最新高三数学专题精练:函数
- 格式:doc
- 大小:753.26 KB
- 文档页数:21
3.3幂函数(精练)1.(2023·全国·高一专题练习)已知幂函数()f x 的图象经过点()8,4,则()f x 的大致图象是()A .B .C .D .【答案】C【解析】设()f x x α=,因为()f x 的图象经过点()8,4,所以84α=,即3222α=,解得23α=,则()23f x x ==,因为()()f x f x -===,所以()f x 为偶函数,排除B 、D ,因为()f x 的定义域为R ,排除A .因为()23f x x =在[)0,∞+内单调递增,结合偶函数可得()f x 在(],0-∞内单调递减,故C 满足,故选:C.2.(2023·山东聊城)已知421333111,,2325a b c ⎛⎫⎛⎫⎛⎫=== ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,则()A .a b c <<B .c<a<bC .a b c>>D .b<c<a【答案】B【解析】由已知,421333111,,2325a b c ⎛⎫⎛⎫⎛⎫=== ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,化简222333111,,435a b c ⎛⎫⎛⎫⎛⎫=== ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,因为幂函数23y x =在()0,+∞上单调递增,而15<14<13,所以222333111543<<⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭.故选:B.3.(2022秋·辽宁葫芦岛·高一校联考期中)设 1.2111y =, 1.428y =,0.63130y =,则()A .231y y y >>B .312y y y >>C .132y y y >>D .321y y y >>【答案】D【解析】由题意可知,()0.61.220.611111121y ===,()()1.40.61.43 4.270.628222128y =====,因为0.6y x =在()0,∞+上是增函数,130128121>>,所以321y y y >>.故选:D.4.(2023·福建南平)下列比较大小中正确的是()A .0.50.53223⎛⎫⎛⎫< ⎪⎪⎝⎭⎝⎭B .112335--⎛⎫⎛⎫-<- ⎪ ⎪⎝⎭⎝⎭C .3377(2.1)(2.2)--<-D .44331123⎛⎫⎛⎫-< ⎪ ⎪⎝⎭⎝⎭【答案】C【解析】对于A 选项,因为0.5y x =在[0,)+∞上单调递增,所以0.50.523()()32<,故A 错误,对于B 选项,因为1y x -=在(,0)-∞上单调递减,所以1123()()35--->-,故B 错误,对于C 选项,37y x =为奇函数,且在[0,)+∞上单调递增,所以37y x =在(,0)-∞上单调递增,因为333777115(2.2)511--⎭==⎛⎫⎛⎫--- ⎪ ⎪⎝⎝⎭,又()337752.111⎛⎫-<- ⎪⎝⎭,所以3377(2.1)(2.2)--<-,故C 正确,对于D 选项,43y x =在[0,)+∞上是递增函数,又443311()()22-=,所以443311()()23>,所以443311()()23->,故D 错误.故选:C.5.(2022秋·河南·高一统考期中)()3a π=-,27b =-,()05c =-,则()A .a b c <<B .b a c <<C .<<c a bD .c b a<<【答案】A【解析】 3()f x x =,在R 上单调递增,而()(3)a f b f π=-=-,,根据单调递增的性质,得0a b <<,又1c =,所以a b c <<.故选:A6(2022秋·福建泉州·高一校联考期中)下列比较大小正确的是()A 12433332-->>B .12433332-->>C .12433332--->>D .21433323--->>【答案】C2242333π---⎡⎤==⎢⎥⎣⎦,21333--=又23y x -=在()0,∞+上单调递减,2π>,所以2223332π---<<,所以12433332-->>.故选:C7.(2023·江苏常州)下列幂函数中,既在区间()0,∞+上递减,又是奇函数的是().A .12y x=B .13y x =C .23y x -=D .13y x -=【答案】D【解析】对选项A ,12y x =在()0,∞+为增函数,故A 错误.对选项B ,13y x =在()0,∞+为增函数,故B 错误.对选项C ,23y x -=在()0,∞+为减函数,设()123321f x xx -⎛⎫== ⎪⎝⎭,定义域为{}|0x x ≠,()()()11332211f x f x x x ⎡⎤⎛⎫-===⎢⎥ ⎪⎝⎭-⎢⎥⎣⎦,所以()f x 为偶函数,故C 错误.对选项D ,13y x -=在()0,∞+为减函数,设()11331f x xx -⎛⎫== ⎪⎝⎭,定义域为{}|0x x ≠,()()113311f x f x x x ⎛⎫⎛⎫-==-=- ⎪ ⎪-⎝⎭⎝⎭,所以()f x 为奇函数,故D 正确.故选:D8.(2023春·江苏南京)幂函数2223()(1)m m f x m m x --=--在()0,∞+上是减函数,则实数m 值为()A .2B .1-C .2或1-D .1【答案】A【解析】 幂函数2223()(1)mm f x m m x --=--,211m m ∴--=,解得2m =,或1m =-;又,()0x ∈+∞时()f x 为减函数,∴当2m =时,2233m m --=-,幂函数为3y x -=,满足题意;当1m =-时,2230m m --=,幂函数为0y x =,不满足题意;综上,2m =,故选:A .9.(2022·高一单元测试)幂函数()()22231mm f x m m x+-=--在区间(0,+∞)上单调递增,且0a b +>,则()()f a f b +的值()A .恒大于0B .恒小于0C .等于0D .无法判断【答案】A【解析】幂函数()()22231m m f x m m x+-=--在区间(0,+∞)上单调递增,∴2211230m m m m ⎧--=⎨+-⎩>,解得m =2,∴5()f x x =,∴()f x 在R 上为奇函数,由0a b +>,得a b >-,∵()f x 在R 上为单调增函数,∴()()()f a f b f b >-=-,∴()()0f a f b +>恒成立.故选:A .10.(2023·浙江台州)(多选)关于幂函数(,y x R ααα=∈是常数),结论正确的是()A .幂函数的图象都经过原点()0,0B .幂函数图象都经过点()1,1C .幂函数图象有可能关于y 轴对称D .幂函数图象不可能经过第四象限【答案】BCD【解析】对于A :幂函数1y x -=不经过原点()0,0,A 错误对于B :对于幂函数(,y x R ααα=∈是常数),当1x =时,1y =,经过点()1,1,B 正确;对于C :幂函数2y x =的图像关于y 轴对称,C 正确;对于D :幂函数图象不可能经过第四象限,D 正确.故选:BCD.11.(2023·全国·高一专题练习)(多选)已知幂函数()f x 的图象经过点(,则()A .()f x 的定义域为[)0,∞+B .()f x 的值域为[)0,∞+C .()f x 是偶函数D .()f x 的单调增区间为[)0,∞+【答案】ABD【解析】设()()a f x x a =∈R ,则()22af ==12a =,则()12f x x ==,对于A 选项,对于函数()f x =0x ≥,则函数()f x 的定义域为[)0,∞+,A 对;对于B 选项,()0f x =≥,则函数()f x 的值域为[)0,∞+,B 对;对于C 选项,函数()f x =[)0,∞+,定义域不关于原点对称,所以,函数()f x 为非奇非偶函数,C 错;对于D 选项,()f x 的单调增区间为[)0,∞+,D 对.故选:ABD.12.(2023·宁夏银川)(多选)幂函数()()211m f x m m x --=+-,*N m ∈,则下列结论正确的是()A .1m =B .函数()f x 是偶函数C .()()23f f -<D .函数()f x 的值域为()0,∞+【答案】ABD【解析】因为()()211m f x m m x --=+-是幂函数,所以211m m +-=,解得2m =-或1m =,又因为*N m ∈,故1m =,A 正确;则()2f x x -=,定义域为{|0}x x ≠,满足()2()()f x x f x --=-=,故()f x 是偶函数,B 正确;()2f x x -=为偶函数,在(0,)+∞上单调递减,故()()2(2)3f f f -=>,C 错误;函数()221f x x x -==的值域为()0,∞+,D 正确,故选:ABD13.(2022秋·广东惠州)(多选)已知函数()()21m mf x m x -=-为幂函数,则()A .函数()f x 为奇函数B .函数()f x 在区间()0,∞+上单调递增C .函数()f x 为偶函数D .函数()f x 在区间()0,∞+上单调递减【答案】BC【解析】因为()()21mmf x m x -=-为幕函数,所以11m -=,即2m =,所以()2f x x =.函数()2f x x =的定义域为R ,()()()22f x x x f x -=-==,所以函数()f x 为偶函数,又函数()2f x x =在()0,∞+为增函数.故选:BC.14.(2023春·河北保定)(多选)若幂函数()()1f x m x α=-的图像经过点()8,2,则()A .3α=B .2m =C .函数()f x 的定义域为{}0x x ≠D .函数()f x 的值域为R【答案】BD【解析】因为()()1f x m x α=-是幂函数,所以11m -=,解得2m =,故B 正确;所以()f x x α=,又因的图像经过点()8,2,所以3282αα==,所以31α=,解得13α=,故A 错误;因为()13f x x =,则其定义域,值域均为R ,故C 错误,D 正确.故选:BD.15.(2023春·山西忻州·高一统考开学考试)(多选)已知幂函数()()23mx m x f =-的图象过点12,4⎛⎫ ⎪⎝⎭,则()A .()f x 是偶函数B .()f x 是奇函数C .()f x 在(),0∞-上为减函数D .()f x 在()0,∞+上为减函数【答案】AD【解析】根据幂函数定义可得231m -=,解得2m =±;又因为图象过点12,4⎛⎫ ⎪⎝⎭,所以可得2m =-,即()221f x x x -==;易知函数()f x 的定义域为()()0,,0+∞⋃-∞,且满足()()()2211f x f x xx -===-,所以()f x 是偶函数,故A 正确,B 错误;由幂函数性质可得,当()0,x ∈+∞时,()2f x x -=为单调递减,再根据偶函数性质可得()f x 在(),0∞-上为增函数;故C 错误,D 正确.故选:AD16.(2022秋·安徽滁州·高一校考期中)(多选)对幂函数()32f x x -=,下列结论正确的是()A .()f x 的定义域是{}0,R x x x ≠∈B .()f x 的值域是()0,∞+C .()f x 的图象只在第一象限D .()f x 在()0,∞+上递减【答案】BCD【解析】对幂函数()32f x x -=,()f x 的定义域是{}0,R x x x >∈,因此A 不正确;()f x 的值域是()0,∞+,B 正确;()f x 的图象只在第一象限,C 正确;()f x 在()0,∞+上递减,D 正确;故选:BCD .17.(2023·四川成都)(多选)已知幂函数()f x 的图像经过点(9,3),则()A .函数()f x 为增函数B .函数()f x 为偶函数C .当4x ≥时,()2f x ≥D .当120x x >>时,1212()()f x f x x x -<-【答案】AC【解析】设幂函数()f x x α=,则()993f α==,解得12α=,所以()12f x x =,所以()f x 的定义域为[)0,∞+,()f x 在[)0,∞+上单调递增,故A 正确,因为()f x 的定义域不关于原点对称,所以函数()f x 不是偶函数,故B 错误,当4x ≥时,()()12442f x f ≥==,故C 正确,当120x x >>时,因为()f x 在[)0,∞+上单调递增,所以()()12f x f x >,即()()12120f x f x x x ->-,故D 错误.故选:AC.18.(2023·湖北)(多选)下列关于幂函数说法不正确的是()A .一定是单调函数B .可能是非奇非偶函数C .图像必过点(1,1)D .图像不会位于第三象限【答案】AD【解析】幂函数的解析式为()ay x a =∈R .当2a =时,2y x =,此函数先单调递减再单调递增,则都是单调函数不成立,A 选项错误;当2a =时,2y x =,定义域为R ,此函数为偶函数,当12a =时,y =,定义域为{}0x x ≥,此函数为非奇非偶函数,所以可能是非奇非偶函数,B 选项正确;当1x =时,无论a 取何值,都有1y =,图像必过点()1,1,C 选项正确;当1a =时,y x =图像经过一三象限,D 选项错误.故选:AD.19.(2023·高一课时练习)有关幂函数的下列叙述中,错误的序号是______.①幂函数的图像关于原点对称或者关于y 轴对称;②两个幂函数的图像至多有两个交点;③图像不经过点()1,1-的幂函数,一定不关于y 轴对称;④如果两个幂函数有三个公共点,那么这两个函数一定相同.【答案】①②④【解析】①,12y x ==y 轴对称,所以①错误.②④,由3y x y x =⎧⎨=⎩解得11x y =⎧⎨=⎩或11x y =-⎧⎨=-⎩或00x y =⎧⎨=⎩,即幂函数y x =与3y x =有3个交点,所以②④错误.③,由于幂函数过点()1,1,所以图像不经过点()1,1-的幂函数,一定不关于y 轴对称,③正确.故答案为:①②④20.(2023·湖南娄底·高一统考期末)已知幂函数()()2133m f x m m x +=-+为偶函数.(1)求幂函数()f x 的解析式;(2)若函数()()1f xg x x+=,根据定义证明()g x 在区间()1,+∞上单调递增.【答案】(1)()2f x x =;(2)见解析.【解析】(1)因为()()2133m f x m m x +=-+是幂函数,所以2331m m -+=,解得1m =或2m =.当1m =时,()2f x x =为偶函数,满足题意;当2m =时,()3f x x =为奇函数,不满足题意.故()2f x x =.(2)由(1)得()2f x x =,故()()11f xg x x x x+==+.设211x x >>,则()()()12212121212112121111x x f x f x x x x x x x x x x x x x ⎛⎫--=+--=-+=-- ⎪⎝⎭,因为211x x >>,所以210x x ->,121x x >,所以12110x x ->,所以()()210f x f x ->,即()()21f x f x >,故()g x 在区间()1,+∞上单调递增.21.(2023·天津宝坻·高一天津市宝坻区第一中学校考期末)已知幂函数()ag x x =的图象经过点(,函数()()241g x bf x x ⋅+=+为奇函数.(1)求幂函数()y g x =的解析式及实数b 的值;(2)判断函数()f x 在区间()1,1-上的单调性,并用的数单调性定义证明.【答案】(1)()g x =b =(2)()f x 在()1,1-上单调递增,证明见解析【解析】(1)由条件可知2a=12a =,即()12g x x ==,所以()42g =,因为()221x b f x x +=+是奇函数,所以()00f b ==,即()221xf x x =+,满足()()f x f x -=-是奇函数,所以0b =成立;(2)函数()f x 在区间()1,1-上单调递增,证明如下,由(1)可知()221xf x x =+,在区间()1,1-上任意取值12,x x ,且12x x <,()()()()()()211212122222121221221111x x x x x x f x f x x x x x ---=-=++++,因为1211x x -<<<,所以210x x ->,1210x x -<,()()2212110x x ++>所以()()120f x f x -<,即()()12f x f x <,所以函数在区间()1,1-上单调递增.22.(2023·福建厦门·高一厦门一中校考期中)已知幂函数()af x x =的图象经过点12A ⎛ ⎝.(1)求实数a 的值,并用定义法证明()f x 在区间()0,∞+内是减函数.(2)函数()g x 是定义在R 上的偶函数,当0x ≥时,()()g x f x =,求满足()1g m -≤m 的取值范围.【答案】(1)12α=-,证明见解析;(2)46,,55⎛⎤⎡⎫-∞+∞ ⎪⎥⎢⎝⎦⎣⎭U 【解析】(1)由幂函数()af x x =的图象经过点12A ⎛ ⎝12α⎛⎫∴= ⎪⎝⎭12α=-证明:任取12,(0,)x x ∈+∞,且12x x<11222121()()f x f x x x ---=-==210x x >> ,120x x ∴-<0>21()()0f x f x ∴-<,即21()()f x f x <所以()f x 在区间()0,∞+内是减函数.(2)当0x ≥时,()()g x f x =,()f x 在区间[)0,∞+内是减函数,所以()g x 在区间()0,∞+内是减函数,在区间(),0∞-内是增函数,又15g ⎛⎫= ⎪⎝⎭(1)g m -1(1)5g m g ⎛⎫-≤ ⎪⎝⎭函数()g x 是定义在R 上的偶函数,则115m -≥,解得:65m ≥或45m ≤所以实数m 的取值范围是46,,55⎛⎤⎡⎫-∞+∞ ⎪⎥⎢⎝⎦⎣⎭U 23.(2023福建)已知幂函数()21()22m f x m m x +=-++为偶函数.(1)求()f x 的解析式;(2)若函数()()30h x f x ax a =++-≥在区间[2,2]-上恒成立,求实数a 的取值范围.【答案】(1)2()f x x =;(2)[7,2]-.【解析】(1)由()f x 为幂函数知2221m m -++=,得1m =或12m =-()f x 为偶函数∴当1m =时,2()f x x =,符合题意;当12m =-时,12()f x x =,不合题意,舍去所以2()f x x =(2)22()()324a a h x x a =+--+,令()h x 在[2,2]-上的最小值为()g a ①当22a -<-,即4a >时,()(2)730g a h a =-=-≥,所以73a ≤又4a >,所以a 不存在;②当222a -≤-≤,即44a -≤≤时,2()()3024a ag a h a =-=--+≥所以62a -≤≤.又44a -≤≤,所以42a -≤≤③当22a->,即4a <-时,()(2)70g a h a ==+≥所以7a ≥-.又4a <-所以74a -≤<-.综上可知,a 的取值范围为[7,2]-1.(2023广西)(多选)已知幂函数()nm f x x =(m ,*n ∈N ,m ,n 互质),下列关于()f x 的结论正确的是()A .m ,n 是奇数时,幂函数()f x 是奇函数B .m 是偶数,n 是奇数时,幂函数()f x 是偶函数C .m 是奇数,n 是偶数时,幂函数()f x 是偶函数D .01mn<<时,幂函数()f x 在()0,∞+上是减函数E .m ,n 是奇数时,幂函数()f x 的定义域为R 【答案】ACE【解析】()nm f x x ==当m ,n 是奇数时,幂函数()f x 是奇函数,故A 中的结论正确;当m 是偶数,n 是奇数,幂函数/()f x 在0x <时无意义,故B 中的结论错误当m 是奇数,n 是偶数时,幂函数()f x 是偶函数,故C 中的结论正确;01mn<<时,幂函数()f x 在()0,∞+上是增函数,故D 中的结论错误;当m ,n 是奇数时,幂函数()f x =R 上恒有意义,故E 中的结论正确.故选:ACE.2.(2022秋·福建福州·高一校联考期中)(多选)已知幂函数()()22922mm f x m m x+-=--对任意120x x ∞∈+,(,)且12x x ≠,都满足1212()()0f x f x x x ->-,若()()0f a f b +>,则()A .0a b +<B .0a b +>C .()()22f a f b a b f ++⎛⎫≥ ⎪⎝⎭D .()()22f a f b a b f ++⎛⎫≤ ⎪⎝⎭【答案】BD【解析】因为()()22922mm f x m m x+-=--为幂函数,所以2221m m --=,解得1m =-或3m =,因为对任意120x x ∞∈+,(,)且12x x ≠,都满足1212()()0f x f x x x ->-,所以函数()f x 在(0,)+∞上递增,所以290m m +->当1m =-时,2(1)(1)990-+--=-<,不合题意,当3m =时,233930+-=>,所以3()f x x =因为33()()f x x x -=-=-,所以()f x 为奇函数,所以由()()0f a f b +>,得()()()f a f b f b >-=-,因为3()f x x =在R 上为增函数,所以a b >-,所以0a b +>,所以A 错误,B 正确,对于CD ,因为0a b +>,所以333()()2222f a f b a b a b a b f ++++⎛⎫⎛⎫-=- ⎪ ⎪⎝⎭⎝⎭33322344(33)8a b a a b ab b +-+++=33223()8a b a b ab +--=223[()()]8a ab b a b ---=23()()08a b a b -+=≥,所以()()22f a f b a b f ++⎛⎫≥ ⎪⎝⎭,所以C 错误,D 正确,故选:BD3.(2023·江苏·校联考模拟预测)(多选)若函数13()f x x =,且12x x <,则()A .()()()()12120x x f x f x -->B .()()1122x f x x f x ->-C .()()1221f x x f x x -<-D .()()121222f x f x x x f ++⎛⎫>⎪⎝⎭【答案】AC【解析】由幂函数的性质知,13()f x x =在R 上单调递增.因为12x x <,所以()()12f x f x <,即120x x -<,()()120f x f x -<,所以()()()()12120x x f x f x -->.故A 正确;令120,1x x ==,则0(0)1(1)0f f -=-=,故B 错误;令()13()g x f x x x x =+=+,则由函数单调性的性质知,13()f x x =在R 上单调递增,y x =在R 上单调递增,所以13()y f x x x x =+=+在R 上单调递增,因为12x x <,所以()12()g x g x <,即()()1122f x x f x x +<+,于是有()()1221f x x f x x -<-,故C 正确;令121,1x x =-=,则1202x x +=,所以因为(1)(1)(0)02f f f +-==,故D 错误.故选:AC.4.(2022秋·江西九江·高一统考期末)已知幂函数()()223mm f x x m --+=∈N 的图像关于直线0x =对称,且在()0,∞+上单调递减,则关于a 的不等式()()33132mma a --+<-的解集为______.【答案】()23,1,32⎛⎫-∞- ⎪⎝⎭【解析】由()()223mm f x x m --+=∈N 在()0,∞+上单调递减得,2230m m --<,故13m -<<,又m +∈N ,故1m =或2,当1m =时,()4f x x =-,满足条件;当2m =时,()3f x x =-,图像不关于直线0x =对称,故1m =.因为函数13()g x x -=在()(),0,0,-∞+∞为减函数,故由不等式()()1133132a a --+<-得,10320132a a a a +<⎧⎪-<⎨⎪+>-⎩或10320132a a a a +>⎧⎪->⎨⎪+>-⎩或10320a a +<⎧⎨->⎩.解得2332a <<或1a <-,综上:23132a a <-<<或.故答案为:()23,1,32⎛⎫-∞- ⎪⎝⎭5.(2023·山西太原)已知函数()3f x x x =+.若对于任意[]2,4m ∈,不等式()()240f ma f m m-++恒成立,则实数a 的取值范围是___________.【答案】6a ≥【解析】因为()()()()()33f x x x x x f x -=-+-=-+=-,所以()3f x x x =+是R 上的奇函数,因为3,y x y x ==均是R 上的增函数,所以()3f x x x =+是R 上的增函数,因为()()240f ma f m m-++,所以()()24f m mf ma +--,即()()24f m mf ma +-所以24m m ma +-,由[]2,4m ∈知0m >,故41a m m++,令()41g m m m=++,[]2,4m ∈设1224m m <,()()1212121212444411g m g m m m m m m m m m ⎛⎫-=++-++=-+- ⎪⎝⎭()()()21121212121244m m m m m m m m m m m m ---=-+=由1224m m <,得120m m -<,124m m >,则()()120g m g m -<,即()()12g m g m <,所以()g m 在[]2,4上单调递增,当4m =时,()g m 取得最大值6,故6a .故答案为:6a .6.(2023春·四川广安·高一校考阶段练习)已知幂函数()()()215R m f x m m x m +=+-∈在()0,∞+上单调递增.(1)求m 的值及函数()f x 的解析式;(2)若函数()21g x ax a =++-在[]0,2上的最大值为3,求实数a 的值.【答案】(1)2m =,()3f x x =;(2)2a =±.【解析】(1)幂函数()()()215R m f x m m x m +=+-∈在()0,∞+上单调递增,故25110m m m ⎧+-=⎨+>⎩,解得2m =,故()3f x x =;(2)由(1)知:()3f x x =,所以()22121g x ax a x ax a =+-=-++-,所以函数()g x 的图象为开口向下的抛物线,对称轴为直线x a =;由于()g x 在[]0,2上的最大值为3,①当2a ≥时,()g x 在[]0,2上单调递增,故()()max 2333g x g a ==-=,解得2a =;②当0a ≤时,()g x 在[]0,2上单调递减,故()()max 013g x g a ==-=,解得2a =-;③当02a <<时,()g x 在[]0,a 上单调递增,在[],2a 上单调递减,故()()2max 13g x g a a a ==+-=,解得1a =-(舍去)或2a =(舍去).综上所述,2a =±.7.(2023·黑龙江哈尔滨·高一哈尔滨市第六中学校校考期末)已知幂函数()()23122233p p f x p p x--=-+是其定义域上的增函数.(1)求函数()f x 的解析式;(2)若函数()()h x x af x =+,[]1,9x ∈,是否存在实数a 使得()h x 的最小值为0?若存在,求出a 的值;若不存在,说明理由;(3)若函数()()3g x b f x =-+,是否存在实数(,)m n m n <,使函数()g x 在[],m n 上的值域为[],m n ?若存在,求出实数b 的取值范围;若不存在,说明理由.【答案】(1)()f x =(2)存在1a =-(3)9,24⎛⎤-- ⎥⎝⎦【解析】(1)因为()()23122233p p f x p p x--=-+是幂函数,所以2331p p -+=,解得1p =或2p =当1p =时,()1f x x=,在()0,∞+为减函数,当2p =时,()f x =在()0,∞+为增函数,所以()f x =(2)()()h x x af x x =+=+t =,因为[]1,9x ∈,所以[]1,3t ∈,则令()2k t t at =+,[]1,3t ∈,对称轴为2a t =-.①当12a-≤,即2a ≥-时,函数()k t 在[]1,3为增函数,()min ()110k t k a ==+=,解得1a =-.②当132a <-<,即62a -<<-时,2min ()024a a k t k ⎛⎫=-=-= ⎪⎝⎭,解得0a =,不符合题意,舍去.当32a-≥,即6a ≤-时,函数()k t 在[]1,3为减函数,()min ()3930k t k a ==+=,解得3a =-.不符合题意,舍去.综上所述:存在1a =-使得()h x 的最小值为0.(3)()()3g x b f x b =-+=()g x 在定义域范围内为减函数,若存在实数(,)m n m n <,使函数()g x 在[],m n 上的值域为[],m n ,则()()g m b n g n b m ⎧==⎪⎨==⎪⎩①②,②-①()()33m n m n =-=+-+,=+,1=③.将③代入②得:1b m m ==+令t m n <,0≤<,所以10,2t ⎡⎫∈⎪⎢⎣⎭.所以2219224b t t t ⎛⎫=--=-- ⎪⎝⎭,在区间10,2t ⎡⎫∈⎪⎢⎣⎭单调递减,所以924b -<≤-故存在实数(,)m n m n <,使函数()g x 在[],m n 上的值域为[],m n ,实数b 的取值范围且为9,24⎛⎤-- ⎥⎝⎦.8.(2023·福建龙岩)已知幂函数()21()2910m f x m m x -=-+为偶函数,()()(R)k g x f x k x=+∈.(1)若(2)5g =,求k ;(2)已知2k ≤,若关于x 的不等式21()02g x k ->在[1,)+∞上恒成立,求k 的取值范围.【答案】(1)2k =(2)12k <≤【解析】(1)对于幂函数()21()2910m f x m m x -=-+,得229101m m -+=,解得32m =或3m =,又当32m =时,12()f x x =不为偶函数,3m ∴=,2()f x x ∴=,2()k g x x x∴=+,(2)452kg ∴=+=,解得2k =;(2)关于x 的不等式21()02g x k ->在[1,)+∞上恒成立,即22102k x k x +->在[1,)+∞上恒成立,即22min 12k x k x ⎡⎤+>⎢⎥⎣⎦,先证明()2kh x x x=+在[1,)+∞上单调递增:任取121x x >>,则()()()()1212221212121212x x x x k k k h x h x x x x x x x x x +-⎛⎫⎛⎫-=+-+=- ⎪ ⎪⎝⎭⎝⎭,121x x >> ,120x x ∴->,()12122x x x x +>,又2k ≤,()12120x x x x k ∴+->,()()120h x h x ∴->,即()()12h x h x >,故()2kh x x x=+在[1,)+∞上单调递增,()()min 11h x h k ∴==+,2112k k ∴+>,又2k ≤,解得12k <≤.9.(2022秋·上海普陀·高一曹杨二中校考阶段练习)设R m ∈,已知幂函数()()2133m f x m m x +=+-⋅是偶函数.(1)求m 的值;(2)设R a ∈,若函数()[],0,2y f x ax a x =-+∈的最小值为1-,求a 的值.【答案】(1)1m =(2)1a =-或5a =.【解析】(1)因为幂函数()()2133m f x m m x +=+-⋅是偶函数,所以2331m m +-=且1m +为偶数,解得:1m =或4m =-(舍),则1m =,所以()2f x x =.(2)令()()2y g x f x ax a x ax a ==-+=-+的开口向上,对称轴2a x =,①当02a≤即0a ≤,()g x 在[]0,2上单调递增,所以()()min 01g x g a ===-,所以1a =-;②当022a <<即04a <<,()g x 在0,2a ⎡⎤⎢⎥⎣⎦上单调递减,在22a ⎡⎤⎢⎥⎣⎦,上单调递增,所以()22min1242a a a g x g a ⎛⎫==-+=- ⎪⎝⎭,解得:2a =+2a =-③当22a≥即4a ≥,()g x 在[]0,2上单调递减,所以()()min 241g x g a ==-=-,解得:5a =所以5a =.综上:1a =-或5a =.10.(2022秋·河南·高一校联考期中)已知幂函数223()(2)m x f x m -⋅=-在(0,)+∞上单调递增.(1)求实数m 的值;(2)若对[]2,2x ∀∈-,[2,2]a ∃∈-,使得()221f x at t a ≤+++都成立,求实数t 的取值范围.【答案】(1)3m =;(2)实数t 的取值范围为[)3,1,2∞∞⎛⎤--⋃+ ⎥⎝⎦.【解析】(1)因为幂函数()223(2)m x f x m -⋅=-在(0,)+∞上单调递增,所以()2213230m m m ⎧-=⎪⇒=⎨->⎪⎩;(2)由(1)可得3()f x x =因为对[2,2]x ∀∈-,使得()221f x at t a ≤+++都成立所以2max ()21f x at t a ≤+++,其中[2,2]x ∈-,由(1)可得函数()f x 在[]22-,上的最大值为8,所以2218at t a +++≥,又[2,2]a ∃∈-,使得2218at t a +++≥都成立所以()2max 270a t t ⎡⎤++-≥⎣⎦,因为220t +>,所以()227y a t t =++-是关于a 的单调递增函数,∴()()22max272270a t t t t ⎡⎤++-=++-≥⎣⎦,即2230t t +-≥,∴32t ≤-或1t ≥,所以实数t 的取值范围为[)3,1,2∞∞⎛⎤--⋃+ ⎥⎝⎦.11.(2023·浙江)已知幂函数()()2223mf x m m x =--.(1)若()f x 的定义域为R ,求()f x 的解析式;(2)若()f x 为奇函数,[]1,2x ∃∈,使()31f x x k >+-成立,求实数k 的取值范围.【答案】(1)()2f x x=(2)(),1-∞-【解析】(1)因为()()2223mf x m m x =--是幂函数,所以22231m m --=,解得2m =或1m =-,当2m =时,()2f x x =,定义域为R ,符合题意;当1m =-时,()11x xf x -==,定义域为()(),00,∞-+∞U ,不符合题意;所以()2f x x =;(2)由(1)可知()f x 为奇函数时,()11x xf x -==,[]1,2x ∃∈,使()31f x x k >+-成立,即[]1,2x ∃∈,使131x k x>+-成立,所以[]1,2x ∃∈,使113k x x-<-成立,令()[]13,1,2h x x x x=-∈,则()max 1k h x -<,[]12,1,2x x ∀∈且12x x <,则()()()1212211212111333h x h x x x x x x x x x ⎛⎫-=--+=-+ ⎪⎝⎭,因为1212x x ≤<≤,所以211210,0x x x x ->>,所以()2112130x x x x ⎛⎫-+> ⎪⎝⎭,即()()12h x h x >,所以()13h x x x=-在[]1,2上是减函数,所以()()max 1132h x h ==-=-,所以12k -<-,解得1k <-,所以实数k 的取值范围是(),1-∞-。
高三函数复习题一、选择题1. 函数y=f(x)的定义域为R,若f(-x)=f(x),则函数y=f(x)是()A. 奇函数B. 偶函数C. 非奇非偶函数D. 无法确定2. 已知函数f(x)=2x^2+3x+1,g(x)=x^2-2x+2,则f(x)+g(x)=()A. 3x^2+x+3B. 3x^2+x+1C. 3x^2-x+3D. 3x^2-x+13. 若函数f(x)在区间(a,b)上单调递增,则下列说法正确的是()A. 函数f(x)在区间(a,b)上一定有最大值B. 函数f(x)在区间(a,b)上一定有最小值C. 函数f(x)在区间(a,b)上没有最大值和最小值D. 函数f(x)在区间(a,b)上的最大值和最小值都存在二、填空题4. 函数f(x)=x^3-3x+2在x=1处的导数为______。
5. 若函数y=f(x)在区间[a,b]上满足f(a)=f(b),且在该区间内连续,则根据拉格朗日中值定理,存在至少一个点c∈(a,b),使得f'(c)=______。
6. 设函数f(x)=x^2-4x+3,若f(x)>0,则x的取值范围是______。
三、解答题7. 已知函数f(x)=x^2-2x+1,求函数的单调区间。
8. 已知函数f(x)=x^3-3x+1,求函数的极值点。
9. 已知函数f(x)=2x^2-3x+1,求函数在区间[-1,2]上的最大值和最小值。
四、证明题10. 证明:若函数f(x)在区间[a,b]上连续,且f(a)f(b)<0,则在区间(a,b)内至少存在一个点c,使得f(c)=0。
11. 证明:若函数f(x)在区间[a,b]上连续,且f(a)=f(b),那么函数f(x)在区间(a,b)上至少存在一个点c,使得f'(c)=0。
五、综合题12. 已知函数f(x)=x^2-4x+3,求函数的对称轴和顶点坐标,并讨论函数在不同区间的单调性。
13. 已知函数f(x)=x^3-6x^2+11x-6,求函数的一阶导数和二阶导数,并讨论函数的极值点。
高考函数专项练习题一、选择题1. 设函数f(x) = (x^2 1)/(x + 1),则f(x)的定义域为()A. RB. (∞, 1)∪(1, +∞)C. (∞, 1)∪(1, +∞)D. (∞,1]∪[1, +∞)2. 下列函数中,既是奇函数又是偶函数的是()A. y = x^3B. y = x^2C. y = |x|D. y = sin(x)3. 若函数f(x) = (1/2)^x 在R上单调递减,则实数a的取值范围是()A. a > 0B. a < 0C. a ≠ 0D. a = 0二、填空题1. 已知函数f(x) = 2x + 3,则f(3) = ______。
2. 若函数f(x) = x^2 2x + 1的图像关于y轴对称,则f(x) = ______。
3. 已知函数f(x) = |x 1|,则f(x)的最小值为 ______。
三、解答题1. 设函数f(x) = (2x 1)/(x + 1),求f(x)的值域。
2. 已知函数f(x) = x^3 3x,求f(x)的单调递增区间。
3. 讨论函数f(x) = x^2 4x + 3的图像与x轴的交点个数。
4. 已知函数f(x) = (1/2)^x 和 g(x) = 2^x,求证:f(x) + g(x) = 2。
5. 设函数f(x) = x^2 2x + 1,求证:对于任意实数x,都有f(x) ≥ 0。
6. 已知函数f(x) = ax^2 + bx + c(a ≠ 0),讨论f(x)的图像与x轴的交点个数。
7. 设函数f(x) = |x 1| + |x + 2|,求f(x)的最小值。
8. 已知函数f(x) = (x 1)^2,求f(x)在区间[0, 3]上的最大值和最小值。
9. 讨论函数f(x) = (1/3)^x 与 g(x) = 3^x 的图像在坐标系中的位置关系。
10. 设函数f(x) = (x^2 1)/(x 1),求f(x)的定义域。
1.已知集合A =B =R ,x ∈A ,y ∈B ,f :x →y =ax +b ,若4和10的原象分别对应是6和9,则19在f 作用下的象为( )A .18B .30C .227 D .282.下列各组函数中,表示同一函数的是( ) A .f (x )=1,g (x )=xB .f (x )=x +2,g (x )=242--x xC .f (x )=|x |,g (x )=⎩⎨⎧<-≥00 x x x xD .f (x )=x ,g (x )=(x )23.设函数f (x )=x 2+2(a -1)x +2在区间(-∞,]4上是减函数,则实数a 的范围是( ) A .a ≥-3 B .a ≤-3 C .a ≥3 D .a ≤5 4.已知f (x )=x 5+ax 3+bx -8,且f (-2)=10,那么f (2)等于( A ) A .-26B .-18C .-10D .105.函数y =⎪⎩⎪⎨⎧>+-≤<+≤+)1( 5)10( 30 32x x x x x x 的最大值是__ ____.6.(本小题满分10分)已知f (x )是定义在(0,+∞)上的增函数,且满足f (xy )=f (x )+f (y ),f (2)=1.(1)求证:f (8)=3.(2)求不等式f (x )-f (x -2)>3的解集.函数练习题(1)参考答案1.B2.C3.B4.A5. 4 (1)【证明】由题意得f (8)=f (4×2)=f (4)+f (2)=f (2×2)+f (2)=f (2)+f (2)+f (2)=3f (2)又∵f (2)=1,∴f (8)=3 (2)【解】不等式化为f (x )>f (x -2)+3∵f (8)=3,∴f (x )>f (x -2)+f (8)=f (8x -16) ∵f (x )是(0,+∞)上的增函数 ∴⎩⎨⎧->>-)2(80)2(8x x x 解得2<x <7161.函数y =log 21(x 2-6x +17)的值域是( )A .RB .[8,+)∞C .(-∞,-]3D .[-3,+∞)2.设函数f (x )=f (x1)lg x +1,则f (10)值为( )A .1B .-1C .10D .1013.已知函数y =f (2x)定义域为[1,2],则y =f (log 2x )的定义域为( ) A .[1,2]B .[4,16]C .[0,1]D .(-∞,0]4.若不等式3axx22->(31)x +1对一切实数x 恒成立,则实数a 的取值范围为______5.(本小题满分8分)已知函数f (x )=log 412x -log 41x +5,x ∈[2,4],求f (x )的最大值及最小值.函数练习题(2)参考答案1. C2.A3.B4.-21<a <235.【解】令t =log 41x ,∵x ∈[2,4],t =log 41x 在定义域递减有log 414<log 41x <log 412,∴t ∈[-1,-21]∴f (t )=t 2-t +5=(t -21)2+419,t ∈[-1,-21]∴当t =-21时,f (x )取最小值423当t =-1时,f (x )取最大值7.1.若f (x )=xx 1-,则方程f (4x )=x 的根是( ) A .21B .-21 C .2 D .-22.若f (x )=xx 1-,则方程f (4x )=x 的根是( ) A .21B .-21C .2D .-23.对于任意x 1,x 2∈[a ,b ],满足条件f (221x x +)>21[f (x 1)+ f (x 2)]的函数f (x )的图象是( )4.若函数f (x )满足f (ab )=f (a )+f (b ),且f (2)=m ,f (3)=n ,则f (72)值为( )A .m +nB .3m +2nC .2m +3nD .m 3+n 2 5.已知函数f (x )=1+x x ,则f (1)+f (2)+…+f (2002)+ f (2003) +f (1)+f (21)+…+f (20021)+f (20031)=______.6.(本小题满分8分)函数f (x )对于任意的m ,n ∈R ,都有f (m +n )=f (m )+f (n )-1,并且当x >0时,f (x )>1.(1)求证:f (x )在R 上为增函数.(2)若f (3)=4,解不等式f (a 2+a -5)<2.函数练习题(3)参考答案1.A2.B3.D4.B5. 20036.(1)【证明】设x 1,x 2∈R ,且x 1<x 2,则x 2-x 1>0, ∵x >0时,有f (x )>1,故有f (x 2-x 1)>1而f (x 2)-f (x 1)=f [(x 2-x 1)+x 1]-f (x 1)=f (x 2-x 1)+ f (x 1)-1-f (x 1)=f (x 2-x 1)-1>0, ∴f (x )为增函数. (2)【解】由f (3)=f (2+1)=f (2)+f (1)-1=3f (1)-2=4∴f (1)=2, 则有f (a 2+a -5)<f (1)∵f (x )为增函数,∴a 2+a -5<1, 解得-3<a <21.设P ={y |y =x 2,x ∈R },Q ={y |y =2x ,x ∈R },则(B ) A .Q =P B .Q P C .P ∩Q ={2,4}D .P ∩Q ={(2,4)}2.已知函数f (x )=⎩⎨⎧≤>)0( 3)0( log2x x x x时f [f (41)]的值是( B )A .9B .91 C .-9 D .-913.已知f (x )=a x ,g (x )=log a x (a >0且a ≠1),若f (3)g (3)<0,则f (x )与g (x )在同一坐标系内的图象可能是( C )4.若定义运算a *b =⎩⎨⎧>≥)( )( a b a b a b ,则函数f (x )=3x *3-x 的值域是( A ) A .(0,]1B .[1,+)∞C .(0,+∞)D .(-∞,+∞)5.方程2x =12-x 的解的个数是( C ) A .0B .1C .2D .36.设函数f (x )=]⎩⎨⎧+∞∈-∞∈-),1( log 1,( 281x x x x ,则满足f (x )=41的值为__3____.函数练习题(4)参考答案1.B2.B3.C4.A5.C6. 3函数练习题(5)1、方程x )2x (log a -=+(a>0且a ≠1)的实数解的个数是( ) A 、0 B 、1 C 、2 D 、3 2.函数)12x 4x (log y 221+-=的值域为( )A 、 (-∞,3]B 、(-∞,-3]C 、(-3,+∞)D 、(3,+∞)3、有长度为24的材料用一矩形场地,中间加两隔墙,要使矩形的面积最大,则隔壁的长度为( )A 、 3B 、4C 、6D 、12 4.函数f(x)定义域为[1,3],则f(x 2+1)的定义域是__________。
高中数学函数专题练习题库一、单项选择题1. 已知函数 f(x) = 3x^2 - 2x + 5,求 f(-1) 的值是多少?A) -7 B) -4 C) 3 D) 82. 若函数 f(x) 为奇函数,且 f(2) = -4,则 f(-2) 的值是多少?A) -4 B) 2 C) 4 D) -23. 已知函数 f(x) 为偶函数,且 f(3) = 7,则 f(-3) 的值是多少?A) 7 B) 3 C) -7 D) -34. 通过点(-1, 3)且与直线 y = x - 1 平行的直线的方程是什么?A) y = x + 2 B) y = x - 2 C) y = -x + 2 D) y = -x - 25. 给定函数 f(x) = 2x^3 - 3x + 1,求 f'(x) 的表达式。
A) 6x^2 - 3 B) 4x^2 - 3x + 1 C) 6x^2 - 3x + 1 D) 4x^2 - 3二、填空题1. 若函数 f(x) = a(x - 3)^2 + b 为抛物线,顶点坐标为 (3, -2),则 a 的值为____, b 的值为____。
2. 已知函数 f(x) = 2x^3 + kx^2 + 3x + 1 有两个零点 x = -1, x = 2,则k 的值为____。
3. 若函数 f(x) 为偶函数,且 f(x) 在 x = 3 处取得最小值 -4,则 f(x) 在 x = -3 处取得的值为____。
4. 若函数 f(x) = log2(x - 1),则定义域为____,值域为____。
5. 若函数 f(x) = (x + 1)(x - 2)/(x - 2),则该函数在 x = 2 处的值为____。
三、计算题1. 已知函数 f(x) = 2x^3 - 4x^2 + 2x - 1,求 f(1) 的值。
2. 设函数 f(x) 由 f(x) = x^3 + bx^2 + cx + d 表示,其中 b, c, d 均为常数。
5.3.1函数的单调性(精练)一.单选题(每道题目只有一个选项为正确答案,每题5分,8题共40分)1.(2023春·河北沧州·高二校考阶段练习)函数()25ln 4f x x x =--的单调递减区间是()A .()0,3B .()3,+∞C .5,2⎛⎫-∞ ⎪⎝⎭D .50,2⎛⎫⎪⎝⎭2.(2023秋·山西大同)设()a f x x a x =-+在()1,+∞上为增函数,则实数a 取值范围是()A .[)0,∞+B .[)1,+∞C .[)2,-+∞D .[)1,-+∞3.(2023秋·江西吉安)已知函数()12ln f x x x x=+-,则不等式()()311f x f x -<-的解集为()A .10,2⎛⎫ ⎪⎝⎭B .11,32⎛⎫ ⎪⎝⎭C .1,12⎛⎫ ⎪⎝⎭D .1,2⎛⎫+∞ ⎪⎝⎭4.(2023春·重庆江北·高二重庆十八中校考期中)若函数()ln f x x a x =+在区间()1,2内存在单调递减区间,则实数a 的取值范围是()A .(,1)-∞-B .(,1]-∞-C .(,2)-∞-D .(,2]-∞-5.(2023·全国·高三专题练习)已知5ln 9a =,6ln8b =,7ln 7c =,则a 、b 、c 的大小关系为()A .b c a >>B .c b a >>C .a c b >>D .a b c >>6.(2023秋·陕西)已知函数()f x 的定义域是()5,5-,其导函数为()f x ',且()()2f x xf x '+>,则不等式()()()()23231124x f x x f x x ----->-的解集是()A .()2,+∞B .()2,6C .()4,6-D .()2,47.(2023·云南)函数()()e e -=-x x f x x 的图像大致是()A .B .C .D .8.(2023秋·陕西榆林)若直线()111y k x =+-与曲线e x y =相切,直线()211y k x =+-与曲线ln y x =相切,则12k k 的值为()A .21e B .1e C .1D .e二.多选题(每道题目至少有两个选项为正确答案,每题5分,4题共20分)10.(2023春·山东淄博·高二校考阶段练习)已知()ln x f x x =,下列说法正确的是()A .()f x 在1x =处的切线方程为1y x =+B .()f x 的单调递减区间为()e,+∞C .()f x 在1x =处的切线方程为1y x =-D .()f x 的单调递增区间为()e,+∞11.(2023秋·云南昆明)已知函数()e e sin x x f x x -=-+,若()()130f t f t +-<,则实数t 的值不可能是()A .12B .1C .2D .012.(2022秋·江苏连云港)定义在π0,2⎛⎫ ⎪⎝⎭函数()f x ,()f x '是它的导函数,且恒有()()tan f x f x x '>成立;则下列正确的是().A ππ43⎛⎫⎛⎫> ⎪ ⎪⎝⎭⎝⎭B .()π12sin16f f ⎛⎫> ⎪⎝⎭C ππ64f ⎛⎫⎛⎫< ⎪ ⎪⎝⎭⎝⎭D 3π6πf ⎛⎫⎛⎫> ⎪ ⎪⎝⎭⎝⎭9.(2023秋·河北)下列大小关系正确的是()A .2ln2ln2<B . 2.222 2.2<C .2 3.33.32>D .4 3.33.34<三.填空题(每题5分,4题共20分)13.(2022秋·西藏拉萨)若函数()()ln 1f x ax x =-+在()1,x ∈+∞是严格增函数,则实数a 的最小值是.14.(2023·全国·高三专题练习)定义在R 上的函数()f x 满足()()0f x f x +'>,且有()33f =,则()33ex f x ->的解集为.15.(2023·北京)已知函数()322f x x x x =-+-,若过点()1,P t 可作曲线()y f x =的三条切线,则t 的取值范围是.16.(2023春·福建泉州·高二校考期中)已知函数21()ln 22f x x x x =+-满足2(2)(412)f a a f a -≤+,则实数a 的取值范围是.四.解答题(17题10分,18-22题每题12分,6题共70分)17.(2023春·河北沧州·高二校考阶段练习)已知函数()2ln f x x x =-,()0x >.点()()1,1P f 是函数()f x 图象上一点.(1)求函数()f x 图像在点P 处的切线方程;(2)求函数()y f x =的单调递减区间.18.(2023·湖北)已知函数()2ln 3f x x x =+.(1)求()f x 的单调区间;(2)求()f x 过点1(,0)2-的切线方程.19.(2023秋·贵州遵义)已知函数()323f x x x ax =+-.(1)若7a =-,求曲线()y f x =在点()()1,1f --处的切线方程;(2)若()f x 在[)1,+∞上单调递增,求a 的取值范围.20.(2023春·四川成都·高二四川省成都列五中学校考阶段练习)已知函数()()1ln f x x a x =-,a R ∈.(1)当0a ≥时,讨论()f x 的单调性;(2)若10,2x ⎛⎤∈ ⎝⎦时,都有()1f x <,求实数a 的取值范围.21.(2023·全国·高三专题练习)已知函数()()23e 22x a f x x x ax a R =-+-∈,(1)当0a =时,求函数()f x 在0x =处的切线方程;(2)讨论函数()f x 的单调性.22(2023秋·安徽亳州)已知函数()()()2e x f x x a x =--.(1)当4a =时,求曲线()y f x =在()()0,0f 处的切线方程;(2)讨论()f x 的单调性.。
高三数学函数分析专项练习题及答案一、选择题1. 已知函数f(x) = x^2 + 2x + 3,求f(-2)的值。
A) 1 B) 3 C) 5 D) 7答案:C) 52. 函数f(x) = 2x + 3与函数g(x) = ax - 1相等,求a的值。
A) 2 B) 3 C) -2 D) -3答案:A) 2二、填空题1. 已知函数f(x) = 2x^3 + ax^2 + bx + 4,若f(-1) = 2和f(2) = -6,则a的值为____,b的值为____。
答案:a = -15,b = 22. 已知函数f(x) = x^2 - 3x,若f(a) = 10,则a的值为____。
答案:a = 5三、解答题1. 已知函数f(x) = x^2 + bx + c的图像对称于直线x = 3。
求b和c的值。
解:由题意可知,若图像对称于直线x = 3,则对于任意x,f(6 - x) = f(3 + x)。
代入函数f(x)得到:(6 - x)^2 + b(6 - x) + c = (3 + x)^2 + b(3 + x) + c解方程得:x^2 + (b - 6)x + (c - 9) = x^2 + (b + 6)x + (c + 9)化简得:12x - 18 = -12x - 18解方程得:24x = 0解得:x = 0代入原方程得:c - 9 = c + 9解方程得:18 = 0由此可知,无解。
2. 已知函数f(x)为奇函数,且f(0) = 5。
求f(2)的值。
解:由奇函数的性质可知,对于任意x,f(-x) = -f(x)。
代入x = 0,f(0) = -f(0)。
由此可得f(0) = 0。
但题中已知f(0) = 5,与前述结论矛盾。
因此,题目中的条件与函数的性质不符,无法求出f(2)的值。
四、应用题某商品的定价规则为:若购买数量不超过10个,则单价为10元;若购买数量超过10个但不超过20个,则超过10个的部分每个8元;若购买数量超过20个,则超过20个的部分每个5元。
高三数学一轮复习典型题专题训练:函数(含解析)1.函数y=log7(x^2-4x+3)的定义域为(x3)。
2.若函数f(x)=a+x是奇函数,则实数a的值为0.3.函数f(x)=lg(2-x)+2+x的定义域是(x<2)。
4.已知8a=2,loga(x)=3a,则实数x=64.5.已知奇函数y=f(x)是R上的单调函数,若函数g(x)=f(x)+f(a-x^2)只有一个零点,则实数a的值为1.6.已知函数f(x)=(x+m)e^(x/2-(m+1)/2)在R上单调递增,则实数m的取值集合为(m>-1)。
7.已知函数f(x)为偶函数,且x>0时,f(x)=x+x,则f(-1)=2.8.已知函数f(x)=(x-1)(px+q)为偶函数,且在(0,+∞)单调递减,则f(x-3)<0的解集为(x∈(1,3))。
9.函数y=1-lnx的定义域为(x>0)。
10.已知函数f(x)=logx,x>2或3x-4,xa的解集为(x∈(e^(a+1)/3.+∞)),实数a的所有可能值之和为(e^2-1)/2.11.已知y=f(x)为定义在R上的奇函数,且当x>0时,f(x)=ex+1,则f(-ln2)=1/e。
12.函数有3个不同的零点,则实数a的取值范围为(a∈(-∞,1/3)或(1.+∞))。
13.已知a,b∈R,函数f(x)=(x-2)(ax+b)为偶函数,且在(0,+∞)上是减函数,则关于x的不等式f(2-x)>0的解集为(x∈(0,2-b/a)∪(2+b/a,+∞))。
14.设函数f(x)=2x^2,x≤0,-x^2+2x,x>0,则实数k的取值范围为(k∈(-∞,2))。
15.已知函数f(x)=若存在唯一的整数x,-3|x-1|+3,x>0.要使得f(x)-a>0成立,即要求f(x)>a,因为f(x)是整数,所以a的取值范围为a≤2.16.已知函数f(x)=x+(a−1)lnx,当x∈[1,3]时,函数f(x)的值域为[f(1),f(3)]。
高考数学函数专项训练1. 已知函数f(x) = x^2 - 2x + 1,求f(x)的定义域。
答案:全体实数2. 函数f(x) = x^3 - 3x^2 + 3x - 1的图像是怎样的?答案:开口向上的抛物线3. 求函数f(x) = x^2 - 4x + 3的顶点坐标。
答案:顶点坐标为(2, -1)4. 已知函数f(x) = ax^2 + bx + c,其中a、b、c是常数,且a≠0,若f(x)的图像是开口向上的抛物线,求b的取值范围。
答案:b<05. 已知函数f(x) = ax^2 + bx + c,其中a、b、c是常数,且a≠0,若f(x)的图像是开口向下的抛物线,求a的取值范围。
答案:a<06. 求函数f(x) = x^2 - 2x + 1的导数。
答案:f'(x) = 2x - 27. 求函数f(x) = x^3 - 3x^2 + 3x - 1的导数。
答案:f'(x) = 3x^2 - 6x + 38. 已知函数f(x) = x^2 - 4x + 3,求f(x)的导数,并判断其单调性。
答案:f'(x) = 2x - 4,单调递增区间为(2, +∞)9. 已知函数f(x) = ax^2 + bx + c,其中a、b、c是常数,且a≠0,求f(x)的导数,并判断其单调性。
答案:f'(x) = 2ax + b,单调递增区间为a>0时,x>-b/2a;单调递减区间为a<0时,x>-b/2a10. 求函数f(x) = x^2 - 2x + 1的反函数。
答案:f^(-1)(x) = x + 2 或 x = 2 - x11. 求函数f(x) = x^3 - 3x^2 + 3x - 1的反函数。
答案:f^(-1)(x) = (x - 1)/3 或 x = 3(x - 1) + 112. 已知函数f(x) = x^2 - 4x + 3,求f(x)的反函数。
高中函数练习题高三高中函数练习题解析为了帮助高中三年级的同学们更好地理解和应用函数,下面我将给出几道高中函数练习题,并对其进行详细解析。
题目一:已知函数f(x)=2x+1,求f(3)的值。
解析:题目给出了函数f(x)=2x+1,要求求出f(3)的值。
根据函数的定义,我们将3代入函数中,即可得到答案。
f(3)=2×3+1=6+1=7所以,f(3)的值为7。
题目二:已知函数g(x)=x^2+2x+3,求g(-1)的值。
解析:题目给出了函数g(x)=x^2+2x+3,要求求出g(-1)的值。
同样地,我们将-1代入函数中进行计算。
g(-1)=(-1)^2+2×(-1)+3=1-2+3=2所以,g(-1)的值为2。
题目三:已知函数h(x)=3x^2-4x,求h(2)的值。
解析:题目给出了函数h(x)=3x^2-4x,要求求出h(2)的值。
将2代入函数中,进行计算。
h(2)=3×2^2-4×2=3×4-8=12-8=4所以,h(2)的值为4。
通过以上三道高中函数的练习题,我们可以看到,函数题目在考察我们对函数的理解和运用能力。
在解答时,我们要注意将给定的数值代入函数中进行计算,最后得到结果。
同时,要注意计算过程中的正负号及幂指数的运算。
只有通过理论和实践的结合,我们才能够更好地理解和掌握函数的概念和运算。
总结:本文针对高中函数练习题进行了详细的解析,通过三道题目的分析,帮助读者更好地理解和运用函数。
在解答函数题目时,要注意将给定的数值代入函数中进行计算,并注意计算过程中的正负号及幂指数的运算。
只有不断地练习和思考,我们才能够更好地掌握函数的概念和运算,取得更好的成绩。
高三数学函数专题训练题(附详解)第1卷(选择题)一、单选题1. 已知定义在R 上的可导函数f(x)的导函数为f(x),满足f '(x) < f(x),且f(-x) = f(2+x),f(2)=1,则不等式f(x)< e x 的解集为( ) A.(-∞,2) B.(2,+∞) C.(1,+∞) D.(0,+∞)2. 函数y=sinx+2|sinx|,x ∈[0,2x]的图像与直线y=k 有且仅有两个不同的交点,则k 的取值范围为( )A. k ∈ [0,3]B. k ∈ [1,3]C. k ∈(1,3)D. k ∈(0,3) 3. 已知sina 1+cosa= 2,则 tana =( )A. - 43B. - 34C. 43D. 24. 定义在R 上的奇函数f(x)满足f(x+4) = f(x),当x ∈(0,2)时,f(x)=3x -1,则f(2022)+f(2023)=( )A. -2023B. -1C. 1D. 32022 5. 设a=log 20.3,b=0.2,c=(12)0.2,则a,b,c 三者的大小关系为( ) A. a<b<c B. c<a<b C. b<c<a D. a<c<b6. 设函数f(x)(x ∈R)的导函数为f '(x),满足f '(x)>f(x),则当a>0时,f(a)与e a f(0)的大小关系为( )A. f(a)>e a f(0)B. f(a)<e a f(0)C. f(a)=e a f(0)D. 不能确定7. 已知f(x)=2x2x +1+ax+cos2x ,若f (π3)=2,则f(-π3)等于( )A. -2B. -1C. 0D. 18. 已知函数f(x)=√3sin(ωx+φ)(ω>0,-π2<φ<π2),A (13,0)为f(x)图像的对称中心,B 、C 是该图像上相邻的最高点和最低点,且|BC|=4,则下列结论正确的是( ) A. 函数f(x)的对称轴方程为x=43+4k(k ∈Z)B. 若函数f(x )在区间(0,m)内有5个零点,则在此区间内f(x )有且只有2个极小值点C. 函数f(x )在区间(0,2)上单调递增D. f(x -π3)的图象关于y 轴对称9. 已知函数f(x)={|x|x+4√x 36−x,−4<x<2,2≤x<6,若方程f(x)+αx 2=0有5个不等实根,则实数α的取值范围是( )A. (-∞,- √24) ∪ {- 13}B. [- 13,- 14] C. [13,√24] D. ( √24,+∞)∪ { 13} 10. 已知F 1,F 2分别为双曲线x 2-y 23=1的左、右焦点,直线l 过点F 2,且与双曲线右支交于A ,B 两点,O 为坐标原点,△AF 1F 2、△BF 1F 2的内切圆的圆心分别为O 1,O 2,则△OO 1O 2面积的取值范围是( ) A. (1,2√33) B. [1,2√33)C. [1,2√33] D. (1,2√33] 11. 设定义在R 上的函数f(x)与g(x)的导函数分别为f '(x)和g'(x),若g(x)-f(3-x)=2,f '(x)=g'(x-1),且g(x+2)为奇函数,g(1)=1。
高三数学函数专题训练题题1:设函数$f(x)=e^x+ax^2+bx+c$,已知点$A(0,\ln2)$是$f(x)$的极小值点,且$f(x)$在$x=1$处取得极大值。
求函数$f(x)$的解析式。
解:由题意,点$A(0,\ln2)$是$f(x)$的极小值点,即$f'(0)=0$且$f''(0)>0$。
首先求导,得到$f'(x)=e^x+2ax+b$,再求二次导数得到$f''(x)=e^x+2a$。
代入$x=0$得到$f'(0)=1+b=0$,解得$b=-1$。
代入$x=0$得到$f''(0)=1+2a>0$,解得$a>-\frac{1}{2}$。
再代入$x=1$得到$f'(1)=e+2a-1=0$,代入$a>-\frac{1}{2}$,解得$a=\frac{1}{2}-\frac{e}{2}$。
所以,$f(x)=e^x+(\frac{1}{2}-\frac{e}{2})x^2-x+1$。
题2:设函数$f(x)=x^3+ax^2+bx+c$,已知曲线$y=f(x)$与直线$y=2x+1$有两个相交点,其中一个为$A(2,5)$。
求函数$f(x)$的解析式。
解:由题意,曲线$y=f(x)$与直线$y=2x+1$有两个相交点,即方程$f(x)=2x+1$有两个根。
代入$A(2,5)$,得到$5=2(2)+1=5$,所以$A(2,5)$是曲线$y=f(x)$的一个点。
根据韦达定理,设另一个相交点为$B(x_0,y_0)$,那么$(x-2)(x_0-2)<0$。
展开得到$x_0-2+x-2<0$,即$x_0+x<4$。
由于$x_0$和$x$分别是$f(x)$和$2x+1$的根,根据根的性质,$x_0+x=-\frac{a}{1}$,即$a=-x_0-x$。
所以,函数$f(x)=x^3+(-x_0-x)x^2+bx+c$。
高中数学函数试题及答案一、选择题(每题3分,共30分)1. 函数f(x) = 2x^2 - 3x + 1在x=1处的导数是()A. 1B. 2C. 4D. 52. 已知函数y = x^3 - 2x^2 + x - 2,求其在x=0时的值是()A. -2B. 0C. 1D. 23. 函数y = sin(x)在x=π/2处的值是()A. 0B. 1C. -1D. π/24. 已知函数f(x) = 3x + 5,求f(-2)的值是()A. -1B. 1C. -7D. 75. 如果函数f(x) = x^2 + 2x + 3在区间[-3, 1]上是增函数,那么下列哪个选项是错误的()A. f(-3) = 12B. f(1) = 6C. f(-2) = 4D. f(0) = 36. 函数y = 1 / (x + 1)的渐近线是()A. x = -1B. y = 0C. x = 1D. y = 17. 函数f(x) = x^3 - 6x^2 + 11x - 6的极值点是()A. x = 1B. x = 2C. x = 3D. x = 48. 函数y = x^2在x=2处的切线斜率是()A. 0B. 2C. 4D. 89. 函数y = 2^x的值域是()A. (0, +∞)B. (-∞, +∞)C. [0, +∞)D. [1, +∞)10. 函数f(x) = |x - 2|的零点是()A. x = 0B. x = 1C. x = 2D. x = 3二、填空题(每题4分,共20分)11. 若函数f(x) = √x在区间[0, 4]上是增函数,则f(4) - f(0) = _______。
12. 函数g(x) = x^2 + bx + c,若g(1) = 2,g(2) = 6,则b + c = _______。
13. 若函数h(x) = 3x - 2的反函数为h^(-1)(x),则h^(-1)(5) =_______。
一、选择题(每题5分,共50分)1. 函数$f(x) = x^3 - 3x$的图像大致为()A. 上升后下降,有两个极值点B. 下降后上升,有两个极值点C. 上升后下降,有一个极值点D. 下降后上升,有一个极值点2. 已知函数$f(x) = \frac{1}{x^2 - 1}$,其定义域为()A. $(-\infty, -1) \cup (-1, 1) \cup (1, +\infty)$B. $(-\infty, -1) \cup (1, +\infty)$C. $(-\infty, -1) \cup (-1, 1) \cup (1, +\infty)$D. $(-\infty, 1) \cup (1, +\infty)$3. 函数$f(x) = \log_2(x + 1)$的单调递增区间为()A. $(-1, +\infty)$B. $(-\infty, -1)$C. $(-\infty, +\infty)$D. $(-1, 0)$4. 已知函数$f(x) = x^2 + 2x + 3$,其值域为()A. $[3, +\infty)$B. $(-\infty, 3]$C. $(-\infty, +\infty)$D. $[3, +\infty) \cup (-\infty, 3]$5. 函数$f(x) = e^x$的周期为()A. $2\pi$B. $\pi$C. 1D. 无周期6. 已知函数$f(x) = \frac{x}{x^2 + 1}$,其奇偶性为()A. 奇函数B. 偶函数C. 非奇非偶函数D. 无法确定7. 函数$f(x) = \sin x$的单调递减区间为()A. $[2k\pi + \frac{\pi}{2}, 2k\pi + \frac{3\pi}{2}]$,$k \in \mathbb{Z}$B. $[2k\pi - \frac{\pi}{2}, 2k\pi + \frac{\pi}{2}]$,$k \in \mathbb{Z}$C. $[2k\pi, 2k\pi + \pi]$,$k \in \mathbb{Z}$D. $[2k\pi + \frac{\pi}{2}, 2k\pi + \frac{3\pi}{2}]$,$k \in \mathbb{Z}$8. 函数$f(x) = \sqrt{x^2 - 1}$的值域为()A. $[0, +\infty)$B. $(-\infty, 0]$C. $[0, +\infty) \cup (-\infty, 0]$D. $(-\infty, 0) \cup (0, +\infty)$9. 已知函数$f(x) = \log_3(x - 1)$,其定义域为()A. $(-\infty, 1)$B. $(-\infty, 1) \cup (1, +\infty)$C. $(1, +\infty)$D. $(-\infty, +\infty)$10. 函数$f(x) = \tan x$的周期为()A. $\pi$B. $2\pi$C. $\frac{\pi}{2}$D. 无周期二、填空题(每题5分,共25分)11. 函数$f(x) = x^2 - 4x + 3$的零点为________。
函数专题练习1。
函数1()x y e x R +=∈的反函数是( )A .1ln (0)y x x =+>B .1ln (0)y x x =->C .1ln (0)y x x =-->D .1ln (0)y x x =-+>2。
已知(31)4,1()log ,1a a x a x f x x x -+<⎧=⎨>⎩是(,)-∞+∞上的减函数,那么a 的取值范围是(A )(0,1) (B )1(0,)3 (C )11[,)73(D )1[,1)73。
在下列四个函数中,满足性质:“对于区间(1,2)上的任意1212,()x x x x ≠,1221|()()|||f x f x x x -<-恒成立”的只有 (A )1()f x x=(B )()||f x x = (C )()2x f x =(D )2()f x x =4。
已知()f x 是周期为2的奇函数,当01x <<时,()lg .f x x =设63(),(),52a f b f ==5(),2c f =则(A )a b c << (B )b a c << (C )c b a << (D )c a b <<5.函数2()lg(31)f x x =++的定义域是 A .1(,)3-+∞ B . 1(,1)3- C 。
11(,)33- D . 1(,)3-∞-6、下列函数中,在其定义域内既是奇函数又是减函数的是A .3 ,y x x R =-∈B . sin ,y x x R =∈C 。
,y x x R =∈R7、函数()y f x =的反函数1()y f x -=的图像与y 轴交于点(0,2)P (如右图所示),则方程()0f x =在[1,4]上的根是x =A 。
4B .3C . 2D .18、设()f x 是R 上的任意函数,则下列叙述正确的是(A )()()f x f x -是奇函数 (B )()()f x f x -是奇函数(C ) ()()f x f x --是偶函数 (D ) ()()f x f x +-是偶函数9、已知函数x y e =的图象与函数()y f x =的图象关于直线y x =对称,则A .()22()x f x e x R =∈B .()2ln 2ln (0)f x x x =>C .()22()x f x e x R =∈D .()2ln ln 2(0)f x x x =+>)10、设1232,2()((2))log (1) 2.x e x f x f f x x -⎧⎪=⎨-≥⎪⎩<,则的值为, (A )0 (B )1 (C )2 (D )311、对a ,b ∈R ,记max {a ,b }=⎩⎨⎧≥b a b ba a <,,,函数f (x )=max {|x +1|,|x -2|}(x ∈R )的最小值是(A )0 (B )12 (C ) 32(D )3 12、关于x 的方程222(1)10x x k ---+=,给出下列四个命题: ①存在实数k ,使得方程恰有2个不同的实根;②存在实数k ,使得方程恰有4个不同的实根; ③存在实数k ,使得方程恰有5个不同的实根; ④存在实数k ,使得方程恰有8个不同的实根; 其中假.命题的个数是 A .0 B .1 C .2 D .3(一) 填空题(4个)1.函数()f x 对于任意实数x 满足条件()()12f x f x +=,若()15,f =-则()()5f f =_______________。
2023届新高考数学复习:专项(函数嵌套问题 )经典题提分练习一、单选题1.(2023ꞏ全国ꞏ高三专题练习)已知函数()21,02211,0x x x f x x x ⎧+≤⎪=⎨⎪--+>⎩,若关于x 的方程()()()2210f x k xf x kx -++=有且只有三个不同的实数解,则正实数k 的取值范围为( ) A .10,2⎛⎤ ⎥⎝⎦B .()1,11,22⎡⎫⋃⎪⎢⎣⎭C .()()0,11,2UD .()2,+∞2.(2023ꞏ全国ꞏ高三专题练习)已知函数()221xf x =--,则关于x 的方程()()20f x mf x n ++=有7个不同实数解,则实数,m n 满足( )A .0m >且0n >B .0m <且0n >C .01m <<且0n =D .10m -<<且0n =3.(2023春ꞏ四川资阳ꞏ高三统考期末)定义在R 上函数()f x ,若函数()1y f x =-关于点()1,0对称,且()()[)21,0,1,e 2,1,,x x x f x x -⎧-∈⎪=⎨-∈+∞⎪⎩则关于x 的方程()()221f x mf x -=(m R ∈)有n 个不同的实数解,则n 的所有可能的值为A .2B .4C .2或4D .2或4或64.(2023ꞏ全国ꞏ高三专题练习)已知函数2()(1)x f x x x e =--,设关于x 的方程25()()()f x mf x m R e-=∈有n 个不同的实数解,则n 的所有可能的值为A .3B .1或3C .4或6D .3或4或65.(2023ꞏ全国ꞏ高三专题练习)已知函数2ln 1,e()e e 1,22e x x x f x x x ⎧≥⎪⎪=⎨⎪--<⎪⎩,设关于x 的方程()()()210R f x af x a +-=∈有m 个不同的实数解,则m 的所有可能的值为( )A .3B .4C .2或3或4或5D .2或3或4或5或66.(2023ꞏ全国ꞏ高三专题练习)已知函数()()23xf x x e =-,设关于x 的方程()()()22120f x mf x m R e--=∈有n 个不同的实数解,则n 的所有可能的值为( ) A .3 B .1或3 C .4或6 D .3或4或67.(2023ꞏ云南保山ꞏ高三统考期末)定义域为R 的函数2log 4,4()1,4x x f x x ⎧-≠=⎨=⎩,若关于x 的方程2()()0f x mf x n ++=恰有5个不同的实数解1x ,2x ,3x ,4x ,5x ,则所有实数1x ,2x ,3x ,4x ,5x 之和为( )A .12B .16C .20D .248.(2023春ꞏ全国ꞏ高三福建省福州第八中学校考期末)定义在R 上函数1,()1,x ex e f x x e ⎧≠⎪-=⎨⎪=⎩,若关于x 的方程2[()](1sin )()sin 0f x f x θθ-+⋅+=(其中02πθ<<)有n 个不同的实根1x ,2x ,…,n x ,则()12n f x x x ++⋯+=( )A .14eB .13eC .4eD .5e9.(2023春ꞏ四川广安ꞏ高三四川省邻水县第二中学校考阶段练习)设定义域为R 的函数1,1+1()=1,=1x x f x x ≠--⎧⎪⎨⎪⎩,若关于x 的方程2()()0f x af x b ++=有3 个不同的实数解x 1、x 2、x 3且x 1< x 2<x 3,则下列说法中错误..的是( ) A .2221235x x x ++= B .1 + a + b = 0 C .x 1 + x 3 =2-D .x 1 + x 3 > 2x 210.(2023春ꞏ安徽亳州ꞏ高三安徽省亳州市第一中学校考阶段练习)设定义域为R 的函数1,11()1,1x x f x x ⎧≠-⎪+=⎨⎪=-⎩,若关于x 的方程2[()]()0f x af x b ++=有且仅有三个不同的实数解123,,x x x ,且123x x x <<.下列说法错误的是( )A .2221235x x x ++= B .10a b ++= C .132x x +=- D .1322x x x +>11.(2023ꞏ全国ꞏ高三专题练习)已知函数1()1||f x x =-,若关于x 的方程2()()0f x bf x c ++=恰有6个不同的实数解,则,b c 的取值情况不可能的是( )A .10b -<<,0c =B .10b c ++>,0c >C .10b c ++<,0c >D .10b c ++=,01c <<12.(2023ꞏ江西景德镇ꞏ高三景德镇一中校考)已知函数2()log 1f x x =-,且关于x 的方程2[()]()20f x af x b ++=有6个不同的实数解,若最小的实数解为-1,则a b +的值为 A .-2B .-1C .0D .113.(2023ꞏ宁夏吴忠ꞏ吴忠中学校考三模)已知函数()ln xf x x=,若关于x 的方程()()210f x af x a ++-=⎡⎤⎣⎦有且仅有三个不同的实数解,则实数a 的取值范围是( ) A .()2e,1e --B .()1e,0-C .(),1e -∞-D .()1e,2e -14.(2023ꞏ全国ꞏ高三专题练习)已知函数()||12x f x e =-,()()11,021ln ,0x x g x x x x ⎧+≤⎪=⎨⎪->⎩若关于x的方程()()0g f x m -=有四个不同的解,则实数m 的取值集合为( )A .ln 20,2⎛⎫ ⎪⎝⎭B .ln 2,12⎛⎫⎪⎝⎭ C .ln 22⎧⎫⎨⎬⎩⎭D .()0,115.(2023ꞏ全国ꞏ高三专题练习)已知函数()21,1ln ,1x x f x x x x⎧-<⎪=⎨≥⎪⎩,若关于x 的方程()()()21220+--=⎡⎤⎣⎦f x m f x m 有4个不同的实数解,则实数m 的取值范围是( ) A .11,3e ⎛⎫ ⎪⎝⎭B .11,32⎛⎫ ⎪⎝⎭eC .10,e ⎛⎫ ⎪⎝⎭D .10,2e ⎛⎫ ⎪⎝⎭16.(2023ꞏ全国ꞏ高三专题练习)已知函数()21, 1ln , 1x x f x x x x⎧-<⎪=⎨≥⎪⎩,若关于x 的方程()()()22120f x m f x m +--=⎡⎤⎣⎦有5个不同的实数解,则实数m 的取值范围是( ) A .10,e ⎛⎫ ⎪⎝⎭B .10,e ⎡⎫⎪⎢⎣⎭C .11,e ⎛⎫- ⎪⎝⎭D .11,e ⎧⎫-⎨⎬⎩⎭17.(2023春ꞏ安徽宣城ꞏ高三校联考期末)定义域为R 的函数lg 2,2()1,2x x f x x ⎧-≠=⎨=⎩ ,若关于x 的方程2[()]()0f x bf x c --=有5个不同的实数解1x ,2x ,3x ,4x ,5x ,则12345()x x x x x f b c+++++的值为( )A .0B .1C .lg 3D .3lg 218.(2023ꞏ全国ꞏ高三专题练习)已知()f x 是定义在R 上的偶函数,且满足23,01()2ln ,1x x x f x x x x ⎧-+≤<=⎨-≥⎩,若关于x 的方程()2[()]1()0f x a f x a +--=有10个不同的实数解,则实数a 的取值范围是( )A .()1,2B .()2,1{2ln 22}---C .()2,2ln 22--D .(]2,2ln 22--19.(2023春ꞏ辽宁沈阳ꞏ高三东北育才学校校联考阶段练习)已知函数()()2,01,ln ,0,x x f x x x ⎧⎪=⎨-<⎪⎩剟若关于x 的方程()()2[]20f x af x -+=有4个不同的实根,则a 的取值范围是( )A .[]2,4B .(4⎤⎦C .[]2,3D .(⎤⎦20.(2023ꞏ全国ꞏ高三专题练习)若函数()32f x x ax bx c =+++有极值点12x x ,,且()11f x x =,则关于x 的方程()()2320fx af x b ++=的不同实根个数是( ).A .3B .4C .5D .621.(2023ꞏ湖北武汉ꞏ高三武汉外国语学校(武汉实验外国语学校)校考)若函数()()3220f x x ax bx c b =-+-<有两个极值点1x ,2x ,且()11f x x =-,()222f x x =-,则关于x 的方程()()()23220f x af x b ++=的不同的实根的个数是A .6B .5C .4D .3二、多选题22.(2023ꞏ全国ꞏ高三专题练习)已知函数()224,0,21,0,x x x x f x x -⎧+<=⎨-≥⎩若关于x 的方程()()244230f a f x a x -⋅++=有5个不同的实根,则实数a 的取值可以为( ) A .32-B .43-C .65-D .76-23.(2023春ꞏ广东惠州ꞏ高三惠州一中校考)已知函数()224,0,21,0,xx x x f x x -⎧+<=⎨-≥⎩ 若关于x 的方程()()244230fx a f x a -⋅++=有 5 个不同的实根,则实数a 的取值可以为( )A .32-B .43-C .54-D .65-24.(2023春ꞏ吉林长春ꞏ高三长春十一高校考期末)已知函数()24,0{21,0x x x x f x x -+<=->,若关于x的方程()()244230f x f x λλ-++=有5个不同的实根,则实数λ可能的取值有( )A .32-B .43-C .76-D .87-25.(2023春ꞏ江苏南通ꞏ高三海门中学校考阶段练习)已知函数()1exx f x =+,2(),0()2,0f x x g x x x a x ≤⎧=⎨-+>⎩,且(1)0g =,则关于x 的方程()()10g g x t --=实根个数的判断正确的是( )A .当2t <-时,方程()()10g g x t --=没有相应实根B .当110t e-+<<或2t =-时,方程()()10g g x t --=有1个相应实根C .当111t e<<+时,方程()()10g g x t --=有2个相异实根D .当111t e -<<-+或01t <≤或11t e =+时,方程()()10g g x t --=有4个相异实根三、填空题26.(2023ꞏ全国ꞏ高三专题练习)已知函数()23x x f x e -=,若关于x 的方程()()()2212[]0f x tf x t R e +-=∈有m 个不同的实数解,则m 的所有可能的值构成的集合为______.27.(2023ꞏ江苏ꞏ高三专题练习)设定义在R 上的函数1,11()1, 1.x x f x x ⎧≠⎪-=⎨⎪=⎩,若关于x 的方程2()()0f x bf x c ++=有3个不同的实数解123,,x x x ,则123x x x ++=_____________.28.(2023春ꞏ江西赣州ꞏ高三校联考)已知函数()f x 是定义域为R 的偶函数,当0x ≥时,2412,02()2log ,2x x x f x x x ⎧-++≤≤⎪=⎨⎪>⎩,若关于x 的方程2[()]()10m f x n f x ⋅+⋅+=恰好有7个不同的实数根,那么m n -的值为___________.29.(2023ꞏ全国ꞏ高三专题练习)设定义域为R 的函数1251? 0()44? 0x x f x x x x -⎧-≥⎪=⎨++<⎪⎩,若关于x 的方程22()(21)()0f x m f x m -++=有7个不同的实数解,则m=______30.(2023春ꞏ四川成都ꞏ高三石室中学校考)已知函数()11e ,0e ,0x x x xf x x x ---⎧⋅>=⎨-⋅<⎩,若关于x 的方程()()222f x m f x =-⎡⎤⎣⎦有8个不同的实数解,则整数m 的值为___________.(其中e 是自然对数的底数)31.(2023ꞏ江苏扬州ꞏ高三扬州中学校考)已知函数()2log 1f x x =-,若关于x 的方程()()2[]0f x a f x b +⋅+=有6个不同的实数解,且最小实数解为3-,则a b +的值为______.32.(2023春ꞏ山东枣庄ꞏ高三阶段练习)设定义域为R 的函数()()1211()1x x f x a x --⎧+≠⎪=⎨=⎪⎩,若关于x 的方程22()(23)()30-++=f x a f x a 有五个不同的实数解,则a 的取值范围是_________. 33.(2023ꞏ甘肃张掖ꞏ高台县第一中学校考模拟预测)已知函数()14sin π,012,1x x x f x x x -<≤⎧=⎨+>⎩,若关于x 的方程()()()2[]210f x m f x m --+-=恰有5个不同的实数解,则实数m 的取值集合为__________.34.(2023ꞏ全国ꞏ高三专题练习)已知函数()af x x x=+,其中a R ∈,若关于x 的方程()12123x f a -=+有三个不同的实数解,则实数a 的取值范围是______. 35.(2023ꞏ北京ꞏ高三北京市第十一中学校考期末)已知函数2,0,()1,0,x k x f x x x -+<⎧=⎨-≥⎩其中0k ≥.①若2k =,则()f x 的最小值为______;②关于x 的函数(())y f f x =有两个不同零点,则实数k 的取值范围是______.36.(2023ꞏ高三单元测试)函数y =f (x ),x ∈(0,+∞)的图象如图所示,关于x 的方程22[()]4()520f x mf x m -+-=)有4个不同的实数解,则m 的取值范围是___________.37.(2023春ꞏ江苏南京ꞏ高三南京市第十三中学校考阶段练习)已知函数()()2ln f x ax x =-(0a >),若函数()()()F x f f x x =-恰有两个零点,则实数a 的取值范围是____________. 38.(2023春ꞏ江苏扬州ꞏ高三校考)已知函数()21,0ln ,0x x f x x x x⎧-≤⎪=⎨>⎪⎩,若函数()2y f f x a =+⎡⎤⎣⎦有两个零点,则实数a 的取值范围是___________.39.(2023ꞏ湖南长沙ꞏ高三湖南师大附中校考)已知函数1()x f x xe +=,若关于x 方程2()2()20()f x tf x t R -+=∈有两个不同的零点,则实数t 的取值范围为_______________.参考答案一、单选题1.(2023ꞏ全国ꞏ高三专题练习)已知函数()21,02211,0x x x f x x x ⎧+≤⎪=⎨⎪--+>⎩,若关于x 的方程()()()2210f x k xf x kx -++=有且只有三个不同的实数解,则正实数k 的取值范围为( ) A .10,2⎛⎤ ⎥⎝⎦B .()1,11,22⎡⎫⋃⎪⎢⎣⎭C .()()0,11,2UD .()2,+∞【答案】B【答案解析】因为()21,0212,02122,2x x x f x x x x x ⎧+≤⎪⎪⎪=<≤⎨⎪⎪->⎪⎩,由()()()2210f x k xf x kx -++=可得()()0f x x f x kx -⋅-=⎡⎤⎡⎤⎣⎦⎣⎦,所以,关于x 的方程()f x x =、()f x kx =共有3个不同的实数解. ①先讨论方程()f x x =的解的个数.当0x ≤时,由()212f x x x x =+=,可得0x =, 当102x <≤时,由()2f x x x ==,可得x ∈∅, 当12x >时,由()22f x x x =-=,可得23x =, 所以,方程()f x x =只有两解0x =和23x =; ②下面讨论方程()f x kx =的解的个数.当0x ≤时,由()212f x x x kx =+=可得102x x k ⎛⎫+-= ⎪⎝⎭,可得0x =或12x k =-,当102x <≤时,由()2f x x kx ==,可得2k =,此时方程()f x kx =有无数个解,不合乎题意, 当12x >时,由()22f x x kx =-=可得22x k =+,因为0k >,由题意可得10221220k k k ⎧-<⎪⎪⎪≤⎨+⎪>⎪⎪⎩或10222230k k k ⎧-<⎪⎪⎪=⎨+⎪>⎪⎪⎩或10221222223k k k ⎧-≥⎪⎪⎪>⎨+⎪⎪≠⎪+⎩,解得112k ≤<或12k <<. 因此,实数k 的取值范围是()1,11,22⎡⎫⋃⎪⎢⎣⎭.故选:B.2.(2023ꞏ全国ꞏ高三专题练习)已知函数()221xf x =--,则关于x 的方程()()20f x mf x n ++=有7个不同实数解,则实数,m n 满足( )A .0m >且0n >B .0m <且0n >C .01m <<且0n =D .10m -<<且0n =【答案】C【答案解析】令()u f x =,作出函数()u f x =的图象如下图所示:由于方程20u mu n ++=至多两个实根,设为1u u =和2u u =,由图象可知,直线1u u =与函数()u f x =图象的交点个数可能为0、2、3、4,由于关于x 的方程()()20f x mf x n ++=有7个不同实数解,则关于u 的二次方程20u mu n ++=的一根为10u =,则0n =, 则方程20u mu +=的另一根为2u m =-,直线2u u =与函数()u f x =图象的交点个数必为4,则10m -<-<,解得01m <<. 所以01m <<且0n =. 故选:C.3.(2023春ꞏ四川资阳ꞏ高三统考期末)定义在R 上函数()f x ,若函数()1y f x =-关于点()1,0对称,且()()[)21,0,1,e 2,1,,x x x f x x -⎧-∈⎪=⎨-∈+∞⎪⎩则关于x 的方程()()221f x mf x -=(m R ∈)有n 个不同的实数解,则n 的所有可能的值为 A .2 B .4C .2或4D .2或4或6【答案】B【答案解析】∵函数()1y f x =-关于点()1,0对称,∴()f x 是奇函数,0x >时,()f x 在(0,1)上递减,在[1,)+∞上递增,作出函数()f x 的图象,如图,由图可知()f x t =的解的个数是1,2,3.1t <-或1t >时,()f x t =有一个解,1t =±时,()f x t =有两个解,11t -<<时,()f x t =有三个解,方程()()221f x mf x -=中设()f x t =,则方程化为2210t mt --=,其判别式为2440m ∆=+>恒成立,方程必有两不等实根,12,t t ,122t t m +=,121t t =-,两根一正一负,不妨设120,0t t <>,若0m =,则120t t +=,121,1t t =-=,1()f x t =和2()f x t =都有两个根,原方程有4个根; 若0m >,则120t t +>,21t t >,∴21t >,110t -<<,1()f x t =有三个根,2()f x t =有一个根,原方程共有4个根;若0m <,则120t t +<,21t t <,∴201t <<,11t <-,1()f x t =有一个根,2()f x t =有三个根,原方程共有4个根. 综上原方程有4个根. 故选:B.4.(2023ꞏ全国ꞏ高三专题练习)已知函数2()(1)x f x x x e =--,设关于x 的方程25()()()f x mf x m R e -=∈有n 个不同的实数解,则n 的所有可能的值为A .3B .1或3C .4或6D .3或4或6【答案】A【答案解析】()()()()'12,xf x x x e f x =-+∴在(),2-∞-和()1,+∞上单增,()2,1-上单减,又当x →-∞时,()0,f x x →→+∞时,()f x →+∞故()f x 的图象大致为:令()f x t =,则方程250t mt e --=必有两个根,12,t t 且125t t e=-,不仿设120t t << ,当1t e =-时,恰有225t e -=,此时()1f x t =,有1个根,()2f x t =,有2个根,当1t e <-时必有2205t e -<<,此时()1f x t =无根,()2f x t =有3个根,当10e t -<<时必有225t e ->,此时()1f x t =有2个根,()2f x t =,有1个根,综上,对任意m R ∈,方程均有3个根,故选A.5.(2023ꞏ全国ꞏ高三专题练习)已知函数2ln 1,e ()e e 1,22e x x xf x x x ⎧≥⎪⎪=⎨⎪--<⎪⎩,设关于x 的方程()()()210R f x af x a +-=∈有m 个不同的实数解,则m 的所有可能的值为( )A .3B .4C .2或3或4或5D .2或3或4或5或6【答案】A【答案解析】根据题意作出函数()f x 的图象:2ln 1ln x xx x'-⎛⎫= ⎪⎝⎭,当1,e ex ⎡⎫∈⎪⎢⎣⎭,函数ln xx单调递增,当()e,+x ∈∞时,函数ln xx 单调递减,所以ln 1e,e x x ⎡⎤∈-⎢⎥⎣⎦; 函数2e e 22x --,1e x <时单调递减,所以()2e e,e 22x --∈-∞-,对于方程()()()210R f x af x a +-=∈,令()t f x =,则210t at +-=,所以240=∆+>a ,即方程必有两个不同的实数根120t t >>,且12121t t at t +=-⎧⎨=-⎩,当11et ≥时,2e 0t -≤<,3个交点;当110et <<时,2e t <-,也是3个交点;故选:A .6.(2023ꞏ全国ꞏ高三专题练习)已知函数()()23xf x x e =-,设关于x 的方程()()()22120f x mf x m R e--=∈有n 个不同的实数解,则n 的所有可能的值为( ) A .3B .1或3C .4或6D .3或4或6【答案】B【答案解析】由已知,()()223xf x x x e =+-',令()0f x ¢=,解得3x =-或1x =,则函数()f x 在()3-∞-,和[)1+∞,上单调递增,在[)31-,上单调递减,极大值()363f e -=,最小值()12f e =-.f (x )的图象如下:综上可考查方程()f x k =的根的情况如下: (1)当36k e >或2k e =-时,有唯一实根; (2)当360k e <<时,有三个实根; (3)当20e k -<≤或36k e =时,有两个实根; (4)当2k e <-时,无实根.令()2212g k k mk e=--,则由()0g k =,得k = 当0m ≥时,由136k e e =≥>,符号情况(1),此时原方程有1个根,由2k220e k -<<<,符号情况(3),此时原方程有2个根,综上得共有3个根; 当0m <时,由10k <<36e >,符号情况(1)或(2),此时原方程有1个或三个根,由2k e <,又20e e-<<,符号情况(3),此时原方程有两个根, 综上得共1个或3个根. 综上所述,n 的值为1或3. 故选B.7.(2023ꞏ云南保山ꞏ高三统考期末)定义域为R 的函数2log 4,4()1,4x x f x x ⎧-≠=⎨=⎩,若关于x 的方程2()()0f x mf x n ++=恰有5个不同的实数解1x ,2x ,3x ,4x ,5x ,则所有实数1x ,2x ,3x ,4x ,5x 之和为( )A .12B .16C .20D .24【答案】C【答案解析】设()t f x =,则关于x 的方程2()()0f x mf x n ++=等价为20t mt n ++=, 作出()f x 的图象如图:由图象可知当1t =时,方程()1f x =有三个根, 当1t ≠时方程()f x t =有两个不同的实根,∴若关于x 的方程2()()0f x mf x n ++=恰有5个不同的实数解1x ,2x ,3x ,4x ,5x , 则等价为20t mt n ++=有两个根,一个根1t =,另外一个根1t ≠,不妨设12345x x x x x <<<<,对应的两个根1x 与5x ,2x 与4x 分别关于4x =对称, 则34x =,则158x x +=,且248x x +=, 则1234520x x x x x ++++=, 故选:C .8.(2023春ꞏ全国ꞏ高三福建省福州第八中学校考期末)定义在R 上函数1,()1,x ex e f x x e ⎧≠⎪-=⎨⎪=⎩,若关于x 的方程2[()](1sin )()sin 0f x f x θθ-+⋅+=(其中02πθ<<)有n 个不同的实根1x ,2x ,…,n x ,则()12n f x x x ++⋯+=( )A .14eB .13eC .4eD .5e【答案】A【答案解析】由2[()](1sin )()sin 0f x f x θθ-++=,得(()1)(()sin )0f x f x θ--=.()1f x ∴=或()sin (0,1)f x θ=∈()1f x ⇒=及()sin f x θ=,函数()f x 图像如图所示,由图可知,共有五个根1x ,2x ,3x ,4x ,5x ,且3x e =,1x 和5x 关于x e =对称,2x 和4x 关于x e =对称,所以为123455x x x x x e ++++=,()1211(5)54n f x x x f e e e e∴++⋯+===-.故选:A.9.(2023春ꞏ四川广安ꞏ高三四川省邻水县第二中学校考阶段练习)设定义域为R的函数1,1+1()=1,=1x x f x x ≠--⎧⎪⎨⎪⎩,若关于x 的方程2()()0f x af x b ++=有3 个不同的实数解x 1、x 2、x 3且x 1< x 2<x 3,则下列说法中错误..的是( ) A .2221235x x x ++= B .1 + a + b = 0 C .x 1 + x 3 =2-D .x 1 + x 3 > 2x 2【答案】D【答案解析】分段函数1,1+1()=1,=1x x f x x ≠--⎧⎪⎨⎪⎩的图象如图所示:由图可知,只有当()1f x =时,它有三个根,其余()()1f x t t =≠的根为0或2个, 由11|1|x =+,即|1|1x +=, 解得=0x ,2x =-或1x =-.若关于x 的方程2()()0f x af x b ++=有且只有3个不同实数解,只能为()=1f x , 其解分别是2-,1-,0,因为123x x x <<,即12x =-,21x =-,30x =,2221234105x x x ∴++=++=,132x x +=-,10a b ++=,故正确的有ABC故选:D .10.(2023春ꞏ安徽亳州ꞏ高三安徽省亳州市第一中学校考阶段练习)设定义域为R 的函数1,11()1,1x x f x x ⎧≠-⎪+=⎨⎪=-⎩,若关于x 的方程2[()]()0f x af x b ++=有且仅有三个不同的实数解123,,x x x ,且123x x x <<.下列说法错误的是( )A .2221235x x x ++= B .10a b ++= C .132x x +=- D .1322x x x +>【答案】D【答案解析】分段函数1,11()1,1x x f x x ⎧≠-⎪+=⎨⎪=-⎩的图象如图所示:由图可知,只有当()1f x =时,它有三个根,其余()()1f x t t =≠的根为0或2个, 由11|1|x =+,即|1|1x +=, 解得0x =,2x =-或=1x -.若关于x 的方程2()()0f x af x b ++=有且只有3个不同实数解,只能为()1f x =, 其解分别是2-,1-,0,因为123x x x <<,即12x =-,21x =-,30x =,2221234105x x x ∴++=++=,132x x +=-,10a b ++=,故正确的有ABC ,故选:D .11.(2023ꞏ全国ꞏ高三专题练习)已知函数1()1||f x x =-,若关于x 的方程2()()0f x bf x c ++=恰有6个不同的实数解,则,b c 的取值情况不可能的是( ) A .10b -<<,0c = B .10b c ++>,0c > C .10b c ++<,0c >D .10b c ++=,01c <<【答案】B 【答案解析】如图,若要2()()0f x bf x c ++=有6个不同实数解, 令()f x t =,则20t bt c ++=, 则有12,t t t t ==两解,必有1201,1t t <<≥,或者1201,0t t <<=,若①,1201,0t t <<=,则0c =,此时20t bt +=,得t b =-,满足01b <-<,即10b -<<,此时为A ;若②,1201,1t t <<=,此时1210,++==b c t t c ,则01c <<,此时为D ;若③,1201,1t t <<>,此时120=>t t c ,10b c ++<,此时为C ,所以选项ACD 都有可能. 故选:B12.(2023ꞏ江西景德镇ꞏ高三景德镇一中校考)已知函数2()log 1f x x =-,且关于x 的方程2[()]()20f x af x b ++=有6个不同的实数解,若最小的实数解为-1,则a b +的值为 A .-2B .-1C .0D .1【答案】B【答案解析】作出函数2()log 1f x x =-的图象,∵方程2[()]()20f x af x b ++=有个不同的实数解,∴如图所示,令,方程2[()]()20f x af x b ++=转化为:,则方程有一零根和一正根,又∵最小的实数解为,由,∴方程:的两根是和,由韦达定理得:,,∴,故选B.考点:函数与方程的综合应用.【方法点晴】本题主要考查函数与方程的综合运用,还考查了方程的根与函数零点的关系.作出函数2()log 1f x x =-的图象,令,方程2[()]()20f x af x b ++=转化为:,再方程2[()]()20f x af x b ++=有个不同的实数解,可知方程有一零根和一正根,又因为最小的实数解为,所以从而得到方程:的两根是和,最后由韦达定理求得得:,进而求得.13.(2023ꞏ宁夏吴忠ꞏ吴忠中学校考三模)已知函数()ln xf x x=,若关于x 的方程()()210f x af x a ++-=⎡⎤⎣⎦有且仅有三个不同的实数解,则实数a 的取值范围是( ) A .()2e,1e --B .()1e,0-C .(),1e -∞-D .()1e,2e -【答案】C【答案解析】因为()ln x f x x =,所以()()2ln 1ln x f x x -'=,当()()0,11,e x ∈⋃,()0f x '<;当()e,x ∈+∞,()0f x ¢>, 所以()f x 在()0,1和()1,e 单调递减,在()e,+∞单调递增, 且当0x →时,()0f x →,()e e f =, 故()f x 的大致图象如图所示:关于x 的方程()()210f x af x a ++-=⎡⎤⎣⎦等价于()()110f x f x a ++-=⎡⎤⎡⎤⎣⎦⎣⎦, 即()1f x =-或()1f x a =-,由图知,方程()1f x =-有且仅有一解,则()1f x a =-有两解, 所以1e a ->,解得1a e <-, 故选:C.14.(2023ꞏ全国ꞏ高三专题练习)已知函数()||12x f x e =-,()()11,021ln ,0x x g x x x x ⎧+≤⎪=⎨⎪->⎩若关于x的方程()()0g f x m -=有四个不同的解,则实数m 的取值集合为( )A .ln 20,2⎛⎫ ⎪⎝⎭B .ln 2,12⎛⎫⎪⎝⎭ C .ln 22⎧⎫⎨⎬⎩⎭D .()0,1【答案】A【答案解析】设()t f x =,则()0g t m -=有四个不同的解,因为||||11()2()2x x f e x e f x --=--==, 所以()t f x =为偶函数,且当0x >时,1()2xf x e =-为增函数, 所以当0x ≤时,()t f x =为减函数,所以0min 11(0)22t f e ==-=,即12t ≥, 当0x >时,()()1ln g x x x =-, 则()11()ln 1ln 1g x x x x x x'=+-=-+, 令()0g x '=,解得1x =,所以当(0,1)x ∈时,()0g x '<,()g x 为减函数,当(1,)x ∈+∞时,()0g x '>,()g x 为增函数,又111ln 2ln 2222g ⎛⎫=-= ⎪⎝⎭,作出0x >时()g x 的图象,如图所示:所以当ln 20,2m ⎛⎫∈ ⎪⎝⎭时,1(),2y g t t =≥的图象与y m =图象有2个交点,且设为12,t t ,作出()t f x =图象,如下图所示:此时1y t =与2y t =分别与()y f x =有2个交点,即()()0g f x m -=有四个不同的解,满足题意.综上实数m 的取值范围为ln 20,2⎛⎫⎪⎝⎭.故选:A15.(2023ꞏ全国ꞏ高三专题练习)已知函数()21,1ln ,1x x f x x x x⎧-<⎪=⎨≥⎪⎩,若关于x的方程()()()21220+--=⎡⎤⎣⎦f x m f x m 有4个不同的实数解,则实数m 的取值范围是( ) A .11,3e ⎛⎫ ⎪⎝⎭B .11,32⎛⎫⎪⎝⎭eC .10,e ⎛⎫ ⎪⎝⎭D .10,2e ⎛⎫ ⎪⎝⎭【答案】D【答案解析】令()()()21220+--=⎡⎤⎣⎦f x m f x m ,即()()210f x m f x -⋅+=⎡⎤⎡⎤⎣⎦⎣⎦,得()2f x m =或()1f x =-,则直线2y m =和直线1y =-与函数()y f x =的图象共有4个交点. 当1x ≥时,()ln x f x x=,()21ln xf x x -'=,令()0f x '=,得x e =. 当1x e ≤<时,()0f x ¢>,此时函数()y f x =单调递增; 当>x e 时,()0f x '<,此时函数()y f x =单调递减. 函数()y f x =的极大值为()1f e e=,且当1x >时,()ln 0xf x x=>,如下图所示:由于关于x 的方程()()()21220+--=⎡⎤⎣⎦f x m f x m 有4个不同的实数解, 由图象可知,直线1y =-与函数()y f x =的图象只有一个交点,所以,直线2y m =与函数()y f x =的图象有3个交点,所以102m e <<,解得102m e <<.因此,实数m 的取值范围是10,2e ⎛⎫⎪⎝⎭.故选:D.16.(2023ꞏ全国ꞏ高三专题练习)已知函数()21, 1ln , 1x x f x x x x⎧-<⎪=⎨≥⎪⎩,若关于x 的方程()()()22120f x m f x m +--=⎡⎤⎣⎦有5个不同的实数解,则实数m 的取值范围是( ) A .10,e ⎛⎫ ⎪⎝⎭B .10,e ⎡⎫⎪⎢⎣⎭C .11,e ⎛⎫- ⎪⎝⎭D .11,e ⎧⎫-⎨⎬⎩⎭【答案】A 【答案解析】设lnx y x=,则21lnxy x -'=,由0y '=,解得x e =,当(0,)x e ∈时,0y '>,函数为增函数,当(,)x e ∈+∞时,0y '<,函数为减函数. ∴当x e =时,函数取得极大值也是最大值为f (e )1e=.方程22[()](12)()0f x m f x m +--=化为[()][2()1]0f x m f x -+=.解得()f x m =或1()2f x =-.如图画出函数图象:可得m 的取值范围是10,e ⎛⎫⎪⎝⎭.故选:A .17.(2023春ꞏ安徽宣城ꞏ高三校联考期末)定义域为R 的函数lg 2,2()1,2x x f x x ⎧-≠=⎨=⎩,若关于x 的方程2[()]()0f x bf x c --=有5个不同的实数解1x ,2x ,3x ,4x ,5x ,则12345()x x x x x f b c+++++的值为( ) A .0B .1C .lg 3D .3lg 2【答案】D【答案解析】由题意得,当2x =时,函数()1f x =,由2[()]()0f x bf x c --=,即10b c --=,则1c b =-,12x =,且1b c +=. 当2x >时,函数()lg(2)f x x =-,由2[()]()0f x bf x c --=,得2[lg(2)]lg(2)10x b x b ---+-=,解得lg(2)1x -=或lg(2)1x b -=-,解得212x =或13210b x -=+,当2x <时,函数()lg(2)f x x =-,由2[()]()0f x bf x c --=,得2[lg(2)]lg(2)10x b x b ---+-=,解得lg(2)1x -=或lg(2)1x b -=-,解得48x =-或15210b x -=-,所以1112345()(2122108210)(10)lg83lg 2b b x x x x x f f f b c--++++=+++++-===+,故选D.18.(2023ꞏ全国ꞏ高三专题练习)已知()f x 是定义在R 上的偶函数,且满足23,01()2ln ,1x x x f x x x x ⎧-+≤<=⎨-≥⎩,若关于x 的方程()2[()]1()0f x a f x a +--=有10个不同的实数解,则实数a 的取值范围是( ) A .()1,2 B .()2,1{2ln 22}--- C .()2,2ln 22--D .(]2,2ln 22--【答案】B【答案解析】当1x ≥时,()2ln f x x x =-,2()1f x x'=-, 当12x ≤<时,()0f x '<,当2x >时,()0f x '>, 所以()f x 在[)1,2上单调递减,在()2,∞+上单调递增, 当2x =时,()f x 取得极小值()22n 2l 2f =-, 且()11f =,当x →+∞时,()f x →+∞;当01x ≤<时,2()3f x x x =-+单调递增,且此时0()2f x ≤<. 函 数()y f x =在[0,)+∞的图象如下图所示:方程[]()2()1()0f x a f x a +--=即[][]()1()0f x f x a -+=,由图象可知,()10f x -=在[0,)+∞有3个实数解,由于()y f x =为偶函数,故在R 上有6个实数解所以只需要()0f x a +=有4个不同的实数解, 可得2ln 22a =-或21a -<<-, 故选:B.19.(2023春ꞏ辽宁沈阳ꞏ高三东北育才学校校联考阶段练习)已知函数()()2,01,ln ,0,x x f x x x ⎧⎪=⎨-<⎪⎩剟若关于x 的方程()()2[]20f x af x -+=有4个不同的实根,则a 的取值范围是( )A .[]2,4B.(4⎤⎦C .[]2,3D.(⎤⎦【答案】D【答案解析】如图,画出()f x 的图象,设()f x t =结合图象知:当1t <或2t >时()f x t =有且仅有1个实根;当12t ≤≤时()f x t =有2个实根; 问题转化为2()2h t t at =-+在[]1,2内有两个不同的零点,从而2(1)30(2)62012280h a h a a a =-≥⎧⎪=-≥⎪⎪⎨≤≤⎪⎪∆=->⎪⎩,解得3a <≤.故选:D20.(2023ꞏ全国ꞏ高三专题练习)若函数()32f x x ax bx c =+++有极值点12x x ,,且()11f x x =,则关于x 的方程()()2320f x af x b ++=的不同实根个数是( ).A .3B .4C .5D .6【答案】A【答案解析】令()f x t =,则2320t at b ++=.又()2320f x x ax b '=++=,由题意知1x x =或2x x =,即方程2320t at b ++=的根为12x x ,.于是,()1f x x =或()2f x x =.如图1所示.由图像可知()1f x x =有2个解,()2f x x =有1个解,因此方程()()2320f x af x b ++=的不同实根个数为3. 故选:A .21.(2023ꞏ湖北武汉ꞏ高三武汉外国语学校(武汉实验外国语学校)校考)若函数()()3220f x x ax bx c b =-+-<有两个极值点1x ,2x ,且()11f x x =-,()222f x x =-,则关于x 的方程()()()23220f x af x b ++=的不同的实根的个数是 A .6B .5C .4D .3【答案】B【答案解析】()2322f x x ax b '=-+,()f x 有两个极值点1x ,2x ,所以1x ,2x 是()0f x '=的两个根, 由0b <,可知两根一正一负,又当()f x 的值取为1x -,2x -时,方程()()()23220f x af x b ++=成立.当120x x <<时,作出()f x 的简图如图1所示, 当()1f x x =-时有两根,当()2f x x =-时有三根, 所以方程()()()23220f x af x b ++=有五个根;同理当120x x >>时,作出()f x 的简图如图2所示,也有当()1f x x =-时有两根, 当()2f x x =-时有三根.综上,方程()()()23220f x af x b ++=有五个根.故选:B . 二、多选题22.(2023ꞏ全国ꞏ高三专题练习)已知函数()224,0,21,0,x x x x f x x -⎧+<=⎨-≥⎩若关于x 的方程()()244230f a f x a x -⋅++=有5个不同的实根,则实数a 的取值可以为( ) A .32-B .43-C .65-D .76-【答案】BCD【答案解析】令()f x m =,记2()4423g m m am a =-++的两个零点为12,m m ,则由()f x 的图象可知:方程()()244230fx a f x a -⋅++=有5个不同的实根⇔12,y m y m ==与()f x 的图象共有5个交点121m ⇔-<≤-,且210m -<<(不妨设12m m <).则()()()221019016700230Δ230g a g a g a a a ⎧-=+>⎪-=+≤⎪⎨=+>⎪⎪=-->⎩解得3726a -<≤-.故选:BCD23.(2023春ꞏ广东惠州ꞏ高三惠州一中校考)已知函数()224,0,21,0,xx x x f x x -⎧+<=⎨-≥⎩ 若关于x 的方程()()244230fx a f x a -⋅++=有 5 个不同的实根,则实数a 的取值可以为( )A .32-B .43-C .54-D .65-【答案】BCD【答案解析】作出函数224,0()21,0x x x x f x x -⎧+<=⎨-⎩…,的图象如下:因为关于x 的方程24()4()230f x a f x a -⋅++=有5个不同的实根,令()t f x =,则方程244230t at a -++=有2个不同的实根12,t t ,则21616(23)0a a ∆=-+>,解得1a <-或3a >,若12t t <,则12210t t -<≤-<<或1210t t -<<=,令2()4423g t t at a =-++,∴()()()21910017600230g a g a g a ⎧-=+>⎪-=+≤⎨⎪=+>⎩或230a +=,解()()()21910017600230g a g a g a ⎧-=+>⎪-=+≤⎨⎪=+>⎩得3726a -<≤-;当230a +=时解得32a =-,此时2460t t +=,解得20t =,132t =-,不符合题意,故舍去;∴综上可得3726a -<≤-.故选:BCD24.(2023春ꞏ吉林长春ꞏ高三长春十一高校考期末)已知函数()24,0{21,0x x x x f x x -+<=->,若关于x的方程()()244230f x f x λλ-++=有5个不同的实根,则实数λ可能的取值有( )A .32-B .43-C .76-D .87-【答案】BC【答案解析】作出函数()24,021,0x x x x f x x -⎧+<=⎨->⎩的图象如下,因为关于x 的方程()()244230fx f x λλ-++=有5个不同的实根,所以关于()f x 的一元二次方程有两个不同的根且满足1()0f x -<<,4()1f x -<≤-, 令()t f x =, 则244230t t λλ-++=的两根满足10,41t t -<<-<≤-, 令2()4423g t t t λλ=-++,则(4)0(1)0(0)0g g g ->⎧⎪-≤⎨⎪>⎩,即18670670230λλλ+>⎧⎪+≤⎨⎪+>⎩,解得3726λ-<≤-故选:BC25.(2023春ꞏ江苏南通ꞏ高三海门中学校考阶段练习)已知函数()1exx f x =+,2(),0()2,0f x x g x x x a x ≤⎧=⎨-+>⎩,且(1)0g =,则关于x 的方程()()10g g x t --=实根个数的判断正确的是( )A .当2t <-时,方程()()10g g x t --=没有相应实根B .当110t e -+<<或2t =-时,方程()()10g g x t --=有1个相应实根C .当111t e<<+时,方程()()10g g x t --=有2个相异实根D .当111t e-<<-+或01t <≤或11t e =+时,方程()()10g g x t --=有4个相异实根【答案】AB【答案解析】由(1)0g =得120a -+=,则1a =;所以()2(),0()1,0f x x g x x x ≤⎧⎪=⎨->⎪⎩,故()0g x ≥, 当0x ≤时,()()11ex x xg x f x xe --==+=-,则()()1x x x g x e xe e x '=--=-+, 由()0g x '>得1x <-;由()0g x '<得10x -<<;则max 1()(1)1g x g e =-=+,又(0)(0)1g f ==,x →-∞时,()1g x →;即0x ≤时,1()1,1g x e ⎡⎤∈+⎢⎥⎣⎦;当0x >时,()2()10g x x =-≥;由()()10g g x t --=解得()g x t =或()2g x t =+;A 选项,当2t <-时,()g x t =与()2g x t =+都无解,故没有相应实根;故A 正确;B 选项,当110t e-+<<或2t =-时,方程()()10g g x t --=有1个相应实根,即()2g x t =+只要一个根,则只需20t +=或121t e +>+,解得2t =-或11t e>-+;故B 正确;C 选项,当111t e<<+时,()g x t =有三个根,()2g x t =+有一个根,所以方程()()10g g x t --=有4个相异实根;故C 错;D 选项,11t e=+时,方程()g x t =有两个解;()2g x t =+有一个解,共三个解;当01t <≤时,方程()g x t =有两个解;()2g x t =+有一个解,共三个解;当111t e -<<-+时,方程()g x t =无解;方程()2g x t =+有三个解,共三个解;故D 错.故选:AB. 三、填空题26.(2023ꞏ全国ꞏ高三专题练习)已知函数()23xx f x e -=,若关于x 的方程()()()2212[]0f x tf x t R e+-=∈有m 个不同的实数解,则m 的所有可能的值构成的集合为______.【答案】{}3【答案解析】函数()f x 的导数为()()()()()222223231323'()x xx x x xxe x e x x x x x x f x e e e e------+--+====, 由()'0f x >,得13x -<<,()f x 递增; 由()'0f x <,得3x >或1x <-,()f x 递减.即有()f x 在1x =-处取得极小值()12f e -=-;在3x =处取得极大值()363f e =, 作出()f x 的图象,如图所示:关于x 的方程()()()2212[]0f x tf x t R e +-=∈,令()n f x =,则22120n nt e --=, 由判别式22480t e =+> ,方程有两个不等实根, 122120n n e =-<, 则原方程有一正一负实根. 而326122e e e -⨯=-, 即当136n e =,则22n e =-,此时1y n =和()f x 的图象有两个交点,2y n =与()f x 的图象有1个交点,此时共有3个交点, 当136n e>,则220e n -<<,此时1y n =和()f x 的图象有1个交点,2y n =与()f x 的图象有2个交点,此时共有3个交点, 当1360n e <<,则22n e <-,此时1y n =和()f x 的图象有3个交点,2y n =与()f x 的图象有0交点,此时共有3个交点, 当120e n -<<,则236n e >,此时1y n =和()f x 的图象有2个交点,2y n =与()f x 的图象有1个交点,此时共有3个交点, 当12n e =-,则236n e=,此时1y n =和()f x 的图象有1个交点,2y n =与()f x 的图象有2个交点,此时共有3个交点, 当12n e <-,则2360n e <<,此时1y n =和()f x 的图象有0个交点,2y n =与()f x 的图象有3个交点,此时共有3个交点,综上,方程()()()2212[]0f x tf x t R e +-=∈恒有3个不同的实数解,即3m =, 即m 的所有可能的值构成的集合为{}3,故答案为{}3.27.(2023ꞏ江苏ꞏ高三专题练习)设定义在R 上的函数1,11()1, 1.x x f x x ⎧≠⎪-=⎨⎪=⎩,若关于x 的方程2()()0f x bf x c ++=有3个不同的实数解123,,x x x ,则123x x x ++=_____________.【答案】3【答案解析】作出函数的图象,如图,易知函数图象关于1x =对称,若关于x 的方程2()()0f x bf x c ++=有3个不同的实数解123,,x x x , 则方程2()()0f x bf x c ++=必有一个根使()1f x =,不妨设为1x , 而另外两根23,x x 关于直线1x =对称, 于是1233x x x ++=. 故答案为:3.28.(2023春ꞏ江西赣州ꞏ高三校联考)已知函数()f x 是定义域为R 的偶函数,当0x ≥时,2412,02()2log ,2x x x f x x x ⎧-++≤≤⎪=⎨⎪>⎩,若关于x 的方程2[()]()10m f x n f x ⋅+⋅+=恰好有7个不同的实数根,那么m n -的值为___________. 【答案】4【答案解析】根据已知部分的函数答案解析式和偶函数对称性,画()f x 图象如图,令()f x t =,则原方程可化为210m t n t ⋅+⋅+=,根据图象可知,要使原方程恰好有7个不同的实数根, 只需210m t n t ⋅+⋅+=有两个不等的实数根12、32,由韦达定理可知,1322n m +=-,13122m ⨯=,解得43m =,83n =-,故4m n -=. 故答案为:4.29.(2023ꞏ全国ꞏ高三专题练习)设定义域为R 的函数1251? 0()44? 0x x f x x x x -⎧-≥⎪=⎨++<⎪⎩,若关于x 的方程22()(21)()0f x m f x m -++=有7个不同的实数解,则m=______ 【答案】2【答案解析】∵题中原方程22()(21)()0f x m f x m -++=有7个不同的实数根,∴即要求对应于()f x 等于某个常数有3个不同实数解和4个不同的实数解,∴故先根据题意作出()f x 的简图:由图可知,只有当()4f x =时,它有三个根,故关于的方程22()(21)()0f x m f x m -++=有一个实数根4,∴()2244-4210m m ⋅++=,∴2m =或6m =,6m =时,方程22()(21)()0f x m f x m -++=()()()2133604f x f x f x ⇔-+=⇔=或()9f x =,有5个不同的实数根,∴2m =.30.(2023春ꞏ四川成都ꞏ高三石室中学校考)已知函数()11e ,0e ,0x x x xf x x x ---⎧⋅>=⎨-⋅<⎩,若关于x 的方程()()222f x m f x =-⎡⎤⎣⎦有8个不同的实数解,则整数m 的值为___________.(其中e 是自然对数的底数) 【答案】5【答案解析】因为()11e ,0e ,0x x x xf x x x ---⎧⋅>=⎨-⋅<⎩,所以当0x >时,()()11=e ()e x x f x x x f x ----⋅-=⋅=,当0x <时,()()11=e ()e x x f x x x f x -----⋅-=-⋅=,即()f x 满足()()=f x f x -,则()f x 是偶函数.当0x >时,则()e xf x x =,()()2e 1x xf x x-'=,当1x >时,()0f x ¢>,()f x 单调递增; 当01x <<时,()0f x '<,()f x 单调递减;当1x =时,()min e f x =, 作出函数()f x 的图象,如图所示:设()e f x t =≥,因为()()222f x m f x =-⎡⎤⎣⎦有8个不同的实数解,所以由图象可得,关于t 的方程2240t mt m -+=有2个不同的实数解,且都大于e , 所以有22Δ4160e e 2e 40m m m m m ⎧=->⎪>⎨⎪-+>⎩,解得2e 42e 4m <<-,又因为2e 562e 4<<-,所以整数m 的值为5,故答案为:5.31.(2023ꞏ江苏扬州ꞏ高三扬州中学校考)已知函数()2log 1f x x =-,若关于x 的方程()()2[]0f x a f x b +⋅+=有6个不同的实数解,且最小实数解为3-,则a b +的值为______.【答案】2-【答案解析】由题意,作出函数()2log 1f x x =-图象,如图所示: 令()2log 1t f x x ==-,根据图象可知,关于x 的方程()()2[]0f x a f x b +⋅+=有6个不同的实数解,可转化为关于t 的方程20t a t b +⋅+=有2个不同的实数解, 且必有一个解为0,另一个解大于0,所以0b =. 则20t a t +⋅=,解为1t a =-,20t =.所以()123log 312t a f =-=-=--=,即2a =-. 所以2a b +=-. 故答案为:2-.。
高中函数练习题及答案一、选择题(每题3分,共15分)1. 函数f(x) = 3x^2 - 2x + 1的图像关于哪条直线对称?A. x = 1/3B. x = 1C. x = 2/3D. x = 02. 若f(x) = x^3 - 2x^2 - 3x + 1,求f(-1)的值。
A. -3B. 3C. 5D. 73. 函数y = 2x + 3与直线y = 5x - 1的交点坐标是?A. (1, 2)B. (2, 5)C. (3, 8)D. (4, 11)4. 函数y = |x - 1|的图像在x轴上的截距为?A. 1B. 0C. 2D. -15. 若f(x) = x^2 + bx + c,且f(0) = 0,f(1) = 1,求b和c的值。
A. b = 1, c = 0B. b = -1, c = 1C. b = 0, c = 0D. b = 1, c = 1二、填空题(每题2分,共10分)6. 若函数f(x) = kx + b的斜率为-1,则k的值为______。
7. 函数y = x^2 + 2x - 3的顶点坐标为(-1, ______)。
8. 若函数f(x) = 2x^3 - 5x^2 + 3x + 1的极小值点为x = 1,则f(1) = ______。
9. 若函数f(x) = √x在区间[1, 4]上是增函数,则f(4) - f(1) =______。
10. 若函数f(x) = sin(x) + cos(x)的最大值为√2,则x = ______。
三、解答题(每题25分,共75分)11. 已知函数f(x) = x^3 - 6x^2 + 9x + 2,求导数f'(x),并找出函数的极值点。
12. 已知函数g(x) = 3x^2 + 2x - 5,求其在区间[-2, 1]上的最大值和最小值。
13. 已知函数h(x) = √x + 1/x,求其在区间[1, 9]上是否存在单调区间,并说明理由。
高中函数试题及答案解析试题一:函数的奇偶性1. 判断函数f(x) = x^2 - 2x + 3的奇偶性,并说明理由。
2. 若f(x)为奇函数,且f(1) = 5,求f(-1)的值。
试题二:函数的单调性3. 判断函数g(x) = -3x^2 + 6x - 2在区间(-∞, 1]上的单调性。
4. 若函数h(x) = 2x^3 - 6x^2 + 3x + 1在区间[-1, 1]上单调递减,求h'(x)的值。
试题三:复合函数的单调性5. 若f(x) = x^2 + 1,g(x) = 2x - 3,求复合函数f(g(x)),并判断其单调性。
6. 若复合函数f(g(x))在区间[-2, 1]上单调递增,求g'(x)的值。
试题四:函数的值域7. 求函数y = 3x + 2在x∈[-1, 4]上的值域。
8. 若函数y = 1/x在x∈(0, 1]上的值域为[2, +∞),求y的最小值。
试题五:函数的极值9. 求函数k(x) = x^3 - 3x^2 + 2x在x = 1处的极值。
10. 若函数m(x) = x^4 - 4x^3 + 4x^2 + 8x + 1在x = 2处取得极小值,求m'(x)和m''(x)的值。
答案解析:1. 函数f(x) = x^2 - 2x + 3为偶函数,因为f(-x) = (-x)^2 - 2(-x) + 3 = x^2 + 2x + 3 = f(x)。
2. 由于f(x)为奇函数,所以f(-1) = -f(1) = -5。
3. 函数g(x) = -3x^2 + 6x - 2在区间(-∞, 1]上单调递增,因为g'(x) = -6x + 6,当x < 1时,g'(x) > 0。
4. 函数h(x)的导数h'(x) = 6x^2 - 12x + 3,由于h(x)在区间[-1, 1]上单调递减,所以h'(x) < 0,即6x^2 - 12x + 3 < 0。
高三数学一轮复习精练:函数一、选择题(60分,每小题5分)1.若函数()y f x =是函数1xy a a a =>≠(0,且)的反函数,且(2)1f =,则()f x =A .x 2logB .x 21C .x 21logD .22-x2.函数()f x 的定义域为R ,若(1)f x +与(1)f x -都是奇函数,则( D ) (A) ()f x 是偶函数 (B) ()f x 是奇函数 (C) ()(2)f x f x =+ (D) (3)f x +是奇函数3.对于正实数α,记M α为满足下述条件的函数()f x 构成的集合:12,x x ∀∈R 且21x x >,有212121()()()()x x f x f x x x αα--<-<-.下列结论中正确的是 ( )A .若1()f x M α∈,2()g x M α∈,则12()()f x g x M αα⋅⋅∈B .若1()f x M α∈,2()g x M α∈,且()0g x ≠,则12()()f x M g x αα∈ C .若1()f x M α∈,2()g x M α∈,则12()()f x g x M αα++∈D .若1()f x M α∈,2()g x M α∈,且12αα>,则12()()f x g x M αα--∈4.为了得到函数3lg10x y +=的图像,只需把函数lg y x =的图像上所有的点 ( )A .向左平移3个单位长度,再向上平移1个单位长度B .向右平移3个单位长度,再向上平移1个单位长度C .向左平移3个单位长度,再向下平移1个单位长度D .向右平移3个单位长度,再向下平移1个单位长度5.定义在R 上的函数f(x)满足f(x)=⎩⎨⎧>---≤-0),2()1(0),1(log 2x x f x f x x ,则f (2020)的值为( )A.-1B. 0C.1D. 26.已知甲、乙两车由同一起点同时出发,并沿同一路线(假定为直线)行驶.甲车、乙车的速度曲线分别为v v 乙甲和(如图2所示).那么对于图中给定的01t t 和,下列判断中一定正确的是A. 在1t时刻,甲车在乙车前面 B. 1t时刻后,甲车在乙车后面 C. 在0t 时刻,两车的位置相同D.t 时刻后,乙车在甲车前面7.如图所示,一质点(,)P x y 在xOy 平面上沿曲线运动,速度大小不 变,其在x 轴上的投影点(,0)Q x 的运动速度()V V t =的图象大致为A B C D8.设函数2()(0)f x ax bx c a =++<的定义域为D ,若所有点(,())(,)s f t s t D ∈构成一个正方形区域,则a 的值为A .2-B .4-C .8-D .不能确定9.设函数⎩⎨⎧<+≥+-=0,60,64)(2x x x x x x f 则不等式)1()(f x f >的解集是( )A ),3()1,3(+∞⋃-B ),2()1,3(+∞⋃-C ),3()1,1(+∞⋃-D )3,1()3,(⋃--∞ 10.设球的半径为时间t 的函数()R t 。
高三数学专题精练:函数一、选择题(60分,每小题5分) 1.若函数()y f x =是函数1xy a a a =>≠(0,且)的反函数,且(2)1f =,则()f x = A .x 2log B .x21 C .x 21log D .22-x2.函数()f x 的定义域为R ,若(1)f x +与(1)f x -都是奇函数,则( D ) (A) ()f x 是偶函数 (B) ()f x 是奇函数 (C)()(2)f x f x =+(D)(3)f x +是奇函数3.对于正实数α,记M α为满足下述条件的函数()f x 构成的集合:12,x x ∀∈R 且21x x >,有212121()()()()x x f x f x x x αα--<-<-.下列结论中正确的是 ( )A .若1()f x M α∈,2()g x M α∈,则12()()f x g x M αα⋅⋅∈B .若1()f x M α∈,2()g x M α∈,且()0g x ≠,则12()()f x M g x αα∈ C .若1()f x M α∈,2()g x M α∈,则12()()f x g x M αα++∈D .若1()f x M α∈,2()g x M α∈,且12αα>,则12()()f x g x M αα--∈ 4.为了得到函数3lg10x y +=的图像,只需把函数lg y x =的图像上所有的点 ( )A .向左平移3个单位长度,再向上平移1个单位长度B .向右平移3个单位长度,再向上平移1个单位长度C .向左平移3个单位长度,再向下平移1个单位长度D .向右平移3个单位长度,再向下平移1个单位长度 5.定义在R 上的函数f(x )满足f(x)=⎩⎨⎧>---≤-0),2()1(0),1(log 2x x f x f x x ,则f(2009)的值为( )A.-1B. 0C.1D. 26.已知甲、乙两车由同一起点同时出发,并沿同一路线(假定为直线)行驶.甲车、乙车的速度曲线分别为v v 乙甲和(如图2所示).那么对于图中给定的01t t 和,下列判断中一定正确的是 A. 在1t 时刻,甲车在乙车前面 B. 1t 时刻后,甲车在乙车后面 C. 在0t 时刻,两车的位置相同 D. 0t 时刻后,乙车在甲车前面7.如图所示,一质点(,)P x y 在xOy 平面上沿曲线运动,速度大小不变,其在x 轴上的投影点(,0)Q x 的运动速度()V V t =的图象大致为yxO(,)P x y (,0)Q x O ()V t t O ()V t tO ()V t tO ()V t tA B C D8.设函数2()(0)f x ax bx c a =++<的定义域为D ,若所有点(,())(,)s f t s t D ∈构成一个正方形区域,则a 的值为A .2-B .4-C .8-D .不能确定9.设函数⎩⎨⎧<+≥+-=0,60,64)(2x x x x x x f 则不等式)1()(f x f >的解集是( ) A ),3()1,3(+∞⋃- B ),2()1,3(+∞⋃-C),3()1,1(+∞⋃- D )3,1()3,(⋃--∞10.设球的半径为时间t 的函数()R t 。
若球的体积以均匀速度c 增长,则球的表面积的增长速度与球半径A.成正比,比例系数为CB. 成正比,比例系数为2CC.成反比,比例系数为CD. 成反比,比例系数为2C11.已知函数)(x f 是定义在实数集R 上的不恒为零的偶函数,且对任意实数x 都有)()1()1(x f x x xf +=+,则)25(f 的值是 A. 0 B. 21 C. 1D. 2512.如图1,当参数2λλ=时,连续函数(0)1xy x xλ=≥+ 的图像分别对应曲线1C 和2C , 则[ B]A 10λλ<<B 10λλ<<C 120λλ<<D 210λλ<<二、填空题(20分,每小题5分) 13.若1()21xf x a =+-是奇函数,则a =. 14.已知函数3,1,(),1,x x f x x x ⎧≤=⎨->⎩若()2f x =,则x =. 15.若函数f(x)=a x -x-a(a>0且a ≠1)有两个零点,则实数a 的取值范围是 .16.记3()log (1)f x x =+的反函数为1()y f x -=,则方程1()8f x -=的解x =.三、解答题(共70分,共6小题) 17.(本小题满分12分)已知二次函数)(x g y =的导函数的图像与直线2y x =平行,且)(x g y =在x =-1处取得最小值m -1(m 0≠).设函数xx g x f )()(=(1)若曲线)(x f y =上的点P 到点Q(0,2)的距离的最小值为2,求m 的值(2))(R k k ∈如何取值时,函数kx x f y -=)(存在零点,并求出零点.18. (本小题满分12分)设a为实数,函数2=+--.f x x x a x a()2()||(1)若(0)1f≥,求a的取值范围;(2)求()f x的最小值;(不需给出演算步骤)不等(3)设函数()(),(,)=∈+∞,直接写出h x f x x a....式()1h x≥的解集.19.(本小题满分12分)两县城A和B相距20km,现计划在两县城外以AB为直径的半圆弧上选择一点C建造垃圾处理厂,其对城市的影响度与所选地点到城市的的距离有关,对城A和城B的总影响度为城A与城B的影响度之和,记C点到城A的距离为x km,建在C处的垃圾处理厂对城A和城B的总影响度为y,统计调查表明:垃圾处理厂对城A的影响度与所选地点到城A的距离的平方成反比,比例系数为4;对城B的影响度与所选地点到城B的距离的平方成反比,比例系数为k ,当垃圾处理厂建在的中点时,对城A和城B的总影响度为0.065.(1)将y表示成x的函数;(11)讨论(1)中函数的单调性,并判断弧上是否存在一点,使建在此处的垃圾处理厂对城A和城B的总影响度最小?若存在,求出该点到城A的距离;若不存在,说明理由。
20.(本小题满分10分)已知函数f(x)=21x 2-ax+(a -1)ln x ,1a >。
(1)讨论函数()f x 的单调性;(2)证明:若5a <,则对任意x 1,x 2∈(0,)+∞,x 1≠x 2,有1212()()1f x f x x x ->--。
21.(本小题满分12分) 已知函数1()ln(1),01xf x ax x x-=++≥+,其中0a > ()I 若()f x 在x=1处取得极值,求a 的值;()II 求()f x 的单调区间;(Ⅲ)若()f x 的最小值为1,求a 的取值范围。
22.(本小题满分12分) 已知函数32()22f x x bx cx =++-的图象在与x 轴交点处的切线方程是510y x =-。
(I )求函数()f x 的解析式;(II )设函数1()()3g x f x mx =+,若()g x 的极值存在,求实数m 的取值范围以及函数()g x 取得极值时对应的自变量x 的值.23.(本小题满分12分)某地建一座桥,两端的桥墩已建好,这两墩相距m 米,余下工程只需要建两端桥墩之间的桥面和桥墩,经预测,一个桥墩的工程费用为256万元,距离为x 米的相邻两墩之间的桥面工程费用为(2x 万元。
假设桥墩等距离分布,所有桥墩都视为点,且不考虑其他因素,记余下工程的费用为y 万元。
(Ⅰ)试写出y 关于x 的函数关系式;(Ⅱ)当m =640米时,需新建多少个桥墩才能使y 最小?一、选择题(60分,每小题5分) 1.答案:A【解析】函数1xy a a a =>≠(0,且)的反函数是()log a f x x =,又(2)1f =,即log 21a =,所以,2a =,故2()log f x x =,选A. 2.答案:D 解:(1)f x +与(1)f x -都是奇函数,(1)(1),(1)(1)f x f x f x f x ∴-+=-+--=--, ∴函数()f x 关于点(1,0),及点(1,0)-对称,函数()f x 是周期2[1(1)]4T =--=的周期函数.(14)(14)f x f x ∴--+=--+,(3)(3)f x f x -+=-+,即(3)f x +是奇函数。
故选D3.答案:C 【解析】对于212121()()()()x x f x f x x x αα--<-<-,即有2121()()f x f x x x αα--<<-,令2121()()f x f x kx x -=-,有k αα-<<,不妨设1()f x M α∈,2()g x M α∈,即有11,f k αα-<<22g k αα-<<,因此有1212f g k k αααα--<+<+,因此有12()()f x g x M αα++∈.4.答案:C【解析】本题主要考查函数图象的平移变换.属于基础知识、基本运算的考查.A .()()lg 31lg103y x x =++=+,B .()()lg 31lg103y x x =-+=-,C .()3lg 31lg10x y x +=+-=, D .()3lg 31lg 10x y x -=--=.故应选C. 5.答案:C.【解析】:由已知得2(1)log 21f -==,(0)0f =,(1)(0)(1)1f f f =--=-,(2)(1)(0)1f f f =-=-,(3)(2)(1)1(1)0f f f =-=---=,(4)(3)(2)0(1)1f f f =-=--=,(5)(4)(3)1f f f =-=,(6)(5)(4)0f f f =-=,所以函数f(x)的值以6为周期重复性出现.,所以f (2009)=f (5)=1,故选C.【命题立意】:本题考查归纳推理以及函数的周期性和对数的运算. 6.答案:A【解析】由图像可知,曲线甲v 比乙v 在0~0t 、0~1t 与x 轴所围成图形面积大,则在0t 、1t 时刻,甲车均在乙车前面,选A. 7.答案:B【解析】由图可知,当质点(,)P x y 在两个封闭曲线上运动时,投影点(,0)Q x 的速度先由正到0、到负数,再到0,到正,故A 错误;质点(,)P x y 在终点的速度是由大到小接近0,故D 错误;质点(,)P x y 在开始时沿直线运动,故投影点(,0)Q x 的速度为常数,因此C 是错误的,故选B . 8.答案:B【解析】12max ||()x x f x -=,=||a =4a =-,选B 9.答案:A【解析】由已知,函数先增后减再增 当0≥x ,2)(≥x f 3)1(=f 令,3)(=x f 解得3,1==x x 。