电磁感应安培力冲量之单 双杆模型
- 格式:docx
- 大小:113.43 KB
- 文档页数:5
一、 单杆模型【破解策略】 单杆问题是电磁感应与电路、力学、能量综合应用的体现,因此相关问题应从以下几个角度去分析思考:(1)力电角度:与“导体单棒”组成的闭合回路中的磁通量发生变化→导体棒产生感应电动势→感应电流→导体棒受安培力→合外力变化→加速度变化→速度变化→感应电动势变化→……,循环结束时加速度等于零,导体棒达到稳定运动状态。
(2)电学角度:判断产生电磁感应现象的那一部分导体(电源)→利用t NE ∆∆=φ或BLv E =求感应动电动势的大小→利用右手定则或楞次定律判断电流方向→分析电路结构→画等效电路图。
(3)力能角度:电磁感应现象中,当外力克服安培力做功时,就有其他形式的能转化为电能;当安培力做正功时,就有电能转化为其他形式的能。
00≠v 00=v示意图单杆ab 以一定初速度0v 在光滑水平轨道上滑动,质量为m ,电阻不计,杆长为L轨道水平、光滑,单杆ab 质量为m ,电阻不计,杆长为L轨道水平光滑,杆ab 质量为m ,电阻不计,杆长为L ,拉力F 恒定力 学 观 点导体杆以速度v 切割磁感线产生感应电动势BLv E =,电流R BLvR E I ==,安培力RvL B BIL F 22==,做减速运动:↓↓⇒a v ,当0=v 时,0=F ,0=a ,杆保持静止S 闭合,ab 杆受安培力R BLE F =,此时mR BLE a =,杆ab 速度↑⇒v 感应电动势↓⇒↑⇒I BLv 安培力↓⇒=BIL F 加速度↓a ,当E E =感时,v 最大,且2222L B BLIR L B FR v m ==BL E=开始时m F a =,杆ab 速度↑⇒v 感应电动势↑⇒↑⇒=I BLv E 安培力↑=BIL F 安由a F F m =-安知↓a ,当0=a 时,v 最大,22L B FR v m =图 像 观 点能 量 观 点动能全部转化为内能: 2021mv Q = 电能转化为动能 221m mv W 电 F 做的功中的一部分转化为杆的动能,一部分产热:221m F mv Q W += 1.如图12—2一l2所示,abcd 是一个固定的U 形金属框架,ab 和cd 边都很长,bc 长为l ,框架的电阻不计,ef 是放置在框架上与bc 平行的导体杆,它可在框架上自由滑动(摩擦可忽略),它的电阻为R ,现沿垂直于框架平面的方向加一恒定的匀强磁场,磁感应强度为B ,方向垂直于纸面向里,已知当以恒力F 向右拉导体杆ef 时,导体杆最后匀速滑动,求匀速滑动时的速度.2.两根光滑的足够长的直金属导轨MN 、''N M 平行置于竖直面内,导轨间距为L ,导轨上端接有阻值为R的电阻,如图1所示。
电磁感应中的导轨问题一、单棒问题:基本模型阻尼式 电动式 发电式 二、含容式单棒问题:基本模型放电式 无外力充电式 有外力充电式 三、无外力双棒问题:基本模型无外力等距式 无外力不等距式 四、有外力双棒问题:基本模型有外力等距式 有外力不等距式·阻尼式单棒:1.电路特点:导体棒相当于电源。
2.安培力的特点:安培力为阻力,并随速度减小而减小。
3.加速度特点:加速度随速度减小而减小。
4.运动特点:a 减小的减速运动 5.最终状态:静止6.三个规律(1)能量关系:(2)动量关系:(3)瞬时加速度:7.变化:(1)有摩擦(2)磁场方向不沿竖直方向2 v22B B l vF BIl R r==+22()B F B l v a m m R r ==+20102mv Q-=0mv q Bl=R r Q R Q r =00BIl t mv -⋅∆=-22()B F B l v a m m R r ==+vFvF·发电式单棒1.电路特点:导体棒相当于电源,当速度为v 时,电动势E =Blv 2.安培力的特点:安培力为阻力,并随速度增大而增大 3.加速度特点:加速度随速度增大而减小 4.运动特点:a 减小的加速运动 5.最终特征:匀速运动6.两个极值:(1) v=0时,有最大加速度:(2) a=0时,有最大速度:7.稳定后的能量转化规律:8.起动过程中的三个规律 (1)动量关系:m Ft BLq mgt mv μ--=-(2)能量关系:212E mFs Q mgS mv μ=++(3)瞬时加速度:B F F mga m μ--=9.几种变化(1) 电路变化(并联式)(2)磁场方向变化 (3)拉力变化(若匀加速拉杆则F 大小恒定吗?) (4) 导轨面变化(竖直或倾斜)加沿斜面恒力、通过定滑轮挂一重物、加一开关·电容放电式:1.电路特点:电容器放电,相当于电源;导体棒受安培力而运动。
2电动势,导致电流减小,直至电流为零,此时UC=Blv 3.运动特点:a 渐小的加速运动,最终做匀速运动。
电磁感应中单杆模型的特点与规律
(1)动力学观点:
单杆受到水平方向只受向左的安培力,与速度方向相反,因此安培力对杆的运动起到阻碍作用,因此叫阻尼式单杆。
算一下安培力表达式:
安==F安=BIL=BERL=BBLvRL=B2L2vR
则杆的加速度表达式为:
安a=F安m=B2L2vmR 且方向和速度方向相反
由于加速度方向与速度方向相反,所以杆的速度减小,速度减小那么加速度就减小,直到杆停下来。
因此杆做加速度减小减速运动。
(2)能量观点:
杆的动能全部转化为热能,即 Q=12mv02
(3) 动量观点:
根据动量定理,安培力的冲量等于杆动量的变化量。
即:
BI¯LΔt=0−mv0
其中 I¯Δt=q
因此,可以联立以上两个方程可以求出电荷量。
高中物理-电磁感应中的“双杆模型”“双杆”模型分为两类:一类是“一动一静”,甲杆静止不动,乙杆运动,其实质是单杆问题,不过要注意问题包含着一个条件:甲杆静止、受力平衡.另一种情况是两杆都在运动,对于这种情况,要注意两杆切割磁感线产生的感应电动势是相加还是相减.一、平行导轨:不受其他外力作用光滑平行导轨光滑不等距导轨示意图质量m1=m2 电阻r1=r2 长度L1=L2质量m1=m2电阻r1=r2长度L1=2L2规律分析杆MN做变减速运动,杆PQ做变加速运动,稳定时,两杆的加速度均为零,以相等的速度匀速运动稳定时,两杆的加速度均为零,两杆的速度之比为1∶2(2015·高考四川卷)如图所示,金属导轨MNC和PQD,MN与PQ平行且间距为L,所在平面与水平面夹角为α,N、Q连线与MN垂直,M、P间接有阻值为R的电阻;光滑直导轨NC和QD在同一水平面内,与NQ的夹角都为锐角θ.均匀金属棒ab和ef质量均为m,长均为L,ab棒初始位置在水平导轨上与NQ重合;ef 棒垂直放在倾斜导轨上,与导轨间的动摩擦因数为μ(μ较小),由导轨上的小立柱1和2阻挡而静止.空间有方向竖直的匀强磁场(图中未画出).两金属棒与导轨保持良好接触,不计所有导轨和ab棒的电阻,ef棒的阻值为R,最大静摩擦力与滑动摩擦力大小相等,忽略感应电流产生的磁场,重力加速度为g.(1)若磁感应强度大小为B,给ab棒一个垂直于NQ、水平向右的速度v1,在水平导轨上沿运动方向滑行一段距离后停止,ef棒始终静止,求此过程ef棒上产生的热量;(2)在(1)问过程中,ab棒滑行距离为d,求通过ab棒某横截面的电量;(3)若ab棒以垂直于NQ的速度v2在水平导轨上向右匀速运动,并在NQ位置时取走小立柱1和2,且运动过程中ef棒始终静止.求此状态下最强磁场的磁感应强度及此磁场下ab棒运动的最大距离.[解析](1)设ab棒的初动能为E k,ef棒和电阻R在此过程产生的热量分别为W和W1,有W+W1=E k①且W=W1②由题意有E k=12m v21③得W=14m v21.④(2)设在题设过程中,ab棒滑行时间为Δt,扫过的导轨间的面积为ΔS,通过ΔS的磁通量为ΔΦ,ab棒产生的电动势平均值为E,ab棒中的电流为I,通过ab棒某横截面的电荷量为q,则甲E=ΔΦΔt⑤且ΔΦ=BΔS⑥I=qΔt⑦又有I=2ER⑧由图甲所示ΔS=d(L-d cot θ)⑨联立⑤~⑨,解得q=2Bd(L-d cot θ)R.⑩(3)ab棒滑行距离为x时,ab棒在导轨间的棒长L x为L x=L-2x cot θ⑪此时,ab棒产生的电动势E x为E x=B v2L x⑫流过ef棒的电流I x为I x=E xR⑬ef棒所受安培力F x为F x=BI x L⑭联立⑪~⑭,解得F x=B2v2LR(L-2x cot θ)⑮由⑮式可得,F x在x=0和B为最大值B m时有最大值F1.由题知,ab棒所受安培力方向必水平向左,ef棒所受安培力方向必水平向右,使F1为最大值的受力分析如图乙所示,图中f m为最大静摩擦力,有F1cos α=mg sin α+μ(mg cos α+F1sin α)⑯联立⑮⑯,得B m=1Lmg(sin α+μcos α)R(cos α-μsin α)v2⑰⑰式就是题目所求最强磁场的磁感应强度大小,该磁场方向可竖直向上,也可竖直向下.乙丙由⑮式可知,B为B m时,F x随x增大而减小,x为最大x m时,F x为最小值F2,如图丙可知F2cos α+μ(mg cos α+F2sin α)=mg sin α⑱联立⑮⑰⑱,得x m =μL tan θ(1+μ2)sin αcos α+μ.[答案]见解析二、平行导轨:一杆受恒定水平外力作用光滑平行导轨不光滑平行导轨示意图质量m1=m2电阻r1=r2长度L1=L2摩擦力F f1=F f2=F f 质量m1=m2电阻r1=r2长度L1=L2规律分析开始时,两杆做变加速运动;稳定时,两杆以相同的加速度做匀变速运动开始时,若F f<F≤2F f,则PQ杆先变加速后匀速,MN杆一直静止;若F>2F f,PQ杆先变加速,MN后做变加速最后两杆做匀速运动如图所示,两条平行的金属导轨相距L=1 m,水平部分处在竖直向下的匀强磁场B1中,倾斜部分与水平方向的夹角为37°,处于垂直于斜面的匀强磁场B1中,B1=B2=0.5 T.金属棒MN和PQ的质量均为m=0.2 kg,电阻R MN=0.5 Ω、R PQ=1.5 Ω.MN置于水平导轨上,PQ置于倾斜导轨上,刚好不下滑.两根金属棒均与导轨垂直且接触良好.从t=0时刻起,MN棒在水平外力F的作用下由静止开始向右运动,MN棒的速度v与位移x满足关系v=0.4x.不计导轨的电阻,MN始终在水平导轨上运动,MN与水平导轨间的动摩擦因数μ=0.5.(1)问当MN棒运动的位移为多少时PQ刚要滑动?(2)求从t=0到PQ刚要滑动的过程中通过PQ棒的电荷量;(3)定性画出MN受的安培力随位移变化的图象,并求出MN从开始到位移x1=5 m的过程中外力F做的功.[解析](1)开始PQ刚好不下滑时,PQ受沿倾斜导轨向上的最大静摩擦力F fm,则F fm=mg sin 37°设PQ刚好要向上滑动时,MN棒的感应电动势为E,由法拉第电磁感应定律E=B1L v设电路中的感应电流为I,由闭合电路的欧姆定律得I=ER MN+R PQ设PQ所受安培力为F A,有F A=B2IL此时PQ受沿倾斜导轨向下的最大静摩擦力,由力的平衡条件有:F A=F fm+mg sin 37°又由v=0.4x,联立解得x=48 m.(2)在从t=0到PQ刚要滑动的过程中,穿过回路MNQP的磁通量的变化量ΔΦ=B1Lx=0.5×1×48 Wb=24 Wb通过PQ棒的电荷量q=I·t=ER MN+R PQ·t=ΔΦR MN+R PQ=240.5+1.5C=12 C.(3)回路中的电流I=B1L vR MN+R PQ,MN受到的安培力F A=B1IL,又v=0.4x,故推出F A=0.4xB21L2R MN+R PQ因此MN受的安培力与位移x成正比,故画出如图所示的安培力—位移图象.考虑到MN受的安培力与位移方向相反,故安培力与位移图象包围的面积等于克服安培力做的功,故安培力对MN做功W A=-12·0.4x1B21L2R MN+R PQx1=-0.625 J当x1=5 m时,速度v1=0.4x1=0.4×5 m/s=2 m/s对MN棒由动能定理:W F-μmgx1+W A=12m v21-0故W F=12m v21+μmgx1-W A=⎝⎛⎭⎫12×0.2×22+0.5×0.2×10×5+0.625J=6.025 J.[答案](1)48 m(2)12 C(3)6.025 J三、倾斜导轨:两杆不受外力作用注意双杆之间的制约关系,即“主动杆”与“被动杆”之间的关系,因为两杆都有可能产生感应电动势,相当于两个电源,并且最终两杆的收尾状态的确定是分析问题的关键.(2014·高考天津卷)如图所示,两根足够长的平行金属导轨固定在倾角θ=30°的斜面上,导轨电阻不计,间距L =0.4 m .导轨所在空间被分成区域Ⅰ和Ⅱ,两区域的边界与斜面的交线为MN ,Ⅰ中的匀强磁场方向垂直斜面向下,Ⅱ中的匀强磁场方向垂直斜面向上,两磁场的磁感应强度大小均为B =0.5 T .在区域Ⅰ中,将质量m 1=0.1 kg ,电阻R 1=0.1 Ω的金属条ab 放在导轨上,ab 刚好不下滑.然后,在区域Ⅱ中将质量m 2=0.4 kg ,电阻R 2=0.1 Ω的光滑导体棒cd 置于导轨上,由静止开始下滑.cd 在滑动过程中始终处于区域Ⅱ的磁场中,ab 、cd 始终与导轨垂直且两端与导轨保持良好接触,取g =10 m/s 2.问:(1)cd 下滑的过程中,ab 中的电流方向;(2)ab 刚要向上滑动时,cd 的速度v 多大;(3)从cd 开始下滑到ab 刚要向上滑动的过程中,cd 滑动的距离x =3.8 m ,此过程中ab 上产生的热量Q 是多少.[审题点睛] (1)ab 刚好不下滑,隐含F fm =mg sin θ,方向沿斜面向上,ab 刚要向上滑动时,隐含F 安=F fm +mg sin θ,摩擦力方向沿斜面向下.(2)由于ab 中的电流变化,产生的热量要用功能关系(能量守恒)结合电路知识求解.[解析] (1)由右手定则可判断出cd 中的电流方向为由d 到c ,则ab 中电流方向为由a 流向b . (2)开始放置ab 刚好不下滑时,ab 所受摩擦力为最大静摩擦力,设其为F max ,有F max =m 1g sin θ① 设ab 刚要上滑时,cd 棒的感应电动势为E ,由法拉第电磁感应定律有E =BL v ② 设电路中的感应电流为I ,由闭合电路欧姆定律有 I =ER 1+R 2③ 设ab 所受安培力为F 安,有F 安=BIL ④此时ab 受到的最大静摩擦力方向沿斜面向下,由平衡条件有F 安=m 1g sin θ+F max ⑤ 综合①②③④⑤式,代入数据解得v =5 m/s.(3)设cd 棒运动过程中在电路中产生的总热量为Q 总,由能量守恒定律有m 2gx sin θ=Q 总+12m 2v 2又Q =R 1R 1+R 2Q 总解得Q =1.3 J.[答案] (1)由a 流向b (2)5 m/s (3)1.3 J 四、倾斜导轨:一杆受到外力作用(2016·浙江金华高三质检)如图所示,两根足够长的光滑平行金属导轨MN 、PQ 间距为l =0.5 m ,其电阻不计,两导轨及其构成的平面均与水平面成30°角.完全相同的两金属棒ab 、cd 分别垂直导轨放置,每棒两端都与导轨始终有良好接触,已知两棒质量均为m =0.02 kg ,电阻均为R =0.1 Ω,整个装置处在垂直于导轨平面向上的匀强磁场中,磁感应强度B =0.2 T ,棒ab 在平行于导轨向上的力F 作用下,沿导轨向上匀速运动,而棒cd 恰好能够保持静止,取g =10 m/s 2,问:(1)通过棒cd 的电流I 是多少,方向如何? (2)棒ab 受到的力F 多大?(3)棒cd 每产生Q =0.1 J 的热量,力F 做的功W 是多少?[解析] (1)棒cd 受到的安培力F cd =IlB棒cd 在共点力作用下受力平衡,则F cd =mg sin 30° 代入数据解得I =1 A根据楞次定律可知,棒cd 中的电流方向由d 至c . (2)棒ab 与棒cd 受到的安培力大小相等,F ab =F cd 对棒ab ,由受力平衡知F =mg sin 30°+IlB 代入数据解得F =0.2 N.(3)设在时间t 内棒cd 产生Q =0.1 J 的热量,由焦耳定律知Q =I 2Rt设棒ab 匀速运动的速度大小为v ,其产生的感应电动势E =Bl v ,由闭合电路欧姆定律知,I =E2R由运动学公式知在时间t 内,棒ab 沿导轨的位移 x =v t力F 做的功W =Fx综合上述各式,代入数据解得W =0.4 J. [答案] (1)1 A 方向由d 至c (2)0.2 N (3)0.4 J 五、竖直导轨如图是一种电磁驱动电梯的原理图,竖直平面上有两根很长的平行竖直轨道,轨道间有垂直轨道平面的匀强磁场B 1和B 2,B 1=B 2=1 T ,且B 1和B 2的方向相反,两磁场始终竖直向上做匀速运动.电梯桥厢(未在图中画出)固定在一个用超导材料制成的金属框abdc 内,并且与之绝缘.电梯载人时的总质量为5×103 kg ,所受阻力f =500 N ,金属框垂直轨道的边长L cd =2m ,两磁场沿轨道的宽度均与金属框的竖直边长L ac 相同,金属框整个回路的电阻R =9.5×10-4Ω,若设计要求电梯以v 1=10 m/s 的速度向上匀速运动,取g =10 m/s 2,那么 (1)磁场向上运动速度v 0应该为多大?(2)在电梯向上做匀速运动时,为维持它的运动,外界对系统提供的总功率为多少?(保留三位有效数字)[解析] (1)当电梯向上做匀速运动时,安培力等于重力和阻力之和,所以 F A =mg +f =50 500 N金属框中感应电流大小为 I =2B 1L cd (v 0-v 1)R金属框所受安培力F A =2B 1IL cd 解得v 0=13 m/s.(2)当电梯向上做匀速运动时,由第(1)问中的I =2B 1L cd (v 0-v 1)R ,求出金属框中感应电流I =1.263×104 A金属框中的焦耳热功率P 1=I 2R =1.51×105 W 有用功率为克服电梯重力的功率 P 2=mg v 1=5×105 W阻力的功率为P 3=f v 1=5×103W电梯向上运动时,外界提供的能量,一部分转变为金属框内的焦耳热,另一部分克服电梯的重力和阻力做功.因而外界对系统提供的总功率P 总=P 1+P 2+P 3=6.56×105W. [答案] (1)13 m/s (2)6.56×105 W1.(多选)如图所示,两足够长平行金属导轨固定在水平面上,匀强磁场方向垂直导轨平面向下,金属棒ab 、cd 与导轨构成闭合回路且都可沿导轨无摩擦滑动,两金属棒ab 、cd 的质量之比为2∶1.用一沿导轨方向的恒力F 水平向右拉金属棒cd ,经过足够长时间以后( )A .金属棒ab 、cd 都做匀速运动B .金属棒ab 上的电流方向是由b 向aC .金属棒cd 所受安培力的大小等于2F /3D .两金属棒间距离保持不变解析:选BC.对两金属棒ab 、cd 进行受力分析和运动分析可知,两金属棒最终将做加速度相同的匀加速直线运动,且金属棒ab 速度小于金属棒cd 速度,所以两金属棒间距离是变大的,由楞次定律判断金属棒ab 上的电流方向由b 到a ,A 、D 错误,B 正确;以两金属棒整体为研究对象有:F =3ma ,隔离金属棒cd 分析其受力,则有:F -F 安=ma ,可求得金属棒cd 所受安培力的大小F 安=23F ,C 正确.2.(多选)(2016·唐山模拟)如图所示,水平传送带带动两金属杆a 、b 匀速向右运动,传送带右侧与两光滑平行金属导轨平滑连接,导轨与水平面间夹角为30°,两虚线EF 、GH 之间有垂直导轨平面向下的匀强磁场,磁感应强度为B ,磁场宽度为L ,两金属杆的长度和两导轨的间距均为d ,两金属杆质量均为m ,两杆与导轨接触良好.当金属杆a 进入磁场后恰好做匀速直线运动,当金属杆a 离开磁场时,金属杆b 恰好进入磁场,则( )A .金属杆b 进入磁场后做加速运动B .金属杆b 进入磁场后做匀速运动C .两杆在穿过磁场的过程中,回路中产生的总热量为mgLD .两杆在穿过磁场的过程中,回路中产生的总热量为mgL2解析:选BC.两杆从导轨顶端进入磁场过程中,均只有重力做功,故进入磁场时速度大小相等,金属杆a 进入磁场后匀速运动,b 进入磁场后,a 离开磁场,金属杆b 受力与金属杆a 受力情况相同,故也做匀速运动,A 项错,B 项正确;两杆匀速穿过磁场,减少的重力势能转化为回路的电热,即Q =2mgL sin 30°=mgL ,C 项正确,D 项错.3.(多选)如图所示,光滑平行的金属导轨宽度为L ,与水平方向成θ角倾斜固定,导轨之间充满了垂直于导轨平面的足够大的匀强磁场,磁感应强度为B ,在导轨上垂直导轨放置着质量均为m 、电阻均为R 的金属棒a 、b ,二者都被垂直于导轨的挡板挡住保持静止,金属导轨电阻不计,现对b 棒施加一垂直于棒且平行于导轨平面向上的牵引力F ,并在极短的时间内将牵引力的功率从零调为恒定的功率P .为了使a 棒沿导轨向上运动,P 的取值可能为(重力加速度为g )( )A.2m 2g 2RB 2L 2·sin 2θB .3m 2g 2RB 2L 2·sin 2θC.7m 2g 2RB 2L2·sin 2θ D .5m 2g 2RB 2L2·sin 2θ解析:选CD.以b 棒为研究对象,由牛顿第二定律可知F -mg sin θ-BL v2R BL =ma ,以a 棒为研究对象,由牛顿第二定律可知BL v 2R BL -mg sin θ=ma ′,则F >2mg sin θ,v >2Rmg sin θB 2L 2,故P =F v >4m 2g 2R B 2L 2sin 2θ,由此可得选项C 、D 正确,选项A 、B 错误.4.如图所示,竖直平面内有平行放置的光滑导轨,导轨间距为l =0.2 m ,电阻不计,导轨间有水平方向的匀强磁场,磁感应强度大小为B =2 T ,方向如图所示,有两根质量均为m =0.1 kg ,长度均为l =0.2 m ,电阻均为R =0.4 Ω的导体棒ab 和cd 与导轨接触良好,当用竖直向上的力F 使ab 棒向上做匀速运动时,cd 棒刚好能静止不动,则下列说法正确的是(g 取10m/s 2)( )A .ab 棒运动的速度是5 m/sB .力F 的大小为1 NC .在1 s 内,力F 做的功为5 JD .在1 s 内,cd 棒产生的电热为5 J解析:选A.对导体棒cd 由B Bl v2R l =mg ,得到v =5 m/s ,选项A 正确;再由F =mg +F 安=2 N 知选项B 错误;在1 s 内,力F 做的功W =F v t =10 J ,选项C 错误;在1 s 内,cd 棒产生的电热Q =⎝⎛⎭⎫Bl v2R 2Rt =2.5 J ,选项D 错误.5.(2016·合肥一中高三检测)如图所示,间距l =0.3 m 的平行金属导轨a 1b 1c 1和a 2b 2c 2分别固定在两个竖直面内.在水平面a 1b 1b 2a 2区域内和倾角θ=37°的斜面c 1b 1b 2c 2区域内分别有磁感应强度B 1=0.4 T 、方向竖直向上和B 2=1 T 、方向垂直于斜面向上的匀强磁场.电阻R =0.3 Ω、质量m 1=0.1 kg 、长为l 的相同导体杆K 、S 、Q 分别放置在导轨上,S 杆的两端固定在b 1、b 2点,K 、Q 杆可沿导轨无摩擦滑动且始终接触良好.一端系于K 杆中点的轻绳平行于导轨绕过轻质定滑轮自然下垂,绳上穿有质量m 2=0.05 kg 的小环.已知小环以a =6 m/s 2的加速度沿绳下滑.K 杆保持静止,Q 杆在垂直于杆且沿斜面向下的拉力F 作用下匀速运动.不计导轨电阻和滑轮摩擦,绳不可伸长.取g =10 m/s 2,sin 37°=0.6,cos 37°=0.8.求:(1)小环所受摩擦力的大小; (2)Q 杆所受拉力的瞬时功率.解析:(1)设小环受到的摩擦力大小为F f ,由牛顿第二定律,有m 2g -F f =m 2a 代入数据,得F f =0.2 N.(2)设通过K 杆的电流为I 1,K 杆受力平衡, 有F f =B 1I 1l设回路总电流为I ,总电阻为R 总,有I =2I 1 R 总=32R设Q 杆下滑速度大小为v ,产生的感应电动势为E ,有I =ER 总E =B 2l vF +m 1g sin θ=B 2Il拉力的瞬时功率为P =F v联立以上方程,代入数据得P =2 W. 答案:(1)0.2 N (2)2 W6.如图所示,两根足够长且平行的光滑金属导轨与水平面成53°角固定放置,导轨间连接一阻值为6 Ω的电阻R ,导轨电阻忽略不计.在两平行虚线m 、n 间有一方向垂直于导轨所在平面向下、磁感应强度为B 的匀强磁场.导体棒a 的质量为m a =0.4 kg ,电阻R a =3 Ω;导体棒b 的质量为m b =0.1 kg ,电阻R b =6 Ω.导体棒a 、b 分别垂直导轨放置并始终与导轨接触良好.a 、b从开始相距L 0=0.5 m 处同时由静止释放,运动过程中它们都能匀速穿过磁场区域,当b 刚穿出磁场时,a 正好进入磁场,g 取10 m/s 2,不计a 、b 之间电流的相互作用,sin 53°=0.8,cos 53°=0.6.求:(1)在a 、b 分别穿越磁场的过程中,通过R 的电荷量之比;(2)在穿越磁场的过程中,a 、b 两导体棒匀速运动的速度大小之比; (3)磁场区域沿导轨方向的宽度d ; (4)在整个运动过程中,产生的总焦耳热. 解析:(1)由q 总=I Δt ,I =E R 总,E =ΔΦΔt ,得q 总=ΔΦR 总在b 穿越磁场的过程中,b 是电源,a 与R 是外电路,电路的总电阻R 总1=8 Ω 通过R 的电荷量为q Rb =13q 总1=13·ΔΦR 总1同理,a 在磁场中匀速运动时,R 总2=6 Ω,通过R 的电荷量为q Ra =12q 总2=12·ΔΦR 总2,可得q Ra ∶q Rb =2∶1.(2)设a 、b 穿越磁场的过程中的速度分别为v a 和v b ,则b 中的电流I b =BL v bR 总1由平衡条件得B 2L 2v bR 总1=m b g sin 53°同理,a 在磁场中匀速运动时有 B 2L 2v aR 总2=m a g sin 53°, 解得v a ∶v b =3∶1.(3)设b 在磁场中穿越的时间为t ,由题意得: v a =v b +gt sin 53°,d =v b t因为v 2a -v 2b =2gL 0sin 53°,v a ∶v b =3∶1所以d =0.25 m.(4)a 穿越磁场时所受安培力F 安=m a g sin 53° 克服安培力所做的功W a =m a gd sin 53°=0.8 J 同理,b 穿越磁场时克服安培力所做的功 W b =m b gd sin 53°=0.2 J由功能关系得,在整个过程中,电路中产生的总焦耳热Q =W a +W b =1 J. 答案:(1)2∶1 (2)3∶1 (3)0.25 m (4)1 J。
电磁感应双杆模型学生姓名:年级:老师:上课日期:时间:课次:磁感力学分析1.受力情况、运情况的分析及思考路体受力运生感→感流→通体受安培力→合力化→加速度化→速度化→感化→⋯周而复始地循,直至最达到定状,此加速度零,而体通加速达到最大速度做匀速直运或通减速达到定速度做匀速直运.2.解决此的基本思路解决磁感中的力学的一般思路是“先后力”.(1) “源”的分析——分离出路中由磁感所生的源,求出源参数 E 和 r ;(2)“路”的分析——分析路构,弄清串、并关系,求出相关部分的流大小,以便求解安培力;(3)“力”的分析——分析研究象( 常是金属杆、体圈等 ) 的受力情况,尤其注意其所受的安培力;(4)“运”状的分析——根据力和运的关系,判断出正确的运模型.3.两种状理(1)体于平衡——静止状或匀速直运状.理方法:根据平衡条件 ( 合外力等于零 ) ,列式分析.(2)体于非平衡——加速度不零.理方法:根据牛第二定律行分析或合功能关系分析.4.磁感中的力学界(1)解决的关是通运状的分析找程中的界状,如由速度、加速度求最大或最小的条件.(2)基本思路注意当体切割磁感运存在界条件:(1)若体初速度等于界速度,体匀速切割磁感;(2)若体初速度大于界速度,体先减速,后匀速运;(3)若导体初速度小于临界速度,导体先加速,后匀速运动.1、【平行等距无水平外力】如所示,两根足的固定的平行金属位于同一水平面内,两的距离L,上面横放着两根体棒ab 和 cd,构成矩形回路,两根体棒的量皆m,阻皆R,回路中其余部分的阻可不.在整个平面内都有直向上的匀磁,磁感度B.两体棒均可沿无摩擦地滑行,开始,棒cd 静止,棒ab 有指向棒cd 的初速度v0,若两体棒在运中始不接触,求:( 1)在运动中产生的焦耳热最多是多少?( 2)当ab 棒的速度变为初速度的3/4时, cd棒的加速度是多少?2、【平行不等间距无水平外力】如图所示,光滑导轨EF、 GH等高平行放置,EG间宽度为FH间宽度的3倍,导轨右侧水平且处于竖直向上的匀强磁场中,左侧呈弧形升高。
第2讲|电磁感应中的“三类模型问题”┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄考法学法电磁感应的动力学和能量问题是历年高考的热点和难点,考查的题型一般包括“单杆”模型、“双杆”模型或“导体框”模型,考查的内容有:①匀变速直线运动规律;②牛顿运动定律;③功能关系;④能量守恒定律;⑤动量守恒定律。
解答这类问题时要注意从动力学和能量角度去分析,根据运动情况和能量变化情况分别列式求解。
用到的思想方法有:①整体法和隔离法;②全程法和分阶段法;③条件判断法;④临界问题的分析方法;⑤守恒思想;⑥分解思想。
模型(一)电磁感应中的“单杆”模型类型1“单杆”——水平式物理模型匀强磁场与导轨垂直,磁感应强度为B,导轨间距为L,导体棒ab的质量为m,初速度为零,拉力恒为F,水平导轨光滑,除电阻R外,其他电阻不计动态分析设运动过程中某时刻测得导体棒ab的速度为v,由牛顿第二定律知导体棒ab的加速度为a=Fm-B2L2vmR,a、v同向,随速度的增加,导体棒ab的加速度a减小,当a=0时,v最大,I=BL v mR不再变化收尾状态运动形式匀速直线运动力学特征受力平衡,a=0 电学特征I不再变化[例1](2018·安徽联考)如图所示,光滑平行金属导轨P Q、MN固定在光滑绝缘水平面上,导轨左端连接有阻值为R的定值电阻,导轨间距为L,有界匀强磁场的磁感应强度大小为B、方向竖直向上,边界ab、cd均垂直于导轨,且间距为s,e、f分别为ac、bd的中点,将一长度为L、质量为m、阻值也为R的金属棒垂直导轨放置在ab左侧12s处。
现给金属棒施加一个大小为F、方向水平向右的恒力,使金属棒从静止开始向右运动,金属棒向右运动过程中始终垂直于导轨并与导轨接触良好。
当金属棒运动到ef位置时,加速度刚好为零,不计其他电阻。
求:(1)金属棒运动到ef 位置时的速度大小;(2)金属棒从初位置运动到ef 位置,通过金属棒的电荷量; (3)金属棒从初位置运动到ef 位置,定值电阻R 上产生的焦耳热。
法拉第电磁感应定律——单双杆模型单双杆模型一、知识点扫描1.无力单杆(阻尼式)整个回路仅有电阻,导体棒以一定初速度垂直切割磁感线,除安培力外不受其他外力。
根据右手定则确定电流方向,左手定则确定安培力方向,画出受力分析图。
这种情况下安培力方向与速度方向相反。
某时刻下导体棒的速度为v,则感应电动势E=BLv,感应电流I= E/ (R+r),安培力大小F=BLI。
根据牛顿定律,可知导体棒做加速度逐渐减小的减速运动,最终减速到零。
根据牛顿定律,整个过程中通过任一横截面的电荷量q=BLmv/(R+r)。
实际上也可通过牛顿定律求解电荷量:BLq=mv。
从能量守恒的角度出发,即导体棒减少的动能转化成整个回路产生的热量。
2.___单杆(发电式)整个回路仅有电阻,导体棒在恒力F作用下从静止出发垂直切割磁感线。
根据右手定则确定电流方向,左手定则确定安培力方向,画出受力分析图。
这种情况下安培力方向与速度方向相反。
某时刻下导体棒的速度为v,则感应电动势E=BLv,感应电流I=E/ (R+r),安培力大小F=BLI。
根据牛顿定律,可知导体棒做加速度逐渐减小的加速运动,当a=0时有最大速度,v_max=FL/(B^2L^2r)。
这种情况下仍有q=BLmv/ (R+r)。
电磁感应实验是物理学中的重要实验之一,通过实验可以研究电磁感应现象。
本文将介绍三种不同的电磁感应实验,分别是不含容单杆、含容单杆和含源单杆实验。
1.不含容单杆实验在不含容单杆实验中,电、电阻和导体棒通过光滑导轨连接成回路,导体棒以一定的初速度垂直切割磁感线,除安培力外不受其他外力。
当导体棒向右运动时,切割磁感线产生感应电动势,根据右手定则知回路存在逆时针的充电电流,电两端电压逐渐增大。
而又根据左手定则知导体棒受向左的安培力,因此导体棒做减速运动,又因E=BLv可知产生的感应电动势逐渐减小,当感应电动势减小至与电两端相同时,不再向电充电,充电电流为零,导体不受安培力,做匀速直线运动。
专题13电磁感应中的单杆、双杆、导线框问题01专题网络.思维脑图 (1)02考情分析.解密高考 (2)03高频考点.以考定法 (2) (2) (5) (7)考向1:导体棒平动切割磁感应线的综合问题 (7)考向2:导体棒旋转切割磁感应线的综合问题 (8)考向3:线框进出磁场类问题的综合应用 (9)考向4:双杆在导轨上运动的综合应用 (10)04核心素养.难点突破 (11)05创新好题.轻松练 (16)新情境1:航空航天类 (16)新情境2:航洋科技类 (18)新情境3:生产生活相关类 (19)一、电磁感应中的单杆模型1.单杆模型的常见情况质量为m、电阻不计的单杆ab以一定初速度v0在光滑水平轨道上滑动,两平行导轨间距为L 轨道水平光滑,单杆ab质量为m,电阻不计,两平行导轨间距为L轨道水平光滑,单杆ab质量为m,电阻不计,两平行导轨间距为L,拉力F恒定轨道水平光滑,单杆ab质量为m,电阻不计,两平行导轨间距为L,拉力F恒定F 做的功一部分转化2.在电磁感应中,动量定理应用于单杆切割磁感线运动,可求解变力的时间、速度、位移和电荷量。
(1)求电荷量或速度:B I LΔt =mv 2-mv 1,q =I Δt 。
(2)求位移:-B 2L 2v ΔtR 总=0-mv 0,x =v̅Δt 。
(3)求时间:⇒-B I LΔt +F 其他·Δt =mv 2-mv 1,即-BLq +F 其他·Δt =mv 2-mv 1 已知电荷量q ,F 其他为恒力,可求出变加速运动的时间。
⇒-B 2L 2v ΔtR 总+F 其他·Δt =mv 2-mv 1,v̅Δt =x已知位移x ,F 其他为恒力,也可求出变加速运动的时间。
二、电磁感应中的双杆模型1.双杆模型的常见情况(1)初速度不为零,不受其他水平外力的作用质量m b=m a;电阻r b=r a;长度L b=L a质量m b=m a;电阻r b=r a;长度L b=2L a杆b受安培力做变减速运动,杆a受安培力能量质量m b=m a;电阻r b=r a;长度L b=L a摩擦力F fb=F fa;质量m b=m a;电阻r b=r a;长度L b=L a 开始时,两杆受安培力做变加速运动;开始时,若F<F≤2F,则a杆先变加速后匀速运动;b杆F做的功转化为两杆的动能和内能:F做的功转化为两杆的动能和内能(包括电热和摩擦热):进行解决。
一、 单杆模型【破解策略】 单杆问题是电磁感应与电路、力学、能量综合应用的体现,因此相关问题应从以下几个角度去分析思考:(1)力电角度:与“导体单棒”组成的闭合回路中的磁通量发生变化→导体棒产生感应电动势→感应电流→导体棒受安培力→合外力变化→加速度变化→速度变化→感应电动势变化→……,循环结束时加速度等于零,导体棒达到稳定运动状态。
(2)电学角度:判断产生电磁感应现象的那一部分导体(电源)→利用t NE ∆∆=φ或BLv E =求感应动电动势的大小→利用右手定则或楞次定律判断电流方向→分析电路结构→画等效电路图。
(3)力能角度:电磁感应现象中,当外力克服安培力做功时,就有其他形式的能转化为电能;当安培力做正功时,就有电能转化为其他形式的能。
00≠v 00=v示意图单杆ab 以一定初速度0v 在光滑水平轨道上滑动,质量为m ,电阻不计,杆长为L轨道水平、光滑,单杆ab 质量为m ,电阻不计,杆长为L轨道水平光滑,杆ab 质量为m ,电阻不计,杆长为L ,拉力F 恒定力 学 观 点导体杆以速度v 切割磁感线产生感应电动势BLv E =,电流R BLvR E I ==,安培力RvL B BIL F 22==,做减速运动:↓↓⇒a v ,当0=v 时,0=F ,0=a ,杆保持静止S 闭合,ab 杆受安培力R BLE F =,此时mR BLE a =,杆ab 速度↑⇒v 感应电动势↓⇒↑⇒I BLv 安培力↓⇒=BIL F 加速度↓a ,当E E =感时,v 最大,且2222L B BLIR L B FR v m ==BL E=开始时m F a =,杆ab 速度↑⇒v 感应电动势↑⇒↑⇒=I BLv E 安培力↑=BIL F 安由a F F m =-安知↓a ,当0=a 时,v 最大,22L B FR v m =图 像 观 点能 量 观 点动能全部转化为内能: 2021mv Q = 电能转化为动能 221m mv W 电 F 做的功中的一部分转化为杆的动能,一部分产热:221m F mv Q W += 1.如图12—2一l2所示,abcd 是一个固定的U 形金属框架,ab 和cd 边都很长,bc 长为l ,框架的电阻不计,ef 是放置在框架上与bc 平行的导体杆,它可在框架上自由滑动(摩擦可忽略),它的电阻为R ,现沿垂直于框架平面的方向加一恒定的匀强磁场,磁感应强度为B ,方向垂直于纸面向里,已知当以恒力F 向右拉导体杆ef 时,导体杆最后匀速滑动,求匀速滑动时的速度.2.两根光滑的足够长的直金属导轨MN 、''N M 平行置于竖直面内,导轨间距为L ,导轨上端接有阻值为R的电阻,如图1所示。
电磁感应中的单双杆问题-、单杆问题(一) 与动力学相结合的问题1、水平放置的光滑金属轨道上静止一根质量为m的金属棒MN,电阻为R,左端连接-电动势为E,内阻为r的电源,其他部分及连接处电阻不计,试求:金属棒在轨道上的最大速度?2、水平放置的光滑金属轨道上静止一根质量为m的金属棒MN ,电阻为R,左端连接一电阻为R,MN在恒力F的作用下从静止开始运动,其他部分及连接处电阻不计,试求:金属棒在轨道上的最大速度?3、金属导轨左端接电容器,电容为 整个装置处于垂直纸面磁感应强度为 速度v ,试求金属棒的最大速度?C ,轨道上静止一长度为 L 的金属棒cd , B 的匀强磁场当中,现在给金属棒一初_P< X X ~p< X X1 (k 乂(二)与能量相结合的题型 1、倾斜轨道与水平面夹角为,整个装置处于与轨道相垂直的匀强磁场当中,导轨顶端连有一电阻R ,金属杆的电阻也为 R 其他电阻可忽略,让金属杆由静止释放,经过一段时 求: 间后达到最大速度V m ,且在此过程中电阻上生成的热量为 (1 )金属杆达到最大速度时安培力的大小(2)磁感应强度B 为多少(3 )求从静止开始到达到最大速度杆下落的高度2. ( 20 分)如图所示,竖直平面内有一半径为r 、内阻为R i 、粗细均匀的光滑半圆形金属环,在 M 、N 处与相距为2r 、电阻不计的平行光滑 金属轨道ME 、NF 相接,EF 之间接有电阻 R 2,已知R i = 12R , R 2MNATCDB[xR■ ■ ■ ■ *=4R 。
在MN 上方及CD 下方有水平方向的匀强磁场 I 和II ,磁感应强度大小均为 B 。
现有质量为m 、电阻不计的导体棒 ab ,从半圆环的最高点 A 处由静止下落,在下落过程中导体 棒始终保持水平,与半圆形金属环及轨道接触良好,两平行轨道中够长。
已知导体棒 ab 下落r/2时的速度大小为 W ,下落到MN 处的速度大小为 V 2。
电磁感应安培力冲量之单、双杆模型
2010年海淀一模
1.如图所示,固定在上、下两层水平面上的平行金属导轨MN、M N''和OP、O P''间距
''',两轨道间距也均为l,且
都是l,二者之间固定有两组竖直半圆形轨道PQM和P Q M
'''的竖直高度均为4R,两组半圆形轨道的半径均为R。
轨道的QQ'端、MM' PQM和P Q M
端的对接狭缝宽度可忽略不计,图中的虚线为绝缘材料制成的固定支架,能使导轨系统位置固定。
将一质量为m的金属杆沿垂直导轨方向放在下层导轨的最左端OO'位置,金属杆在与水平成θ角斜向上的恒力作用下沿导轨运动,运动过程中金属杆始终与导轨垂直,且接触
良好。
当金属杆通过4R的距离运动到导轨末端PP'位置时其速度大小
v=。
金属杆
P
和导轨的电阻、金属杆在半圆轨道和上层水平导轨上运动过程中所受的摩擦阻力,以及整个运动过程中所受空气阻力均可忽略不计。
(1)已知金属杆与下层导轨间的动摩擦因数为μ,求金属杆所受恒力F的大小;
(2)金属杆运动到PP'位置时撤去恒力F,金属杆将无碰撞地水平进入第一组半圆轨道PQ
''的内侧,和P Q'',又在对接狭缝Q和Q'处无碰撞地水平进入第二组半圆形轨道QM和Q M
求金属杆运动到半圆轨道的最高位置MM'时,它对轨道作用力的大小;
(3)若上层水平导轨足够长,其右端连接的定值电阻阻值为r,导轨处于磁感应强度为B、方向竖直向下的匀强磁场中。
金属杆由第二组半圆轨道的最高位置MM'处,无碰撞地水平进入上层导轨后,能沿上层导轨滑行。
求金属杆在上层导轨上滑行的最大距离。
2013海淀一模
2.(20分)如图13所示,光滑、足够长、不计电阻、轨道间距为l 的平行金属导轨MN 、PQ ,水平放在竖直向下的磁感应强度不同的两个相邻的匀强磁场中,左半部分为Ι匀强磁场区,磁感应强度为B 1;右半部分为Ⅱ匀强磁场区,磁感应强度为B 2,且B 1=2B 2。
在Ι匀强磁场区的左边界垂直于导轨放置一质量为m 、电阻为R 1的金属棒a ,在Ι匀强磁场区的某一位置,垂直于导轨放置另一质量也为m 、电阻为R 2的金属棒b 。
开始时b 静止,给a 一个向右冲量I 后a 、b 开始运动。
设运动过程中,两金属棒总是与导轨垂直。
(1)求金属棒a 受到冲量后的瞬间通过金属导轨的感应电流;
(2)设金属棒b 在运动到Ι匀强磁场区的右边界前已经达到最大速度,求金属棒b 在Ι匀强磁场区中的最大速度值;
(3)金属棒b 进入Ⅱ匀强磁场区后,金属棒b 再次达到匀速运动状态,设这时金属棒a 仍然在Ι匀强磁场区中。
求金属棒b 进入Ⅱ匀强磁场区后的运动过程中金属棒a 、b 中产生的总焦耳热。
图13
B 1
B 2
I b
P Q
M
Ⅱ
Ι
电磁感应安培力冲量之单、双杆模型答案: 1.【解析】
(1)对金属杆受力分析,由动能定理得,()2
1cos sin 42
P F mg F R mv θμθ--⋅=⎡⎤⎣⎦,所以有(2)cos sin mg
F μθμθ
+=
+。
(2)由动能定理得,22
11422
M P mg R mv mv -⋅=-,所以M v =M 点,由牛顿第二定
律得,2
M
v N mg m R
+=,故7N mg =。
3)由动量定理得,0M q B
l t mv t ∆-∆=-∆,而xl
q t B r t r
ϕ∆∆=∆=∆,故x = 2. (20分)
(1)设金属棒a 受到冲量I 时的速度为v 0,金属棒a 产生的感应电动势为E ,金属轨道中
的电流为i ,则
I=mv 0………………………………………………1分 E=B 1lv 0………………………………………………1分 i=
2
1R R E
+………………………………………………1分
i=
m
R R lI
B )(211+………………………………………………1分
(2)金属棒a 和金属棒b 在左部分磁场中运动过程中所受安培力大小相等、方向相反,合力为零,故a 、b 组成的,水平方向动量守恒。
金属棒a 和金属棒b 在Ι匀强磁场区中运动过程中达到的最大速度v m 时,二金属棒速度相等,感应电流为零,二金属棒匀速运动,根据动量守恒定律有 mv 0=2mv m ………………………………………………2分 v m =
m
I
2………………………………………………2分 (3)金属棒b 进入Ⅱ匀强磁场时,设金属棒a 的感应电动势为E 1,金属棒b 的感应电动势为E 2, E 1=B 1lv m E 2=B 2lv m 因为 B 1=2 B 2
所以 E 1=2 E 2………………………………………………2分
所以,金属棒b 一进入Ⅱ匀强磁场,电流立即出现,在安培力作用下金属棒a 做减速运动,金属棒b 做加速运动。
设金属棒a 在Ι匀强磁场区运动速度从v m 变化到最小速度v a ,所用时间为t ,金属棒b 在Ⅱ匀强磁场区运动速度从v m 变化到最大速度为v b ,所用时间也为t ,此后金属棒a 、b 都匀速运动,则
B 1lv a = B 2lv b ………………………………………………3分
即 v b =2v a ………………………………………………1分 设在t 时间内通过金属棒a 、b 的电流平均值为-
I 根据动量定理有
B 1-
I lt=mv a -mv m 方向向左………………………………………………1分 B 2-I lt=mv b -mv m 方向向右………………………………………………1分 解得:m a v v 5
3
=………………………………………………1分 m b v v 5
6
=
………………………………………………1分 设金属棒b 进入Ⅱ匀强磁场后,金属棒a 、b 产生的总焦耳热为Q ,根据能量守恒,有
Q mv mv v m b a m ++=⨯2222
121221……………………………………1分 Q=m
I 402……………………………………1分。