2018中考总复习专题:二次函数和相似的结合
- 格式:doc
- 大小:1.68 MB
- 文档页数:17
2018中考数学二次函数知识点归纳考点:函数以及函数的定义域、函数值等有关概念,函数的表示法,常值函数考核要求:(1)通过实例认识变量、自变量、因变量,知道函数以及函数的定义域、函数值等概念;(2)知道常值函数;(3)知道函数的表示方法,知道符号的意义.考点:用待定系数法求二次函数的解析式考核要求:(1)掌握求函数解析式的方法;(2)在求函数解析式中熟练运用待定系数法.注意求函数解析式的步骤:一设、二代、三列、四还原.考点:画二次函数的图像考核要求:(1)知道函数图像的意义,会在平面直角坐标系中用描点法画函数图像;(2)理解二次函数的图像,体会数形结合思想;(3)会画二次函数的大致图像.考点:二次函数的图像及其基本性质考核要求:(1)借助图像的直观、认识和掌握一次函数的性质,建立一次函数、二元一次方程、直线之间的联系;(2)会用配方法求二次函数的顶点坐标,并说出二次函数的有关性质.注意:(1)解题时要数形结合;(2)二次函数的平移要化成顶点式.二次函数顶点坐标公式推导一般式:y=ax^2+bx+c(a,b,c为常数,a≠0)顶点式:y=a(x-h)^2+k[抛物线的顶点P(h,k)]对于二次函数y=ax^2+bx+c其顶点坐标为(-b/2a,(4ac-b^2)/4a)推导:y=ax^2+bx+c y=a(x^2+bx/a+c/a) y=a(x^2+bx/a+b^2/4a^2+c/a-b^2/4a^2)y=a(x+b/2a)^2+c-b^2/4a y=a(x+b/2a)^2+(4ac-b^2)/4a对称轴x=-b/2a顶点坐标(-b/2a,(4ac-b^2)/4a)二次函数顶点坐标公式一、基本简介一般地,我们把形如y=ax2+bx+c(其中a,b,c是常数,a≠0)的函数叫做二次函数,其中a称为二次项系数,b为一次项系数,c为常数项。
x为自变量,y为因变量。
等号右边自变量的最高次数是2。
主要特点“变量”不同于“未知数”,不能说“二次函数是指未知数的最高次数为二次的多项式函数”。
一、二次函数常考点汇总1、两点间的距离公式:AB = y j(y A - y B )2 + (XΛ-X f) )^2、中点坐标:线段也的中点C的坐标为:空竺,2±旦纣I 2 2 )直线y = k l x + b l(k]≠θ)与y = k2x + b2 ( Ar2≠ 0 )的位置关系:(1 )两直线平行Ok\=灯且* 也 (2)两直线相交<=> ≠ Ar2(3)两直线重合U>k∖=k^且S=S(4)两直线垂直<=> k l k2 =-13、一元二次方程有整数根问题,解题步骤如下:①用△和参数的其他要求确定参数的取值范围;②解方程,求出方程的根;(两种形式:分式、二次根式)③分析求解:若是分式,分母是分子的因数;若是二次根式,被开方式是完全平方式。
例:关于X的一元二次方程X2—2(∕n + l)x + m2=0有两个整数根,m<5且加为整数,求加的值。
4、二次函数与X轴的交点为整数点问题。
(方法同上)例:若抛物线y = nix2 +(3m +1 )x + 3与尤轴交于两个不同的整数点,且〃[为正整数,试确定此抛物线的解析式。
5、方程总有固定根问题,可以通过解方程的方法求出该固定根。
举例如下:已知关于X的方程ιnx2 -3(/W-I)x+2m-3 = 0 ( 为实数),求证:无论加为何值,方程总有一个固定的根。
解:当加=0时,x = l;当加Ho时,Δ = (m-3)2≥ 0 , X= —■~' ° , X l = 2- — > x2 = 1 ;2m m 综上所述:无论加为何值,方程总有一个固定的根是1。
6、函数过固定点问题,举例如下:已知抛物线y = x2-nιx + m-2 S是常数),求证:不论加为何值,该抛物线总经过一个固定的点,并求出固定点的坐标。
解:把原解析式变形为关于加的方程y-√+2 = ,π(l-x);:.-V--V^+2= °,解得:-v = _1;Λ抛物线总经过一个固定的点(1, I-X = O X = 1 —1)。
2018数学中考复习——二次函数与相似三角形二次函数中因动点问题产生的相似三角形的解题方法一般有以下三种:1.如图,已知△ABC的三个顶点坐标分别为A(-4,0)、B(1,0)、C(-2,6).(1)求经过A、B、C三点的抛物线解析式;(2)设直线BC交y轴于点E,连接AE,求证:AE=CE;(3)设抛物线与y轴交于点D,连接AD交BC于点F,试问以A、B、F,为顶点的三角形与△ABC相似吗请说明理由.2、如图,已知抛物线过点A(0,6),B(2,0),C(7,52). 若D是抛物线的顶点,E是抛物线的对称轴与直线AC的交点,F与E关于D对称.(1)求抛物线的解析式;(2)求证:∠CFE=∠AFE;(3)在y轴上是否存在这样的点P,使△AFP与△FDC相似,若有,请求出所有合条件的点P的坐标;若没有,请说明理由.OABEDFCxNM3.如图,已知抛物线的方程C1:y=-(x+2)(x-m)(m>0)与x 轴相交于点B 、C ,与y 轴相交于点E ,且点B 在点C 的左侧.(1)若抛物线C 1过点M(2,2),求实数m 的值. (2)在(1)的条件下,求△BCE 的面积.(3)在(1)的条件下,在抛物线的对称轴上找一点H ,使BH+EH 最小,并求出点H 的坐标.(4)在第四象限内,抛物线C 1上是否存在点F ,使得以点B 、C 、F 为 顶点的三角形与△BCE 相似若存在,求m 的值;若不存在,请说 明理由.4. 如图,已知抛物线与x 轴的正半轴分别交于点A 、B (点A 位于点B 的左侧),与y 轴的正半轴交于点C .⑴点B 的坐标为 ,点C 的坐标为 (用含b 的代数式表示);⑵请你探索在第一象限内是否存在点P ,使得四边形PCOB 的面积等于2b ,且△PBC 是以点P 为直角顶点的等腰直角三角形如果存在,求出点P 的坐标;如果不存在,请说明理由; ⑶请你进一步探索在第一象限内是否存在点Q ,使得△QCO 、△QOA 和△QAB 中的任意两个三角形均相似(全等可看作相似的特殊情况)如果存在,求出点Q 的坐标;如果不存在,请说明理由.x yP O C B A5.如图已知:直线3+-=x y 交x 轴于点A ,交y 轴于点B ,抛物线y=ax 2+bx+c 经过A 、B 、C (1,0)三点.(1)求抛物线的解析式;(2)若点D 的坐标为(-1,0),在直线3+-=x y 上有一点P,使ΔABO 与ΔADP 相似,求出点P 的坐标;(3)在(2)的条件下,在x 轴下方的抛物线上,是否存在点E ,使ΔADE 的面积等于四边形APCE 的面积如果存在,请求出点E 的坐标;如果不存在,请说明理由.6.如图甲,四边形OABC 的边OA 、OC 分别在x 轴、y 轴的正半轴上,顶点在B 点的抛物线交x 轴于点A 、D ,交y 轴于点E ,连结AB 、AE 、BE .已知tan ∠CBE =13,A (3,0),D (-1,0),E (0,3).(1)求抛物线的解析式及顶点B 的坐标; (2)求证:CB 是△ABE 外接圆的切线;(3)试探究坐标轴上是否存在一点P ,使以D 、E 、P 为顶点的三角形与△ABE 相似,若存在,直接写出....点P 的坐标;若不存在,请说明理由;(4)设△AOE 沿x 轴正方向平移t 个单位长度(0<t ≤3)时,△AOE 与△ABE 重叠部分的面积为s ,求s 与t 之间的函数关系式,并指出t 的取值范围.图甲A ED C By x O图乙(备用图)A ED C By xO7.我们常见的炒菜锅和锅盖都是抛物线面,经过锅心和盖心的纵断面是两端抛物线组合而成的封闭图形,不妨简称为“锅线”,锅口直径为6dm ,锅深3dm ,锅盖高1dm (锅口直径与锅盖直径视为相同),建立直接坐标系如图①所示,如果把锅纵断面的抛物线的记为C 1,把锅盖纵断面的抛物线记为C 2. (1)求C 1和C 2的解析式;(2)如图②,过点B 作直线BE :y=x ﹣1交C 1于点E (﹣2,﹣),连接OE 、BC ,在x 轴上求一点P ,使以点P 、B 、C 为顶点的△PBC 与△BOE 相似,求出P 点的坐标;(3)如果(2)中的直线BE 保持不变,抛物线C 1或C 2上是否存在一点Q ,使得△EBQ 的面积最大若存在,求出Q 的坐标和△EBQ 面积的最大值;若不存在,请说明理由.8.如图,在矩形OABC 中,AO=10,AB=8,沿直线CD 折叠矩形OABC 的一边BC ,使点B 落在OA 边上的点E 处.分别以OC ,OA 所在的直线为x 轴,y 轴建立平面直角坐标系,抛物线2y ax bx c =++经过O ,D ,C 三点.(1)求AD 的长及抛物线的解析式;(2)一动点P 从点E 出发,沿EC 以每秒2个单位长的速度向点C 运动,同时动点Q 从点C 出发,沿CO 以每秒1个单位长的速度向点O 运动,当点P 运动到点C 时,两点同时停止运动.设运动时间为t 秒,当t 为何值时,以P 、Q 、C 为顶点的三角形与△ADE 相似(3)点N 在抛物线对称轴上,点M 在抛物线上,是否存在这样的点M 与点N ,使以M ,N ,C ,E 为顶点的四边形是平行四边形若存在,请直接写出点M 与点N 的坐标(不写求解过程);若不存在,请说明理由.9.如图1,已知菱形ABCD 的边长为23,点A 在x 轴负半轴上,点B 在坐标原点.点D 的坐标为(33),抛物线y=ax 2+b (a≠0)经过AB 、CD 两边的中点. (1)求这条抛物线的函数解析式;(2)将菱形ABCD 以每秒1个单位长度的速度沿x 轴正方向匀速平移(如图2),过点B 作BE⊥CD 于点E ,交抛物线于点F ,连接DF 、AF .设菱形ABCD 平移的时间为t 秒(0<t < 3 )①是否存在这样的t ,使△ADF 与△DEF 相似若存在,求出t 的值;若不存在,请说明理由;②连接FC ,以点F 为旋转中心,将△FEC 按顺时针方向旋转180°,得△FE′C′,当△FE′C′落在x 轴与抛物线在x 轴上方的部分围成的图形中(包括边界)时,求t的取值范围.(写出答案即可)10.已知抛物线的顶点为A (2,1),且经过原点O ,与x 轴的另一交点为B 。
精品基础教育教学资料,仅供参考,需要可下载使用!中考数学第一阶段复习考点过关练习:二次函数的实际应用考点1:应用二次函数解决抛物线型实际问题1.(2018年四川省巴中市)一位篮球运动员在距离篮圈中心水平距离4m处起跳投篮,球沿一条抛物线运动,当球运动的水平距离为2.5m时,达到最大高度3.5m,然后准确落入篮框内.已知篮圈中心距离地面高度为3.05m,在如图所示的平面直角坐标系中,下列说法正确的是()A.此抛物线的解析式是y=﹣x2+3.5B.篮圈中心的坐标是(4,3.05)C.此抛物线的顶点坐标是(3.5,0)D.篮球出手时离地面的高度是2m2.(2018年江苏省连云港市)已知学校航模组设计制作的火箭的升空高度h(m)与飞行时间t(s)满足函数表达式h=﹣t2+24t+1.则下列说法中正确的是()A.点火后9s和点火后13s的升空高度相同B.点火后24s火箭落于地面C.点火后10s的升空高度为139mD.火箭升空的最大高度为145m3.(2018年四川省绵阳市)如图是抛物线型拱桥,当拱顶离水面2m时,水面宽4m,水面下降2m,水面宽度增加m.4.(2018年浙江省衢州市)某游乐园有一个直径为16米的圆形喷水池,喷水池的周边有一圈喷水头,喷出的水柱为抛物线,在距水池中心3米处达到最高,高度为5米,且各方向喷出的水柱恰好在喷水池中心的装饰物处汇合.如图所示,以水平方向为x轴,喷水池中心为原点建立直角坐标系.(1)求水柱所在抛物线(第一象限部分)的函数表达式;(2)王师傅在喷水池内维修设备期间,喷水管意外喷水,为了不被淋湿,身高1.8米的王师傅站立时必须在离水池中心多少米以内?(3)经检修评估,游乐园决定对喷水设施做如下设计改进:在喷出水柱的形状不变的前提下,把水池的直径扩大到32米,各方向喷出的水柱仍在喷水池中心保留的原装饰物(高度不变)处汇合,请探究扩建改造后喷水池水柱的最大高度.5.(2018年山东省滨州市)如图,一小球沿与地面成一定角度的方向飞出,小球的飞行路线是一条抛物线,如果不考虑空气阻力,小球的飞行高度y(单位:m)与飞行时间x(单位:s)之间具有函数关系y=﹣5x2+20x,请根据要求解答下列问题:(1)在飞行过程中,当小球的飞行高度为15m时,飞行时间是多少?(2)在飞行过程中,小球从飞出到落地所用时间是多少?(3)在飞行过程中,小球飞行高度何时最大?最大高度是多少?考点2:应用二次函数解决利润最大问题6.(2018年广西贺州市)某种商品每件进价为20元,调查表明:在某段时间内若以每件x元(20≤x≤30,且x为整数)出售,可卖出(30﹣x)件,若使利润最大,则每件商品的售价应为元.7.(2018年河南省)某公司推出一款产品,经市场调查发现,该产品的日销售量y(个)与销售单价x(元)之间满足一次函数关系关于销售单价,日销售量,日销售利润的几组对应值如表:(注:日销售利润=日销售量×(销售单价﹣成本单价))(1)求y关于x的函数解析式(不要求写出x的取值范围)及m的值;(2)根据以上信息,填空:该产品的成本单价是元,当销售单价x= 元时,日销售利润w最大,最大值是元;(3)公司计划开展科技创新,以降低该产品的成本,预计在今后的销售中,日销售量与销售单价仍存在(1)中的关系.若想实现销售单价为90元时,日销售利润不低于3750元的销售目标,该产品的成本单价应不超过多少元?8.(2018年甘肃省兰州市(a卷))某商家销售一款商品,进价每件80元,售价每件145元,每天销售40件,每销售一件需支付给商场管理费5元,未来一个月(按30天计算),这款商品将开展“每天降价1元”的促销活动,即从第一天开始每天的单价均比前一天降低1元,通过市场调查发现,该商品单价每降1元,每天销售量增加2件,设第x天(1≤x≤30且x为整数)的销售量为y件.(1)直接写出y与x的函数关系式;(2)设第x天的利润为w元,试求出w与x之间的函数关系式,并求出哪一天的利润最大?最大利润是多少元?9.(2018年湖北省天门、仙桃、潜江、江汉油田市)绿色生态农场生产并销售某种有机产品,假设生产出的产品能全部售出.如图,线段EF、折线ABCD分别表示该有机产品每千克的销售价y1(元)、生产成本y2(元)与产量x(kg)之间的函数关系.(1)求该产品销售价y1(元)与产量x(kg)之间的函数关系式;(2)直接写出生产成本y2(元)与产量x(kg)之间的函数关系式;(3)当产量为多少时,这种产品获得的利润最大?最大利润为多少?10.(2018年浙江省温州市)温州某企业安排65名工人生产甲、乙两种产品,每人每天生产2件甲或1件乙,甲产品每件可获利15元.根据市场需求和生产经验,乙产品每天产量不少于5件,当每天生产5件时,每件可获利120元,每增加1件,当天平均每件利润减少2元.设每天安排x人生产乙产品.(1)根据信息填表:产品种类每天工人数(人)每天产量(件)每件产品可获利润(元)甲15乙x x(2)若每天生产甲产品可获得的利润比生产乙产品可获得的利润多550元,求每件乙产品可获得的利润.(3)该企业在不增加工人的情况下,增加生产丙产品,要求每天甲、丙两种产品的产量相等.已知每人每天可生产1件丙(每人每天只能生产一件产品),丙产品每件可获利30元,求每天生产三种产品可获得的总利润W(元)的最大值及相应的x值.11.(2018年浙江省台州市)某药厂销售部门根据市场调研结果,对该厂生产的一种新型原料药未来两年的销售进行预测,井建立如下模型:设第t个月该原料药的月销售量为P(单位:吨),P 与t之间存在如图所示的函数关系,其图象是函数P=(0<t≤8)的图象与线段AB的组合;设第t个月销售该原料药每吨的毛利润为Q(单位:万元),Q与t之间满足如下关系:Q=(1)当8<t≤24时,求P关于t的函数解析式;(2)设第t个月销售该原料药的月毛利润为w(单位:万元)①求w关于t的函数解析式;②该药厂销售部门分析认为,336≤w≤513是最有利于该原料药可持续生产和销售的月毛利润范围,求此范围所对应的月销售量P的最小值和最大值.12.(2018年贵州省黔南州、黔东南州、黔西南州)某种蔬菜的销售单价y1与销售月份x之间的关系如图1所示,成本y2与销售月份x之间的关系如图2所示(图1的图象是线段,图2的图象是抛物线)(1)已知6月份这种蔬菜的成本最低,此时出售每千克的收益是多少元?(收益=售价﹣成本)(2)哪个月出售这种蔬菜,每千克的收益最大?简单说明理由.(3)已知市场部销售该种蔬菜4、5两个月的总收益为22万元,且5月份的销售量比4月份的销售量多2万千克,求4、5两个月的销售量分别是多少万千克?13.(2018年四川省甘孜州)某商场将每件进价为80元的A商品按每件100元出售,一天可售出128件.经过市场调查,发现这种商品的销售单价每降低1元,其日销量可增加8件.设该商品每件降价x元,商场一天可通过A商品获利润y元.(1)求y与x之间的函数解析式(不必写出自变量x的取值范围)(2)A商品销售单价为多少时,该商场每天通过A商品所获的利润最大?14.(2018年四川省眉山市)传统的端午节即将来临,某企业接到一批粽子生产任务,约定这批粽子的出厂价为每只4元,按要求在20天内完成.为了按时完成任务,该企业招收了新工人,设新工人李明第x天生产的粽子数量为y只,y与x满足如下关系:y=(1)李明第几天生产的粽子数量为280只?(2)如图,设第x天生产的每只粽子的成本是p元,p与x之间的关系可用图中的函数图象来刻画.若李明第x天创造的利润为w元,求w与x之间的函数表达式,并求出第几天的利润最大?最大利润是多少元?(利润=出厂价﹣成本)15.(2018年湖北省荆门市)随着龙虾节的火热举办,某龙虾养殖大户为了发挥技术优势,一次性收购了10000kg小龙虾,计划养殖一段时间后再出售.已知每天养殖龙虾的成本相同,放养10天的总成本为166000,放养30天的总成本为178000元.设这批小龙虾放养t天后的质量为akg,销售单价为y元/kg,根据往年的行情预测,a与t的函数关系为a=,y与t的函数关系如图所示.(1)设每天的养殖成本为m元,收购成本为n元,求m与n的值;(2)求y与t的函数关系式;(3)如果将这批小龙虾放养t天后一次性出售所得利润为W元.问该龙虾养殖大户将这批小龙虾放养多少天后一次性出售所得利润最大?最大利润是多少?(总成本=放养总费用+收购成本;利润=销售总额﹣总成本)考点3:应用二次函数解决面积最大问题16.(2018年辽宁省沈阳市)如图,一块矩形土地ABCD由篱笆围着,并且由一条与CD边平行的篱笆EF分开.已知篱笆的总长为900m(篱笆的厚度忽略不计),当AB= m时,矩形土地ABCD的面积最大.17.(2018年福建省(A卷))如图,在足够大的空地上有一段长为a米的旧墙MN,某人利用旧墙和木栏围成一个矩形菜园ABCD,其中AD≤MN,已知矩形菜园的一边靠墙,另三边一共用了100米木栏.(1)若a=20,所围成的矩形菜园的面积为450平方米,求所利用旧墙AD的长;(2)求矩形菜园ABCD面积的最大值.18.(2018年湖北省荆州市)为响应荆州市“创建全国文明城市”号召,某单位不断美化环境,拟在一块矩形空地上修建绿色植物园,其中一边靠墙,可利用的墙长不超过18m,另外三边由36m 长的栅栏围成.设矩形ABCD空地中,垂直于墙的边AB=xm,面积为ym2(如图).(1)求y与x之间的函数关系式,并写出自变量x的取值范围;(2)若矩形空地的面积为160m2,求x的值;(3)若该单位用8600元购买了甲、乙、丙三种绿色植物共400棵(每种植物的单价和每棵栽种的合理用地面积如下表).问丙种植物最多可以购买多少棵?此时,这批植物可以全部栽种到这块空地上吗?请说明理由.甲乙丙单价(元/棵)14 16 28合理用地(m2/棵)0.4 1 0.419.(2018年内蒙古呼和浩特市)某市计划在十二年内通过公租房建设,解决低收入人群的住房问题.已知前7年,每年竣工投入使用的公租房面积y(单位:百万平方米),与时间x(第x年)的关系构成一次函数,(1≤x≤7且x为整数),且第一和第三年竣工投入使的公租房面积分别为和百万平方米;后5年每年竣工投入使用的公租房面积y(单位:百万平方米),与时间x(第x年)的关系是y=﹣x+(7<x≤12且x为整数).(1)已知第6年竣工投入使用的公租房面积可解决20万人的住房问题,如果人均住房面积,最后一年要比第6年提高20%,那么最后一年竣工投入使用的公租房面积可解决多少万人的住房问题?(2)受物价上涨等因素的影响,已知这12年中,每年竣工投入使用的公租房的租金各不相同,且第一年,一年38元/m2,第二年,一年40元/m2,第三年,一年42元/m2,第四年,一年44元/m2……以此类推,分析说明每平方米的年租金和时间能否构成函数,如果能,直接写出函数解析式;(3)在(2)的条件下,假设每年的公租房当年全部出租完,写出这12年中每年竣工投入使用的公租房的年租金W关于时间x的函数解析式,并求出W的最大值(单位:亿元).如果在W取得最大值的这一年,老张租用了58m2的房子,计算老张这一年应交付的租金.答案解析1.【考点】二次函数的应用【分析】A、设抛物线的表达式为y=ax2+3.5,依题意可知图象经过的坐标,由此可得a的值;B、根据函数图象判断;C、根据函数图象判断;D、设这次跳投时,球出手处离地面hm,因为(1)中求得y=﹣0.2x2+3.5,当x=﹣2,5时,即可求得结论.解:A、∵抛物线的顶点坐标为(0,3.5),∴可设抛物线的函数关系式为y=ax2+3.5.∵篮圈中心(1.5,3.05)在抛物线上,将它的坐标代入上式,得3.05=a×1.52+3.5,∴a=﹣,∴y=﹣x2+3.5.故本选项正确;B、由图示知,篮圈中心的坐标是(1.5,3.05),故本选项错误;C、由图示知,此抛物线的顶点坐标是(0,3.5),故本选项错误;D、设这次跳投时,球出手处离地面hm,因为(1)中求得y=﹣0.2x2+3.5,∴当x=﹣2.5时,h=﹣0.2×(﹣2.5)2+3.5=2.25m.∴这次跳投时,球出手处离地面2.25m.故本选项错误.故选:A.【点评】本题考查了二次函数的应用,解题的关键是从实际问题中抽象出二次函数模型,体现了数学建模的数学思想,难度不大,能够结合题意利用二次函数不同的表达形式求得解析式是解答本题的关键.2.【考点】二次函数的应用【分析】分别求出t=9、13、24、10时h的值可判断A、B、C三个选项,将解析式配方成顶点式可判断D选项.解:A、当t=9时,h=136;当t=13时,h=144;所以点火后9s和点火后13s的升空高度不相同,此选项错误;B、当t=24时h=1≠0,所以点火后24s火箭离地面的高度为1m,此选项错误;C、当t=10时h=141m,此选项错误;D、由h=﹣t2+24t+1=﹣(t﹣12)2+145知火箭升空的最大高度为145m,此选项正确;故选:D.【点评】本题主要考查二次函数的应用,解题的关键是熟练掌握二次函数的性质.3.【考点】二次函数的应用【分析】根据已知建立平面直角坐标系,进而求出二次函数解析式,再通过把y=﹣2代入抛物线解析式得出水面宽度,即可得出答案.解:建立平面直角坐标系,设横轴x通过AB,纵轴y通过AB中点O且通过C点,则通过画图可得知O为原点,抛物线以y轴为对称轴,且经过A,B两点,OA和OB可求出为AB的一半2米,抛物线顶点C坐标为(0,2),通过以上条件可设顶点式y=ax2+2,其中a可通过代入A点坐标(﹣2,0),到抛物线解析式得出:a=﹣0.5,所以抛物线解析式为y=﹣0.5x2+2,当水面下降1米,通过抛物线在图上的观察可转化为:当y=﹣2时,对应的抛物线上两点之间的距离,也就是直线y=﹣2与抛物线相交的两点之间的距离,可以通过把y=﹣2代入抛物线解析式得出:﹣2=﹣0.5x2+2,解得:x=±2,所以水面宽度增加到4米,比原先的宽度当然是增加了(4﹣4)米,故答案为:4﹣4.【点评】此题主要考查了二次函数的应用,根据已知建立坐标系从而得出二次函数解析式是解决问题的关键.4.【考点】二次函数的应用.【分析】(1)根据顶点坐标可设二次函数的顶点式,代入点(8,0),求出a值,此题得解;(2)利用二次函数图象上点的坐标特征,求出当y=1.8时x的值,由此即可得出结论;(3)利用二次函数图象上点的坐标特征可求出抛物线与y轴的交点坐标,由抛物线的形状不变可设改造后水柱所在抛物线(第一象限部分)的函数表达式为y=﹣x2+bx+,代入点(16,0)可求出b值,再利用配方法将二次函数表达式变形为顶点式,即可得出结论.解:(1)设水柱所在抛物线(第一象限部分)的函数表达式为y=a(x﹣3)2+5(a≠0),将(8,0)代入y=a(x﹣3)2+5,得:25a+5=0,解得:a=﹣,∴水柱所在抛物线(第一象限部分)的函数表达式为y=﹣(x﹣3)2+5(0<x<8).(2)当y=1.8时,有﹣(x﹣3)2+5=1.8,解得:x1=﹣1,x2=7,∴为了不被淋湿,身高1.8米的王师傅站立时必须在离水池中心7米以内.(3)当x=0时,y=﹣(x﹣3)2+5=.设改造后水柱所在抛物线(第一象限部分)的函数表达式为y=﹣x2+bx+,∵该函数图象过点(16,0),∴0=﹣×162+16b+,解得:b=3,∴改造后水柱所在抛物线(第一象限部分)的函数表达式为y=﹣x2+3x+=﹣(x﹣)2+.∴扩建改造后喷水池水柱的最大高度为米.【点评】本题考查了待定系数法求二次函数解析式以及二次函数图象上点的坐标特征,解题的关键是:(1)根据点的坐标,利用待定系数法求出二次函数表达式;(2)利用二次函数图象上点的坐标特征求出当y=1.8时x的值;(3)根据点的坐标,利用待定系数法求出二次函数表达式.5.【考点】二次函数的应用【分析】(1)根据题目中的函数解析式,令y=15即可解答本题;(2)令y=0,代入题目中的函数解析式即可解答本题;(3)将题目中的函数解析式化为顶点式即可解答本题.解:(1)当y=15时,15=﹣5x2+20x,解得,x1=1,x2=3,答:在飞行过程中,当小球的飞行高度为15m时,飞行时间是1s或3s;(2)当y=0时,0═﹣5x2+20x,解得,x3=0,x2=4,∵4﹣0=4,∴在飞行过程中,小球从飞出到落地所用时间是4s;(3)y=﹣5x2+20x=﹣5(x﹣2)2+20,∴当x=2时,y取得最大值,此时,y=20,答:在飞行过程中,小球飞行高度第2s时最大,最大高度是20m.【点评】本题考查二次函数的应用,解答本题的关键是明确题意,利用二次函数的性质解答.6.【考点】二次函数的应用【分析】本题是营销问题,基本等量关系:利润=每件利润×销售量,每件利润=每件售价﹣每件进价.再根据所列二次函数求最大值.解:设利润为w元,则w=(x﹣20)(30﹣x)=﹣(x﹣25)2+25,∵20≤x≤30,∴当x=25时,二次函数有最大值25,故答案是:25.【点评】本题考查了把实际问题转化为二次函数,再利用二次函数的性质进行实际应用.此题为数学建模题,借助二次函数解决实际问题.7.【考点】二次函数的应用,一元二次方程的应用,一元一次不等式的应用【分析】(1)根据题意和表格中的数据可以求得y关于x的函数解析式;(2)根据题意可以列出相应的方程,从而可以求得生产成本和w的最大值;(3)根据题意可以列出相应的不等式,从而可以取得科技创新后的成本.解;(1)设y关于x的函数解析式为y=kx+b,,得,即y关于x的函数解析式是y=﹣5x+600,当x=115时,y=﹣5×115+600=25,即m的值是25;(2)设成本为a元/个,当x=85时,875=175×(85﹣a),得a=80,w=(﹣5x+600)(x﹣80)=﹣5x2+1000x﹣48000=﹣5(x﹣100)2+2000,∴当x=100时,w取得最大值,此时w=2000,故答案为:80,100,2000;(3)设科技创新后成本为b元,当x=90时,(﹣5×90+600)(90﹣b)≥3750,解得,b≤65,答:该产品的成本单价应不超过65元.【点评】本题考查二次函数的应用、一元二次方程的应用、不等式的应用,解答本题的关键是明确题意,找出所求问题需要的条件,利用函数和数形结合的思想解答.8.【考点】二次函数的应用【分析】(1)根据销量=原价的销量+增加的销量即可得到y与x的函数关系式;(2)根据每天售出的件数×每件盈利=利润即可得到的W与x之间的函数关系式,即可得出结论.解:(1)由题意可知y=2x+40;(2)根据题意可得:w=(145﹣x﹣80﹣5)(2x+40),=﹣2x2+80x+2400,=﹣2(x﹣20)2+3200,∵a=﹣2<0,∴函数有最大值,∴当x=20时,w有最大值为3200元,∴第20天的利润最大,最大利润是3200元.【点评】此题主要考查了二次函数的应用,此题找到关键描述语,找到等量关系准确的列出方程或函数关系式是解决问题的关键.9.【考点】二次函数的应用【分析】(1)根据线段EF经过的两点的坐标利用待定系数法确定一次函数的表达式即可;(2)显然,当0≤x≤50时,y2=70;当130≤x≤180时,y2=54;当50<x<130时,设y2与x之间的函数关系式为y2=mx+n,利用待定系数法确定一次函数的表达式即可;(3)利用:总利润=每千克利润×产量,根据x的取值范围列出有关x的二次函数,求得最值比较可得.解:(1)设y1与x之间的函数关系式为y1=kx+b,∵经过点(0,168)与(180,60),∴,解得:,∴产品销售价y1(元)与产量x(kg)之间的函数关系式为y1=﹣x+168(0≤x≤180);(2)由题意,可得当0≤x≤50时,y2=70;当130≤x≤180时,y2=54;当50<x<130时,设y2与x之间的函数关系式为y2=mx+n,∵直线y2=mx+n经过点(50,70)与(130,54),∴,解得,∴当50<x<130时,y2=﹣x+80.综上所述,生产成本y2(元)与产量x(kg)之间的函数关系式为y2=;(3)设产量为xkg时,获得的利润为W元,①当0≤x≤50时,W=x(﹣x+168﹣70)=﹣(x﹣)2+,∴当x=50时,W的值最大,最大值为3400;②当50<x<130时,W=x[(﹣x+168)﹣(﹣x+80)]=﹣(x﹣110)2+4840,∴当x=110时,W的值最大,最大值为4840;③当130≤x≤180时,W=x(﹣x+168﹣54)=﹣(x﹣95)2+5415,∴当x=130时,W的值最大,最大值为4680.因此当该产品产量为110kg时,获得的利润最大,最大值为4840元.【点评】本题考查了二次函数的应用,待定系数法求二次函数的解析式,解题的关键是从实际问题中抽象出二次函数模型.10.【考点】一元二次方程的应用;二次函数的应用【分析】(1)根据题意列代数式即可;(2)根据(1)中数据表示每天生产甲乙产品获得利润根据题意构造方程即可;(3)根据每天甲、丙两种产品的产量相等得到m与x之间的关系式,用x表示总利润利用二次函数性质讨论最值.解:(1)由已知,每天安排x人生产乙产品时,生产甲产品的有(65﹣x)人,共生产甲产品2(65﹣x)130﹣2x件.在乙每件120元获利的基础上,增加x人,利润减少2x元每件,则乙产品的每件利润为120﹣2(x﹣5)=130﹣2x.故答案为:65﹣x;130﹣2x;130﹣2x(2)由题意15×2(65﹣x)=x(130﹣2x)+550∴x2﹣80x+700=0解得x1=10,x2=70(不合题意,舍去)∴130﹣2x=110(元)答:每件乙产品可获得的利润是110元.(3)设生产甲产品m人W=x(130﹣2x)+15×2m+30(65﹣x﹣m)=﹣2(x﹣25)2+3200∵2m=65﹣x﹣m∴m=∵x、m都是非负数∴取x=26时,m=13,65﹣x﹣m=26即当x=26时,W最大值=3198答:安排26人生产乙产品时,可获得的最大利润为3198元.【点评】本题以盈利问题为背景,考查一元二次方程和二次函数的实际应用,解答时注意利用未知量表示相关未知量.11.【考点】二次函数的应用【分析】(1)设8<t≤24时,P=kt+b,将A(8,10)、B(24,26)代入求解可得P=t+2;(2)①分0<t≤8、8<t≤12和12<t≤24三种情况,根据月毛利润=月销量×每吨的毛利润可得函数解析式;②求出8<t≤12和12<t≤24时,月毛利润w在满足336≤w≤513条件下t的取值范围,再根据一次函数的性质可得P的最大值与最小值,二者综合可得答案.解:(1)设8<t≤24时,P=kt+b,将A(8,10)、B(24,26)代入,得:,解得:,∴P=t+2;(2)①当0<t≤8时,w=(2t+8)×=240;当8<t≤12时,w=(2t+8)(t+2)=2t2+12t+16;当12<t≤24时,w=(﹣t+44)(t+2)=﹣t2+42t+88;②当8<t≤12时,w=2t2+12t+16=2(t+3)2﹣2,∴8<t≤12时,w随t的增大而增大,当2(t+3)2﹣2=336时,解题t=10或t=﹣16(舍),当t=12时,w取得最大值,最大值为448,此时月销量P=t+2在t=10时取得最小值12,在t=12时取得最大值14;当12<t≤24时,w=﹣t2+42t+88=﹣(t﹣21)2+529,当t=12时,w取得最小值448,由﹣(t﹣21)2+529=513得t=17或t=25,∴当12<t≤17时,448<w≤513,此时P=t+2的最小值为14,最大值为19;综上,此范围所对应的月销售量P的最小值为12吨,最大值为19吨.【点评】本题主要考查二次函数的应用,掌握待定系数法求函数解析式及根据相等关系列出分段函数的解析式是解题的前提,利用二次函数的性质求得336≤w≤513所对应的t的取值范围是解题的关键.12.【考点】二次函数的应用【分析】(1)找出当x=6时,y1、y2的值,二者做差即可得出结论;(2)观察图象找出点的坐标,利用待定系数法即可求出y1、y2关于x的函数关系式,二者做差后利用二次函数的性质即可解决最值问题;(3)求出当x=4时,y1﹣y2的值,设4月份的销售量为t万千克,则5月份的销售量为(t+2)万千克,根据总利润=每千克利润×销售数量,即可得出关于t的一元一次方程,解之即可得出结论.解:(1)当x=6时,y1=3,y2=1,∵y1﹣y2=3﹣1=2,∴6月份出售这种蔬菜每千克的收益是2元.(2)设y1=mx+n,y2=a(x﹣6)2+1.将(3,5)、(6,3)代入y1=mx+n,,解得:,∴y1=﹣x+7;将(3,4)代入y2=a(x﹣6)2+1,4=a(3﹣6)2+1,解得:a=,∴y2=(x﹣6)2+1=x2﹣4x+13.∴y1﹣y2=﹣x+7﹣(x2﹣4x+13)=﹣x2+x﹣6=﹣(x﹣5)2+.∵﹣<0,∴当x=5时,y1﹣y2取最大值,最大值为,即5月份出售这种蔬菜,每千克的收益最大.(3)当t=4时,y1﹣y2=﹣x2+x﹣6=2.设4月份的销售量为t万千克,则5月份的销售量为(t+2)万千克,根据题意得:2t+(t+2)=22,解得:t=4,∴t+2=6.答:4月份的销售量为4万千克,5月份的销售量为6万千克.【点评】本题考查了待定系数法求一次(二次)函数解析式、二次函数的性质以及一元一次方程的应用,解题的关键是:(1)观察函数图象,找出当x=6时y1﹣y2的值;(2)根据点的坐标,利用待定系数法求出y1、y2关于x的函数关系式;(3)找准等量关系,正确列出一元一次方程.13.【考点】二次函数的应用【分析】(1)根据题意可以得到y与x的函数关系式;(2)根据(1)中的函数关系式,然后化为顶点式即可解答本题.解:(1)由题意得,商品每件降价x元时单价为(100﹣x)元,销售量为(128+8x)件,则y=(128+8x)(100﹣x﹣80)=﹣8x2+32x+2560,即y与x之间的函数解析式是y=﹣8x2+32x+2560;(2)∵y=﹣8x2+32x+2560=﹣8(x﹣2)2+2592,∴当x=2时,y取得最大值,此时y=2592,∴销售单价为:100﹣2=98(元),答:A商品销售单价为98元时,该商场每天通过A商品所获的利润最大.【点评】本题考查二次函数的应用,解答本题的关键是明确题意,找出所求问题需要的条件,利用二次函数的性质解答.14.【考点】二次函数的应用【分析】(1)把y=280代入y=20x+80,解方程即可求得;(2)根据图象求得成本p与x之间的关系,然后根据利润等于订购价减去成本价,然后整理即可得到W与x的关系式,再根据一次函数的增减性和二次函数的增减性解答;解:(1)设李明第x天生产的粽子数量为280只,由题意可知:20x+80=280,解得x=10.答:第10天生产的粽子数量为420只.(2)由图象得,当0≤x<10时,p=2;当10≤x≤20时,设P=kx+b,把点(10,2),(20,3)代入得,,解得,∴p=0.1x+1,①0≤x≤6时,w=(4﹣2)×34x=68x,当x=6时,w最大=408(元);②6<x≤10时,w=(4﹣2)×(20x+80)=40x+160,∵x是整数,∴当x=10时,w最大=560(元);③10<x≤20时,w=(4﹣0.1x﹣1)×(20x+80)=﹣2x2+52x+240,∵a=﹣2<0,∴当x=﹣=13时,w最大=578(元);综上,当x=13时,w有最大值,最大值为578.【点评】本题考查的是二次函数在实际生活中的应用,主要是利用二次函数的增减性求最值问题,利用一次函数的增减性求最值,难点在于读懂题目信息,列出相关的函数关系式.15.【考点】二次函数的应用【分析】(1)根据题意列出方程组,求出方程组的解得到m与n的值即可;(2)根据图象,分类讨论利用待定系数法求出y与P的解析式即可;(3)根据W=ya﹣mt﹣n,表示出W与t的函数解析式,利用一次函数与二次函数的性质求出所求即可.解:(1)依题意得,解得:;(2)当0≤t≤20时,设y=k1t+b1,由图象得:,解得:。
2018年中考数学真题汇编--二次函数压轴题1.(2018·甘肃)如图,已知二次函数y=ax2+2x+c的图象经过点C(0,3),与x轴分别交于点A,点B(3,0).点P是直线BC上方的抛物线上一动点.(1)求二次函数y=ax2+2x+c的表达式;(2)连接PO,PC,并把△POC沿y轴翻折,得到四边形POP′C.若四边形POP′C为菱形,请求出此时点P的坐标;(3)当点P运动到什么位置时,四边形ACPB的面积最大?求出此时P点的坐标和四边形ACPB的最大面积.2.(2018·盐城)如图①,在平面直角坐标系xOy中,抛物线y=ax2+bx+3经过点A(−1,0)、B(3,0)两点,且与y轴交于点C.(1)求抛物线的表达式;(2)如图②,用宽为4个单位长度的直尺垂直于x轴,并沿x轴左右平移,直尺的左右两边所在的直线与抛物线相交于P、Q两点(点P在点Q的左侧),连接PQ,在线段PQ 上方抛物线上有一动点D,连接DP、DQ.(1)若点P的横坐标为−1,求△DPQ面积的最大值,并求此时点D的坐标;2(Ⅱ)直尺在平移过程中,△DPQ面积是否有最大值?若有,求出面积的最大值;若没有,请说明理由.3.(2018·邵阳)如图所示,将二次函数y=x2+2x+1的图象沿x轴翻折,然后向右平移1个单位,再向上平移4个单位,得到二次函数y=ax2+bx+c的图象.函数y=x2+ 2x+1的图象的顶点为点A.函数y=ax2+bx+c的图象的顶点为点B,和x轴的交点为点C,D(点D位于点C的左侧).(1)求函数y=ax2+bx+c的解析式;(2)从点A,C,D三个点中任取两个点和点B构造三角形,求构造的三角形是等腰三角形的概率;(3)若点M是线段BC上的动点,点N是△ABC三边上的动点,是否存在以AM为斜边?若存在,求tan∠MAN的值;若不存的Rt△AMN,使△AMN的面积为△ABC面积的13在,请说明理由.4.(2018·随州)如图1,抛物线C1:y=ax2−2ax+c(a<0)与x轴交于A、B两点,与y轴交于点C.已知点A的坐标为(−1,0),点O为坐标原点,OC=3OA,抛物线C1的顶点为G.(1)求出抛物线C1的解析式,并写出点G的坐标;(2)如图2,将抛物线C1向下平移k(k>0)个单位,得到抛物线C2,设C2与x轴的交点为A′、B′,顶点为G′,当△A′B′G′是等边三角形时,求k的值:(3)在(2)的条件下,如图3,设点M为x轴正半轴上一动点,过点M作x轴的垂线分别交抛物线C1、C2于P、Q两点,试探究在直线y=−1上是否存在点N,使得以P、Q、N为顶点的三角形与△AOQ全等,若存在,直接写出点M,N的坐标:若不存在,请说明理由.5.(2018·杭州临安)如图,△OAB是边长为2+√3的等边三角形,其中O是坐标原点,顶点B在y轴正方向上,将△OAB折叠,使点A落在边OB上,记为A′,折痕为EF.(1)当A′E//x轴时,求点A′和E的坐标;x2+bx+c经过点A′和E时,求抛物线与x轴的交点(2)当A′E//x轴,且抛物线y=−16的坐标;(3)当点A′在OB上运动,但不与点O、B重合时,能否使△A′EF成为直角三角形?若能,请求出此时点A′的坐标;若不能,请你说明理由.6.(2018·荆门)如图,抛物线y=ax2+bx+c(a≠0)与x轴交于原点及点A,且经过点B(4,8),对称轴为直线x=−2.(1)求抛物线的解析式;(2)设直线y=kx+4与抛物线两交点的横坐标分别为x1,x2(x1<x2),当1x2−1x1=12时,求k的值;(3)连接OB,点P为x轴下方抛物线上一动点,过点P作OB的平行线交直线AB于点Q,当S△POQ:S△BOQ=1:2时,求出点P的坐标.(坐标平面内两点M(x1,y1),N(x2,y2)之间的距离MN=√(x1−x2)2+(y1−y2)2)7.(2018·安顺)如图,已知抛物线y=ax2+bx+C(a≠0)的对称轴为直线x=−1,且抛物线与x轴交于A、B两点,与y轴交于C点,其中A(1,0),C(0,3).(1)若直线y=mx+n经过B、C两点,求直线BC和抛物成的解析式;(2)在抛物线的对称轴x=−1上找一点M,使点M到点A的距离与到点C的距离之和最小,求出点M的坐标;(3)设点P为抛物线的对称轴x=−1上的一个动点,求使△BPC为直角三角形的点P的坐标.8.(2018·株洲)如图,已知二次函数y=ax2−5√3x+c(a>0)的图象抛物线与x 轴相交于不同的两点A(x1,0),B(x2,0),且x1<x2,(1)若抛物线的对称轴为x=√3求的a值;(2)若a=15,求c的取值范围;(3)若该抛物线与y轴相交于点D,连接BD,且∠OBD=60∘,抛物线的对称轴l与x轴相交点E,点F是直线l上的一点,点F的纵坐标为3+1,连接AF,满足∠ADB=∠AFE,求2a该二次函数的解析式.9.(2018·永州)如图1,抛物线的顶点A的坐标为(1,4),抛物线与x轴相交于B、C两点,与y轴交于点E(0,3).(1)求抛物线的表达式;(2)已知点F(0,−3),在抛物线的对称轴上是否存在一点G,使得EG+FG最小,如果存在,求出点G的坐标:如果不存在,请说明理由.(3)如图2,连接AB,若点P是线段OE上的一动点,过点P作线段AB的垂线,分别与线段AB、抛物线相交于点M、N(点M、N都在抛物线对称轴的右侧),当MN最大时,求△PON的面积.10.(2018·南通)已知,正方形ABCD,A(0,−4),B(l,−4),C(1,−5),D(0,−5),抛物线y=x2+mx−2m−4(m为常数),顶点为M.(1)抛物线经过定点坐标是______,顶点M的坐标(用m的代数式表示)是______;(2)若抛物线y=x2+mx−2m−4(m为常数)与正方形ABCD的边有交点,求m的取值范围;(3)若∠ABM=45∘时,求m的值.11.(2018·湘潭)如图,点P为抛物线y=14x2上一动点.(1)若抛物线y=14x2是由抛物线y=14(x+2)2−1通过图象平移得到的,请写出平移的过程;(2)若直线l经过y轴上一点N,且平行于x轴,点N的坐标为(0,−1),过点P作PM⊥l 于M.①问题探究:如图一,在对称轴上是否存在一定点F,使得PM=PF恒成立?若存在,求出点F的坐标:若不存在,请说明理由.②问题解决:如图二,若点Q的坐标为(1.5),求QP+PF的最小值.12.(2018·宜昌)如图,在平面直角坐标系中,矩形OADB的顶点A,B的坐标分别为A(−6,0),B(0,4).过点C(−6,1)的双曲线y=kx(k≠0)与矩形OADB的边BD交于点E.(1)填空:OA=______,k=______,点E的坐标为______;(2)当1≤t≤6时,经过点M(t−1,−12t2+5t−32)与点N(−t−3,−12t2+3t−72)的直线交y轴于点F,点P是过M,N两点的抛物线y=−12x2+bx+c的顶点.①当点P在双曲线y=kx 上时,求证:直线MN与双曲线y=kx没有公共点;②当抛物线y=−12x2+bx+c与矩形OADB有且只有三个公共点,求t的值;③当点F和点P随着t的变化同时向上运动时,求t的取值范围,并求在运动过程中直线MN在四边形OAEB中扫过的面积.13.(2018·浙江)已知,点M为二次函数y=−(x−b)2+4b+1图象的顶点,直线y=mx+5分别交x轴正半轴,y轴于点A,B.(1)判断顶点M是否在直线y=4x+1上,并说明理由.(2)如图1,若二次函数图象也经过点A,B,且mx+5>−(x−b)2+4b+1,根据图象,写出x的取值范围.(3)如图2,点A坐标为(5,0),点M在△AOB内,若点C(14,y1),D(34,y2)都在二次函数图象上,试比较y1与y2的大小.14.(2018·恩施)如图,已知抛物线交x轴于A、B两点,交y轴于C点,A点坐标为(−1,0),OC=2,OB=3,点D为抛物线的顶点.(1)求抛物线的解析式;(2)P为坐标平面内一点,以B、C、D、P为顶点的四边形是平行四边形,求P点坐标;(3)若抛物线上有且仅有三个点M1、M2、M3使得△M1BC、△M2BC、△M3BC的面积均为定值S,求出定值S及M1、M2、M3这三个点的坐标.15.(2018·孝感)如图1,在平面直角坐标系xOy中,已知点A和点B的坐标分别为A(−2,0),B(0,−6),将Rt△AOB绕点O按顺时针方向分别旋转90∘,180∘得到Rt△A1OC,Rt△EOF.抛物线C1经过点C,A,B;抛物线C2经过点C,E,F.(1)点C的坐标为______,点E的坐标为______;抛物线C1的解析式为______.抛物线C2的解析式为______;(2)如果点P(x,y)是直线BC上方抛物线C1上的一个动点.①若∠PCA=∠ABO时,求P点的坐标;②如图2,过点P作x轴的垂线交直线BC于点M,交抛物线C2于点N,记ℎ=PM+NM+√2BM,求h与x的函数关系式,当−5≤x≤−2时,求h的取值范围.2018年最新中考数学压轴精选15题二次函数类【答案】1. 解:(1)将点B 和点C 的坐标代入函数解析式,得 {c =39a+6+c=0,解得{c =3a=−1,二次函数的解析是为y =−x 2+2x +3;(2)若四边形POP′C 为菱形,则点P 在线段CO 的垂直平分线上, 如图1,连接PP′,则PE ⊥CO ,垂足为E ,∵C(0,3),∴E(0,32),∴点P 的纵坐标32,当y =32时,即−x 2+2x +3=32,解得x 1=2+√102,x 2=2−√102(不合题意,舍), ∴点P 的坐标为(2+√102,32);(3)如图2,P 在抛物线上,设P(m,−m 2+2m +3), 设直线BC 的解析式为y =kx +b , 将点B 和点C 的坐标代入函数解析式,得 {b =33k+3=0, 解得{b =3k=−1.直线BC 的解析为y =−x +3, 设点Q 的坐标为(m,−m +3),PQ =−m 2+2m +3−(−m +3)=−m 2+3m . 当y =0时,−x 2+2x +3=0, 解得x 1=−1,x 2=3, OA =1,AB =3−(−1)=4,S 四边形ABPC =S △ABC +S △PCQ +S △PBQ =12AB ⋅OC +12PQ ⋅OF +12PQ ⋅FB =12×4×3+12(−m 2+3m)×3 =−32(m −32)2+758,当m =32时,四边形ABPC 的面积最大. 当m =32时,−m 2+2m +3=154,即P 点的坐标为(32,154). 当点P 的坐标为(32,154)时,四边形ACPB 的最大面积值为758.2. 解:(1)将A(−1,0)、B(3,0)代入y =ax 2+bx +3,得:{9a +3b +3=0a−b+3=0,解得:{b =2a=−1, ∴抛物线的表达式为y =−x 2+2x +3.(2)(I)当点P 的横坐标为−12时,点Q 的横坐标为72, ∴此时点P 的坐标为(−12,74),点Q 的坐标为(72,−94). 设直线PQ 的表达式为y =mx +n , 将P(−12,74)、Q(72,−94)代入y =mx +n ,得: {−12m +n =7472m +n =−94,解得:{m =−1n =54, ∴直线PQ 的表达式为y =−x +54.如图②,过点D 作DE//y 轴交直线PQ 于点E ,设点D 的坐标为(x,−x 2+2x +3),则点E 的坐标为(x,−x +54), ∴DE =−x 2+2x +3−(−x +54)=−x 2+3x +74,∴S △DPQ =12DE ⋅(x Q −x P )=−2x 2+6x +72=−2(x −32)2+8.∵−2<0,∴当x =32时,△DPQ 的面积取最大值,最大值为8,此时点D 的坐标为(32,154). (II)假设存在,设点P 的横坐标为t ,则点Q 的横坐标为4+t ,∴点P 的坐标为(t,−t 2+2t +3),点Q 的坐标为(4+t,−(4+t)2+2(4+t)+3), 利用待定系数法易知,直线PQ 的表达式为y =−2(t +1)x +t 2+4t +3. 设点D 的坐标为(x,−x 2+2x +3),则点E 的坐标为(x,−2(t +1)x +t 2+4t +3), ∴DE =−x 2+2x +3−[−2(t +1)x +t 2+4t +3]=−x 2+2(t +2)x −t 2−4t , ∴S △DPQ =12DE ⋅(x Q −x P )=−2x 2+4(t +2)x −2t 2−8t =−2[x −(t +2)]2+8.∵−2<0,∴当x =t +2时,△DPQ 的面积取最大值,最大值为8.∴假设成立,即直尺在平移过程中,△DPQ 面积有最大值,面积的最大值为8.3. 解:(1)y =x 2+2x +1=(x +1)2的图象沿x 轴翻折,得y =−(x +1)2.把y =−(x +1)2向右平移1个单位,再向上平移4个单位,得y =−x 2+4, ∴所求的函数y =ax 2+bx +c 的解析式为y =−x 2+4; (2)∵y =x 2+2x +1=(x +1)2, ∴A(−1,0),当y =0时,−x 2+4=0,解得x =±2,则D(−2,0),C(2,0); 当x =0时,y =−x 2+4=4,则B(0,4),从点A ,C ,D 三个点中任取两个点和点B 构造三角形的有:△ACB ,△ADB ,△CDB , ∵AC =3,AD =1,CD =4,AB =√17,BC =2√5,BD =2√5,∴△BCD 为等腰三角形,∴构造的三角形是等腰三角形的概率=13; (3)存在.易得BC 的解析是为y =−2x +4,S △ABC =12AC ⋅OB =12×3×4=6, M 点的坐标为(m,−2m +4)(0≤m ≤2),①当N 点在AC 上,如图1,∴△AMN 的面积为△ABC 面积的13, ∴12(m +1)(−2m +4)=2,解得m 1=0,m 2=1,当m =0时,M 点的坐标为(0,4),N(0,0),则AN =1,MN =4, ∴tan∠MAC =MN AN=41=4;当m =1时,M 点的坐标为(1,2),N(1,0),则AN =2,MN =2,∴tan∠MAC =MN AN=22;②当N 点在BC 上,如图2, BC =√22+42=2√5,∵12BC ⋅AN =12AC ⋅BC ,解得AN =3×42√5=6√55, ∵S △AMN =12AN ⋅MN =2, ∴MN =4AN =2√53, ∴∠MAC =MNAN =2√536√55=59; ③当N 点在AB 上,如图3,作AH ⊥BC 于H ,设AN =t ,则BN =√17−t , 由②得AH =6√55,则BH =√(√17)2−(6√55)2=7√55, ∵∠NBG =∠HBA , ∴△BNM ∽△BHA , ∴MN AH=BNBH ,即MN 6√55=√17−t7√55,∴MN=6√17−6t7,∵12AN⋅MN=2,即12⋅(√17−t)⋅6√17−6t7=2,整理得3t2−3√17t+14=0,△=(−3√17)2−4×3×14=−15<0,方程没有实数解,∴点N在AB上不符合条件,综上所述,tan∠MAN的值为1或4或59.4. 解:(1)∵点A的坐标为(−1,0),∴OA=1,∴OC=3OA,∴点C的坐标为(0,3),将A、C坐标代入y=ax2−2ax+c,得:{c=3a+2a+c=0,解得:{c=3a=−1,∴抛物线C1的解析式为y=−x2+2x+3=−(x−1)2+4,所以点G的坐标为(1,4).(2)设抛物线C2的解析式为y=−x2+2x+3−k,即y=−(x−1)2+4−k,过点G′作G′D⊥x轴于点D,设BD′=m,∵△A′B′G′为等边三角形,∴G′D=√3B′D=√3m,则点B′的坐标为(m+1,0),点G′的坐标为(1,√3m),将点B′、G′的坐标代入y=−(x−1)2+4−k,得:{−m 2+4−k=04−k=√3m,解得:{k1=4m1=0(舍),{m2=√3k2=1,∴k=1;(3)设M(x,0),则P(x,−x 2+2x +3)、Q(x,−x 2+2x +2), ∴PQ =OA =1,∵∠AOQ 、∠PQN 均为钝角, ∴△AOQ ≌△PQN ,如图2,延长PQ 交直线y =−1于点H ,则∠QHN =∠OMQ =90∘, 又∵△AOQ ≌△PQN ,∴OQ =QN ,∠AOQ =∠PQN , ∴∠MOQ =∠HQN , ∴△OQM ≌△QNH(AAS),∴OM =QH ,即x =−x 2+2x +2+1, 解得:x =1±√132(负值舍去), 当x =1+√132时,HN =QM =−x 2+2x +2=√13−12,点M(1+√132,0),∴点N 坐标为(1+√132+√13−12,−1),即(√13,−1); 或(1+√132−√13−12,−1),即(1,−1); 如图3,同理可得△OQM≌△PNH,∴OM=PH,即x=−(−x2+2x+2)−1,解得:x=−1(舍)或x=4,当x=4时,点M的坐标为(4,0),HN=QM=−(−x2+2x+2)=6,∴点N的坐标为(4+6,−1)即(10,−1),或(4−6,−1)即(−2,−1);综上点M1(1+√132,0)、N1(√13,−1);M2(1+√132,0)、N2(1,−1);M3(4,0)、N3(10,−1);M4(4,0)、N4(−2,−1).5. 解:(1)由已知可得∠A′OE=60∘,A′E=AE,由A′E//x轴,得△OA′E是直角三角形,设A′的坐标为(0,b),AE=A′E=√3b,OE=2b,√3b+2b=2+√3,所以b=1,A′、E的坐标分别是(0,1)与(√3,1).(2)因为A′、E在抛物线上,所以{1=c1=−16⋅(√3)2+√3b+c,所以{c=1b=√36,函数关系式为y=−16x2+√36x+1,由−16x2+√36x+1=0,得x1=−√3,x2=2√3,与x轴的两个交点坐标分别是(−√3,0)与(2√3,0).(3)不可能使△A′EF成为直角三角形.∵∠FA′E=∠FAE=60∘,若△A′EF 成为直角三角形,只能是∠A′EF =90∘或∠A′FE =90∘ 若∠A′EF =90∘,利用对称性,则∠AEF =90∘, A 、E 、A 三点共线,O 与A 重合,与已知矛盾; 同理若∠A′FE =90∘也不可能, 所以不能使△A′EF 成为直角三角形. 6. 解:(1)根据题意得,{−b2a=−216a +4b +c =8c =0,∴{a =14b =1c =0, ∴抛物线解析式为y =14x 2+x ;(2)∵直线y =kx +4与抛物线两交点的横坐标分别为x 1,x 2, ∴14x 2+x =kx +4, ∴x 2−4(k −1)x −16=0,根据根与系数的关系得,x 1+x 2=4(k −1),x 1x 2=−16, ∵1x 2−1x 1=12,∴2(x 1−x 2)=x 1x 2, ∴4(x 1−x 2)2=(x 1x 2)2,∴4[(x 1+x 2)2−4x 1x 2]=(x 1x 2)2, ∴4[16(k −1)2+64]=162, ∴k =1;(3)如图,取OB 的中点C , ∴BC =12OB , ∵B(4,8), ∴C(2,4), ∵PQ//OB ,∴点O 到PQ 的距离等于点O 到OB 的距离, ∵S △POQ :S △BOQ =1:2, ∴OB =2PQ ,∴PQ =BC ,∵PQ//OB , ∴四边形BCPQ 是平行四边形, ∴PC//AB ,∵抛物线的解析式为y =14x 2+x②,令y =0, ∴14x 2+x =0, ∴x =0或x =−4, ∴A(−4,0), ∵B(4,8),∴直线AB 解析式为y =x +4,设直线PC 的解析式为y =x +m , ∵C(2,4),∴直线PC 的解析式为y =x +2②,联立①②解得,{x =2√2y =2√2+2(舍)或{x =−2√2y =−2√2+2,∴P(−2√2,−2√2+2).7. 解:(1)依题意得:{−b2a =−1a +b +c =0c =3,解之得:{a =−1b =−2c =3,∴抛物线解析式为y =−x 2−2x +3 ∵对称轴为x =−1,且抛物线经过A(1,0), ∴把B(−3,0)、C(0,3)分别代入直线y =mx +n ,得{n =3−3m+n=0,解之得:{n =3m=1,∴直线y =mx +n 的解析式为y =x +3;(2)设直线BC 与对称轴x =−1的交点为M ,则此时MA +MC 的值最小.把x =−1代入直线y =x +3得,y =2, ∴M(−1,2),即当点M 到点A 的距离与到点C 的距离之和最小时M 的坐标为(−1,2);(3)设P(−1,t), 又∵B(−3,0),C(0,3),∴BC 2=18,PB 2=(−1+3)2+t 2=4+t 2,PC 2=(−1)2+(t −3)2=t 2−6t +10,①若点B 为直角顶点,则BC 2+PB 2=PC 2即:18+4+t 2=t 2−6t +10解之得:t =−2; ②若点C 为直角顶点,则BC 2+PC 2=PB 2即:18+t 2−6t +10=4+t 2解之得:t =4,③若点P 为直角顶点,则PB 2+PC 2=BC 2即:4+t 2+t 2−6t +10=18解之得:t 1=3−√172,t 2=3−√172;综上所述P 的坐标为(−1,−2)或(−1,4)或(−1,3+√172) 或(−1,3−√172).8. 解:(1)抛物线的对称轴是:x =−b 2a =−−5√32a=√3,解得:a =52;(2)由题意得二次函数解析式为:y =15x 2−5√3x +c , ∵二次函数与x 轴有两个交点, ∴△>0,∴△=b 2−4ac =(−5√3)2−4×15c , ∴c <54;(3)∵∠BOD =90∘,∠DBO =60∘, ∴tan60∘=ODOB =cOB =√3, ∴OB =√33c , ∴B(√33c,0),把B(√33c,0)代入y =ax 2−5√3x +c 中得:ac 23−5√3⋅√3c 3+c =0,ac 23−5c +c =0,∵c ≠0, ∴ac =12, ∴c =12a,把c =12a代入y =ax 2−5√3x +c 中得:y =a(x 2−5√3x a+12a 2)=a(x −4√3a)(x −√3a), ∴x 1=4√3a,x 2=√3a, ∴A(√3a ,0),B(4√3a,0),D(0,12a ), ∴AB =4√3a −√3a=3√3a ,AE =3√32a, ∵F 的纵坐标为3+12a , ∴F(5√32a ,6a+12a),过点A作AG⊥DB于G,∴BG=12AB=AE=3√32a,AG=92a,DG=DB−BG=8√3a −3√32a=13√32a,∵∠ADB=∠AFE,∠AGD=∠FEA=90∘,∴△ADG∽△AFE,∴AEAG =FEDG,∴3√32a92a=6a+12a13√32a,∴a=2,c=6,∴y=2x2−5√3x+6.9. 解:(1)设抛物线的表达式为:y=a(x−1)2+4,把(0,3)代入得:3=a(0−1)2+4,a=−1,∴抛物线的表达式为:y=−(x−1)2+4=−x2+2x+3;(2)存在,如图1,作E关于对称轴的对称点,连接交对称轴于G,此时EG+FG的值最小,∵E(0,3),,易得的解析式为:y=3x−3,当x=1时,y=3×1−3=0,∴G(1,0)(3)如图2,∵A(1,4),B(3,0),易得AB的解析式为:y=−2x+6,设N(m,−m2+2m+3),则Q(m,−2m+6),(0≤m≤3),∴NQ=(−m2+2m+3)−(−2m+6)=−m2+4m−3,∵AD//NH,∴∠DAB=∠NQM,∵∠ADB=∠QMN=90∘,∴△QMN∽△ADB,∴QNMN =ABBD,∴−m2+4m−3MN =2√52,∴MN=−√55(m−2)2+√55,∵−√55<0,∴当m=2时,MN有最大值;过N作NG⊥y轴于G,∵∠GPN=∠ABD,∠NGP=∠ADB=90∘,∴△NGP∽△ADB,∴PGNG =BDAD=24=12,∴PG=12NG=12m,∴OP=OG−PG=−m2+2m+3−12m=−m2+32m+3,∴S△PON=12OP⋅GN=12(−m2+32m+3)⋅m,当m=2时,S△PON=12×2(−4+3+3)=2.10. (2,0);(−m2,−14m2−2m−4)11. 解:(1)∵抛物线y=14(x+2)2−1的顶点为(−2,−1)∴抛物线y=14(x+2)2−1的图象向上平移1个单位,再向右2个单位得到抛物线y=14x2的图象.(2)①存在一定点F,使得PM=PF恒成立.如图一,过点P作PB⊥y轴于点B设点P坐标为(a,14a2)∴PM=PF=14a2+1∵PB=a ∴Rt△PBF中BF=√PF2−PB2=√(14a2+1)2−a2=14a2−1∴OF=1∴点F坐标为(0,1)②由①,PM=PFQP+PF的最小值为QP+QM的最小值当Q、P、M三点共线时,QP+QM有最小值为点Q纵坐标5.∴QP+PF的最小值为5.,4)12. 6;−6;(−3213. 解:(1)点M为二次函数y=−(x−b)2+4b+1图象的顶点,∴M的坐标是(b,4b+1),把x=b代入y=4x+1,得y=4b+1,∴点M在直线y=4x+1上;(2)如图1,直线y=mx+5交y轴于点B,∴B点坐标为(0,5)又B在抛物线上,∴5=−(0−b)2+4b+1=5,解得b=2,二次函数的解析是为y=−(x−2)2+9,当y=0时,−(x−2)2+9=0,解得x1=5,x2=−1,∴A(5,0).由图象,得当mx+5>−(x−b)2+4b+1时,x的取值范围是x<0或x>5;(3)如图2,∵直线y=4x+1与直线AB交于点E,与y轴交于F,A(5,0),B(0,5)得直线AB的解析式为y=−x+5,联立EF,AB得方程组{y =−x +5y=4x+1, 解得{x =45y =215,∴点E(45,215),F(0,1). 点M 在△AOB 内,1<4b +1<215∴0<b <45.当点C ,D 关于抛物线的对称轴对称时,b −14=34−b ,∴b =12, 且二次函数图象开口向下,顶点M 在直线y =4x +1上, 综上:①当0<b <12时,y 1>y 2, ②当b =12时,y 1=y 2, ③当12<b <45时,y 1<y 2.14. 解:(1)由OC =2,OB =3,得到B(3,0),C(0,2),设抛物线解析式为y =a(x +1)(x −3), 把C(0,2)代入得:2=−3a ,即a =−23,则抛物线解析式为y =−23(x +1)(x −3)=−23x 2+43x +2;(2)抛物线y =−23(x +1)(x −3)=−23x 2+43x +2=−23(x −1)2+83, ∴D(1,83),当四边形CBPD 是平行四边形时,由B(3,0),C(0,2),得到P(4,23); 当四边形CDBP 是平行四边形时,由B(3,0),C(0,2),得到P(2,−23); 当四边形BCPD 是平行四边形时,由B(3,0),C(0,2),得到P(−2,143); (3)设直线BC 解析式为y =kx +b , 把B(3,0),C(0,2)代入得:{b =23k+b=0,解得:{k =−23b =2, ∴y =−23x +2,设与直线BC 平行的解析式为y =−23x +b , 联立得:{y =−23x +by =−23x 2+43x +2, 消去y 得:2x 2−6x +3b −6=0,当直线与抛物线只有一个公共点时,△=36−8(3b −6)=0, 解得:b =72,即y =−23x +72, 此时交点M 1坐标为(32,52);可得出两平行线间的距离为√1313,同理可得另一条与BC 平行且平行线间的距离为√1313的直线方程为y =−23x +12,联立解得:M 2(3−3√22,√2−12),M 3(3+3√22,−√2−12),此时S =1.15. (−6,0);(2,0);y =−12x 2−4x −6;y =−12x 2−2x +6【解析】1. (1)根据待定系数法,可得函数解析式;(2)根据菱形的对角线互相垂直且平分,可得P 点的纵坐标,根据自变量与函数值的对应关系,可得P 点坐标;(3)根据平行于y 轴的直线上两点间的距离是较大的纵坐标减较小的纵坐标,可得PQ 的长,根据面积的和差,可得二次函数,根据二次函数的性质,可得答案.本题考查了二次函数综合题,解(1)的关键是待定系数法;解(2)的关键是利用菱形的性质得出P 点的纵坐标,又利用了自变量与函数值的对应关系;解(3)的关键是利用面积的和差得出二次函数,又利用了二次函数的性质.2. (1)根据点A 、B 的坐标,利用待定系数法即可求出抛物线的表达式;(2)(I)由点P 的横坐标可得出点P 、Q 的坐标,利用待定系数法可求出直线PQ 的表达式,过点D 作DE//y 轴交直线PQ 于点E ,设点D 的坐标为(x,−x 2+2x +3),则点E 的坐标为(x,−x +54),进而即可得出DE 的长度,利用三角形的面积公式可得出S △DPQ =−2x 2+6x +72,再利用二次函数的性质即可解决最值问题;(II)假设存在,设点P 的横坐标为t ,则点Q 的横坐标为4+t ,进而可得出点P 、Q 的坐标,利用待定系数法可求出直线PQ 的表达式,设点D 的坐标为(x,−x 2+2x +3),则点E 的坐标为(x,−2(t +1)x +t 2+4t +3),进而即可得出DE 的长度,利用三角形的面积公式可得出S △DPQ =−2x 2+4(t +2)x −2t 2−8t ,再利用二次函数的性质即可解决最值问题. 本题考查了待定系数法求二次(一次)函数解析式、二次(一次)函数图象上点的坐标特征、三角形的面积以及二次函数的最值,解题的关键是:(1)根据点的坐标,利用待定系数法求出二次函数表达式;(2)(I)利用三角形的面积公式找出S △DPQ =−2x 2+6x +72;(II)利用三角形的面积公式找出S △DPQ =−2x 2+4(t +2)x −2t 2−8t .3. (1)利用配方法得到y =x 2+2x +1=(x +1)2,然后根据抛物线的变换规律求解;(2)利用顶点式y =(x +1)2得到A(−1,0),解方程−x 2+4=0得D(−2,0),C(2,0)易得B(0,4),列举出所有的三角形,再计算出AC =3,AD =1,CD =4,AB =√17,BC =2√5,BD =2√5,然后根据等腰三角形的判定方法和概率公式求解;(3)易得BC 的解析是为y =−2x +4,S △ABC =6,M 点的坐标为(m,−2m +4)(0≤m ≤2),讨论:①当N 点在AC 上,如图1,利用面积公式得到12(m +1)(−2m +4)=2,解得m 1=0,m 2=1,当m =0时,求出AN =1,MN =4,再利用正切定义计算tan∠MAC 的值;当m =1时,计算出AN =2,MN =2,再利用正切定义计算tan∠MAC 的值;②当N 点在BC 上,如图2,先利用面积法计算出AN =6√55,再根据三角形面积公式计算出MN =2√53,然后利用正切定义计算tan∠MAC 的值;③当N 点在AB 上,如图3,作AH ⊥BC 于H ,设AN =t ,则BN =√17−t ,由②得AH =6√55,利用勾股定理可计算出BH =7√55,证明△BNM ∽△BHA ,利用相似比可得到MN =6√17−6t 7,利用三角形面积公式得到12⋅(√17−t)⋅6√17−6t7=2,根据此方程没有实数解可判断点N 在AB 上不符合条件,从而得到tan∠MAN 的值为1或4或59. 本题考查了二次函数的综合题:熟练掌握二次函数图象上点的坐标特征、二次函数的性质和等腰三角形的判定、概率公式;理解二次函数图象的图象变换规律,会利用待定系数法求函数解析式;理解坐标与图形性质,记住两点间的距离公式,会利用相似比表示线段之间的关系;会运用分类讨论的思想解决数学问题.4. (1)由点A 的坐标及OC =3OA 得点C 坐标,将A 、C 坐标代入解析式求解可得;(2)设抛物线C 2的解析式为y =−x 2+2x +3−k ,即y =−(x −1)2+4−k ,′作G′D ⊥x 轴于点D ,设BD′=m ,由等边三角形性质知点B′的坐标为(m +1,0),点G′的坐标为(1,√3m),代入所设解析式求解可得;(3)设M(x,0),则P(x,−x2+2x+3)、Q(x,−x2+2x+2),根据PQ=OA=1且∠AOQ、∠PQN 均为钝角知△AOQ≌△PQN,延长PQ交直线y=−1于点H,证△OQM≌△QNH,根据对应边相等建立关于x的方程,解之求得x的值从而进一步求解.本题主要考查二次函数的综合问题,解题的关键是掌握待定系数法求函数解析式、等边三角形的性质、全等三角形的判定与性质等知识点.5. (1)当A′E//x轴时,△A′EO是直角三角形,可根据∠A′OE的度数用O′A表示出OE和A′E,由于A′E=AE,且A′E+OE=OA=2+√3,由此可求出OA′的长,也就能求出A′E的长.据此可求出A′和E的坐标;(2)将A′,E点的坐标代入抛物线中,即可求出其解析式.进而可求出抛物线与x轴的交点坐标;(3)根据折叠的性质可知:∠FA′E=∠A,因此∠FA′E不可能为直角,因此要使△A′EF成为直角三角形只有两种可能:①∠A′EF=90∘,根据折叠的性质,∠A′EF=∠AEF=90∘,此时A′与O重合,与题意不符,因此此种情况不成立.②∠A′FE=90∘,同①,可得出此种情况也不成立.因此A′不与O、B重合的情况下,△A′EF不可能成为直角三角形.本题着重考查了待定系数法求二次函数解析式、图形旋转变换、直角三角形的判定和性质等知识点,综合性较强.6. (1)先利用对称轴公式得出b=4a,进而利用待定系数法即可得出结论;(2)先利用根与系数的关系得出,x1+x2=4(k−1),x1x2=−16,转化已知条件,代入即可得出结论;(3)先判断出OB=2PQ,进而判断出点C是OB中点,再求出AB解析式,判断出PC//AB,即可得出PC解析式,和抛物线解析式联立解方程组即可得出结论.此题是二次函数综合题,主要考查了待定系数法,一元二次方程的根与系数的关系,平行四边形的判定和性质,等高的两三角形面积的比等于底的比,判断出OB=2PQ是解本题的关键.7. (1)先把点A,C的坐标分别代入抛物线解析式得到a和b,c的关系式,再根据抛物线的对称轴方程可得a和b的关系,再联立得到方程组,解方程组,求出a,b,c的值即可得到抛物线解析式;把B、C两点的坐标代入直线y=mx+n,解方程组求出m和n的值即可得到直线解析式;(2)设直线BC与对称轴x=−1的交点为M,则此时MA+MC的值最小.把x=−1代入直线y=x+3得y的值,即可求出点M坐标;(3)设P(−1,t),又因为B(−3,0),C(0,3),所以可得BC2=18,PB2=(−1+3)2+t2=4+t2,PC2=(−1)2+(t−3)2=t2−6t+10,再分三种情况分别讨论求出符合题意t值即可求出点P的坐标.本题综合考查了二次函数的图象与性质、待定系数法求函数(二次函数和一次函数)的解析式、利用轴对称性质确定线段的最小长度、难度不是很大,是一道不错的中考压轴题.8. (1)根据抛物线的对称轴公式代入可得a的值;(2)根据已知得:抛物线与x轴有两个交点,则△>0,列不等式可得c的取值范围;(3)根据60∘的正切表示点B的坐标,把点B的坐标代入抛物线的解析式中得:ac=12,则c=12a,从而得A和B的坐标,表示F的坐标,作辅助线,构建直角△ADG,根据已知的角相等可得△ADG∽△AFE,列比例式得方程可得a和c的值.本题是二次函数综合题,涉及的知识点有:代入法的运用,根与判别式的关系,对称轴公式,解方程,三角形相似的性质和判定,勾股定理等知识,第3问有难度,利用特殊角的三角函数表示A、B两点的坐标是关键,综合性较强.9. (1)根据顶点式可求得抛物线的表达式;(2)根据轴对称的最短路径问题,作E关于对称轴的对称点,连接交对称轴于G,此时EG+FG的值最小,先求的解析式,它与对称轴的交点就是所求的点G;(3)如图2,先利用待定系数法求AB的解析式为:y=−2x+6,设N(m,−m2+2m+3),则Q(m,−2m+6),(0≤m≤3),表示NQ=−m2+4m−3,证明△QMN∽△ADB,列比例式可得MN的表达式,根据配方法可得当m=2时,MN有最大值,证明△NGP∽△ADB,同理得PG的长,从而得OP的长,根据三角形的面积公式可得结论,并将m=2代入计算即可.本题主要考查的是二次函数的综合应用,解答本题主要应用了待定系数法求二次函数的解析式、一次函数的解析式、相似三角形的性质和判定、三角形的面积、轴对称的最短路径问题,根据比例式列出关于m的方程是解题答问题(3)的关键.10. 解:(1)y=x2+mx−2m−4=(x2−4)+m(x−2)=(x−2)(x+2+m),当x=2时,y=0,∴抛物线经过定点坐标是(2,0).∵抛物线的解析式为y=x2+mx−2m−4,∴顶点M的对称轴为直线x=−b2a =−m2当x═−m2时,y=(−m2)2+m⋅(−m2)−2m−4=−14m2−2m−4故答案为:(2,0);(−m2,−14m2−2m−4).(2)设x=−m2,y=−14m2−2m−4则m=−2x,带入y=−m2,−14m2−2m−4.整理得y=−x2+4x−4即抛物线的顶点在抛物线y=−x2+4x−4上运动.其对称轴为直线x=2,当抛物线顶点直线x=2右侧时即m<−4时,抛物线y=x2+mx−2m−4与正方形ABCD 无交点.当m>−4时,观察抛物线的顶点所在抛物线y=−x2+4x−4恰好过点A(0,−4),此时m= 0当抛物线y=x2+mx−2m−4过点C(1,−5)时−5=1+m−2m−4,得m=2∴抛物线y=x2+mx−2m−4(m为常数)与正方形ABCD的边有交点时m的范围为:0≤m≤2(3)由(2)抛物线顶点M在抛物线y=−x2+4x−4上运动当点M在线段AB上方时,过点B且使∠ABM=45∘的直线解析式为y=−x−3联立方程−x2+4x−4=−x−3求交点横坐标的x1=5+√212(舍去)x2=5−√212m=−5+√21当点M在线段AB下方时过点B且使∠ABM=45∘的直线解析式为y=x−5联立方程−x2+4x−4=x−5求交点横坐标为x1=3+√132(舍去)x2=3−√132m=−3+√13∴m的值为−5+√21或−3+√13(1)判断函数图象过定点时,可以分析代入的x值使得含m的同类项合并后为系数为零.(2)由(1)中用m表示的顶点坐标,可以得到在m变化时,抛物线顶点M抛物线在y=−x2+ 4x−4上运动,分析该函数图象和正方形ABCD的顶点位置关系可以解答本题;(3)由已知点M在过点B且与AB夹角为45∘角的直线与抛物线在y=−x2+4x−4的交点上,则问题可解.本题考查含有字母参数的二次函数图象及其性质,解答过程中注意数形结合,关注m的变化过程中,抛物线的变化趋势.11. (1)找到抛物线顶点坐标即可找到平移方式.(2)①设出点P坐标,利用PM=PF计算BF,求得F坐标;②利用PM=PF,将QP+PF转化为QP+QM,利用垂线段最短解决问题.本题以二次函数为背景,考查了数形结合思想、转换思想和学生解答问题的符号意思.12. 解:(1)∵A点坐标为(−6,0)∴OA=6∵过点C(−6,1)的双曲线y=kx∴k=−6y=4时,x=−64=−32∴点E 的坐标为(−32,4) 故答案为:6,−6,(−32,4)(2)①设直线MN 解析式为:y 1=k 1x +b 1 由题意得:{−12t 2+5t −32=k 1(t −1)+b 1−12t 2+3t −72=k 1(−t −3)+b 1 解得{k 1=1b =−12t 2+4t −12∵抛物线y =−12x 2+bx +c 过点M 、N∴{−12t 2+5t −32=−12(t −1)2+b(t −1)+c−12t 2+3t −72=−12(−t −3)2+b(−t −3)+c 解得{c =5t −2b=−1∴抛物线解析式为:y =−12x 2−x +5t −2 ∴顶点P 坐标为(−1,5t −32) ∵P 在双曲线y =−6x 上∴(5t −32)×(−1)=−6∴t =32此时直线MN 解析式为: 联立{y =x +358y =−6x∴8x 2+35x +49=0∵△=352−4×8×48=1225−1536<0∴直线MN 与双曲线y =−6x 没有公共点.②当抛物线过点B ,此时抛物线y =−12x 2+bx +c 与矩形OADB 有且只有三个公共点 ∴4=5t −2,得t =65当抛物线在线段DB 上,此时抛物线与矩形OADB 有且只有三个公共点 ∴10t−32=4,得t =1110∴t =65或t =1110③∵点P 的坐标为(−1,5t −32)∴y P =5t −32当1≤t ≤6时,y P 随t 的增大而增大 此时,点P 在直线x =−1上向上运动 ∵点F 的坐标为(0,−12t 2+4t −12)∴y F =−12(t −4)2+152∴当1≤t ≤4时,随者y F 随t 的增大而增大 此时,随着t 的增大,点F 在y 轴上向上运动∴1≤t ≤4当t =1时,直线MN :y =x +3与x 轴交于点G(−3,0),与y 轴交于点H(0,3) 当t =4−√3时,直线MN 过点A .当1≤t ≤4时,直线MN 在四边形AEBO 中扫过的面积为S =12×(32+6)×4−12×3×3=212(1)根据题意将先关数据带入(2)①用t 表示直线MN 解析式,及b ,c ,得到P 点坐标带入双曲线y =kx 解析式,证明关于t 的方程无解即可;②根据抛物线开口和对称轴,分别讨论抛物线过点B 和在BD 上时的情况;③由②中部分结果,用t 表示F 、P 点的纵坐标,求出t 的取值范围及直线MN 在四边形OAEB 中所过的面积.本题为二次函数与反比例函数综合题,考查了数形结合思想和分类讨论的数学思想.解题过程中,应注意充分利用字母t 表示相关点坐标.13. (1)根据顶点式解析式,可得顶点坐标,根据点的坐标代入函数解析式检验,可得答案; (2)根据待定系数法,可得二次函数的解析式,根据函数图象与不等式的关系:图象在下方的函数值小,可得答案;(3)根据解方程组,可得顶点M 的纵坐标的范围,根据二次函数的性质,可得答案. 本题考查了二次函数综合题,解(1)的关键是把点的坐标代入函数解析式检验;解(2)的关键是利用函数图不等式的关系:图象在上方的函数值大;解(3)的关键是解方程组得出顶点M 的纵坐标的范围,又利用了二次函数的性质:a <0时,点与对称轴的距离越小函数值越大.14. (1)由OC 与OB 的长,确定出B 与C 的坐标,再由A 坐标,利用待定系数法确定出抛物线解析式即可;(2)分三种情况讨论:当四边形CBPD 是平行四边形;当四边形BCPD 是平行四边形;四边形BDCP 是平行四边形时,利用平移规律确定出P 坐标即可;(3)由B 与C 坐标确定出直线BC 解析式,求出与直线BC 平行且与抛物线只有一个交点时交点坐标,。
中考数学真题汇编:二次函数、选择题1.给出下列函数:①y= - 3x+2 :②y=:③y=2x 2;④y=3x ,上述函数中符合条作“当 x > 1时,函数值y 随自变量x 增大而增大"的是( )A. ①③B.③④C.②④D.②③【答案】B 2.如图,函数 ' —处:一 H 和買厂心一1叫 是常数,且)在同一平面直角坐标系的图象可能是3. 关于二次函数 ' 八'),下列说法正确的是( )A.图像与轴的交点坐标为像的对称轴在轴的右侧【答案】D 4. 二次函数「-/—心 °)的图像如图所示,下列结论正确是( )C.B.图C •当 时, 的值随 值的增大而减小 D.1A.D. 泳门有两个不相等的实数根【答案】C5. 若抛物线 D 与 轴两个交点间的距离为 2,称此抛物线为定弦抛物线,已知某定弦抛物线的对称轴为直线,将此抛物线向左平移 2个单位,再向下平移 3个单位,得到的抛物线过点B. :一「二D.【答案】B【答案】B1.则下列说法中正确的是(落于地面C.点火后10s 的升空高度为D.火箭升空的最大高度为145m【答案】_____________ 2若二次函数 y=ax +bx+c (a * 0)图象的对称轴为 x=1,与y 轴交于点C,与x 轴交于点A 、点B6.若抛物线y=x 2+ax+b 与x 轴两个交点间的距离为 2,称此抛物线为定弦抛物线。
已知某定弦抛物线的对 称轴为直线再向下平移 3个单位,得到的抛物线过点(A. (-3 , -6 )B. (-3 ,C. D.(-3 , -1 )7.已知学校航模组设计制作的火箭的升空高度 h(罚 与飞行时间t (s )满足函数表达式 h =- t 2+ 24t + A.点火后9s 和点火后13s 的升空高度相同B.点火后24s 火箭139m 8.如图, (-1,B. C.D. 40),则①二次函数的最大值为a+b+c;②a - b+c v 0:③b - 4ac v 0;④当y >0时,-1v x v 【答案】B11. 四位同学在研究函数 I - d' - f (b , c是常数)时,甲发现当时,函数有最小值;乙发3 ;丁发现当•二一时』•已知这四位同学中只有一位发现的结论是错误的,则该同学是( A.甲C. D.9.如图是二次函数 「一出讥「I 叫—{(,, 是常数,)图象的一部分,与 轴的交点 在点仓念和之间,对称轴是艺M [•对于下列说法:①「「伽( 为实数);⑤当时,於丈3;②二[二二③召:④,其中正确的是(B.①②⑤【答案】AD.③④⑤. .2. .10. 如图,二次函数 y=ax+bx 的图象开口向下,且经过第三象限的点C.②③④P .若点P 的横坐标为-1,则一次函现 是方程「辽心-扱-一厂:「的一个根;丙发现函数的最小值为【答案】B12. 如图所示,△ DEF 中,/ DEF=90 , / D=30 ,DF=16,B 是斜边 DF 上一动点,过B 作AB 丄DF 于B,交边DE (或边EF )于点A,设BD=x,△ ABD 的面积为y,则y 与x 之间的函数图象大致为()【答案】B:■、填空题【答案】增大三、解答题C.13.已知二次函数当x >0时,y 随x 的增大而(填“增大”或“减小”)14.右图是抛物线型拱桥,当拱顶离水面2m 时,水面宽4m,水面下降2m,水面宽度增加图1A.15. 学校拓展小组研制了绘图智能机器人(如图 1 ),顺次输入点P l , P2 , P3的坐标,机器人能根据图2,绘制图形。
专题05二次函数与相似三角形有关的问题(知识解读)【专题说明】二次函数与相似三角形是中考数学的压轴题,具有一定的难度,也是中考考频比较高的,本节未同学们提供解题途径,希望能够助同学们轻松解题。
【解题思路】关函数与相似三角形的问题一般三个解决途径:(1)求相似三角形的第三个顶点时,先要分析已知三角形的边和角的特点,进而得出已知三角形是否为特殊三角形.根据未知三角形中已知边与已知三角形的可能对应边分类讨论;(2)利用已知三角形中对应角,在未知三角形中利用勾股定理、三角函数来推导边的大小;(3)若两个三角形的各边均未给出,则应先设所求点的坐标进而用函数解析式来表示各边的长度,之后利用相似来列方程求解.【典例分析】【典例1】(2019•娄底)如图,抛物线y=ax2+bx+c与x轴交于点A(﹣1,0),点B(3,0),与y轴交于点C,且过点D(2,﹣3).点P、Q是抛物线y=ax2+bx+c上的动点.(1)求抛物线的解析式;(2)直线OQ与线段BC相交于点E,当△OBE与△ABC相似时,求点Q的坐标.【变式1-1】(2022•贵港)如图,已知抛物线y=﹣x2+bx+c经过A(0,3)和B(,﹣)两点,直线AB与x轴相交于点C,P是直线AB上方的抛物线上的一个动点,PD⊥x轴交AB于点D.(1)求该抛物线的表达式;(2)若以A,P,D为顶点的三角形与△AOC相似,请直接写出所有满足条件的点P,点D的坐标.【变式1-2】(2022•绵阳)如图,抛物线y=ax2+bx+c交x轴于A(﹣1,0),B两点,交y轴于点C(0,3),顶点D的横坐标为1.(1)求抛物线的解析式;(2)在y轴的负半轴上是否存在点P使∠APB+∠ACB=180°,若存在,求出点P的坐标,若不存在,请说明理由;(3)过点C作直线l与y轴垂直,与抛物线的另一个交点为E,连接AD,AE,DE,在直线l下方的抛物线上是否存在一点M,过点M作MF⊥l,垂足为F,使以M,F,E三点为顶点的三角形与△ADE相似?若存在,请求出M点的坐标,若不存在,请说明理由.【典例2】(2022•玉林)如图,已知抛物线:y=﹣2x2+bx+c与x轴交于点A,B(2,0)(A在B的左侧),与y轴交于点C,对称轴是直线x=,P是第一象限内抛物线上的任一点.(1)求抛物线的解析式;(2)过点P作x轴的垂线与线段BC交于点M,垂足为点H,若以P,M,C为顶点的三角形与△BMH相似,求点P的坐标.【变式2-1】(2022•辽宁)抛物线y=ax2﹣2x+c经过点A(3,0),点C(0,﹣3),直线y=﹣x+b经过点A,交抛物线于点E.抛物线的对称轴交AE于点B,交x轴于点D,交直线AC于点F.(1)求抛物线的解析式;(2)如图,连接CD,点Q为平面内直线AE下方的点,以点Q,A,E为顶点的三角形与△CDF相似时(AE与CD不是对应边),请直接写出符合条件的点Q的坐标.【变式2-2】(2022•桂林)如图,抛物线y=﹣x2+3x+4与x轴交于A,B两点(点A位于点B的左侧),与y轴交于C点,抛物线的对称轴l与x轴交于点N,长为1的线段PQ (点P位于点Q的上方)在x轴上方的抛物线对称轴上运动.(1)直接写出A,B,C三点的坐标;(2)过点P作PM⊥y轴于点M,当△CPM和△QBN相似时,求点Q的坐标.【变式2-3】(2021•黑龙江)如图,抛物线y=ax2+bx+3(a≠0)与x轴交于点A(1,0)和点B(﹣3,0),与y轴交于点C,连接BC,与抛物线的对称轴交于点E,顶点为点D.(1)求抛物线的解析式;(2)点P是对称轴左侧抛物线上的一个动点,点Q在射线ED上,若以点P、Q、E为顶点的三角形与△BOC相似,请直接写出点P的坐标.专题05二次函数与相似三角形有关的问题(知识解读)【专题说明】二次函数与相似三角形是中考数学的压轴题,具有一定的难度,也是中考考频比较高的,本节未同学们提供解题途径,希望能够助同学们轻松解题。
专题七 二次函数综合题的解题思路一、方法简述二次函数综合题通常作为压轴题, 意图通过压轴题考查学生的综合素质,尤其是分析问题、解决问题的能力,发现挖掘学生继续升学的潜力。
压轴题设置常见有探究型问题、开放型问题、运动变化型问题、操作型问题、应用型问题等。
压轴题常以支撑整个初中数学的核心知识与重要思想方法为载体, 突出能力考查,对学生的阅读能力、计算能力、理解能力、思维能力有较高的要求;主要的形式上是以函数为载体考查函数或几何, 其中函数的载体以二次函数为重点。
函数考查的内容有求函数的解析式、求相关点的坐标、求函数的最值、研究函数的图象、函数的性质等。
代数方面涉及的知识主要有方程、函数、不等式、坐标、和解直角三角形(三角函数的应用)等。
函数不仅与数学其它知识有着密切的联系,而且还有着极为广泛的应用.因此,它是联系数学知识间或数学与实际问题间的纽带和桥梁,是中考数学试卷中不可或缺的重要内容.其呈现方式灵活多变,特别在压轴题中,函数常常起着其他知识不可替代的作用.二次函数是初中学习的重点与难点,也是高中进一步学习的重要内容。
以二次函数为背景的试题常受命题者的青睐,能够全面考查用数析形的技能与计算能力,这也是学生将来学习高中数学知识所必备的。
但受所学知识限制,命题一般不会用以纯函数的形式出现,而是结合几何图形或点的运动使几何图形发生变化,从而让代数与几何有机结合起来. 在实际问题或综合问题中,一般首先是函数思想指导下确定或选择运用函数,然后建立函数,最后根据函数性质解决相应的问题,突出考查了函数思想在动态几何中的运用. 随着对《课程标准》基本理念被更为广泛和更为深入地认识,对“合情推理”与“数学活动过程”的考查也呈增强之势.因此 培养并提高学生的合情推理能力,让学生经历数学活动过程,并从中体会及感悟积极的态度与科学的思想方法所蕴涵的意义和作用,都是促进学生创新精神的养成及学习能力提高的有效方式和途径.二、解题策略二次函数综合题,综合了初中代数、几何中相当多的知识点,如方程、不等式、函数、三角形、四边形、圆等内容,有些又与生产、生活的实际相结合,用到的数学思想方法有化归思想、分类思想、数学结合思想,以及代入法、消元法、配方法、代定系数法等。
一、选择题1.(2018·连云港,7,3分)已知学校航模组设计制作的火箭的升空高度h(m)与飞行时间t(s)满足函数表达式h=-t2+24t+1.则下列说法中正确的是()A.点火后9s和点火后13s的升空高度相同B.点火后24s火箭落于地面C.点火后10s的升空高度为139m D.大箭升空的最大高度为145m答案:D,解析:因为h=-t2+24t+1=-(t-12)2+145,故对称轴为t=12,显然t=9和t=13时h不等;而t=24时,h=1≠0;当t=10时,h=145≠139;当t=12时,h有最大值145;故选项A、B、C均不正确,故选D.二、填空题1.(2018·绵阳,16,3分)右图是抛物线型拱桥,当拱顶离水面2m时,水面宽4m,水面下降2m,水面宽度增加m.4m2m答案:4,解析:如图,以拱桥顶为坐标原点建立平面直角坐标系,根据题意可知A(2,-2),则抛物线的解析式为:y=-x2,水面下降2m,即y=-4时,-12x2=-4,解得:x1=22,x2=-22,此时水面的宽度为42,所以水面宽度增加了:(424)m.xyAO三、解答题1.(2018滨州,23,12分)如图,一小球沿与地面成一定角度的方向飞出,小球的飞行路线是一条抛物线.如果不考虑空气阻力,小球的飞行高度y(单位:m)与飞行时间x(单位:s)之间具有函数关系y=-5x²+20x,请根据要求解答下列问题:(1)在飞行过程中,当小球的飞行高度为15m时,飞行的时间是多少?(2)在飞行过程中,小球从飞出到落地所用时间是多少?(3)在飞行过程中,小球飞行高度何时最大?最大高度是多少?第23题图思路分析:(1)小球飞行高度为15m,即y=-5x²+20x中y的值为15,解方程求出x的值,即为飞行时间;(2)小球飞出时和落地时的高度为0,据此可以得出0=-5x²+20x,求出x的值,再求差即可;(3)求小球飞行高度何时最大?最大高度是多少?即求x为何值时,二次函数有最大值,最大值是多少?解答过程:(1)当y =15时有-5x ²+20x =15,化简得x ²-4x +3=0因式分解得(x -1)(x -3)=0,故x =1或3,即飞行时间是1秒或者3秒(2)飞出和落地的瞬间,高度都为0,故y =0.所以有0=-5x ²+20x ,解得x =0或4,所以从飞出到落地所用时间是4-0=4秒(3)当x =2b a-=202(5)--=2时,小球的飞行高度最大,最大高度为20米.2.(2018安徽,22,12分)小明大学毕业回家乡创业,第一期培植盆景与花卉各50盆,售后统计,盆景平均每盆利润是160元,花卉的平均每盆利润是19元.调研发现:①盆景每增加1盆,盆景的平均每盆利润减少2元;每减少1盆,盆景的平均每盆利润增加2元; ②花卉的平均每盆利润始终不变.小明计划第二期培植盆景与花卉共100盆,设培植的盆景比第一期增加x 盆,第二期盆景与花卉售完后的利润分别为W 1,W 2(单位:元)(1)用含x 的代数式分别表示W 1,W 2;(2)当x 取何值时,第二期培植的盆景与花卉售完后获得的总利润W 最大,最大总利润是多少? 思路分析:(1)分别用含x 的代数式表示第二期培植的盆景和花卉的数量,根据利润=每盆的利润×数量可求解;(2)先根据W =W 1+W 2用含x 的代数式表示W ,并配成顶点形式,再结合抛物线的开口方向、自变量x 的取值范围和x 是正整数可求出W 的最大值.解答过程:(1)W 1=(x +50)(160-2x )=-2x 2+60x +8000;W 2=19(50-x )=-19x +950.(2)W =W 1+W 2=(-2x 2+60x +8000)+(-19x +950)=-2x 2+41x +8950=-2(x -441)2+916081.∵-2<0,∴抛物线开口向下,又0<x <50,且x 是整数,当x =10时,W 最大=-2×(10-441)2+916081=9160(元);当x =11时,W 最大=-2×(11-441)2+916081=9159(元).综上所述当x =10时,第二期培植的盆景与花卉售完后获得的总利润W 最大,最大利润是9160元.3.(2018眉山市,24,9分)传统的端午节即将来临,某企业接到一批粽子生产任务,约定这批粽子的出厂价为每只4元,按要求在20天内完成.为了按时完成任务,该企业招收了新工人,设新工人李明第x 天生产的粽子数量为y 只,y 与x 满足如下关系:34(06)2080(620)x x y x x ≤≤⎧=⎨+<≤⎩ (1)李明第几天生产的粽子数量为280只?(2)如图,设第x 天生产的每只粽子的成本是p 元,p 与x 之间的关系可用图中的函数图象来刻画.若李明第x 天创造的利润为w 元,求w 与x 之间的函数表达式,并求出第几天的利润最大?最大利润是多少元?(利润=出厂价-成本)思路分析:(1)观察,分析题意可以发现,前六天中第6天生产粽子数量最多共34×6=204只,所以只能讲280代入第二个解析式即可.(2)依据函数图象分别求出p 与x 的函数关系式,根据公式w =(4-p )y ,将p 、y 代入函数解析式,得w 与x 的二次函数关系,最后依据二次函数的性质求出最大值.解答过程:(1)∵6×34=204,∴前六天中第6天生产的粽子最多达到204只,将280代入20x +80得:20x +80=280,∴x =10 答:第10天生产的粽子数量为280只.(2)当0≤x <10时,p =2,当10≤x ≤20时,设p =kx +b ,将(10,2)和(20,3)代入得:102203k b k b +=⎧⎨+=⎩解得:1101k b ⎧=⎪⎨⎪=⎩,∴p =110x +1; 当0≤x ≤6时,w =(4-2)×34x =68x ,w 随x 的增大而增大,∴当x =6时最大值为408元;当6<x ≤10时,w =(4-2)×(20x +80)=40x +160,w 随x 的增大而增大,∴当x =10时最大值为560元;当10<x ≤20时,w =(4-110x -1) (20x +80)=-2x 2+60x +232,对称轴为:直线x =15,在10<x ≤20内,将x =15代入得w =682元.综上所述,w 与x 的函数表达式为268(06)40160(610)260232(1020)x x w x x x x x ≤≤⎧⎪=+<≤⎨⎪-++<≤⎩第15天的时候利润最大,最大利润为682元.4..(2018·达州市,21,7分) “绿水青山就是金山银山”的理念已融入人们的日常生活中,因此越来越多的人喜欢骑自行车出行.某自行车店在销售某型号自行车时,以高出进价的50%标价.已知按标价九折销售该型号自行车8辆与将标价直降100元销售7辆获利相同.(1)求该型号自行车的进价与标价分别是多少元?(2)若该型号自行车的进价不变,按(1)中的标价出售,该店平均每月可售出51辆;若每辆自行车每降价20元,每月可多售出3 辆,求该型号自行车降价多少元时,每月获利最大?最大利润是多少?思路分析:(1))本小题的等量关系是按标价九折销售该型号自行车8辆与将标价直降100元销售7辆获利相同.根据等量关系列、解方程即可解决问题.(2)本小题的等量关系是每月的利润W =实际售价×销售数量.根据等量关系列、解方程可得.解答过程:解:(1)设该型号自行车的进价为x 元,则标价为(1+50%)x 元.根据题意,得8[(1+50%)x ×0.9-x ]=7[(1+50%)x -100-x ]整理,得2.8x =3.5x -700解得x =1000(元),(1+50%)x =1500(元) .答: 该型号自行车的进价为1000元,则标价为1500元.(2)设该型号自行车降价a 元时,每月获利W 最大.根据题意,得W =(155-1000-a )(51+320x ) =-320a 2+48020a +25500 =-320(a 2-160a +802-802)+25500 =-320(a -80)2+26460. 当a =80时,每月获利最大,最大利润是26460元.即该型号自行车降价80元时,每月获利最大,最大利润是26460元.5.(2018·金华市,22,10分)如图,抛物线2y ax bx =+(a ≠0)过点E (10,0), 矩形ABCD 的边AB 在线段OE 上(点A 在点B 的左边),点C,D 在抛物线上.设A (t ,0),当t =2时,AD=4.(1)求抛物线的函数表达式.(2)当t 为何值时,矩形ABCD 的周长有最大值?最大值是多少?(3)保持t =2时的矩形ABCD 不动,向右平移抛物线.当平移后的抛物线与矩形的边有两个交点G ,H ,且直线..GH 平分矩形的面积时,求抛物线平移的距离.思路分析:(1)由点E 的坐标设抛物线的交点式,再把点D 的坐标(2,4)代入计算可得;(2)由抛物线的对称性得BE =OA =t ,据此知AB =10﹣2t ,再由x =t 时AD =21542t t -+,根据矩形的周长公式列出函数解析式,配方成顶点式即可得;(3)由t =2得出点A 、B 、C 、D 及对角线交点P 的坐标,由直线GH 平分矩形的面积知直线GH 必过点P ,根据AB ∥CD 知线段OD 平移后得到的线段是GH ,由线段OD 的中点Q 平移后的对应点是P 知PQ 是△OBD 中位线,由此可求.解答过程:解:(1)设抛物线的函数表达式为y =ax (x ﹣10),∵当t =2时,AD =4,∴点D 的坐标为(2,4).∴4=()2210a ⨯⨯- ,解得a =14-, ∴抛物线的函数表达式为21542y x x =-+; (2)由抛物线的对称性得BE =OA =t ,∴AB =10﹣2t ,当x =t 时,AD =21542t t -+. ∴矩形ABCD 的周长=2(AB +AD )=()215210242t t t ⎡⎤⎛⎫-+-+ ⎪⎢⎥⎝⎭⎣⎦=21202t t -++ =()2141122t --+ ∵-12<0, ∴当t =1时,矩形ABCD 的周长有最大值,最大值为412; (3)当t =2时,点A 、B 、C 、D 的坐标分别为(2,0)、(8,0)、(8,4)、(2,4),∴矩形ABCD 对角线的交点P 的坐标为(5,2),当平移后的抛物线过点A 时,点H 的坐标为(4,4),此时GH 不能将矩形面积平分;当平移后的抛物线过点C 时,点G 的坐标为(6,0),此时GH 也不能将矩形面积平分.∴当G 、H 中有一点落在线段AD 或BC 上时,直线GH 不可能将矩形的面积平分,当点G 、H 分别落在线段AB 、DC 上时,直线GH 过点P ,必平分矩形ABCD 的面积.∵AB ∥CD ,∴线段OD 平移后得到的线段GH ,∴线段OD 的中点Q 平移后的对应点是P ,在△OBD 中,PQ 是中位线,D CE B A O yx第22题图∴PQ =12OB =4, ∴抛物线向右平移的距离是4个单位.6.(2018·扬州市,26,10分)“扬州漆器”名扬天下,某网店专门销售某种品牌的漆器笔筒,成本为30 元/件,每天销售y (件)与销售单价x (元)之间存在一次函数关系,如图所示.(1)求y 与x 之间的函数关系式;(2)如果规定每天漆器笔筒的销售量不低于240件,当销售单价为多少元时,每天获取的利润最大, 最大利润是多少?(3)该网店店主热心公益事业,决定从每天的销售利润中捐出150元给希望工程,为了保证捐款后每 天剩余利润不低于3600元,试确定该漆器笔筒销售单价的范围.思路分析:(1)从图像中获取两点坐标,再运用待定系数法求一次函数的表达式;(2)先根据“销售利润=单件利润×销售量”这一关系式列出利润与销售单价的函数关系式,再根据条件“销售量不低于240件”可求出自变量x 的取值范围,最后运用二次函数的增减性求出最大利润;(3)根据纯利润不低于3600列出的是一个二次不等式,可以运用图像法求出自变量x 的取值范围. 解答过程:(1)设y =kx +b ,有图像可知x =40时,y =300;x =55时,y =150,即有方程组4030055150k b k b +=⎧⎨+=⎩,解得10700k b =-⎧⎨=⎩,∴y 与x 之间的函数关系式为y =-10x +700; (2)设每天获取的利润为w (元),则w =(x -30)y =2(30)(10700)10(50)4000x x x --+=--+由于每天漆器笔筒的销售量不低于240件,∴y =-10x +700≥240,解得x ≤46∵当x <50时,w 随x 的增大而增大∴当x =46时,w 有最大值,最大值=210(4650)4000-⨯-+=3840即当销售单价为46元时,每天获取的利润最大,最大利润是3840元;(3)由题意得210(50)4000x --+-150≥3600,解方程210(50)4000x --+-150=3600得:x 1=45,x 2=55∴不等式210(50)4000x --+-150≥3600的解集为45≤x ≤55即该漆器笔筒销售单价x 的范围为45≤x ≤55.7.(2018浙江台州,23,12)某药厂销售部门根据市场调研结果,对该厂生产的一种新型原料药未来两年的销售进行预测,并建立模型:设第t 个月该原料药的月销售量为P (单位:吨).P 与t 之间存在如图所示的函数关系,其图象是是函数4t 120+=P (0<t ≤8)的图象与线段AB 的组合;设第t 个月销售该原料药每吨的毛利润为Q (单位:万元),Q 与t 之间满足如下关系:28(08)=44(224)t t Q t t +<≤⎧⎨-+<≤⎩x y (元)(件)3001505540O 第26题图(1)当8<t ≤24时,求P 关于t 的函数解析式;(2)设第t 个月销售该原料药的月毛利润为w (单位:万元).①求W 关于t 的函数解析式;②该药厂销售部门分析认为,336≤w ≤513是最有利于该原料药可持续生产和销售的月毛利润范围.求此范围对应的月销售量P 的最小值和最大值.思路分析:考察一次函数、二次函数和分段函数的相关知识解:(1)当824t <≤时,设解析式为P kt b =+将(8,10),(24,26)带入得8102426k b k b +=⎧⎨+=⎩ 解得12k b =⎧⎨=⎩2(817)P t t ∴=+<≤(2)①当08t <≤时,120(28)2404w t t =+=+当812t <≤时,2(28)(2)21216w t t t t =++=++当1224t <≤时,2(44)(2)4288w t t t t =-++=-++∴解析式为22240212164288w t t t t ⎧⎪=++⎨⎪-++⎩ ,08,812,1224t t t <≤<≤<≤②当812t <≤时,22212162(3)1w t t t ⎡⎤=++=+-⎣⎦,令221216336w t t =++=得1210,16t t ==-(舍去) 又12t =时,448513w =<1012t ∴≤≤时,满足336513w ≤≤;当1224t <≤时,224288(21)529w t t t =-++=--+,令24288513w t t =-++=,得1217,25t t ==(舍去)又12t =时,448336w =>1217t ∴≤≤时,满足336513w ≤≤.综上,当1017t ≤≤时,336513w ≤≤ 而2(1017)P t t =+≤≤,P ∴最小值为12,最大值为19.8.(2018浙江台州,24,14)如图,是ABC Δ☉O 的内接三角形,点D 在弧BC 上,点E 在弦AB 上(E不与A 重合),且四边形BDCE 为菱形.(1)求证:AC =CE ;(2)求证:2BC -2AC =AC AB •;(3)已知☉O 的半径为3, ①若AC AB =35, 求BC 的长;②当ACAB 为何值时,AC AB •的值最大?思路分析:(1)利用菱形四边相等和同弧所对应的圆周角相等;(2)根据等腰三角形的性质、勾股定理得出代数式,用平方差公式展开化简(3)①利用第二问结论和勾股定理即得②设未知数,将所求最值表示成二次函数,通过二次函数性质求最值点.(1)证明:连接ADAC 所对应的圆周角ABC=ADC ∠∠,CD 所对应的圆周角BC=DAC D ∠∠又ABC=DBC ∠∠∴∠ADC=∠DAC ,即ADC ∆为等腰三角形AC CD ∴=又四边形BDCE 为菱形 CD=CE ∴ C=CE A ∴(2)证明:作CH AE ⊥ACE ∆为等腰三角形 H ∴为AE 中点,即AH EH =在Rt CHB ∆中,222BC CH BH -=;在Rt AHC ∆中,222AC CH AH -=. 2222()()BC AC BH AH BH AH BH AH AB AC ∴-=-=+-=∙(3)解:①连接OD ,记OD 与BC 交点为P .OD 3= 由53AB AC =,可设5,3AB a AC a ==. 又22295315BC a a a a -=∙=,∴2224BC a =,则226PC a =223PD CD PC a ∴=-= 从而33OP a =-22(33)69a a ∴-+= 解得233a =,2642BC a ∴== ②连接OC ,设AB m AC=,则AB mAC = 设,,AC a OP b ==则3PD b =- 22229(3)PC b a b ∴=-=-- 得236a b =-42236a PC a ∴=-42249a BC a ∴=- 22221(27)99x BC AC x x ∴-=-=-- 当272x =时,取得最值814,即2272a =时,2814AB AC ma == 32m ∴=即32AB AC =时,AB AC 的值最大8.(2018威海,23,10分)为了支持大学生创业,某市政府出台了一项优惠政策:提供10万元的无息创业贷款,小王利用这笔贷款,注册了一家淘宝网店,招收5名员工,销售一种火爆的电子产品,并约定用该网店经营的利润,逐月偿还这笔无息贷款,已知该产品的成本为每件4元,员工每人每月的工资为4千元,该网店还需每月支付其它费用1万元,该产品每月销售量y (万件)与销售单价x (元)之间的函数关系如图所示.(1)求该网店每月利润w(万元)与销售单价x(元)之间的函数表达式;(2)小王自网店开业起,最快在第几个月可还清10万元的无息贷款?思路分析:(1)先用待定系数法求出直线AB 与BC 的函数表达式,然后在4≤x ≤6与6≤x ≤8时,根据“每月利润=销售单价×每月销售量-工资及其他费用”列出W 与x 之间的函数表达式;(2)先求出每月的最大利润,然后求出最快还款的时间.解答过程:(1)设直线AB 的函数表达式为y AB =kx +b ,代入A (4,4),B (6,2),得4426k b k b =+⎧⎨=+⎩,解得18k b =-⎧⎨=⎩.∴直线AB 的函数表达式为y AB =-x +8. 设直线BC 的函数表达式为y BC =k 1x +b 1,代入B (6,2),C (8,1),得11112618k b k b =+⎧⎨=+⎩,解得11125k b ⎧=-⎪⎨⎪=⎩,∴直线BC 的函数表达式为y BC =-21x +5. 工资及其他费用为0.4×5+1=3(万元).当4≤x ≤6时,∴()()1483W x x =--+-,即211235W x x =-+-.当6≤x ≤8时,∴()214532W x x ⎛⎫=--+- ⎪⎝⎭,即2217232W x x =-+-. (2)当4≤x ≤6时,()221123561W x x x =-+-=--+,∴当6x =时,1W 取得最大值1. 当6≤x ≤8时,()2221137237222W x x x =-+-=--+,∴当x =7时,2W 取得最大值1.5. ∴1020261.533==,即第7个月可以还清全部贷款. 9.(2018·温州市,23题号,12分)温州某企业安排 65 名工人生产甲、乙两种产品,每人每天生产 2 件甲或 1 件乙,甲产品每件可获利 15 元.根据市场需求和生产经验,乙产品每天产量不少于 5 件,当每天生产 5 件时,每件可获利 120 元,每增加 1 件,当天平均每件利润减少 2 元.设每天安排 x 人生产乙产品.(1)根据信息填表: 产品种类 每天工人数(人) 每天产量(件) 每件产品可获利润(元)甲 15乙 x x(2)若每天生产甲产品可获得的利润比生产乙产品可获得的利润多 550 元,求每件乙产品可获得的利润.(3)该企业在不增加工人的情况下,增加生产丙产品,要求每天甲、丙两种产品的产量相等.已知每人每天可生产 1 件丙(每人每天只能生产一种产品),丙产品每件可获利 30 元,求每天生产三种产品可获得的总利润 W (元)的最大值及相应 x 的值.思路分析:(1) x 人生产乙产品,则生产甲产品的人数就是(65- x );每人每天生产 2 件甲,则甲产品每天的产量为2(65- x );当每天生产 5 件乙产品时,每件可获利 120 元,每增加 1 件,当天平均每件利润减少 2 元,则每件乙产品可获利润120-2(x -5)=130-2x.(2) 由(1)可列方程15×2(65-x )=x(130-2x)+550,解得x 1=10,x 2=70,但一共有65 名工人,所以x 2舍去;则每件乙产品可获得的利润为110.(3)设生产甲产品m 人,则生产丙产品65-x-m 人,可列方程W=x (130-2x)+15×2m+30(65-x-m)=-2(x-25)2+3200;因为每天甲、丙两种产品的产量相等,则2m=65-x-m ,又因为x,m 都是非负整数,所以当x=26时,W 最大值=3198。
二次函数与相似三角形突破口:寻找比例关系以及特殊角1 .综合与探究如图,平面直角坐标系中,抛物线与轴交于两点(在右侧),与轴交于点,点坐标为,连接,点是直线上方抛物线上一动点,且横坐标为.过点分别作直线的垂线段,垂足分别为和,连接.(1)求抛物线及直线的函数关系式;(2)求出四边形是平行四边形时的值;(3)请直接写出与相似时的值.【答案】(1)抛物线的关系式为,直线的关系式为;(2)四边形是平行四边形时的值为或3;(3),,,.【解析】【分析】(1)由题意易得的值,进而得到二次函数的解析式,则点C、B坐标可得,最后求解直线BC解析式即可;(2)由题意易得,则,为等腰直角三角形为等腰直角三角形,过点作轴于点,交于点,进而可证,然后可得,设,最后建立方程进行求解即可;(3)由题意可分以下几种情况进行分类求解:①当点E在点D上方时,存在与相似,②当点E在点D下方时,与相似,然后根据相似三角形的性质进行求解即可.【详解】解:(1)把代入中,得,解得,抛物线的关系式为,当时,得,点的坐标为,当时,得,解得,点在点左侧,点的坐标为,设直线的关系式为,把点和代入上式,得,解得,直线的关系式为;(2)由点坐标可知:,为等腰直角三角形,,,为等腰直角三角形,如答图,过点作轴于点,交于点,在和中,,,为等腰直角三角形,四边形是平行四边形,,,又,,,点为抛物线上的动点,点为直线上的点,点的横坐标为,设,,,解,得,四边形是平行四边形时的值为或3;(3),.由(1)(2)可得△ADB为等腰直角三角形,AB=6,,,,过点D作DE⊥x轴交于点E,DE=3,易得点D坐标为,设直线AC的解析式为,把,代入得:,解得,直线AC的解析式为,由与相似,可得:①当点E在点D上方时,且∠PDE=∠ACD,如图所示:PD∥AC,则有直线AC的斜率与直线PD的斜率相等,设直线PD的解析式为:,把点D代入得:b=-7,设直线PD的解析式为:,联立直线PC与二次函数的解析式得:,解得:(不符合题意,舍去),;②当点E在点D上方时,且∠EPD=∠ACD,取AC的中点F,连接DF,如图所示:由中点坐标公式易得点,AD⊥BC,CF=FD,∠FCD=∠FDC,∠FDP=90°,FD⊥DP,设直线FD的解析式为:,把点,点D代入解得:,即直线FD的解析式为:,设直线DP的解析式为:,把点D代入得:b=13,直线DP的解析式为:,联立直线PD与二次函数解析式得:,解得,;③当当点E在点D下方时,且∠PDE=∠ACD时,延长PD交AC于点F,如图所示:∠PDE=∠FDC,∠FCD=∠FDC,FC=FD,AD⊥BC,易得∠FDA=∠FAD,CF=AF=FD,由②可直接得出直线PD的解析式为,联立直线PD与二次函数的解析式得:,解得:,;④当点E在点D下方,且∠PDE=∠CAD时,延长PD,交AC于点H,如图所示:∠PDE=∠HDC,∠HDC+∠HCD=90°,PH⊥AC,直线AC与直线PD的斜率之积为-1,设直线PD的解析式为:,把点D代入得:,直线PD的解析式为:,联立直线PD与二次函数的解析式得:,解得,;综上所示:当与相似时,,,,.【点睛】本题主要考查二次函数的综合运用及相似三角形的性质与判定,熟练掌握二次函数的性质及相似三角形的性质与判定是解题的关键.2 .如图,在平面直角坐标系中,抛物线与轴交于A,B两点(点A 在点B的右侧),与轴交于点C,点A的坐标为,点B的坐标为点C的坐标为,(1)求抛物线的解析式;(2)M为第一象限内抛物线上的一个点,过点M作轴于点G,交于点H,当线段时,求点M的坐标;(3)在(2)的条件下,将线段绕点G顺时针旋转一个角,在旋转过程中,设线段与抛物线交于点N,在射线上是否存在点P,使得以P,N,G为顶点的三角形与相似?如果存在,请求出点P的坐标(直接写出结果);如果不存在,请说明理由.【答案】(1);(2);(3)存在,【解析】【分析】(1)根据点A的坐标为(4,0),抛物线的对称轴是直线x=.带入即可求解抛物线的解析式;(2)由题意,连接CM,过C点作CE⊥MH于点E,求解AC直线方程,M作MG⊥x轴于点G,交AC于点H,表示出M和H的坐标,利用线段CM=CH相等,即可求出点M的坐标;(3)首先确定△ABC是什么三角形,由题意可知△ABC是直角三角形.根据相似三角形边长的比例关系建立关系式,求解边长是否有解,有解即表示存在P点,解出即为坐标;【详解】(1)设抛物线的解析式为把代入则则所以(2)如图1,连接CM,过C点作CE⊥MH于点E,设直线AC解析式为y=kx+b(k≠0),把A(4,0)、C(0,2)代入y=kx+b,可得,解得:,∴直线AC解析式为,∵点M在抛物线上,点H在AC上,MG⊥x轴,∴设则∴MH=∵CM=CH,OC=GE=2,∴MH=2EH=,∴解得(舍),所以(3)存在点P,使以P,N,G为顶点的三角形与△ABC相似,理由为:∵抛物线与x轴交于A、B两点,A(4,0),A、B两点关于直线x=成轴对称,∴B(﹣1,0),∴AC=,BC=,AB=5,∴AC2+BC2=25,AB2=52=25,∴AC2+BC2=AB2,∴△ABC为直角三角形,∴∠ACB=90°,线段MG绕G点旋转过程中,旋转角∴∴分∠PNG=90°或∠GPN=90°两种情况讨论,每种情况下又根据直角边不同再分类讨论①当∠GPN=90°时即NP⊥x轴设P点坐标为(n,0),则N点坐标为∵P在射线GA上∴此时当△NPG∽△ACB时解得:(不符合题意,舍去),∴的坐标为(3,0);当△NPG∽△BCA时解得:(不符合题意,舍去),∴的坐标为(,0);②当∠PNG=90°时作NP⊥x轴于K,此时由射影定理可得△KPN∽△KNG∽△NGP∴当K分别为、时△KNG与△NG、△NG重合此时△NGP与△ABC相似∵△KPN∽△KNG∴当K与(3,0)重合时KG=1∴此时当K与(,0)重合时KG=∴此时综上所述存在以P,N,G为顶点的三角形与相似的P点,P点坐标为【点睛】题考查了二次函数和三角形的相似的综合运用.熟练掌握相似三角形的性质和判定是解题的关键,属于难题.3 .已知二次函数(为常数,且)的顶点为,图象与轴交点为,,且点在点左侧.(1)求,两点的坐标.(2)当时,求的值.(3)在(2)的情况下,将轴下方的图象沿x轴向上翻折,与轴交于点,连接,记上方(含点,)的抛物线为.①设点为上一动点,当取最大值时,求点的坐标.②在上是否存在点,使以点,,为顶点的三角形与相似?若存在,请直接写出点坐标;若不存在,请说明理由.【答案】(1),;(2);(3)①;②不存在点,见解析【解析】【分析】(1)令y=0,根据可得出,求解即可;(2)由题意可知:点坐标为,根据三角形的面积计算即可;(3)①先求出直线BC的解析式,设点的坐标为,过点向轴作垂线,交于点,根据三角形的面积计算即可;②分两种情况进行判断,当时,,证明也是等腰直角三角形,根据条件计算即可;当,证得,再根据三角形相似的性质与二次函数的性质计算即可;【详解】解:(1),∵,∴,解得,;∴,;(2)由题意可知:点坐标为,,∵,,∴.∴.(3)①如图2,由(2)可知,点坐标为.∴直线的解析式为.由翻折可知,的解析式为,设点的坐标为,过点向轴作垂线,交于点,.∵∴有最大值.当时,取最大值,此时.②不存在.详细解答过程:第一种情况,如图3,当时,,∵,∴.∵是等腰直角三角形,∴也是等腰直角三角形,∴,∴,∴点纵坐标为6,设,则时,代入的解析式得,,∴不存在点;第二种情况,如图4,当,,∴,∵,∴,∴,若,则,∴,设,则,解得,(舍去),∵的对称轴为,,当时,由图易知,∴舍去,∴不存在点;【点睛】本题主要考查了二次函数的综合应用,结合三角形相似和等腰三角形的性质是解题的关键.4 .如图,抛物线y=ax 2+bx+c(a≠0)的顶点坐标为(2,-1),并且与y轴交于点C(0,3),与x轴交于两点A,B.(1)求抛物线的表达式;(2)设抛物线的对称轴与直线BC交于点D,连接AC、AD,求△ACD的面积;(3)点E为直线BC上一动点,过点E作y轴的平行线EF,与抛物线交于点F.问是否存在点E,使得以D、E、F为顶点的三角形与△BCO相似.若存在,求出点E的坐标;若不存在,请说明理由.【答案】(1)y=x2-4x+3;(2)=2;(3)存在符合条件的点E,且坐标为:、、、.【解析】【分析】(1)根据题意可设函数解析式为,然后把点C代入解析式求解即可;(2)由(1)及题意可设直线BC的解析式为y=kx+3,然后求解,进而可求证△ACD为直角三角形,然后利用面积计算公式求解即可;(3)由题意知:EF∥y轴,则∠FED=∠OCB,若△OCB与△FED相似,则有当∠DFE=90°,即 DF∥x轴和当∠EDF=90°,然后进行分类讨论求解即可.【详解】解:(1)依题意,设抛物线的解析式为,代入C(0,3)后,得:,解得:a=1,∴抛物线的解析式:;(2)由(1)知,A(1,0)、B(3,0);设直线BC的解析式为:y=kx+3,代入点B的坐标后,得:3k+3=0,k= -1,∴直线BC:y=-x+3;由(1)知:抛物线的对称轴:x=2,则 D(2,1);∴,,,即:,△ACD是直角三角形,且AD⊥CD;∴= AD?CD==2;(3)由题意知:EF∥y轴,则∠FED=∠OCB,若△OCB与△FED相似,则有:①∠DFE=90°,即 DF∥x轴;将点D纵坐标代入抛物线的解析式中,得:,解得当x=2+时,y=-x+3=1-;当x=2-时,y=-x+3=1+;∴、;②∠EDF=90°,易知,直线AD:y=x-1,联立抛物线的解析式有:,解得;当x=1时,y=-x+3=2;当x=4时,y=-x+3=-1;∴、;综上,存在符合条件的点E,且坐标为:、、、.【点睛】本题主要考查二次函数的综合及相似三角形的性质与判定,熟练掌握二次函数的性质及相似三角形存在性的讨论是解题的关键.5 .如图①,在平面直角坐标系xOy中,批物线y=x2﹣4x+a(a<0)与y轴交于点A,与x轴交于E、F两点(点E在点F的右侧),顶点为M.直线与x 轴、y轴分别交于B、C两点,与直线AM交于点D.(1)求抛物线的对称轴;(2)在y轴右侧的抛物线上存在点P,使得以P、A、C、D为顶点的四边形是平行四边形,求a的值;(3)如图②,过抛物线顶点M作MN⊥x轴于N,连接ME,点Q为抛物线上任意一点,过点Q作QG⊥x轴于G,连接QE.当a=﹣5时,是否存在点Q,使得以Q、E、G为顶点的三角形与△MNE相似(不含全等)?若存在,求出点Q的坐标;若不存在,请说明理由.【答案】(1)直线x=2;(2);(3)存在,点Q的坐标为(﹣4,27)或(,)或(,).【解析】【分析】(1)y=x2﹣4x+a=(x﹣2)2+a﹣4,即可求解;(2)求出直线AM的解析式为y=﹣2x+a,联立方程组可解得点D的坐标(a,-a);AC是以P、A、C、D为顶点的平行四边形的对角线,则点P与点D关于原点对称,即P(a,-a),将点P(﹣a,a)代入抛物线y=x2﹣4x+a,即可求解;(3)分、两种情况,分别求解即可.【详解】解:(1)∵y=x2﹣4x+a=(x﹣2)2+a﹣4,∴抛物线的对称轴为直线x=2;(2)由y=(x﹣2)2+a﹣4得:A(0,a),M(2,a﹣4),由y=x﹣a得C(0,﹣a),设直线AM的解析式为y=kx+a,将M(2,a﹣4)代人y=kx+a中,得2k+a=a﹣4,解得k=﹣2,直线AM的解析式为y=﹣2x+a,联立方程组得,解得,∴D(a,-a),∵a<0,∴点D在第二象限,又点A与点C关于原点对称,∴AC是以P、A、C、D为顶点的平行四边形的对角线,则点P与点D关于原点对称,即P(-a,a),将点P(﹣a,a)代入抛物线y=x2﹣4x+a,解得a=或a=0(舍去),∴a=;(3)存在,理由如下:当a=﹣5时,y=x2﹣4x﹣5=(x﹣2)2﹣9,此时M(2,﹣9),令y=0,即(x﹣2)2﹣9=0,解得x1=﹣1,x2=5,∴点F(﹣1,0)E(5,0),∴EN=FN=3 MN=9,设点Q(m,m2﹣4m﹣5),则G(m,0),∴EG=|m﹣5|QG=|m2﹣4m﹣5|,又△QEG与△MNE都是直角三角形,且∠MNE=∠QGE=90°,如图所示,需分两种情况进行讨论:i)当时,即=,解得m=2或m=﹣4或m=5(舍去);当m=2时点Q与点M重合,不符合题意,舍去,当m=﹣4时,此时Q坐标为点Q1(﹣4,27);ii)当时,即=,,解得m=或m=-或m=5(舍去),当m=时,Q坐标为点Q2(,),当m=-,Q坐标为点Q3(-,),综上所述,点Q的坐标为(﹣4,27)或(,)或(,).【点睛】本题考查二次函数的图象和性质,平行四边形的性质和判断,相似三角形的判断和性质,综合性强,能力要求高,注意“分类讨论”、“数形结合”数学思想的应用.6 .如图,抛物线y=x2+bx+c与直线y=x+3交于A,B两点,交x轴于C、D两点,连接AC、BC,已知A(0,3),C(﹣3,0).(1)求抛物线的解析式;(2)在抛物线对称轴l上找一点M,使|MB﹣MD|的值最大,并求出这个最大值;(3)点P为y轴右侧抛物线上一动点,连接PA,过点P作PQ⊥PA交y轴于点Q,问:是否存在点P使得以A,P,Q为顶点的三角形与△ABC相似?若存在,请求出所有符合条件的点P的坐标;若不存在,请说明理由.【答案】(1)抛物线的解析式是y=x2+x+3;(2)|MB﹣MD|取最大值为;(3)存在点P(1,6).【解析】【分析】(1)根据待定系数法,可得函数解析式;(2)根据对称性,可得MC=MD,根据解方程组,可得B点坐标,根据两边之差小于第三边,可得B,C,M共线,根据勾股定理,可得答案;(3)根据等腰直角三角形的判定,可得∠BCE,∠ACO,根据相似三角形的判定与性质,可得关于x的方程,根据解方程,可得x,根据自变量与函数值的对应关系,可得答案.【详解】解:(1)将A(0,3),C(﹣3,0)代入函数解析式,得,解得,抛物线的解析式是y=x2+x+3;(2)由抛物线的对称性可知,点D与点C关于对称轴对称,∴对l上任意一点有MD=MC,联立方程组,解得(不符合题意,舍),,∴B(﹣4,1),当点B,C,M共线时,|MB﹣MD|取最大值,即为BC的长,过点B作BE⊥x轴于点E,,在Rt△BEC中,由勾股定理,得BC=,|MB﹣MD|取最大值为;(3)存在点P使得以A,P,Q为顶点的三角形与△ABC相似,在Rt△BEC中,∵BE=CE=1,∴∠BCE=45°,在Rt△ACO中,∵AO=CO=3,∴∠ACO=45°,∴∠ACB=180°﹣45°﹣45°=90°,过点P作PG⊥y轴于G点,∠PGA=90°,设P点坐标为(x,x2+x+3)(x>0)①当∠PAQ=∠BAC时,△PAQ∽△CAB,∵∠PGA=∠ACB=90°,∠PAQ=∠CAB,∴△PGA∽△BCA,∴,即,∴,解得x1=1,x2=0(舍去),∴P点的纵坐标为×12+×1+3=6,∴P(1,6),②当∠PAQ=∠ABC时,△PAQ∽△CBA,∵∠PGA=∠ACB=90°,∠PAQ=∠ABC,∴△PGA∽△ACB,∴,即=3,∴,解得x1=﹣(舍去),x2=0(舍去)∴此时无符合条件的点P,综上所述,存在点P(1,6).【点睛】本题考查了二次函数综合题,解(1)的关键是利用待定系数法求函数解析式;解(2)的关键是利用两边只差小于第三边得出M,B,C共线;解(3)的关键是利用相似三角形的判定与性质得出关于x的方程,要分类讨论,以防遗漏.7 .如图1,在平面直角坐标系中,抛物线与轴交于点、(点在点右侧),点为抛物线的顶点.点在轴的正半轴上,交轴于点,绕点顺时针旋转得到,点恰好旋转到点,连接.(1)求点、、的坐标;(2)求证:四边形是平行四边形;(3)如图2,过顶点作轴于点,点是抛物线上一动点,过点作轴,点为垂足,使得与相似(不含全等).①求出一个满足以上条件的点的横坐标;②直接回答这样的点共有几个?【答案】(1),,;(2)证明见解析;(3)①点P的横坐标为,,,②点P共有3个.【解析】【分析】(1)令y=0,可得关于x的方程,解方程求得x的值即可求得A、B两点的坐标,对解析式配方可得顶点D的坐标;(2)由,CO⊥AF,可得OF=OA=1,如图2,易得,由此可得,继而证明为等边三角形,推导可得,再由,,可得,问题得证;(3)①设点的坐标为,分三种情况:点在点左侧,点在点右侧,点在之间,分别讨论即可得;②由①的结果即可得.【详解】(1)令,解得或,故,,配方得,故;(2)∵,CO⊥AF,∴OF=OA=1,如图,DD1⊥轴,∴DD1//CO,∴,∴,即,∴,∴CF==2,∴,即为等边三角形,∴∠AFC=∠ACF=60°,∵∠ECF=∠ACF,∴,∴,∵CF:DF=OF:FD1=1:2,∴DF=4,∴CD=6,又∵,,∴,∴四边形是平行四边形;(3)①设点的坐标为,(ⅰ)当点在点左侧时,因为与相似,则1),即,∴(舍),x2=-11;2),即,∴(舍),;(ⅱ)当点在点右侧时,因为与相似,则3),即,∴(舍),(舍);4),即,∴(舍),(舍);(ⅲ)当点在之间时,∵与相似,则5),即,∴(舍),(舍);6),即,∴(舍),;综上所述,点的横坐标为,,;②由①可得这样的点P共有3个.【点睛】本题考查的是函数与几何综合题,涉及了等边三角形的判定与性质,平行四边形的判定,相似三角形的判定与性质,解一元二次方程等,综合性较强,有一定的难度,熟练掌握相关知识,正确进行分类讨论并画出符合题意的图形是解题的关键.8 .如图,抛物线与轴交于,两点,点,分别位于原点的左、右两侧,,过点的直线与轴正半轴和抛物线的交点分别为,,.(1)求,的值;(2)求直线的函数解析式;(3)点在抛物线的对称轴上且在轴下方,点在射线上,当与相似时,请直接写出所有满足条件的点的坐标.【答案】(1);(2)(3),,,【解析】【分析】(1)根据,得出,,将A,B代入得出关于b,c的二元一次方程组求解即可;(2)根据二次函数是,,,得出的横坐标为,代入抛物线解析式求出,设得解析式为:,将B,D代入求解即可;(3)由题意得tan∠ABD=,tan∠ADB=1,由题意得抛物线的对称轴为直线x=1,设对称轴与x轴交点为M,P(1,n)且n<0,Q(x,0)且x<3,分①当△PBQ∽△ABD时,②当△PQB∽△ABD时,③当△PQB∽△DAB时,④当△PQB∽△ABD时四种情况讨论即可.【详解】解:(1)∵,∴,,∴将A,B代入得,解得,∴,;(2)∵二次函数是,,,∴的横坐标为,代入抛物线解析式得∴,设得解析式为:将B,D代入得,解得,∴直线的解析式为;(3)由题意得tan∠ABD=,tan∠ADB=1,由题意得抛物线的对称轴为直线x=1,设对称轴与x轴交点为M,P(1,n)且n<0,Q(x,0)且x<3,①当△PBQ∽△ABD时,tan∠PBQ=tan∠ABD即=,解得n=,tan∠PQB=tan∠ADB即,解得x=1-,此时Q的坐标为(1-,0);②当△PQB∽△ABD时,tan∠PBQ=tan∠ADB即=1,解得n=-2,tan∠QPB=tan∠ABD即=,解得x=1-,此时Q的坐标为(1-,0);③当△PQB∽△DAB时,tan∠PBQ=tan∠ABD即=,解得n=,tan∠PQB=tan∠DAB即,解得x=-1,此时Q的坐标为(-1,0);④当△PQB∽△ABD时,tan∠PBQ=tan∠ABD即=1,解得n=-2,tan∠PQB=tan∠DAB即,解得x=5-,Q的坐标为(5-,0);综上:Q的坐标可能为,,,.【点睛】本题考查了二次函数,一次函数,相似三角形的判定和性质,锐角三角函数,掌握知识点灵活运用是解题关键.9 .如图,在平面直角坐标系中,抛物线的对称轴为直线,其图象与轴交于点和点,与轴交于点.(1)直接写出抛物线的解析式和的度数;(2)动点,同时从点出发,点以每秒3个单位的速度在线段上运动,点以每秒个单位的速度在线段上运动,当其中一个点到达终点时,另一个点也随之停止运动.设运动的时间为秒,连接,再将线段绕点顺时针旋转,设点落在点的位置,若点恰好落在抛物线上,求的值及此时点的坐标;(3)在(2)的条件下,设为抛物线上一动点,为轴上一动点,当以点,,为顶点的三角形与相似时,请直接写出点及其对应的点的坐标.(每写出一组正确的结果得1分,至多得4分)【答案】(1),;(2)t=,D点坐标为;(3);;;;;;;;;;.【解析】【分析】(1)根据抛物线的对称轴以及点B坐标可求出抛物线表达式;(2)过点N作于E,过点D作于F,证明,得到,从而得到点D坐标,代入抛物线表达式,求出t值即可;(3)设点P(m,),当点P在y轴右侧,点Q在y轴正半轴,过点P作PR⊥y轴于点R,过点D作DS⊥x轴于点S,根据△CPQ∽△MDB,得到,从而求出m值,再证明△CPQ∽△MDB,求出CQ长度,从而得到点Q坐标,同理可求出其余点P和点Q坐标.【详解】解:(1)∵抛物线的对称轴为直线,∴,则b=-3a,∵抛物线经过点B(4,0),∴16a+4b+1=0,将b=-3a代入,解得:a=,b=,抛物线的解析式为:,令y=0,解得:x=4或-1,令x=0,则y=1,∴A(-1,0),C(0,1),∴tan∠CAO=,∴;(2)由(1)易知,过点N作于E,过点D作于F,∵∠DMN=90°,∴∠NME+∠DMF=90°,又∠NME+∠ENM=90°,∴∠DMF=∠ENM,,,(AAS),,由题意得:,,,,,,,又,故可解得:t=或0(舍),经检验,当t=时,点均未到达终点,符合题意,此时D点坐标为;(3)由(2)可知:D,t=时,M(,0),B(4,0),C(0,1),设点P(m,),如图,当点P在y轴右侧,点Q在y轴正半轴,过点P作PR⊥y轴于点R,过点D作DS⊥x轴于点S,则PR=m,DS=,若△CPQ∽△MDB,∴,则,,解得:m=0(舍)或1或5(舍),故点P的坐标为:,∵△CPQ∽△MDB,∴,当点P时,,解得:CQ=,,∴点Q坐标为(0,),;同理可得:点P和点Q的坐标为:;;;;;;;;;;.【点睛】本题是二次函数综合题,考查了二次函数的图像和性质,二次函数表达式,全等三角形的判定和性质,相似三角形的性质,难度较大,计算量较大,解题时注意结合函数图像,找出符合条件的情形.10 .如图,抛物线与x轴交于A、B两点(点A在点B左边),与y轴交于点C.直线经过B、C两点.(1)求抛物线的解析式;(2)点P是抛物线上的一动点,过点P且垂直于x轴的直线与直线及x轴分别交于点D、M.,垂足为N.设.①点P在抛物线上运动,若P、D、M三点中恰有一点是其它两点所连线段的中点(三点重合除外).请直接写出符合条件的m的值;②当点P在直线下方的抛物线上运动时,是否存在一点P,使与相似.若存在,求出点P的坐标;若不存在,请说明理由.【答案】(1);(2)-2,,1;(3)存在,(3,-2)【解析】【分析】(1)根据直线经过B、C两点求出B、C两点的坐标,将B、C坐标代入抛物线可得答案;(2)①由题意得P(m,),D(m,);根据P、D、M三点中恰有一点是其它两点所连线段的中点列式计算即可求得m的值;②先证明,得出,再根据与相似得出,则,可得出,求出点P的纵坐标,代入抛物线,即可求得点P的横坐标.【详解】解:(1)由直线经过B、C两点得B(4,0),C(0,-2)将B、C坐标代入抛物线得,解得,∴抛物线的解析式为:;(2)①∵,垂足为N.∴P(m,),D(m,),分以下几种情况:M是PD的中点时,MD=PM,即0-()=解得,(舍去);P是MD的中点时,MD=2MP,即=2()解得,(舍去);D是MP的中点时,2MD=MP,即=2()解得,(舍去);∴符合条件的m的值有-2,,1;②∵抛物线的解析式为:,∴A(-1,0),B(4,0),C(0,-2)∴AO=1,CO=2,BO=4,∴,又=90°,∴,∴,∵与相似∴,∴,∴,∴点P的纵坐标是-2,代入抛物线,得解得:(舍去),,∴点P的坐标为:(3,-2)【点睛】本题考查二次函数的综合题:熟练掌握二次函数图象上点的坐标特征、二次函数的性质和相似三角形的判定和性质;会利用待定系数法求函数解析式;理解坐标与图形性质,记住两点间的距离公式;会利用分类讨论的思想解决数学问题.11 .如图,抛物线与x轴交于点和点,与y轴交于点C,顶点为D,连接与抛物线的对称轴l交于点E.(1)求抛物线的表达式;(2)点P是第一象限内抛物线上的动点,连接,当时,求点P的坐标;(3)点N是对称轴l右侧抛物线上的动点,在射线上是否存在点M,使得以点M,N,E为顶点的三角形与相似?若存在,求点M的坐标;若不存在,请说明理由.【答案】(1);(2);(3)在射线上存在点M,使得以点M,N,E为顶点的三角形与相似,点M的坐标为:,或.【解析】【分析】(1)直接将和点代入,解出a,b的值即可得出答案;(2)先求出点C的坐标及直线BC的解析式,再根据图及题意得出三角形PBC的面积;过点P作PG轴,交轴于点G,交BC于点F,设,根据三角形PBC的面积列关于t的方程,解出t的值,即可得出点P的坐标;(3)由题意得出三角形BOC为等腰直角三角形,然后分MN=EM,MN=NE,NE=EM三种情况讨论结合图形得出边之间的关系,即可得出答案.【详解】(1)抛物线过点和点抛物线解析式为:(2)当时,直线BC解析式为:过点P作PG轴,交轴于点G,交BC于点F设即(3)为等腰直角三角形抛物线的对称轴为点E的横坐标为3又点E在直线BC上点E的纵坐标为5设①当MN=EM,,时解得或(舍去)此时点M的坐标为②当ME=EN,时解得:或(舍去)此时点M的坐标为③当MN=EN,时连接CM,易知当N为C关于对称轴l的对称点时,,此时四边形CMNE为正方形解得:(舍去)此时点M的坐标为在射线上存在点M,使得以点M,N,E为顶点的三角形与相似,点M的坐标为:,或.【点睛】本题是一道综合题,涉及到二次函数的综合、相似三角形的判定及性质、等腰三角形的性质、勾股定理、正方形的性质等知识点,综合性比较强,解答类似题的关键是添加合适的辅助线.12 .在平面直角坐标系中,已知抛物线与轴交于,两点,与轴交于点.(1)求抛物线的函数表达式(2)如图1,点为第四象限抛物线上一点,连接,交于点,连接,记的面积为,的面积为,求的最大值;(3)如图2,连接,,过点作直线,点,分别为直线和抛物线上的点.试探究:在第一象限是否存在这样的点,,使.若存在,请求出所有符合条件的点的坐标;若不存在,请说明理由.【答案】(1);(2);(3)存在,或【解析】【分析】(1)利用待定系数法进行求解即可;(2)过点作轴于点,交于点,过点作轴交的延长线于点,则可得△AEK∽△DEF,继而可得,先求出BC的解析式,继而求得AK长,由可得,设点,进而可得,从而可得,再利用二次函数的性质即可求得答案;(3)先确定出∠ACB=90°,再得出直线的表达式为.设点的坐标为,然后分点在直线右侧,点在直线左侧两种情况分别进行讨论即可.【详解】(1)∵抛物线与轴交于,两点,与轴交于点.∴,∴,∴抛物线的函数表达式为;(2)过点作轴于点,交于点,过点作轴交的延长线于点.则DG//AK,∴△AEK∽△DEF,∴,设直线BC的解析式为y=kx+n,将、代入则有:,解得,∴直线的表达式为,当x=-1时,,即K(-1,),∴.∵.∴设点,则F点坐标为(m,),∴.∴,当时,有最大值.(3)∵,,.∴AC=,BC=,AB=5,∴AC2+BC2=25=52=AB2,∴∠ACB=90°,∵过点作直线,直线的表达式为,∴直线的表达式为.设点的坐标为.①当点在直线右侧时,如图,∠BPQ=90°,过点P作PN⊥x轴于点N,过点Q作QM⊥PN于点M,∴∠M=∠PNB=90°,∴∠BPN+∠PBN=90°,∵∠QPM+∠BPN=180°-∠QPB=180°-90°=90°,∴∠QPM=∠PBN,∴,∴,又∵,∴,∴,∵NB=t-4,PN=,∴,∴QM=,PM=,∴MN=+,,∴点的坐标为.将点的坐标为代入,得,解得:,t2=0(舍去),此时点的坐标为.②当点在直线左侧时.如图,∠BPQ=90°,过点P作PN⊥x轴于点N,过点Q作QM⊥PN于点M,∴∠M=∠PNB=90°,∴∠BPN+∠PBN=90°,∵∠QPM+∠BPN=180°-∠QPB=180°-90°=90°,∴∠QPM=∠PBN,∴,∴,又∵,∴,∴,∵NB=4-t,PN=,∴,∴QM=,PM=,∴MN=+,,∴点的坐标为.将点的坐标为代入,得,解得:,<0(舍去),此时点的坐标为.【点睛】本题是二次函数综合题,涉及了待定系数法,二次函数的性质,勾股定理的逆定理,相似三角形的判定与性质等,综合性较强,难度较大,熟练掌握相关知识,正确进行分类讨论是解题的关键.13 .如图,二次函数的图象与轴交于点,,与轴交于点,抛物线的顶点为,其对称轴与线段交于点,垂直于轴的动直线分别交抛物线和线段于点和点,动直线在抛物线的对称轴的右侧(不含对称轴)沿轴正方向移动到点.(1)求出二次函数和所在直线的表达式;(2)在动直线移动的过程中,试求使四边形为平行四边形的点的坐标;(3)连接,,在动直线移动的过程中,抛物线上是否存在点,使得以点,,为顶点的三角形与相似,如果存在,求出点的坐标,如果不存在,请说明理由.【答案】(1),;(2);(3)存在,点的坐标是.【解析】【分析】(1)将,代入,解出a,b得值即可;求出C点坐标,将C,B代入线段所在直线的表达式,求解即可;(2)根据题意只要,四边形即为平行四边形,先求出点D坐标,然后求出DE,设点的横坐标为,则,,得出,根据,得,求解即可;(3)由(2)知,,根据与有共同的顶点,且在的内部,只有当时,,利用勾股定理,可得,,根据,即,解出t值,即可得出答案.【详解】解:(1)由题意,将,代入,得,解得,∴二次函数的表达式,当时,,得点,又点,设线段所在直线的表达式,∴,解得,∴所在直线的表达式;(2)∵轴,轴,∴,只要,此时四边形即为平行四边形,由二次函数,得点,将代入,即,得点,∴,设点的横坐标为,则,,由,得,。
中考数学压轴题专题复习——相似的综合含答案解析一、相似1.已知二次函数y=ax2+bx-2的图象与x轴交于A,B两点,与y轴交于点C,点A的坐标为(4,0),且当x=-2和x=5时二次函数的函数值y相等.(1)求实数a,b的值;(2)如图①,动点E,F同时从A点出发,其中点E以每秒2个单位长度的速度沿AB边向终点B运动,点F以每秒个单位长度的速度沿射线AC方向运动.当点E停止运动时,点F随之停止运动.设运动时间为t秒.连接EF,将△AEF沿EF翻折,使点A落在点D处,得到△DEF.①是否存在某一时刻t,使得△DCF为直角三角形?若存在,求出t的值;若不存在,请说明理由;②设△DEF与△ABC重叠部分的面积为S,求S关于t的函数关系式.【答案】(1)解:由题意得:,解得:a= ,b=(2)解:①由(1)知二次函数为 .∵A(4,0),∴B(﹣1,0),C (0,﹣2),∴OA=4,OB=1,OC=2,∴AB=5,AC= ,BC= ,∴AC2+BC2=25=AB2,∴△ABC为直角三角形,且∠ACB=90°.∵AE=2t,AF= t,∴ .又∵∠EAF=∠CAB,∴△AEF∽△ACB,∴∠AEF=∠ACB=90°,∴△AEF沿EF翻折后,点A落在x轴上点D处;由翻折知,DE=AE,∴AD=2AE=4t,EF= AE=t.假设△DCF为直角三角形,当点F在线段AC上时:ⅰ)若C为直角顶点,则点D与点B重合,如图2,∴AE= AB= t= ÷2= ;ⅱ)若D为直角顶点,如图3.∵∠CDF=90°,∴∠ODC+∠EDF=90°.∵∠EDF=∠EAF,∴∠OBC+∠EAF=90°,∴∠ODC=∠OBC,∴BC=DC.∵OC⊥BD,∴OD=OB=1,∴AD=3,∴AE= ,∴t= ;当点F在AC延长线上时,∠DFC>90°,△DCF为钝角三角形.综上所述,存在时刻t,使得△DCF为直角三角形,t= 或t= .②ⅰ)当0<t≤ 时,重叠部分为△DEF,如图1、图2,∴S= ×2t×t=t2;ⅱ)当<t≤2时,设DF与BC相交于点G,则重叠部分为四边形BEFG,如图4,过点G作GH⊥BE于H,设GH=m,则BH= ,DH=2m,∴DB= .∵DB=AD﹣AB=4t﹣5,∴ =4t﹣5,∴m= (4t﹣5),∴S=S△DEF﹣S△DBG= ×2t×t﹣(4t﹣5)× (4t﹣5)= ;ⅲ)当2<t≤ 时,重叠部分为△BEG,如图5.∵BE=DE﹣DB=2t﹣(4t﹣5)=5﹣2t,GE=2BE=2(5﹣2t),∴S= ×(5﹣2t)×2(5﹣2t)=4t2﹣20t+25.综上所述:.【解析】【分析】(1)根据已知抛物线的图像经过点A,以及当x=-2和x=5时二次函数的函数值y相等两个条件,列出方程组求出待定系数的值即可。
二次函数与相似的结合题型一:动点在线段上如图,平面直角坐标系xOy 中,已知(1,0)B -,一次函数5y x =-+的图像与x 轴、y 轴分别交于点A 、C 两点,二次函数2y x bx c =-++的图像经过点A 、点B ; (1)求这个二次函数的解析式;(2)点P 是该二次函数图像的顶点,求△APC 的面积;(3)如果点Q 在线段AC 上,且△ABC 与△AOQ 相似,求点Q 的坐标;如图,抛物线22y ax ax c =++(0)a >与x 轴交于(3,0)A -、B 两点(A 在B 的左侧),与y 轴交于点(0,3)C -,抛物线的顶点为M ;(1)求a 、c 的值; (2)求tan MAC ∠的值;(3)若点P 是线段AC 上一个动点,联结OP ;问是否存在点P ,使得以点O 、C 、P 为顶点的三角形与△ABC 相似?若存在,求出P 点坐标;若不存在,请说明理由;如图,已知抛物线2y ax x c =-+的对称轴为直线x =1,与x 轴的一个交点为A (-1,0),顶点为B . 点C (5,m )在抛物线上,直线BC 交x 轴于点E . (1) 求抛物线的表达式及点E 的坐标; (2) 联结AB ,求∠B 的正切值;(3) 点G 为线段AC 上一点,过点G 作CB 的垂线交x 轴于点M (位于点E 右侧),当△CGM 与△ABE 相似时,求点M 的坐标.【参考答案】24.(本题满分12分,第(1)小题4分,第(2)小题3分,第(3)小题5分)解:(1)∵抛物线2y ax x c =-+的对称轴为直线x =1,∴12a =. ∵抛物线与x 轴的一个交点为A (-1,0),∴32c =-. ∴抛物线的表达式为21322y x x =--.………………………………………………(2分) ∴顶点B (1,-2).…………………………………………………………………(1分)∵点C (5,m )在抛物线上,∴6m =. ∴C 点坐标为(5,6). 设直线BC 的表达式为y =kx +b (k ≠0), 则652k b k b=+⎧⎨-=+⎩,∴2,4.k b =⎧⎨=-⎩即BC 的表达式为y =2x -4.∴E (2,0).……………………………………………………………………………(1分)(2)作CH ⊥x 轴,垂足为H ,作BP ⊥x 轴,垂足为P , ∵C (5,6),A (-1,0),∴CH =6=AH . ∴∠CAH=45°. ∵B (1,-2),A (-1,0),∴BP =2=AP .∴∠BAP=45°.∴∠CAB=90°. …………………………………………………………………………(1分) ∵CH =6=AH ,CH ⊥x轴,∴AC =∵BP =2=AP ,BP ⊥x轴,∴AB =x(第24题图)∴tan 3.ACB AB∠==…………………………………………………………………(2分) (3)∵∠CAB=90°,∴∠B +∠ACB =90°.∵GM ⊥BC ,∴∠CGM +∠ACB =90°.∴∠CGM =∠B . ………………………………(1分) ∵△CGM 与△ABE 相似,∴∠BAE =∠CMG 或∠BAE =∠MCG . 情况1:当∠BAE =∠CMG 时,∵∠BAE =45°,∴∠CMG =45°. ∵GM ⊥BC ,∴∠MCE =45°.∴∠MCE =∠EAB .∵∠AEB =∠CEM ,∴△ABE ∽△CME . ……………………………………………(1分)∴BE AEEM CE =.=∴EM =5. ∴M (7,0). ……………………………(1分) 情况2:当∠BAE =∠MCG 时,∵∠BAE =∠CAM ,∴∠MCG =∠CAM .∴MC =MA . ………………………………(1分) 设M (x ,0),∵C (5,6),A (-1,0),∴222(1)(5)6.x x +=-+∴x=5.∴M (5,0). …………………………………………………………………………(1分)题型二:动点在线段的延长线上如图7,已知抛物线32++-=bx x y 与x 轴交于点A 和点B (点A 在点B 的左侧),与y 轴交于点C ,且OC OB =,点D 是抛物线的顶点,直线AC 和BD 交于点E 。
2019年中考总练习专项:二次函数与相似的结合题型一:动点在线段上如图,平面直角坐标系xOy 中,已知(1,0)B -,一次函数5y x =-+的图像与x 轴、y 轴分别交于点A 、C 两点,二次函数2y x bx c =-++的图像经过点A 、点B ; (1)求这个二次函数的解析式;(2)点P 是该二次函数图像的顶点,求△APC 的面积;(3)如果点Q 在线段AC 上,且△ABC 与△AOQ 相似,求点Q 的坐标;如图,抛物线22y ax ax c =++(0)a >与x 轴交于(3,0)A -、B 两点(A 在B 的左侧),与y 轴交于点(0,3)C -,抛物线的顶点为M ;(1)求a 、c 的值; (2)求tan MAC ∠的值;(3)若点P 是线段AC 上一个动点,联结OP ;问是否存在点P ,使得以点O 、C 、P 为顶点的三角形与△ABC 相似?若存在,求出P 点坐标;若不存在,请说明理由; 如图,已知抛物线2y ax x c =-+的对称轴为直线x =1,与x 轴的一个交点为A (-1,0),顶点为B . 点C (5,m )在抛物线上,直线BC 交x 轴于点E . (1) 求抛物线的表达式及点E 的坐标; (2) 联结AB ,求∠B 的正切值;(3) 点G 为线段AC 上一点,过点G 作CB 的垂线交x 轴于点M (位于点E 右侧),当△CGM 与△ABE 相似时,求点M 的坐标.解:(1)∵抛物线2y ax x c =-+的对称轴为直线x =1,∴12a =.∵抛物线与x 轴的一个交点为A (-1,0),∴32c =-. ∴抛物线的表达式为21322y x x =--.………………………………………………(2分)∴顶点B (1,-2).…………………………………………………………………(1分) ∵点C (5,m )在抛物线上,∴6m =. ∴C 点坐标为(5,6).设直线BC 的表达式为y =kx +b (k ≠0),则652k b k b =+⎧⎨-=+⎩,∴2,4.k b =⎧⎨=-⎩即BC 的表达式为y =2x -4.∴E (2,0).……………………………………………………………………………(1分)(2)作CH ⊥x 轴,垂足为H ,作BP ⊥x 轴,垂足为P ,xyABECO (第24题图)∵C (5,6),A (-1,0),∴CH =6=AH . ∴∠CAH=45°. ∵B (1,-2),A (-1,0),∴BP =2=AP .∴∠BAP=45°.∴∠CAB=90°. …………………………………………………………………………(1分)∵CH =6=AH ,CH ⊥x 轴,∴AC =∵BP =2=AP ,BP ⊥x 轴,∴AB =∴tan 3.ACB AB∠==…………………………………………………………………(2分) (3)∵∠CAB=90°,∴∠B +∠ACB =90°.∵GM ⊥BC ,∴∠CGM +∠ACB =90°.∴∠CGM =∠B . ………………………………(1分) ∵△CGM 与△ABE 相似,∴∠BAE =∠CMG 或∠BAE =∠MCG . 情况1:当∠BAE =∠CMG 时,∵∠BAE =45°,∴∠CMG =45°. ∵GM ⊥BC ,∴∠MCE =45°.∴∠MCE =∠EAB .∵∠AEB =∠CEM ,∴△ABE ∽△CME . ……………………………………………(1分)∴BE AEEM CE =.即EM =∴EM =5. ∴M (7,0). ……………………………(1分) 情况2:当∠BAE =∠MCG 时,∵∠BAE =∠CAM ,∴∠MCG =∠CAM .∴MC =MA . ………………………………(1分) 设M (x ,0),∵C (5,6),A (-1,0),∴222(1)(5)6.x x +=-+∴x=5.∴M (5,0). …………………………………………………………………………(1分) 题型二:动点在线段的延长线上如图7,已知抛物线32++-=bx x y 与x 轴交于点A 和点B (点A 在点B 的左侧),与y 轴交于点C ,且OC OB =,点D 是抛物线的顶点,直线AC 和BD 交于点E 。
第十九讲二次函数与相似(一) 知识点:在二次函数中,已知相似,求点的坐标.1.如图,抛物线y=-32x2+52x+1与x轴交于A,B两点,与y轴交于点C,连接BC.N为x轴上方的抛物线上的一个动点(不与点C重合),过点N作NP⊥x轴于点P.若△OPN∽△COB,求点N的坐标.解:易得A(-13,0),B(2,0),C(0,1),OB=2,OC=1.∴△OPN∽△COB,∴POOC=PNOB,∴PN=2PO.设N(t,-32t2+52t+1).讨论:①当-13<t<0时,-32t2+52t+1=-2t,解得tN的坐标为);②当0<t<2时,-32t2+52t+1=2t,解得t1=-23(舍),t2=1,此时点N的坐标为(1,2).综上:N点坐标为)或(1,2).2.在平面直角坐标系中,已知抛物线C:y=-x2-5x-6与x轴交于点A(点A在对称轴左边),与y轴交于点B,抛物线C关于原点O成中心对称的抛物线为C'.点P在抛物线C'上,且位于第一象限,过点P作PD ⊥y轴于点D.已知若△POD与△AOB相似,求点P的坐标.解:易得抛物线C'的解析式为y=x2-5x+6,A(-3,0),B(0,-6),∴AO=3,OB=6.设P(m,m2-5m+6)(m>0).∵PD⊥y轴,∴点D的坐标为(0,m2-5m+6),∵PD=m,OD=m2-5m+6,△POD与△AOB相似,∴PDAO=ODBO或PDBO=ODAO.讨论:(1)当PDAO=ODBO时,即3m=2566m m-+,得m1=1,m2=6,∴P1(1,2),P2(6,12);(2)当PDBO=ODAO时,即6m=2563m m-+时,解得m3=32,m4=4时,∴P3(32,34),P4(4,2).综上:点P的坐标为(1,2)或(6,12)或(32,34)或(4,2).3.如图,抛物线y=-x2+1与x轴交于A,B两点,与y轴交于点C,过点B作BD∥CA交抛物线于点D,在x轴上方的抛物线上是否存在点P,过点P作PE垂直x轴于点E,使△BPE与△CBD相似?若存在,请求出点P的坐标;若不存在,请说明理由.解:易得A(1,0),B(-1,0),C(0,1),AC为y=-x+1,BD为y=-x-1,D(2,-3),BD=BC=,∠CBD=∠CBO+∠ABD=90°.讨论:①当△EPB∽△BDC时,PEDB=BECB,∴PE=3BE.设BE=m,则PE=3m,∴P(-1+m,3m).∵P在y=-x²+1上,∴-(-1+m)2+1=3m,∴m=0或-1.∴P(-1,0)(舍去)或(-2,-3)(舍去);②当△EPB∽△BCD时,PEDB=BECBBE=3PE.设PE=n,BE=3n,∴P(-1+3n,n).∴-(-1+3n)2+1=n,∴n=0或32,∴P(-1,0)(舍去)或P(32,59).综上:P点坐标为(32,59).4.如图,在平面直角坐标系中,抛物线y=14x2-2x+3与y轴交于点A,与x轴交于B,C两点(点B在点C的左边),过点A作直线AD∥x轴,交抛物线于点D.动点E从点B出发,在射线BC上以每秒1个单位长度的速度向右运动.过点E作平行于y轴的直线l与抛物线交于点P,与直线AD交于点Q.当△APQ与△AOB 相似时,求动点E运动的时间.解:易得A(0,3),B(2,0),C(6,0).设E(t,0),则Q(t,3),P(t,14t2-2t+3).在△AOB中,∠AOB=90°,AO=3,BO=2.∵△APQ与△AOB相似,PQAQ=AOBO或PQAQ=BOAO.讨论:①当PQAQ=AOBO时,|2124t tt-|=32,∴|84t-|=32,∴t1=2(舍),t2=14;②当PQAQ=BOAO时,|2124t tt-|=23,∴|84t-|=23,t1=163,t2=323.∵动点E从B点出发,∴动点E运动的时间为12秒或103秒或263秒.5.如图,抛物线y=-x2-2x+3与x轴相交于A,B两点,与y轴相交于点C,顶点为D,M是直线BC上的一个动点.若△MCD与△AOC相似,求点M的坐标.解:易得A(1,0),B(-3,0),D(-1,4),BD=,CD,BC=BC为y=x+3.∵BC2+CD2=BD2∠BCD=90°.∴△MCD与△AOC相似,讨论:①当CDCM=COOA=3时,CM=13CD,易得M(-13,8 3)或(13,103);②当CMCD=COOA=3时,CM=3CD=M(-3,0)或(3,6).综上,M点坐标为:(-13,83)或(13,103)或M (-3,,0)或(3,6).6.已知抛物线y =-x 2-2x +3与x 轴分别交于A ,B 两点,与y 轴交于点C ,抛物线的顶点为D ,连接AD ,AC ,BC ,CD .F 是线段AD 上的一个动点.以点A ,F ,O 为顶点的三角形是否与△ABC 相似?若相似,求出点F 的坐标;若不相似,请说明理由.解:易得A (-3,0),B (1,0),C (0,3),D (-1,4),OA =3,OB =1,OC =3,CDAD =,AC =,BCOB CD =OC AC =BC AD,∴△BOC ∽△DCA ,∴∠DAC =∠BCO ,易得∠FAO =∠ACB .若以A ,F ,O 为顶点的三角形与△ABC 相似,则可分两种情况讨论:①当∠AOF =∠ABC 时,△AOF ∽△CBA .∴OF ∥BC ,易得BC 的解析式为y =-3x +3,∴直线OF 的解析式为y =-3x .易得直线AD 的解析式为y =2x +6,联立263y x y x =+⎧⎨=-⎩,解得65185x y ⎧=-⎪⎪⎨⎪=⎪⎩,∴F (-65,185);②当∠AOF =∠CAB =45°时,△AOF ∽△CAB ,此时OF ⊥AC ,易得直线OF 的解析式为y =-x ,联立26y x y x =-⎧⎨=+⎩,解得22x y =-⎧⎨=⎩,∴F (-2,2),综上:F 点的坐标为(-65,185)或(-2,2).。
二次函数与相似的结合题型一:动点在线段上如图,平面直角坐标系xOy 中,已知(1,0)B -,一次函数5y x =-+的图像与x 轴、y 轴分别交于点A 、C 两点,二次函数2y x bx c =-++的图像经过点A 、点B ; (1)求这个二次函数的解析式;(2)点P 是该二次函数图像的顶点,求△APC 的面积;(3)如果点Q 在线段AC 上,且△ABC 与△AOQ 相似,求点Q 的坐标;如图,抛物线22y ax ax c =++(0)a >与x 轴交于(3,0)A -、B 两点(A 在B 的左侧),与y 轴交于点(0,3)C -,抛物线的顶点为M ;(1)求a 、c 的值; (2)求tan MAC ∠的值;(3)若点P 是线段AC 上一个动点,联结OP ;问是否存在点P ,使得以点O 、C 、P 为顶点的三角形与△ABC 相似?若存在,求出P 点坐标;若不存在,请说明理由;如图,已知抛物线2y ax x c =-+的对称轴为直线x =1,与x 轴的一个交点为A (-1,0),顶点为B . 点C (5,m )在抛物线上,直线BC 交x 轴于点E . (1) 求抛物线的表达式及点E 的坐标; (2) 联结AB ,求∠B 的正切值;(3) 点G 为线段AC 上一点,过点G 作CB 的垂线交x 轴于点M (位于点E 右侧),当△CGM 与△ABE 相似时,求点M 的坐标.【参考答案】24.(本题满分12分,第(1)小题4分,第(2)小题3分,第(3)小题5分)解:(1)∵抛物线2y ax x c =-+的对称轴为直线x =1,∴12a =. ∵抛物线与x 轴的一个交点为A (-1,0),∴32c =-. ∴抛物线的表达式为21322y x x =--.………………………………………………(2分) ∴顶点B (1,-2).…………………………………………………………………(1分)∵点C (5,m )在抛物线上,∴6m =. ∴C 点坐标为(5,6). 设直线BC 的表达式为y =kx +b (k ≠0), 则652k b k b=+⎧⎨-=+⎩,∴2,4.k b =⎧⎨=-⎩即BC 的表达式为y =2x -4.∴E (2,0).……………………………………………………………………………(1分)(2)作CH ⊥x 轴,垂足为H ,作BP ⊥x 轴,垂足为P , ∵C (5,6),A (-1,0),∴CH =6=AH . ∴∠CAH=45°. ∵B (1,-2),A (-1,0),∴BP =2=AP .∴∠BAP=45°.∴∠CAB=90°. …………………………………………………………………………(1分) ∵CH =6=AH ,CH ⊥x轴,∴AC =∵BP =2=AP ,BP ⊥x轴,∴AB =x(第24题图)∴tan 3.ACB AB∠==…………………………………………………………………(2分) (3)∵∠CAB=90°,∴∠B +∠ACB =90°.∵GM ⊥BC ,∴∠CGM +∠ACB =90°.∴∠CGM =∠B . ………………………………(1分) ∵△CGM 与△ABE 相似,∴∠BAE =∠CMG 或∠BAE =∠MCG . 情况1:当∠BAE =∠CMG 时,∵∠BAE =45°,∴∠CMG =45°. ∵GM ⊥BC ,∴∠MCE =45°.∴∠MCE =∠EAB .∵∠AEB =∠CEM ,∴△ABE ∽△CME . ……………………………………………(1分)∴BE AEEM CE =.=∴EM =5. ∴M (7,0). ……………………………(1分) 情况2:当∠BAE =∠MCG 时,∵∠BAE =∠CAM ,∴∠MCG =∠CAM .∴MC =MA . ………………………………(1分) 设M (x ,0),∵C (5,6),A (-1,0),∴222(1)(5)6.x x +=-+∴x=5.∴M (5,0). …………………………………………………………………………(1分)题型二:动点在线段的延长线上如图7,已知抛物线32++-=bx x y 与x 轴交于点A 和点B (点A 在点B 的左侧),与y 轴交于点C ,且OC OB =,点D 是抛物线的顶点,直线AC 和BD 交于点E 。
(1)求点D 的坐标;(2)联结BC CD 、,求DBC ∠的余切值;(3)设点M 在线段CA 延长线上,如果EBM △和ABC △相似,求点M 的坐标。
【答案】(1)D 1,4()(2)3(3)63,)55-(-【解析】(1)∵抛物线2y 3x bx =-++与轴的交于点A 和点B (点A 在点B 的左侧) , 与y 轴交于点C ,)3,0(C ,且OC OB =,)0,3(B ∴9330,b=b -++=解得2∴223;D 1,4y x x =-++∴()(2)OB OC =∵45OCB OBC ∴∠=∠=︒y=45DC 。
∴∠; 180245=90D C B =︒-⨯︒︒∴∠;cot 3BC DBC DC ∠=== (3)由223y x x =-++,可得,在AOC 和BCD 中,3CO BCAO CD==, 90AOC DCB ∠=∠=︒AOC BCD ∴∆∆∽,又ACO CBD ∴∠=∠;ACB ACO OCB E CBD ∠=∠+=∠+∠ 45E OCB ∴∠=∠=︒;当EBM ABC ∆∆和相似时,可知E CBA ∠=∠;又点在线段的延长线上,ACB EBA ∠=∠,可得EMB ACB ∠=∠;MB BC ∴==由题意,得直线的表达式为y 33x =+;设(,33)M x x +.2(3)(33)18x x ∴-++=,解得126,05x x =-=(舍去)∴点M 的坐标是63,)55-(-题型三:动点在对称轴上如图,抛物线c bx x y ++-=2经过点)0,3(B ,)3,0(C ,D 为抛物线的顶点。
(1)求抛物线的解析式及顶点坐标;(2)点C 关于抛物线c bx x y ++-=2的对称点为E 点,联结BC ,BE ,求CBE ∠的正切值;(3)点M 是抛物线对称轴上一点,且△DMB 和△BCE 相似,求点M 的坐标。
【答案】(1)322++-=x x y ;)4,1(D (2)21(3) ()2,1-M 或⎪⎭⎫⎝⎛32,1M【解析】(1)∵抛物线c bx x y ++-=2经过点)0,3(B ,)3,0(C∴⎩⎨⎧==++-3039c c b 可解得 ⎩⎨⎧==32c b∴ 322++-=x x y 顶点坐标)4,1(D (2)过点E 作EH 垂直于BC 交于点H∵点C 与点E 关于对称轴1=x 对称 ∴)3,2(E ,2=CE ,CE 平行于x 轴 ∵3==OB OC∴︒=∠=∠45ECB OBC ,23=BC 在等腰直角三角形ECH 中,2=CE ∴2==EH CH在直角三角形EHB 中,22=-=CH BC BH ,2=EH∴21222tan ===∠BH EH CBE ∴CBE ∠的正切值为21 (3)设抛物线对称轴1=x 交x 轴与点F∵在直角三角形DFB 中,4=DF ,2=BF ∴ 21tan ==∠DF BF BDF , CBE BDF ∠=∠ ∴点M 在点D 的下方∴当DMB ∆与BCE ∆相似时,有下列两种情况: ①当BE BCDB DM = 时,即 102352=DM 可解得6=DM ∴()2,1-M②当BC BE DB DM = 时,即 231052=DM 可解得310=DM ∴⎪⎭⎫⎝⎛32,1M 综上所述: ()2,1-M 或⎪⎭⎫⎝⎛32,1M2)动点在平移后的对称轴上在平面直角坐标系中,点)0,4(A 是抛物线c x ax y ++=22上的一点,将此抛物线向下平移6个单位以后经过点)2,0(B ,平移后的新抛物线的顶点记为C ,新抛物线的对称轴和线段AB 的交点记为P 。
(1)求平移后得到的新抛物线的表达式,并求出点C 的坐标;(2)求CAB ∠的正切值;(3)如果点Q 是新抛物线对称轴上的一点,且BCQ △和ACP △相似,试求点Q 的坐标。
【答案】(1)222++-=x x y ;)3,1(C (2)1tan 3CAB ∠=(3))25,1(1Q 或)1,1(2-Q 【解析】(1)∵点)0,4(A 是抛物线c x ax y ++=22上的一点,代入得:0816=++c a ① 又∵抛物线向下平移6个单位以后经过点)2,0(B ,平移后的抛物线解析式为:622-++=c x ax y 。
代入得:8,26==-c c ②,由①②得:8,1=-=c a平移后得到的新抛物线的表达式:222++-=x x y ,顶点)3,1(C (2)∵)0,4(A 、)2,0(B 、)3,1(C ,易得52,23,2===BA CA CB由勾股定理逆定理得ABC △是直角三角形,31tan ==∠CA CB CAB(3)设抛物线对称轴与x 轴相交于点HABO APH ∽△△,2321==AH PH ,23=CP 易得45=∠=∠ACP BCP ,23,23,2===CP CA CB ∴点Q 只能在对称轴点C 的下方,BCQ △和ACP △相似,有以下两种情况:①CA CP CB CQ =,23232=CQ ,21=CQ ,)25,1(1Q ②CP CA CB CQ =,23232=CQ ,4=CQ ,)1,1(2-Q 综上,)25,1(1Q 或)1,1(2-Q 题型四:动点在某直线上如图,已知抛物线22y ax x c =-+经过ABC ∆的三个顶点,其中点(0,1)A ,点(9,10)B ,AC x ∥轴.(1)求这条抛物线的解析式; (2)求tan ABC ∠的值;(3)若点D 为抛物线的顶点,点E 是直线AC 上一点,当CDE ∆与ABC ∆相似时,求点E 的坐标.【参考答案】24.解:(1)∵抛物线22y ax x c =-+经过点(0,1)A 和点(9,10)B ∴1811810c a c =⎧⎨-+=⎩……………………………………………………1分(第24题图)解得131a c ⎧=⎪⎨⎪=⎩………………………………………………………………2分∴这条抛物线的解析式为21213y x x =-+………………………………1分 (2)过点B 作BH AC ⊥,垂足为H AC x ∥轴,(0,1)A ,(9,10)B 9,1H ∴()9BH AH ==∴又90BHA ∠=︒ HAB ∴△是等腰直角三角形45HAB ∠=︒∴………………………………………………………1分AC x ∥轴,(0,1)A ,点C 也在该抛物线上6,1C ∴()过点C 作CG AB ⊥,垂足为点Gsin 45CG AC =︒=∴1分cos 45AG AC =︒=又∵在Rt △ABH中,sin 45BHAB ==︒∴BG ==…………………………………………………1分 ∴在Rt △BCG 中,1tan 2CG ABC BG ∠==……………………………1分 (3)过点D 作DK AC ⊥,垂足为K∵点D 是抛物线21213y x x =-+的顶点∴(3,2)D -………………1分∴(3,1)K∴3CK DK ==又∵90CKD ∠=︒∴△CDK 是等腰直角三角形 ∴45DCK ∠=︒ 又∵45BAC ∠=︒∴DCK BAC ∠=∠………………………………………………………1分 ∴当△CDE 与△ABC 相似时,存在以下两种情况:1︒AC EC AB CD=∴EC=2(4,1)E ∴……………1分2︒AC DCAB EC=∴EC=9(3,1)E -∴…………1分题型五:动点在x 轴上如图9,在平面直角坐标系xoy 中,顶点为M 的抛物线2(0y ax bx a =+>)经过点A 和x 轴正半轴上的点B ,AO OB == 2,0120AOB ∠=. (1)求这条抛物线的表达式;(2)联结OM ,求AOM ∠的大小;(3)如果点C 在x 轴上,且△ABC 与△AOM 相似,求点C 的坐标.图92017年青浦一模24】已知,如图8,在平面直角坐标系中,抛物线142+-=ax ax y 与x 轴正半轴交于点A 和点B ,与y 轴交于点C ,且OC OB 3=,点P 是第一象限内的点,联结BC ,△PBC 是以BC 为斜边的等腰直角三角形.(1)求这个抛物线的表达式; (2)求点P 的坐标;(3)点Q 在x 轴上,若以P O Q 、、为顶点的三角形与以点B A C 、、为顶点的三角形相似,求点Q 的坐标.【答案】(1)134312+-=∴x x y (2))2,2(P ∴(3)点Q 坐标为)0,2(-或)0,4(- 【解析】(1)由题意可得)1,0(C33==∴OC OB )0,3(B ∴代入142+-=ax ax y 得31=a134312+-=∴x x y(2)过点P 作轴轴x PF y PE ⊥⊥,PBC ∆ 为等腰直角三角形 PB PC =∴︒=∠+∠=∠+∠90CPF FPB CPF EPCFPB EPC ∠=∠∴)(AAS PFB Rt PCE Rt ∆∆∴≌BF EC =∴可证四边形PEOF 为正方形BF OB OC EC -=+∴3,1==OB OCBF EC -=+∴31,解得1==BF EC 2==∴OF OE P 在第一象限内)2,2(P ∴(3)2,2==AB AC )0,1(),1,0(A C OA OC =∴,可得AOC ∆为等腰直角三角形︒=∠∴45OAC ︒=∠∴135CAB ,则点Q 在y 轴左侧i.CAB OP Q ∆∆∽1ABCA OP OQ =1,222221=⨯=⋅=AB CA OP OQ )0,2(1-∴Qii.CAB POQ ∆∆∽2ABCAOQ OP =2 42222=⨯=⋅=ACABOP OQ )0,4(2-∴Q若点Q 在y 轴右侧,不存在综上所述:点Q 坐标为)0,2(-或)0,4(-在平面直角坐标系xOy 中,抛物线2+c y x bx =-+与x 轴相交点(1,0)A -和点B ,与y 轴相交于点(0,3)C ,抛物线的顶点为点D ,联结AC ,BC ,DB DC 。