎪⎩⎪⎨⎧==.,121b k --------- 3分∴一次函数解析式为1112y x =+. -------- 4分 (2)当0<x <4或x <-6时,21y y <.------ 5分15.已知:如图,直线323+-=x y 与x 轴、y 轴分别 交于点A 和点B ,D 是y 轴上的一点,若将△DAB 沿直线DA 折叠,点B 恰好落在x 轴正半轴上的点C 处, 求直线CD 的解析式.解:根据题意,得:)0,2(A ,)32,0(B在Rt △AOB 中,4)32(222=+=AB ,︒=∠30DBA ,…2分∴︒=∠30DCA ,6=+=AB OA OCRt △DOC 中,32tan =∠=DCO OC OD∴)0,6(C ,)32,0(-D …………………………………………3分 设直线CD 的解析式为:32-=kx y∴ 3260-=k ,解得33=k ………………………………5分 所以直线CD 的解析式为3233-=x y16. 已知反比例函数ky x=的图象经过点A ,若一次函数x y = 的图象平移后经过该反比例函数图象上的点),4(m B ,(1)试确定反比例函数和m 的值; (2)平移后的一次函数的表达式;(3)根据图象回答,在第一象限内,当x 取何值时,反比例函数的值大于一次函数函数的值?解:(1)有图可知:A (2,1) ……………………1分反比例函数x ky =的图象经过),4(),1,2(m B A ∴21m ,2k == ……………………2分∴反比例函数的解析式:xy 2= …………………3分(2)设平移后一次函数的解析为:b x y +=的图象经过)21,4(B∴ 23-=b ∴一次函数的解析式:23-=x y ……………………4分(3)当427<<x 时,反比例函数的值大于一次函数函数的值…………………5分17.如图,直线1l :1y x =+与直线2l :y mx n =+相交于点), 1(b P . (1)求b 的值;(2)不解关于y x ,的方程组 请你直接写出它的解; (3)直线3l :y nx m =+是否也经过点P ?请说明理由. 解:(1)∵),1(b 在直线1+=x y 上, ∴当1=x 时,211=+=b .…1分 (2)解是⎩⎨⎧==.2,1y x…………………3分(3)直线m nx y +=也经过点P17题图OxyP第17题1l2l∵点P )2,1(在直线n mx y +=上, ∴2=+n m .……………………4分 把,1x =代入m nx y +=,得2m =+n .∴直线m nx y +=也经过点P .…………………………………………………5分18.一次函数y=ax+b 与反比例函数xky =的图象交于A(2,21),B(1,m)(1)求一次函数及反比例函数的解析式;(2)在23≤≤-x 范围内求一次函数的最大值. 解:(1)据题意将A(2,21)代入xk y = 解得k=1 ………………………………………………………………1分 ∴反比例函数的解析式为xy 1=当x=1时,y=1∴m=1 ………………………………………………………………………………………2分∴B 点坐标为B(1,1)将A 、B 两点代入y=ax+b 有⎪⎩⎪⎨⎧+=+=ba ba 1212 解得⎩⎨⎧=-=32b a …………………………………………………………………………………3分∴一次函数的解析式为y=-2x+3 (2) ∵一次函数y=-2x+3中k=-2<0∴在自变量取值范围内y 随x 的增大而减小∴在23≤≤-x 范围内,当x=-3时,y 取最大值∴y 最大=9. ……………………………………………………………………………………5分19.已知:如图,直线b kx y +=与反比例函数,k y x=(x <0)的图象相交于点A 、点B ,与x 轴交于点C ,其中点A 的坐标为(-2,4),点B 的横坐标为-4.(1)试确定反比例函数的关系式; (2)求△AOC 的面积.解:(1)∵ 反比例函数xk y '=(x <0)的图象相交于点A (-2,4),∴ 8-=k . ∴ 所求的反比例函数的解析式为 xy 8-=.-----------------------------2分 (2)∵ 反比例函数xy 8-=(x <0)的图象相交于点B ,且点B 的横坐标为-4,∴ 点B 的纵坐标为2,即点B 的坐标为)2,4(-. ∵ 直线b kx y +=过点A )4,2(-、点B )2,4(-,∴ ⎩⎨⎧=+-=+-24,42b k b k 解得⎩⎨⎧==6,1b k .∴ b kx y +=的解析式为6+=x y .此时,点C 的坐标为)0,6(-. ∴ △AOC 的面积为S =124621=⨯⨯. ---------5分20. 如图,直线AB 与y 轴交于点A ,与x 轴交于点B ,点A 的纵坐标、点B 的横坐标如图所示.(1)求直线AB 的解析式;(2)过原点O 的直线把△ABO 分成面积相等的 两部分,直接写出这条直线的解析式.解(1)根据题意得,A (0,2),B (4,0)设直线AB 的解析式为(0)y kx b k =+≠则240b k b =⎧⎨+=⎩ ∴122k b ⎧=-⎪⎨⎪=⎩∴直线AB 的解析式为122y x =-+-------------------------------------4分 (2)12y x =----------------------------------------------------------------5分21.已知:如图,正比例函数y ax =的图象与反比例函数ky x=的图象交于点()32A ,. (1)试确定上述正比例函数和反比例函数的表达式;(2)根据图象回答,在第一象限内,当x 取何值时,反比例函数的值大于正比例函数的值?(3)()M m n ,是反比例函数图象上的一动点,其中03m <<,过点M 作直线MB x ∥轴,交y 轴于点B ;过点A 作直线AC y ∥轴交x 轴于点C ,交直线MB 于点D .当四边形OADM 的面积为6时,请判断线段BM 与DM 的大小关系,并说明理由.解:(1)将()32A ,分别代入ky y ax x==,中,得2323ka ==,, ∴ 263k a ==,.∴ 反比例函数的表达式为:6y x =;正比例函数的表达式为23y x =. ··············································· 2分(2)观察图象得,在第一象限内,当03x <<时,反比例函数的值大于正比例函数的值.---------------------------------4分 (3)BM DM =.理由:∵ 132OMB OAC S S k ==⨯=△△, ∴ 63312OMB OAC OBDC OADM S S S S =++=++=△△矩形四边形.即 12OC OB =. ∵ 3OC =,∴ 4OB =. 即 4n =. ∴ 632m n ==.∴ 3333222MB MD ==-=,. ∴MB MD =. ········································································ 7分22.(本小题满分5分)在平面直角坐标系xOy 中,将直线y kx =向上平移3个单位后,与反比例函数ky x=的图象的一个交点为(2,)A m ,试确定平移后的直线解析式和反比例函数解析式.解:将直线y kx =向上平移3个单位后的解析式为3+=kx y ,………………1分 ∵ 点(2,)A m 是直线3+=kx y 与双曲线ky x=的交点, ∴ ⎪⎩⎪⎨⎧=+=2,32km k m …………………………………………2分 解得 k = -2.………………………………3分∴ 平移后的直线解析式为32+-=x y ,反比例函数解析式为xy 2-=.…5分23.如图,正比例函数y kx =和反比例函数my x=的图象都经过 点(33)A ,,将直线y kx =向下平移后得直线l ,设直线l 与 反比例函数的图象的一个分支交于点(6)B n ,. (1)求n 的值;(2)求直线l 的解析式.解:(1)∵正比例函数y kx =和反比例函数my x=的图象都经过点(33)A ,, ∴33,33m k==, ∴1,9.k m ==∴正比例函数为y x =,反比例函数为9y x=. ………………………2分∵点(6)B n ,在反比例函数9y x=的图象上, ∴93.62n ==…………………………………………3分 即(6)B 3,2.(2)∵直线y kx =向下平移后得直线l ,∴设直线l 的解析式为y x b =+.……………………………………4分 又∵点(6)B 3,2在直线l 上, ∴362b +=. ∴9.2b =-∴直线l 的解析式为92y x =-. ………………………………………5分24. 已知:如图,一次函数y x m =+与反比例函数y =的图象在第一象限的交点为(1)A n ,. (1)求m 与n 的值;(2)设一次函数的图像与x 轴交于点B ,连接OA ,求BAO ∠的度数.解:(1)∵点(1,)A n 在双曲线y =上,∴n =分又∵(1A 在直线y m =+上,∴ m =.---------------------------------2分 (2)过点A 作AM ⊥x 轴于点M . ∵ 直线33233+=x y 与x 轴交于点B ,∴0x +=.解得 2x =-.∴ 点B 的坐标为-20(,).∴ 2=OB .---------------------------------3分∵点A 的坐标为, ∴1,3==OM AM .在Rt △AOM 中,︒=∠90AMO , ∴tan 3==∠OMAMAOM . ∴︒=∠60AOM .---------------------------------4分 由勾股定理,得 2=OA . ∴.OA OB = ∴BAO OBA ∠=∠. ∴︒=∠=∠3021AOM BAO .---------------------------------5分25、如图,在平面直角坐标系xOy 中,反比例函数xy 3=与一次函数y =kx 的图象的一个交点为A (m , -3). (1)求一次函数y =kx 的解析式;(2)若点P 在直线OA 上,且满足P A=2OA ,直接 写出点P 的坐标..解:(1)∵ 点A (,3m -)在反比例函数xy 3=的图象上,∴ m33=-. ∴ 1m =-. ……………… 1分∴ 点A 的坐标为A (-1, -3). …………………… 2分 ∵ 点A 在一次函数y kx =的图象上,∴ 3k =.∴ 一次函数的解析式为y =3x . … 3分(2)点P 的坐标为P (1, 3) 或P (-3, -9). (每解各1分) 5分。
中考数学总复习《反比例函数与一次函数综合》专题训练-附答案学校:___________班级:___________姓名:___________考号:___________1.如图,已知反比例函数()10cy c x=≠和一次函数()20y kx b k =+≠的图象相交于点()2,3A -和()3,B a .(1)求反比例函数和一次函数的表达式;(2)将一次函数2y 向下平移5个单位长度后得到直线3y ,当213y y y >>时,求x 的取值范围. 2.如图,反比例函数()0ky k x=>的图象经过正方形OABC 的顶点B ,一次函数1y x =+经过BC 的中点D .(1)求反比例函数的表达式;(2)将ABD △绕点A 顺时针旋转90︒,点D 的对应点为E ,判断E 点是否落在双曲线上. 3.如图,反比例函数()0ky k x=< 的图象与矩形ABCO 的边相交于D 、E 两点()51E -,,且23AD BD =∶∶,一次函数经过D 、E 两点.(1)求反比例函数与一次函数的解析式; (2)求BDE △的面积.4.对于实数,a b ,我们可以用{}min ,a b 表示,a b 两数中较小的数,例如{}min 3,11-=- {}min 2,22=,类x x⎩⎭(1)求反比例函数的解析式;(2)请直接写出不等式2kx x ->的解集;(3)点P 为反比例函数ky x=图像的任意一点,若3POC AOC S S =△△,求点P 的坐标. 7.如图,一次函数y mx n =+()0m ≠的图象与反比例函数ky x=()0k ≠的图象交于第二、四象限内的点(),3A a 和点()6,B b .过点A 作x 轴的垂线,垂足为点C ,AOC 的面积为3(1)分别求出一次函数y mx n =+()0m ≠与反比例函数ky x=()0k ≠的表达式; (2)结合图象直接写出kmx n x>+的解集; (3)在x 轴正半轴上取点P ,使PA PB -取得最大值时,求出点P 的坐标.8.如图,直线y =2x +6与反比例函数=ky x(k >0)的图象交于点A (1,m ),与x 轴交于点B ,平行于x 轴的直线y =n (0<n <6)交反比例函数的图象于点M ,交AB 于点N ,连接BM .x,求AOB 的面积;根据图象,请直接写出满足不等式1y kx b =+C ,点A 的坐标为(2)若点E 是点C 关于x 轴的对称点,求ABE 的面积. 11.已知平面直角坐标系中,直线AB 与反比例函数(0)ky x x=>的图象交于点()1,3A 和点()3,B n ,与x 轴交于点C ,与y 轴交于点D .(1)求反比例函数的表达式及n 的值;(2)将OCD 沿直线AB 翻折,点O 落在第一象限内的点E 处,EC 与反比例函数的图象交于点F . △请求出点F 的坐标;△将线段BF 绕点B 旋转,在旋转过程中,求线段OF 的最大值. 12.如图,正比例函数(0)y kx k =≠与反比例函数my (m 0)x=≠的图象交于A 、B 两点,A 的横坐标为4-,B 的纵坐标为6-.(1)求反比例函数的表达式. (2)观察图象,直接写出不等式mkx x<的解集. (3)将直线AB 向上平移n 个单位,交双曲线于C 、D 两点,交坐标轴于点E 、F ,连接OD 、BD ,若OBD 的面积为20,求直线CD 的表达式.13.某药品研究所开发一种抗菌新药,经多年动物实验,首次用于临床人体试验,测得成人服药后血液中药物浓度y (微克/毫升)与服药时间x 小时之间函数关系如图所示.②的面积是OCD.如图,已知一次函数y轴交于点,若ACD的面积为16.如图,菱形ABCD 的边AB 在x 轴上,点A 的坐标为()1,0,点()44D ,在反比例函数()0k y x x=>的图象上,直线23y x b =+经过点C ,与y 轴交于点E ,与x 轴交于点M ,连接AC 、AE .(1)求k 、b 的值; (2)求ACE △的面积;(3)在x 轴上取点P ,求出使PC PE -取得最大值时点P 的坐标. 17.已知反比例函数1k y x=图象经过点(3,2)A ,直线:(0)l y kx b k =+<,经过点(2,0)C -,经过点A 且垂直于x 轴的直线与直线l 相交于B .(1)求1k 的值;(2)若ABC 的面积等于15,求直线l 的解析式;(3)点G 在反比例函数的图象上,点Q 在x 轴上,问是否存在点G 和点Q ,使以G .Q 及(2)中的C .B 四点为顶点的四边形是平行四边形,若存在,请求出点Q 的坐标,若不存在,请说明理由. 18.(综合与探究)如图,在平面直角坐标系中,已知反比例函数()0ky x x=<的图象过点()4,2C -,点D 的纵坐标为4,直线CD 与x 轴,y 轴分别交于点,A B .Rt AOB直角边上的一个动点,当16PCD AOBS S=时,求点关于y轴的对称点为x轴的对称点为,N 使得以点,,M N为顶点的四边形是平行四边形?若存在,标;若不存在,请说明理由..如图,已知直线y=x参考答案:3.(1)5y x =- 1722y x =+(2)944.(1)B (2)直线1x = 5.(1)1y x =- 2y x= (2)(1,0)C 12x <≤6.(1)3y x= (2)10x -<<或3>x (3)()1,3或()1,3--7.(1)反比例函数的表达式为6y x =-,一次函数表达式为122y x =-+.(2)2x <-或06x << (3)()10,0P 8.(1)8y x= (2)39.(1)反比例函数的表达式为:22y x=-(2)32AOBS=(3)20x -<<或1x >10.(1)一次函数解析式1y x 4=-,反比例函数解析式212y x= (2)32ABE S =△11.(1)3y x= 1n =(2)△F 点坐标为3(4,)4;△线段OF 的最大值为17104+12.(1)24y x=-(2)40x -<<或>4x。
一次函数与反比例函数1.如图,y=kx+b 的图象相交于两点A (m ,3)和B (﹣3,n ).(1)求一次函数的表达式;(2)观察图象,直接写出使反比例函数值大于一次函数值的自变量x 的取值范围.答案:(1)y=x+1(2)x <﹣3或0<x <2 【解析】 分析:(1)将A 与B 坐标分别代入反比例解析式求出m 与n 的值,确定出A 与B 坐标,再将两点代入一次函数解析式中求出k 与b 的值,即可确定出一次函数解析式。
(2)由A 与B 的横坐标,利用函数图象即可求出满足题意x 的范围。
解:(1)将A (m ,3),B (﹣3,n 解得:m=2,n=﹣2。
∴A (2,3),B (﹣3,﹣2)。
将A 与B 代入一次函数解析式得:2k b 33k b 2+=⎧⎨-+=-⎩,解得:k 1b 1=⎧⎨=⎩。
∴一次函数解析式为y=x+1。
(2)∵A (2,3),B (﹣3,﹣2),∴由函数图象得:反比例函数值大于一次函数值的自变量x 的取值范围为x <﹣3或0<x <2。
2.如图,已知直线1y x m =+与x 轴、y 轴分别交于点B A 、,与双曲线别交于点D C 、,且C 点的坐标为)2,1(-.(1)分别求出直线AB 及双曲线的解析式; (2)求出点D 的坐标;(3)利用图象直接写出:当x 在什么范围内取值时,1y >2y .答案:(1)31+=x y ,(2)D(-2,1);(3)12-<<-x 【解析】 试题分析:(1)由点C(-1,2)在直线AB 及双曲线上即可根据待定系数法求解即可; (2)把(1)中求得的两个解析式组成方程组求解即可;(3)找到一次函数的图象在反比例函数的的图象上方的部分对应的x 值的取值范围即可得到结果.解:(1)∵C(-1,2)∴k=-2 ∵C(-1,2)在直线1y x m =+上, ∴2=-1+m ,m=3∴直线解析式为31+=x y ;(2解得⎩⎨⎧=-=12y x 或⎩⎨⎧=-=21y x ∴点D(-2,1);(3)当12-<<-x 时,1y >2y .考点:一次函数与反比例函数的交点问题点评:一次函数与反比例函数的交点问题是初中数学的重点,是中考中比较常见的知识点,一般难度不大,需熟练掌握.3.如图,已知一次函数y=k 1x+b 的图象与反比例函数A (1,-3),B (3,m )两点,连接OA 、OB .(1)求两个函数的解析式;(2)求△AOB 的面积.答案:(1)y=x -4,y=(2)4【解析】试题分析:(1)先把A (1,-3)代入点B 的坐标,最后把点A 、B 的坐标代入一次函数的解析式求解即可;(2)把△AOB 放在一个边长为4的正方形中,再减去周围小直角三角形的面积即可.解:(1)把A (1,-3)代入可得32-=k ,则反比例函数的解析式为y=因为两个图象交于点A (1,-3),B (3,m ),所以m=-1,则点B 坐标为(3,-1) 所以⎩⎨⎧-=+-=+133b k b k ,解得⎩⎨⎧-==41b k所以一次函数的解析式为y=x -4;(2)△AOB 考点:一次函数、反比例函数的性质点评:函数的性质是初中数学的重点,是中考中比较常见的知识点,一般难度不大,需熟练掌握.5.如图,Rt △ABO 的顶点A 是双曲线y=-x-(k+1)在第二象限的交点.AB ⊥x 轴于B ,且 1.5AEO S ∆=.(1)求这两个函数的解析式;(2A 、C 的坐标和△AOC 的面积.并根据图像写出;(3 (4)使一次函数的值大于反比例函数的值的x 的取值范围;答案:(1,2y x =-+;(2)A(-1,3),C(3,-1),4AOCS=;(3)121,3x x =-=;(4)1-<x 或03x << 【解析】 试题分析:(1)先根据反比例函数系数k 的几何意义求得k 的值,即可求得结果;(2)先求出两个图象的交点坐标,以及一次函数与x 轴的交点坐标,再根据三角形的面积公式求解;(3)根据函数图象上的点的坐标的特征结合函数图象的特征求解即可;(4)找到一次函数的图象在反比例函数的图象上方的部分对应的x 的取值范围即可. 解:(1)因为 1.5AEO S ∆= ,解得3±=k 因为图象在第二、四象限, 所以3-=k ,,一次函数解析式为:2y x =-+; (2解得⎩⎨⎧=-=31y x 或⎩⎨⎧-==13y x ,则A(-1,3),C(3,-1) 在2y x =-+中,当0=y 时,02=+-x ,2=x所以△AOC (3(3)当1-<x或.考点:一次函数与反比例函数的交点问题点评:此类问题是初中数学的重点,是中考中比较常见的知识点,一般难度不大,需熟练掌握.6.如图,OA 、OB 的长分别是关于x 的方程032122=+-x x 的两根,且OB OA >。
【例1】 两个反比例函数1k y x =
和()2120k
y k k x
=>>在第一象限内的图象如图所示,动点P
在1k y x =的图象上,PC x ⊥轴于点C ,
交2k y x
=的图象于点A ,PD y ⊥轴于点D ,交2k
y x
=的图象于点B .
⑴求证:四边形PAOB 的面积是定值;
⑵当23PA PC =时,求
DB BP 的值;
【例2】 如图,点A 、B 在反比例函数k
y x
=
(0k >)的图象上,且点A 、B 的横坐标分别为a 和2a (0a >)AC x ⊥轴,垂足为C ,AOC ∆的面积为2. (1)求反比例函数的解析式;
(2)若点(a -,1y ),(2a -,2y )也在反比例函数的图象上,试比较1y 与2y 的大小;
(3)求AOB ∆的面积.
y=
k 2x
y=k 1x
P
D
y
x
O
C
B
A
x
y
O
C
B
A
【例3】 已知:在矩形AOBC 中,4OB =,3OA =.分别以OB OA ,所在直线为x 轴和y 轴,建立如图
所示的平面直角坐标系.F 是边BC 上的一个动点(不与B C ,重合),过F 点的反比例函数(0)k
y k x
=>的图
象与AC 边交于点E .
(1)求证:AOE △与BOF △的面积相等;
(2)记OEF ECF S S S =-△△,求当k 为何值时,S 有最大值,最大值为多少?
(3)请探索:是否存在这样的点F ,使得将CEF △沿EF 对折后,C 点恰好落在OB 上?若存在,求出点F 的坐标;若不存在,请说明理由.
x
y
F
E
C
B
A
O
【例4】 如图,点()1A m m +,
,()31B m m +-,都在反比例函数k
y x
=的图象上. (1)求m k ,的值; (2)如果M 为x 轴上一点,N 为y 轴上一点, 以点A B M N ,,,为顶点的四边形是平行四边形,试求直线MN 的函数表达式.
y
x
O
B
A
【例5】如图,已知反比例函数
12
y
x
=的图象和一次函数7
y kx
=-的图象都经过点()2
P m,.①求这个一次函数的解
析式;②如果等腰梯形ABCD的顶点A B
,在这个一次函数图象上,顶点C D
,在这个反比例函数图象上,两底AD,BC与y轴平行,且A和B的横坐标分别为a和2
a+,求a的值。
【例6】 反比例函数2k
y x
=
和一次函数21y x =-,其中一次函数图像经过()a b ,
,()1a b k ++,两点. (1)求反比例函数的解析式;
(2)求出两函数的交点A 的坐标.在x 轴上是否存在点P ,使AOP ∆为等腰三角形?若存在,把符合条件的点P 的坐标都求出来;若不存在,请说明理由.
【例7】 如图,已知反比例函数12k y x =
的图象与一次函数2y k x b =+的图象交于A B ,两点,()1122A n B ⎛⎫
-- ⎪⎝⎭
,
,,. (1)求反比例函数和一次函数的解析式;
(2)在x 轴上是否存在点P ,使AOP ∆为等腰三角形?若存在,请你直接写出P 点的坐标;若不存在,请说明理由.
y
x
A
B O
a
【例8】 将直线y x =向左平移1个单位长度后得到直线a ,如图,直线a 与反比例函数()1
0y x x
=
>的图象相交于A ,与x 轴相交于B ,则22OA OB -=_____________.
C
B A O
x
y
【例9】 如图,直线y kx b =+与反比例函数()0k y x x
=
<′
的图象相交于点A 、点B ,与x 轴交于点C ,其中点A 的坐标为()24-,
,点B 的横坐标为4-. (1)试确定反比例函数的关系式; (2)求AOC ∆的面积.
【例10】 如图甲,点(1,2)在函数k
y x
=
(0x >)的图象上,矩形ABCD的边BC在x 轴上,点E是对角线BD的中点,函数k
y x
=
(0x >)的图象又经过点A、E,点E的横坐标为m 。
(1)求k 的值; (2)用含m 的代数式表示B、D两点的坐标; (3)当45ABD ∠=时,求直线BD的解析式;
(4)在(3)的条件下,延长DA交y 轴于点F,连接FC。
若在AB与CD之间的这段双曲线上有一动点P,过点P作PG y ⊥轴于点G,交线段FC于点M,过点P作PH x ⊥轴于点H,交线段FC于点N(如图乙),问CM FN
⋅是否为定值?若是,请求出该定值;若不是请说明理由。
(图甲) (图乙)
【例11】 已知函数k
y x
=
的图象上有一点(),P m n ,且,m n 是关于x 的方程2244680x ax a a -+--=的两个实数根,其中a 是使方程有实数根的最小整数,求函数k
y x
=的解析式。
解:
【例12】 心理学家研究发现,一般情况下,一节课40分钟中,学生的注意力随教师讲课的变化而变化.开始上课时,
学生的注意力逐步增强,中间有一段时间学生的注意力保持较为理想的稳定状态,随后学生的注意力开始分散.经过实验分析可知,学生的注意力指标数y 随时间x (分钟)的变化规律如下图所示(其中AB 、BC 分别为线段,CD 为双曲线的一部分):
(1)开始上课后第五分钟时与第三十分钟时相比较,何时学生的注意力更集中?
(2)一道数学竞赛题,需要讲19分钟,为了效果较好,要求学生的注意力指标数最低达到36,那么经过适当安排,老师能否在学生注意力达到所需的状态下讲解完这道题目?
【例13】 下面是数学家帕普斯借助函数给出的一种“三等分锐角”的方法(如
图):将给定的锐角∠AOB 置于直角坐标系中,边OB 在x 轴上,边
OA 与函数x
y 1
=
的图象交于点P ,以P 为圆心、以2OP 为半径作弧交图象于点R .分别过点P 和R 作x 轴和y 轴的平行线,两直线相交于点M ,连接OM 得到∠MOB ,则∠MOB =3
1
∠AOB .
(1)帕普斯的方法究竟是如何证明的呢?请写出证明过程
x
B
H
O R
S
M
Q
P
A y
(2)你能三等分一个钝角吗?(用文字简要说明)
【例14】 如图,已知Rt ABC ∆的顶点A 是一次函数y x m =+与反比例函数m
y x
=
的图像在第一象限内的交点,且3AOB S ∆=.
(1)该一次函数与反比例函数的解析式是否能完全确定?如能确定,请写出它们的解析式;如不能确定,请说明理由. (2)如果线段AC 的延长线与反比例函数的图像的另一支交于D 点,过
D 作D
E x ⊥轴于E ,那么ODE ∆的面积与AOB ∆的面积的大小关系能否确定?
(3)请判断AOD ∆为何特殊三角形,并证明你的结论.
解析1设A (P,P+m )易知OC=m ,故S △ABC=1/2(p+m )^2=3①又p+m=m/p ②,由①②得m=6/1+√6,故它们的解析式都可以确定。
1. 由反比例函数性质:OE*DE=AB*AB,所以△ODE 的面积与△AOB 的面积相等。
2. 联立方程组y=x+m,y=m/x ,得x^2+mx-m=0,易知X1=P,故X2=-P-m ,所以BE=AB ,DE=OB=P ,所以
三角形△ODE≌△AOB,所以OA=OD ,所以△AOD 为等腰三角形。
【例15】 如图所示,设反比例函数1
y x
=
的两支为12C C ,,正三角形PQR 三个顶点位于此反比例函数的图象上. (1)求证:P Q R ,,不能都在反比例函数的同一支上.
(2)设()1P -,-1在2C 上,Q R 、在1C 上,求顶点Q R ,的坐标.
R
Q
P C 2
C 1
O x
y
y=x
y x
O C 1
C 2
P
Q R
习题
O E C B x
A
y
D
1、已知直线3y x =+的图象与x y 、轴交于A B 、两点,直线l 经过原点,与线段AB 交于点C ,把AOB ∆的面积分为2:1的两部分,求直线l 的解析式。
2、如图,在x 轴上有五个点,它们的横坐标依次为12345,,,,.分别过这些点作x 轴的垂线与三条直线y ax =,()1y a x =+,()2y a x =+相交,其中0a >,则图中阴影部分的面积是_________.
解析:图中相当于一个5×5的三角形。
原因很简单,
(a+2)x-(a+1)x=x
(a+1)x-ax=x
所以,阴影从后向前为,下底为5上底为4的梯形,接着下底为4上底为3的梯形…… 最后面积为,5×5/2=12.5
所以,67.5a=12.5,
a=5/27
x
x
3、如图,在直角梯形ABCD 中,45C ∠=︒,上底3AD =,下底5BC =,P 是CD 上任意一点,若PC 用x 表示,四边形ABPD 的面积用y 表示.。