小学五年级下册数学试题-奥数专题:第三节 速算与巧算(二)全国通用
- 格式:docx
- 大小:151.10 KB
- 文档页数:8
第二讲 小数的速算与巧算(二)【知识概述】若干个数排成一列称为“数列”,数列中的每一个数称为一项,其中第一项称为首项(1a ),最后一项称为末项(n a )。
从第二项开始,后项与前项之差都相等的数列称为“等差数列”,后项与前项之差称为公差(d ),数列中的数的个数称为项数(n )。
对于等差数列,我们要熟练运用三个公式:通项公式:第n 项=首项+(项数-1)×公差项数公式:项数=(末项-首项)÷公差+1求和公式:和=(首项+末项)×项数÷21、对于一个数除以两个或者两个以上的数,我们可以把多个除数先用乘积的方式算出结果,再用被除数除以所求的结果,得到最后的商例1 计算8.376÷3.2÷2.5解析:8.376除以3.2再除以2.5也就是8.376除以3.2与2.5的乘积练习 计算7.68÷2.5÷0.42、 一个数除以另一个数就等于这个数乘以这个数的倒数,即a ÷b=a ×1/b=a/b 例2 计算(4.8×7.5×8.1)÷(2.4×2.5×2.7)解析 :因为乘除是同一级运算,我们可以把式子拆开,看作是(4.8÷2.4)×(7.5÷2.5)×(8.1÷2.7)练习 1.1÷(1.1÷1.2)÷(1.2÷1.3)÷(1.3÷1.4)3.数列通项公式:第n项=首项+(项数-1)×公差,项数公式:项数=(末项-首项)÷公差+1,求和公式:和=(首项+末项)×项数÷2等差数列就是一列数,后面的数减去前面的数所得的差都是相等的例3 已知等差数列0.2,0.5,0.8,1.1,1.4,…。
(1)这个数列的第13项是多少?(2)4.7是其中的第几项?解析:第13项等于首项+(n-1)×公差=0.2+(13-1)×0.3, 4.7=0.2+(n-1) ×0.3,求得的n就是第几项练习:有一列数0.1,0.5,0.9,1.3,1.7,…。
五年级奥数速算、巧算方法及习题五年级奥数速算、巧算方法及习题数的概念自然数:0,1,2,3,4……叫自然数。
整数:正整数,0,负整数统称整数。
……-4,-3,-2,-1,0,1,2,3,4……1、整除:整数a除以整数b,如果除得的商是整数,而余数为0,我们就说a能被b整除,或者说b能整除a。
如果整数a能被整数b整除(b不等于0),a就叫b的倍数,b 就叫a的约数(因数)。
2、整除的条件:(1)、除数被除数都是整数( 2 )、被除数除以除数,商是整数,而且余数为零,除数不为零。
4、整除的特征:(1)、0能整除任意非零的整数,1能整除任意整数(2)、能被2整除的数的特征:一个数的末尾数字是0,2,4,6,8(3)、能被3(或9)整除的数的特征:各位数字的和能被3(或9)整除(4)、能被4(或25)整除的数的特征:末尾两位能被4(或25)整除(5)、能被5整除的数的特征:一个数的末尾是0或5(6)、能被6整除的数的特征:同时能被2或3整除(7)、能被7整除的数的特征:去掉个位数字,再从剩下的数中减去个位数字的2倍,差是7的倍数(8)、能被8(或125)整除的数的特征:末尾3位能被8(或125)整除(9)、能被10整除的数的特征:末尾数字是0(10)、能被11整除的数的特征:奇位上的数字的和与偶位上数字的和的差能被11整除(11)、能被7、11、13整除的数的特征:一个整数,如果他的末三位数与末三位以前的数字所组成的数的差能被7、11、13整除(12)、能被16(或625)整除的数的特征:末尾四位数能被16或625整除。
练习1:(1)、判断下列哪些数能被2整除?21 44 56 65 98(2)、判断下列哪些数能被3整除111 135 186 **** ****(3)、判断下列哪些数能被4整除?84 200 1984 1978 2008 200912456 37212 7800 5408(4)、判断下列哪些数能被5整除?135 65 80 4246 15360 95556 50058(5)、判断下列哪些数能被25整除?75 125 7800 178 197 2050 2029 2350 65325(6)、判断下列哪些数能被10整除?9060 4140 1531 95856 56340(7)、判断下列哪些数能被100整除?1200 170 110 200 2029(8)、判断下列哪些数能被7整除?判断下列哪些数能被11整除?判断下列哪些数能被13整除?128114 94146 64152 238231 413412 242231 439417(9) 判断下列哪些数能被8整除?判断下列哪些数能被125整除?1880 1978 1997 2008 2009 178 197 2250 2029 672520 333640 78500 987000 333420(10)、判断下列哪些数能被9整除?1161 4248 15310 95856 56349 73265 64585 6723 661232:(1)、在□中填入合适的数字,使组成的数能被4整除78□4 7653□ 863□□(2)、在□中填入合适的数字,使组成的数能被25整除98□5 765□ 667□ 874□0(3)、在□中填入合适的数字,使组成的数能被8整除32□80 789□2□ 664□(4)、在□中填入合适的数字,使组成的数能被125整除662□0 887□0 4525□□ 6673□□(5)、在□中填入合适的数字,使组成的数能被9整除78□3 68□4 322□(6)、在□中填入合适的数字,使852□7能被7整除,7630□2能被11整除,890□能被13整除。
小学数学《速算与巧算》练习题(含答案)【复习1】(我爱数学夏令营)计算:6.11+9.22+8.33+7.44+5.55+4.56+3.67+2.78+1.89分析:原式=(6.11+1.89)+(9.22+2.78)+(8.33+3.67)+(7.44+4.56)+5.55=8+12+12+12+5.55=49.55【复习2】(06香港圣公会小学奥林匹克)计算:3.72-2.73+4.6+5.28-0.27+6.4分析:原式=(3.72+5.28)+(4.6+6.4)-(2.73+0.27)=9+11-3=17 .【复习3】(华罗庚学校五年级入学考试试题)8×(3.1-2.85)×12.5×(1.62+2.38)-3.27分析:初看这道题好像不能用简便方法进行计算.但是里面有特殊数8、12.5,所以可以先算一步,再用简便方法进行计算.原式=8×0.25×12.5×4-3.27=(8×12.5)×(0.25×4)-3.27=100-3.27=96.73【复习4】(04陈省身杯数学邀请赛)(56789+67895+78956+89567+95678)÷7分析:原式=(5+6+7+8+9)×11111÷7=5×11111=55555 . 观察可知5、6、7、8、9在万、千、百、十、个位各出现过一次 .【复习5】计算:l-2+3-4+5-6+…+2005-2006+2007分析:原式= l+3-2+5-4+7-6+…+2005+2007-2006=1+1×1003=1004 ,分组求和的思路.在速算的过程中,如果加入运算律的应用,会有意想不到的效果!我们一起先来看看常用的一些运算律和结论吧!在计算过程中,最常用的技巧之一是灵活熟练地运用运算律.运算律有:(1)加法交换律:a+b=b+a(2)加法结合律:(a+b)+c=a+(b+c)(3)乘法交换律:ab=ba(4)乘法结合律:(ab)c=a(bc)(5)分配律: a(b+c)=ab+ac (反过来就是提取公因数)(6)减法(括号)的性质:a-b-c=a-(b+c)(7)除法的性质:a÷(b×c)=a÷b÷c(a+b) ÷c=a÷c+b÷c(a-b) ÷c=a÷c-b÷c和不变的规律:如果一个加数增加另一个加数减少同一个数,它们的和不变.积不变的规律:如果一个因数扩大几倍,另一个因数缩小相同的倍数,积不变.商不变的规律:如果除数和被除数同时扩大或缩小相同的倍数,商不变.【例1】(04陈省身杯数学邀请赛)计算:3.1415×252-3.1415×152分析:(法1):题中的三项都有因数34.5,容易想到把34.5作为公因数提取出来(把乘法分配律反过来用),从而使计算简便.原式=34.5×(8.23+2.77—1)=34.5×10=345.(法2):原式=3.1415×(252-152)=3.1415×(25+15)×(25-15)=3.1415×40×10=1256.6 应用下面的平方差公式【回忆巩固】a、b代表任意数字,(a+b)×(a-b)=a×a-b×b,这个公式在数学上称为平方差公式。
小学五年级奥数题——速算与巧算在日常生活和解答数学问题时,经常要进行计算,在数学课里我们学习了一些简便计算的方法 ,但如果善于观察、勤于思考 ,计算中还能找到更多的巧妙的计算方法 ,不仅使你能算得好、算得快 ,还可以让你变得聪明和机敏 .例 1:计算: 9.996+ 29.98+ 169.9+ 3999.5算式中的加法看来无法用数学课中学过的简算方法计算,但是 ,这几个数每个数只要增加一点 ,就成为某个整十、整百或整千数,把这几个数“凑整”以后,就容易计算了.当然要记住 ,“凑整”时增加了多少要减回去.9.996+ 29.98+ 169.9+ 3999.5=10+ 30+ 170+ 4000-( 0.004+ 0.02+ 0.1+ 0.5)=4210- 0.624=4209.376例 2:计算: 1+ 0.99- 0.98- 0.97+ 0.96+ 0.95- 0.94-0.93 ++ 0.04+ 0.03- 0.02- 0.01 式子的数是从 1 开始 ,依次减少0.01, 直到最后一个数是0.01, 因此 ,式中共有100 个数而式子中的运算都是两个数相加接着减两个数,再加两个数 ,再减两个数这样的顺序排列的 .由于数的排列、运算的排列都很有规律,按照规律可以考虑每 4 个数为一组添上括号 ,每组数的运算结果是否也有一定的规律?可以看到把每组数中第 1 个数减第 3 个数 ,第 2 个数减第 4 个数 ,各得 0.02, 合起来是 0.04,那么 ,每组数(即每个括号)运算的结果都是0.04,整个算式 100 个数正好分成 25 组 ,它的结果就是25 个 0.04 的和 .1+ 0.99- 0.98- 0.97+ 0.96+ 0.95 - 0.94- 0.93 ++ 0.04+0.03 -0.02 -0.01 =( 1+ 0.99- 0.98- 0.97)+( 0.96+ 0.95 -0.94- 0.93 )++( 0.04+ 0.03- 0.02- 0.01 )=0.04× 25=1如果能够灵活地运用数的交换的规律,也可以按下面的方法分组添上括号计算:1+ 0.99- 0.98- 0.97+ 0.96+ 0.95 - 0.94- 0.93 ++ 0.04+0.03 -0.02 -0.01 =1+( 0.99- 0.98- 0.97+ 0.96)+(0.95 -0.94- 0.93 + 0.92)++( 0.03- 0.02- 0.01 )=1例 3:计算: 0.1+ 0.2+ 0.3++ 0.8 +0.9+0.10 + 0.11+ 0.12++ 0.19+ 0.20这个算式的数的排列像一个等差数列,但仔细观察 ,它实际上由两个等差数列组成,0.1+0.2+ 0.3++ 0.8+ 0.9 是第一个等差数列,后面每一个数都比前一个数多0.1,而 0.10+ 0.11+0.12++ 0.19+ 0.20 是第二个等差数列,后面每一个数都比前一个数多0.01, 所以 ,应分为两段按等差数列求和的方法来计算.0.1+ 0.2+ 0.3++ 0.8+0.9+ 0.10+ 0.11 + 0.12++0.19+ 0.20=( 0.1+ 0.9)×9÷ 2+( 0.10+0.20 )× 11÷2=4.5+ 1.65=6.15例 4:计算: 9.9× 9.9+ 1.99算式中的 9.9× 9.9 两个因数中一个因数扩大10 倍 ,另一个因数缩小10 倍 ,积不变 ,即这个乘法可变为99× 0.99; 1.99 可以分成0.99+ 1 的和 ,这样变化以后 ,计算比较简便.9.9× 9.9+ 1.99=99× 0.99+ 0.99+ 1=( 99+ 1)× 0.99 +1=100例 5:计算: 2.437× 36.54+ 243.7× 0.6346虽然算式中的两个乘法计算没有相同的因数,但前一个乘法的 2.437 和后一个乘法的243.7 两个数的数字相同,只是小数点的位置不同,如果把其中一个乘法的两个因数的小数点.按相反方向移动同样多位,使这两个数变成相同的,就可以运用乘法分配律进行简算了2.437× 36.54+ 243.7× 0.6346=2.437× 36.54+ 2.437× 63.46=2.437×( 36.54+ 63.46)=243.7* 例 6:计算: 1.1×1.2 ×1.3× 1.4×1.5算式中的几个数虽然是一个等差数列,但算式不是求和,不能用等差数列求和的方法来计算这个算式的结果.平时注意积累计算经验的同学也许会注意到7、 11 和 13 这三个数连乘的积是1001,而一个三位数乘1001,只要把这个三位数连续写两遍就是它们的积,例如 578× 1001=578578,这一题参照这个方法计算,能巧妙地算出正确的得数.1.1× 1.2× 1.3× 1.4× 1.5=1.1× 1.3× 0.7× 2× 1.2× 1.5=1.001× 3.6=3.6036计算下列各题并写出简算过程:1. 5.467+ 3.814+ 7.533+ 4.1862. 6.25× 1.25× 6.43. 3.997+ 19.96+ 1.9998 + 199.74. 0.1+ 0.3++ 0.9+ 0.11+ 0.13+ 0.15++ 0.97+ 0.995. 199.9× 19.98- 199.8× 19.976. 23.75× 3.987+ 6.013× 92.07+ 6.832× 39.87*7 . 20042005 × 20052004 - 20042004 ×20052005 *8 .(1+ 0.12+ 0.23)×( 0.12+ 0.23+ 0.34)-( 1+ 0.12+ 0.23+ 0.34)×( 0.12+ 0.23 )计算下列各题并写出简算过程:1. 6.734- 1.536+ 3.266- 4.4642. 0.8÷ 0.1253. 89.1+ 90.3+ 88.6+ 92.1+ 88.9+ 90.84. 4.83× 0.59+ 0.41× 1.59- 0.324× 5.95. 37.5× 21.5× 0.112+ 35.5× 12.5× 0.112包含与排除1、某班有40 名学生 ,其中有 15 人参加数学小组,18 人参加航模小组,有 10 人两个小组都参加. 那么有多少人两个小组都不参加?两个小组共有(15+18) -10=23 (人) ,都不参加的有40-23=17(人)答:有 17 人两个小组都不参加 .--2、某班45 个学生参加期末考试,成绩公布后 ,数学得满分的有 10 人 ,数学及语文成绩均得满分的有 3 人 ,这两科都没有得满分的有29 人.那么语文成绩得满分的有多少人?45-29-10+3=9 (人)答:语文成绩得满分的有9 人 .3、 50 名同学面向老师站成一行.老师先让大家从左至右按1,2,3,,49,50 依次报数;再让报数是 4 的倍数的同学向后转,接着又让报数是 6 的倍数的同学向后转 .问:现在面向老师的同学还有多少名 ?4 的倍数有 50/4 商 12 个 ,6 的倍数有 50/6 商 8个,既是 4又是 6的倍数有 50/12 商 4 个.4 的倍数向后转人数 =12,6 的倍数向后转共8 人 ,其中 4 人向后 ,4 人从后转回 .面向老师的人数 =50-12=38(人)答:现在面向老师的同学还有38 名.4、在游艺会上 ,有 100 名同学抽到了标签分别为 1 至 100 的奖券 .按奖券标签号发放奖品的规则如下:( 1)标签号为 2 的倍数 ,奖 2 支铅笔;( 2)标签号为 3 的倍数 ,奖 3 支铅笔;( 3 )标签号既是 2 的倍数 ,又是 3 的倍数可重复领奖;( 4)其他标签号均奖 1 支铅笔 .那么游艺会为该项活动准备的奖品铅笔共有多少支?2 的倍数有100/2 商 50 个 ,3 的倍数有100/3 商 33 个 ,2 和 3 人倍数有100/6 商 16 个 .领 2 支的共准备( 50— 16)*2=68, 领 3 支的共准备( 33— 16)*3=51, 重复领的共准备16*( 2+3)=80,其余准备100-( 50+33-16 ) *1=33共需要 68+51+80+33=232(支)答:游艺会为该项活动准备的奖品铅笔共有232 支.5、有一根长为180 厘米的绳子 ,从一端开始每隔后将标有记号的地方剪断.问绳子共被剪成了多少段3 厘米作一记号?,每隔 4 厘米也作一记号,然3 厘米的记号:180/3=60, 最后到头了不划,60-1=59 个4 厘米记号: 180/4=45,45-1=44 个 ,重复的记号:180/12=15,15-1=14 个 ,所以绳子中间实际有记号 59+44-14=89 个 .剪 89 次 ,变成 89+1=90 段答:绳子共被剪成了 90 段 .6、东河小学画展上展出了许多幅画,其中有 16 幅画不是六年级的 ,有 15 幅画不是五年级的 . 现知道五、六年级共有25 幅画 ,那么其他年级的画共有多少幅?1,2,3,4,5 年级共有 16,1,2,3,4,6 年级共有 15,5,6 年级共有 25所以总共有( 16+15+25) /2=28 (幅) ,1,2,3,4 年级共有28-25=3 (幅)答:其他年级的画共有 3 幅.---7、有若干卡片 ,每张卡片上写着一个数 ,它是 3 的倍数或 4 的倍数 ,其中标有 3 的倍数的卡片占 2/3, 标有 4 的倍数的卡片占 3/4, 标有 12 的倍数的卡片有15 张 .那么 ,这些卡片一共有多少张?12 的倍数有2/3+3/4-1=5/12,15/(5/12)=36(张)答:这些卡片一共有36 张.----8、在从 1 至 1000 的自然数中 ,既不能被 5 除尽 ,又不能被7 除尽的数有多少个?5 的倍数有1000/5 商 200 个 ,7 的倍数有 1000/7 商 142 个,既是 5 又是 7 的倍数有1000/35商 28 个 .5 和 7 的倍数共有 200+142-28=314 个 .1000-314=686答:既不能被 5 除尽 ,又不能被 7 除尽的数有686 个.---9、五年级三班学生参加课外兴趣小组,每人至少参加一项 .其中有 25 人参加自然兴趣小组 ,35 人参加美术兴趣小组 ,27 人参加语文兴趣小组,参加语文同时又参加美术兴趣小组的有12 人, 参加自然同时又参加美术兴趣小组的有8 人 ,参加自然同时又参加语文兴趣小组的有9 人,语文、美术、自然 3 科兴趣小组都参加的有 4 人 .求这个班的学生人数 .25+35+27-( 8+12+9) +4=62(人)答:这个班的学生人数是62 人.-- --10、如图 8-1,已知甲、乙、丙 3 个圆的面积均为 30,甲与乙、乙与丙、甲与丙重合部分的面积分别为 6,8,5,而 3 个圆覆盖的总面积为 73.求阴影部分的面积 .甲、乙、丙三者重合部分面积=73+( 6+8+5) -3*30=2阴影部分面积=73-( 6+8+5) +2*2=58答:阴影部分的面积是58.11、四年级一班有 46 名学生参加 3 项课外活动 .其中有 24 人参加了数学小组 ,20 人参加了语文小组 ,参加文艺小组的人数是既参加数学小组又参加文艺小组人数的 3.5 倍 ,又是 3 项活动都参加人数的 7 倍 ,既参加文艺小组也参加语文小组的人数相当于 3 项都参加的人数的 2 倍 , 既参加数学小组又参加语文小组的有10 人 .求参加文艺小组的人数 .设参加文艺小组的人数是X,24+20+X-( X/305+2/7*X+10 ) +X/7=46, 解得 X=21答:参加文艺小组的人数是21 人.________________________________________-12、图书室有 100 本书 ,借阅图书者需要在图书上签名.已知在 100 本书中有甲、乙、丙签名的分别有 33,44 和 55 本 ,其中同时有甲、乙签名的图书为29 本 ,同时有甲、丙签名的图书有25 本,同时有乙、丙签名的图书有36 本 .问这批图书中最少有多少本没有被甲、乙、丙中的任何一人借阅过 ?三个人一共看过的书的本数是:甲 +乙 +丙(-甲乙 +甲丙 +乙丙)+甲乙丙 =33+44+55(- 29+25+36)+甲乙丙 =42+甲乙丙 ,当甲乙丙最大时 ,三人看过的书最多,因为甲、丙共同看过的书只有25 本,比甲乙和乙丙共同看到的都少,所以甲乙丙最多共同看过25 本.三人总共看过最多有42+25=67(本) ,都没看过的书最少有100-67=33 (本)答:这批图书中最少有33 本没有被甲、乙、丙中的任何一人借阅过.________________________________________13、如图 8-2,5 条同样长的线段拼成了一个五角星.如果每条线段上恰有1994 个点被染成红色,那么在这个五角星上红色点最少有多少个?五条线上右发有 5*1994=9970 个红点 ,如果所有交叉点上都放一个红点,则红点最少 ,这五条线有 10 个交叉点 ,所以最少有9970-10=9960 个红点答:在这个五角星上红色点最少有9960 个 .14、甲、乙、丙同时给100 盆花浇水 .已知甲浇了 78 盆 ,乙浇了 68 盆 ,丙浇了 58 盆 ,那么 3 人都浇过的花最少有多少盆?甲和乙必有 78+68-100=46 盆共同浇过 ,丙有 100-58=42 没浇过 ,所以 3 人都浇过的最少有46-42=4(盆)答: 3 人都浇过的花最少有 4 盆 .15、甲、乙、丙都在读同一本故事书 ,书中有100 个故事 .每个人都从某一个故事开始,按顺序往后读 .已知甲读了 75 个故事 ,乙读了 60 个故事 ,丙读了 52 个故事 .那么甲、乙、丙 3 人共同读过的故事最少有多少个?乙和丙共同读过的故事至少有60+52-100=12(个) ,甲无论从哪里开始都必定要读这12 个故事.答:甲、乙、丙 3 人共同读过的故事最少有12 个.15、甲、乙、丙都在读同一本故事书 ,书中有100 个故事 .每个人都从某一个故事开始,按顺序往后读 .已知甲读了 75 个故事 ,乙读了 60 个故事 ,丙读了 52 个故事 .那么甲、乙、丙 3 人共同读过的故事最少有多少个?乙和丙共同读过的故事至少有60+52-100=12(个) ,甲无论从哪里开始都必定要读这12 个故事.答:甲、乙、丙 3 人共同读过的故事最少有12 个.________________________________________-8、在从 1 至 1000 的自然数中 ,既不能被 5 除尽 ,又不能被 7 除尽的数有多少个 ?5 的倍数有 1000/5 商 200 个 ,7 的倍数有1000/7 商 142 个,既是 5 又是 7 的倍数有 1000/35 商 28 个 .5 和 7 的倍数共有 200+142-28=314 个 .1000-314=686答:既不能被 5 除尽 ,又不能被7 除尽的数有686 个 .题中的除尽应该是整除吧.11、四年级一班有46 名学生参加 3 项课外活动 .其中有 24 人参加了数学小组,20 人参加了语文小组 ,参加文艺小组的人数是既参加数学小组又参加文艺小组人数的 3.5 倍 ,又是 3 项活动都参加人数的7 倍 ,既参加文艺小组也参加语文小组的人数相当于 3 项都参加的人数的 2 倍 , 既参加数学小组又参加语文小组的有10 人 .求参加文艺小组的人数.设参加文艺小组的人数是X,24+20+X-( X/305+2/7*X+10 ) +X/7=46, 解得 X=21答:参加文艺小组的人数是21 人.。
五年级计算题(巧算与速算)五年级计算题练习一一、直接写出得数。
101-201= 2+21= 41+43-51= 97 -92=1-21-51= 51+21-51= 31+35-2= 52+101=二、解方程或比例。
① 0.3χ= 45 ②52χ+53χ=28 ③χ-54=125 三、计算,要写出主要计算过程,能用简便方法的要用简便方法计算。
51+21+31 21+31-41 51+21+542-125-127 79+61+65+75 1513-(1513-52)五年级计算题练习二一.直接写出得数。
21+21= 31+32= 1-65= 65-65=51+51= 54-51= 83+83= 1-21=二.解方程Ⅹ-21=54 61+Ⅹ=21 2Ⅹ-65=61三.计算下列各题,要写出主要计算过程,能用简便方法的要用简便方法计算。
(18分)(1)54 +(83-41) (2)2-73-74 (3)85-31+125(4)68- 7.5 + 32-2.5 (5)125 -(121 -21)五年级计算题92+21= 76-32= 103+41= 73+91= 31-51=① 1720 -(720 +512 ) ② 89 -(29 +13 ) ③ 29 + 45 + 79 + 15④ 7- 57 - 57 ⑤ 45 + 1115 + 310 ⑥ 6- (34 - 25)五年级计算题练习五一、直接写出得数。
(4分)87+21= 21+31= 81-91= 43-21= 1+136=53+52= 32-61= 81+31= 103+32= 87-43= 52+103= 1-1511= 74-21= 41+41= 72+141= 62= 53= 0.125×8= 6.25×13= 28÷56=二、解方程或比例。
(9分)37 χ+ 18 = 12 4χ-1.6χ=36 X +73=43三、递等式计算,怎样简便就怎样算。
速算与巧算一、考点、热点回顾:1、掌握小学数学中常用的速算方法,并根据数字特点选择恰当方法计算。
二、典型例题:例1计算72.19+6.48+27.81-1.38-5.48-0.62。
解:观察发现,有些加数可以凑整;有的加数和减数尾数相同,可以抵消。
于是:72.19+6.48+27.81-1.38-5.48-0.62=(72.19+27.81)+(6.48-5.48)-(1.38+0.62)=100+1-2=99例2用简便方法计算 1.25×67.875+125×6.7875+1250×0.053375。
解:观察发现:相加的三个乘积中分别有1.25、125、250,因此想到利用积不变的性质,使三个积有相同的因数。
于是:1.25×67.875+125×6.7875+1250×0.053375=1.25×67.875+1.25×678.75+1.25×53.375=1.25×(67.875+678.75+53.375)=1.25×800=1000例3计算1999+199.9+19.99+1.999。
解法一:观察发现,构成这四个加数的数字和排列顺序完全相同,因此可以把它们都看作1999与某个数的积,于是:1999+199.9+19.99+1.999=1999×(1+0.1+0.01+0.001)=1999×1.111=(2000-1)×1.111=2222-1.111=2220.889解法二:观察发现这四个加数分别接近2000、200、20、2,于是1999+199.9+19.99+1.999=2000+200+20+2-1.111=2220.889例4计算(1+0.33+0.44)×(0.33+0.44+0.55)-(1+0.33+0.44+0.55)×(0.33+0.44)。
【五年级奥数举一反三一全国通用】测评卷01《速算和巧算》试卷满分:100分考试时间:100分钟姓名:.班级:.得分:一.选择题(共7小题,满分21分,每小题3分)1.(2015•创新杯)计算:2.34-0.084-1.25=()2.A.230 B.23 C. 2.3 D.0.23(2009-华罗庚金杯)下面有四个算式:®0.6+n1n;2揭0.625=旦@>且+旦旦X41=142 U.[况U.3-814214+2162■755其中正确的算式是()A.①和②B.②和④ D.①和④3.(2003•创新杯)2003+2002-2001-2000+1999+1998-1997-1996+・・・+7+6-5-4+3+2-1的计算结果是A.2002B.2003C.2004D.40054.0.65X201=0.65X(200+1)=0.65X200+0.65运用了乘法的()5. 6.A.交换律 B.结合律 C.分配律与0.456X2.1的结果相同的算式是()A. 4.56X21B.21X0.0456C.45.6X0.21D.456X0.021与61.2H-3.4II-算结果相同的是()A. 6.124-0.34B.61290.34C.0.612X0.034D.6124-347.105X18=100X18+5X18运用了()A.乘法交换律B.乘法结合律C.乘法分配律二.填空题(共10小题,满分30分,每小题3分)8.(2018*其他模拟)计算:3-5+7-9+11-13+-+I995-1997+1999=9.(2018*其他模拟)。
=1997个。
4,5=1997个025,则a+h=,aXb=,a7b=10.(2017-育苗杯)计算39.07-22.78+3.4=11.(2018*迎春杯)算式(20.17-12.024-6)X6的计算结果是.12.(2017-其他杯赛)计算:(2017-1)+(2016-2)+…+(2011-7)13.(2016・其他杯赛)计算:91.5+19.8+80.2=.14.(2016-其他杯赛)计算:(102.4+89.6・38X5)X(2016-126X16)=.15.(2018-陈省身杯)计算200・(16+17+18+・・・+23+24)=.16.(2018-其他模拟)计算:53.34-0.234-0.91X16.14-0.82=.17.(2007•迎春杯)计算:379X0.00038+159X0.00621+3.79X0.121=.三.计算题(共6小题,满分18分,每小题3分)18.(2016-中环杯)计算:(20.15+40.3)X33+20.15.19.计算(1)24X2X125X25(2)125X32X25X201320.(2018・学而思杯)2.8X27+28X2.9+2.8X4421.(2017-春蕾杯)计算©0.8:9+0.1:9=;②201.7X4.5+2017X0.35+20.17X20=;③]0.1+0.2+0.3+0.4)X(1+0.1+0.2+0.3)-(1+0.1+0.2+03+0.4)X(0.1+0.2+0.3)=22.计算:2015+201.5+20.15+985+98.5+9.85.23.(2003•创新杯)计算:0.79X0.46+7.9X0.24+11.4X0.079.四.解答题(共6小题,满分31分)24.(5分)(2015・奥林匹克)计算:(12X21X45X10.2)4-(15X4X0.7X51)25.(5分)(2018・学而思杯)903+899+902+897+904+89826.(5分)(1996*其他杯赛)376+385+391+380+377+389+383+374+366+378=27.(5分)(1995*其他杯赛)0.873个0X01122个0=28.(5分)(2015・春蕾杯)(1)10.444-1.2X0.3=(2)[0.5X(6+0.6)-0.5]4-2.5=.29.(6分)(2017・学而思杯)(1)解方程:3(15-2x)+12=85-10v(2)计算:4.02X16+33X4.02-4.9X20.2.测评卷01《速算和巧算》试卷满分:100分考试时间:100分钟姓名:班级:得分:一.选择题(共7小题,满分21分,每小题3分)(请将答案填写在各试题的答题区内)1234567二.填空题(共10小题,满分30分,每小题3分)(请在各试题的答题区内作答)8._____________________________________9._____________________________________10.______________________________________11.______________________________________12.______________________________________13.______________________________________14.______________________________________15.______________________________________16.______________________________________17.______________________________________计算题(共6小题,满分18分,每小题3分)(请在各试题的答题区内作答)三.18.答:20.答:21.答:22.答:四.解答题(共6小题,满分31分)(请在各试题的答题区内作答)24.答:25.答:26.答:28.答:29.答:【五年级奥数举一反三一全国通用】测评卷01《速算和巧算》试卷满分:100分考试时间:100分钟姓名:班级:得分:一.选择题(共7小题,满分21分,每小题3分)1.(2015・创新杯)计算:2.340.08:1.25=()A.230B.23C. 2.3D.0.23【分析】根据除法的性质简算即可.【解答】解:2.34-0.084-1.25=2.3:(0.08X1.25)=2.34-0.1=23故选:B.2.(2009-华罗庚金杯)下面有四个算式:®0.6+n120=n;々赢.625=§(§)§+旦旦X4_l=142u・u.58「14214+2162755其中正确的算式是()A.①和②B.②和④C.②和③D.①和④【分析】①循环小数加、减要根据“四舍五入”取其近似值再计算,0.6中的6不能与o.中的循环节中的1相加,答案不正确.②把分数&化成小数,用分子除以分母5^8=0.625:或把小数0.625化成分数并化简是答案正确.88③根据分数加、减法的计算法则,把异分数分母化成同分数分数再加、减,分子不变,只把分子相加、减,答案不正确.④把两个带分数化成假分数再相乘,结果再化成带分数,正确.【解答】解:®0-6+Q e133=0.733*正确;②0.625=旦正确;8③且+旦=鱼臣-=旦=>1不正确:14214+2162④3旦X4—=14—正确.755故选:B.3.(2003・创新杯)2003+2002-2001-2000+1999+1998-1997・1996+・・・+7+6-5-4+3+2-1的计算结果是()A.2002B.2003C.2004D.4005【分析】四个数一组相互抵消,2000是被4整除的,也就是说2000以后的数都可以相互抵消,因为2002:2=1001,不是偶数组,即有一组不能被抵消,最后剩下2003+2002-2001=2004.【解答】解:2003+2002-2001-2000+1999+1998-1997・1996+•••+7+6-5-4+3+2-1=2003+(2002-2001)+(-2(X)0+1999)+(1998-1997)+…+(6-5)+(-4+3)+(2-1)=2003+1-1+1+-+1-1+1=2003+1=2004故选:C.4.0.65X201=0.65X(200+1)=0.65X200+0.65运用了乘法的()A.交换律B.结合律C.分配律【分析】本题考查的是乘法运算律的运用.【解答】解:乘法分配律:(q+0)Xc=aXc+bXc所以0.65X201=0.65X(200+1)=0.65X200+0.65运用了乘法的分配律.故选:C.5.与0.456X2.1的结果相同的算式是()A. 4.56X21B.21X0.0456C.45.6X0.21D.456X0.021【分析】根据积不变的规律,其中一个因数的小数点向右(左)移动多少位,另一个因数的小数点就要向左(右)移动多少位,据此分析解答即可.【解答】解:0.456X2.1=4.56X0.21=0.0456X21=45.6X0.021=456X0.0021故选:B.6.与61.24-3.4计算结果相同的是()A. 6.12H-0.34B.612:0.34C.0.612X0.034D.612934【分析】根据商不变的性质,被除数和除数同时乘以或除以一个数(0除外),商不变,据此分析解答即可.【解答】解:61.24-3.4=6124-34故选:D.7.105X18=100X18+5X18运用了()A.乘法交换律B.乘法结合律C.乘法分配律【分析】本题考查的是乘法运算律的运用.【解答】解:105X18=(100+5)X18=100X18+5X18运用了乘法分配律.故选:C.二.填空题(共10小题,满分30分,每小题3分)8.(2018*其他模拟)计算:3-5+7-9+11-13+-+1995-1997+1999=1001.【分析】本题可以从后往前算.【解答】解:3-5+7-9+11-13+.......+1995-1997+1999=1999-1997+1995-1993+......+11-9+7-5+3=(1999-1997)+(1995-1993)+.......+(II-9)+(7-5)+3=2+2+2+......+2+3=2X499+3=10019.(2018*其他模拟)。
五年级奥数:速算与巧算例1:计算236×37×27分析与解答:在乘除法的计算过程中,除了常常要将因数和除数“凑整”,有时为了便于口算,还要将一些算式凑成特殊的数。
例如,可以将27变为“3×9”,将37乘3得111,这是一个特殊的数,这样就便于计算了。
236×37×27=236×(37×3×9)=236×(111×9)=236×999=236×(1000-1)=236000-236=235764例2:计算333×334+999×222分析与解答:表面上,这道题不能用乘除法的运算定律、性质进行简便计算,但只要对数据作适当变形即可简算。
333×334+999×222=333×334+333×(3×222)=333×(334+666)=333×1000=333000例3:计算20012001×2002-20022002×2001分析与解答:这道题如果直接计算,显得比较麻烦。
根据题中的数的特点,如果把20012001变形为2001×10001,把20022002变形为2002×10001,那么计算起来就非常方便。
20012001×2002-20022002×2001=2001×10001×2002-2002×10001×2001=0例4:不用笔算,请你指出下面哪个得数大。
163×167 164×166分析与解答:仔细观察可以发现,第二个算式中的两个因数分别与第一个算式中的两个因数相差1,根据这个特点,可以把题中的数据作适当变形,再利用乘法分配律,然后进行比较就方便了。
163×167 164×166=163×(166+1) =(163+1)×166=163×166+163 =163×166+166所以,163×167<164×166例5:888…88[1993个8]×999…99[1993个9]的积是多少?分析将999…99[1993个9]变形为“100…0[1993个0]-1”,然后利用乘法分配律来进行简便计算。
第三节速算与巧算(二)【知识要点】1.“符号带着走”的交换性质:a÷b÷c=a÷c÷ba÷b×c=a×c÷b2.去括号和添括号的性质:括号前面是“×”号,去掉括号,括号内的符号不改变。
(反之也成立)括号前面是“÷”号,去掉括号,括号内要改变符号。
(反之也成立)3.乘法分配律:a×b±a×c=a×(b±c)除法分配律:b÷a±c÷a=(b±c)÷a【典型例题】例1 结合律(1)125×48 (2)125×25×32例2 (1)37500÷4÷25 (2)125÷(4÷8)例3 (1)121×99÷(11×33)(2)46×72×23÷46÷23÷72例4 (1)33×89+33×11 (2)2861315613÷-÷例5 (1)4421552121⨯+⨯+(2)23×666+54×333趣味题1.一副扑克牌有54张,两人轮流拿,每人每次只能拿1到4张,谁拿到最后一张牌就算输,问先拿的人怎样才能确保获胜?随堂小测1.124×25 125×5×32×5 2.91000÷125÷8 520÷(2×52)3.(48×75)÷(24×25)4444×505÷1111 4.123×456÷789÷456×789÷1235.89×10+89×93-89×3 19×1001-19 6.2÷9+3÷9+4÷97.999×222+333×334课后作业1.125×32×8 6000÷125÷8 2.37÷8+5÷8+6÷8-8÷8125÷(10÷8)3.(38×56)÷(19×28)4.16×80+16×18+16×2 99×15 5.328×93-328×31-328×426.95×98+95×3-957.68×52-34×4割圆术数学意义:“割圆术”,则是以“圆内接正多边形的面积”,来无限逼近“圆面积”。