第六章 相关分析
- 格式:ppt
- 大小:1.40 MB
- 文档页数:27
第六章 相关与回归分析思考与练习一、判断题1.产品的单位成本随着产量增加而下降,这种现象属于函数关系。
答:错。
应是相关关系。
单位成本与产量间不存在确定的数值对应关系。
2.相关系数为0表明两个变量之间不存在任何关系。
答:.错。
相关系数为零,只表明两个变量之间不存在线性关系,并不意味着两者间不存在其他类型的关系。
3.单纯依靠相关与回归分析,无法判断事物之间存在的因果关系。
答:对,因果关系的判断还有赖于实质性科学的理论分析。
4.圆的直径越大,其周长也越大,两者之间的关系属于正相关关系。
答:错。
两者是精确的函数关系。
5.总体回归函数中的回归系数是常数,样本回归函数中的回归系数的估计量是随机变量。
答:对。
6.当抽取的样本不同时,对同一总体回归模型估计的结果也有所不同。
答:对。
因为,估计量属于随机变量,抽取的样本不同,具体的观察值也不同,尽管使用的公式相同,估计的结果仍然不一样。
二、选择题1.变量之间的关系按相关程度分可分为:b 、c 、da.正相关;b. 不相关;c. 完全相关;d.不完全相关; 2.复相关系数的取值区间为:aa. 10≤≤R ;b.11≤≤-R ;c.1≤≤∞-R ;d.∞≤≤-R 1 3.修正自由度的决定系数a 、b 、da.22R R ≤; b.有时小于0 ; c. 102≤≤R ;d.比2R 更适合作为衡量回归方程拟合程度的指标 4.回归预测误差的大小与下列因素有关:a 、b 、c 、da 样本容量;b 自变量预测值与自变量样本平均数的离差c 自变量预测误差;d 随机误差项的方差三、问答题1.请举一实例说明什么是单相关和偏相关?以及它们之间的差别。
答:例如夏季冷饮店冰激凌与汽水的消费量,简单地就两者之间的相关关系进行考察,就是一种单相关,考察的结果很可能存在正相关关系,即冰激凌消费越多,汽水消费也越多。
然而,如果我们仔细观察,可以发现一般来说,消费者会在两者中选择一种消费,也就是两者之间事实上应该是负相关。
第六章_典型相关分析典型相关分析是一种多元统计分析方法,用于研究两组变量之间的关系。
它可以用来探索两组变量之间的线性关系,并找到最能代表两组变量之间关系的线性组合。
典型相关分析基于两个原始变量集合,每个集合中的变量可能有不同的数量。
它的目标是找到两个线性组合,使得这两个组合之间的相关性最大。
换句话说,典型相关分析试图找到两个最相关的综合变量,以最大程度地描述两组变量之间的关系。
在典型相关分析中,有两个步骤:计算典型变量和计算典型相关系数。
首先,通过将每一组变量进行线性组合,得到两组典型变量。
然后,计算这两组典型变量之间的相关系数,这个相关系数称为典型相关系数。
为了更好地理解典型相关分析,我们可以考虑一个具体的例子。
假设我们想要研究身高、体重和年龄之间的关系。
我们收集了100个人的数据,其中包括身高、体重和年龄这三个变量。
我们可以将身高和体重看作是第一组变量,年龄是第二组变量。
首先,我们通过将身高和体重进行线性组合,得到第一组典型变量。
然后,我们对年龄进行线性组合,得到第二组典型变量。
接下来,我们计算这两组典型变量之间的相关系数,以确定身高、体重和年龄之间的关系强度。
典型相关分析在很多领域都有应用,比如心理学、社会学、经济学等。
例如,在心理学研究中,研究人员可能希望了解个体的性格特征和行为习惯之间的关系。
他们可以使用典型相关分析来找到最能代表这两组变量之间关系的线性组合。
总之,典型相关分析是一种用于研究两组变量之间关系的多元统计方法。
它可以帮助我们找到最相关的综合变量,以最大程度地描述两组变量之间的关系。
典型相关分析在实践中有广泛的应用,可以帮助研究人员深入了解变量之间的复杂关系。