2020年江苏省南京市初三数学中考模拟试卷
- 格式:doc
- 大小:550.00 KB
- 文档页数:11
1 / 82020年江苏南京市中考数学模拟卷第I 卷(选择题)一、单选题1.设 a 是最小的自然数,b 是最大的负整数,c 是绝对值最小的有理数,a ,b ,c 三个数的和为( ) A .﹣1 B .0 C .1 D .不存在2.已知点P(-1,m 2+1)与点Q 关于原点对称,则点Q 一定在( )A .第一象限B .第二象限C .第三象限D .第四象限3.若不等式组1x 2{x k<≤>有解,则k 的取值范围是( ) A .k <2 B .k ≥2 C .k <1 D .1≤k <24.如图,二次函数y =ax 2+bx +c 的图象经过点(1,1)和点(3,0).关于这个二次函数的描述:① a <0,b >0,c <0;② 当x =2时,y 的值等于1;③ 当x >3时,y 的值小于0.正确的是( )A .①②B .①③C .②③D .①②③5.计算999-93的结果更接近( )A .999B .998C .996D .9336.如图,点P 是⊙O 外任意一点,PM 、PN 分别是⊙O 的切线,M 、N 是切点.设OP 与⊙O 交于点K .则点K 是△PMN 的( )A .三条高线的交点B .三条中线的交点C .三个角的角平分线的交点D .三条边的垂直平分线的交点第II 卷(非选择题)二、填空题7.8-的立方根是__________. 8.计算:232()x y-=____. 9.因式分解:a 3-ab 2=______________.10.如图,⊙O 的半径为2,点A ,B 在⊙O 上,∠AOB =90°,则阴影部分的面积为________.11.直线y=12x与双曲线y=kx在第一象限的交点为(a,1),则k=_____.12.已知方程x2-mx-3m=0的两根是x1、x2,若x1+x2=1,则x1x2=_______.13.如图,若正方形EFGH由正方形ABCD绕图中某点顺时针旋转90°得到,则旋转中心应该是________点.14.如图,在四边形ABCD中,AD∥BC,AD=2,AB=A为圆心,AD为半径的圆与BC相切于点E,交AB于点F,则弧DF的长为_________.15.平面直角坐标系中,原点O关于直线y=﹣43x+4对称点O1的坐标是_____.16.定点O、P的距离是5,以点O为圆心,一定的长为半径画圆⊙O,过点P作⊙O的两条切线,切点分别是B、C,则线段BC的最大值是_____.三、解答题17.先化简,再求值:22212212x x xxx x x--+÷-+-,其中x=3.18.(1)解不等式132x x--≤1,并把它的解集在数轴上表示出来;(2)若关于x的一元一次不等式x≥a只有3个负整数解,则a的取值范围是.19.一个不透明箱子中有2个红球,1个黑球和1个白球,四个小球的形状、大小完全相同.(1)从中随机摸取1个球,则摸到黑球的概率为;(2)小明和小贝做摸球游戏,游戏规则如下.你认为这个游戏公平吗?请说明理由.20.某工厂有甲、乙两台机器加工同一种零件,已知一小时甲加工的零件数与一小时乙加工的零件数的和为36个,甲加工80个零件与乙加工100个零件的所用时间相等.求甲、乙两台机器每小时分别加工零件多少个?21.如图,等腰三角形ABC中,AB=AC.(1)用尺规作出圆心在直线BC上,且过A、C两点的⊙O;(注:保留作图痕迹,标出点O,并写出作法)(2)若∠B=30°,求证:AB与(1)中所作⊙O相切.22.现在正是草莓热销的季节,某水果零售商店分两批次从批发市场共购进草莓40箱,已知第一、二次进货价分别为每箱50元、40元,且第二次比第一次多付款700元.(1)设第一、二次购进草莓的箱数分别为a箱、b箱,求a,b的值;(2)若商店对这40箱草莓先按每箱60元销售了x箱,其余的按每箱35元全部售完.①求商店销售完全部草莓所获利润y(元)与x(箱)之间的函数关系式;②当x的值至少为多少时,商店才不会亏本.(注:按整箱出售,利润=销售总收入-进货总成本)23.某长方体包装盒的表面积为146cm2,其展开图如图所示.求这个包装盒的体积.3/ 824.如图,已知∠ABM=30°,AB=20,C是射线BM上一点.(1)在下列条件中,可以唯一确定BC长的是;(填写所有符合条件的序号)①AC=13;②tan∠ACB=125;③△ABC的面积为126.(2)在(1)的答案中,选择一个作为条件,画出示意图,求BC的长.(1)试用你学过的函数来描述y与x的关系,这个函数可以是(填一次函数、反比例函数或二次函数),求这个函数关系式;(2)售价为多少元时,当月的利润最大?最大利润是多少?26.(1)如图①,在矩形ABCD中,AB=4,AD=10,在BC边上是否存在点P,使∠APD=90°,若存在,请用直尺和圆规作出点P并求出BP的长.(保留作图痕迹)(2)如图②,在△ABC中,∠ABC=60°,BC=12,AD是BC边上的高,E、F分别为AB,AC的中点,当AD=6时,BC边上是否存在一点Q,使∠EQF=90°,求此时BQ的长.27.如图,在Rt△ABC中,∠ACB=90°,CA=8,CB=6,动点P从C出发沿CA方向,以每秒1个单位长度的速度向A点匀速运动,到达A点后立即以原来速度沿AC返回;同时动点Q从点A出发沿AB以每秒1个单位长度向点B匀速运动,当Q到达B时,P、Q两点同时停止运动.设P、Q运动的时间为t秒(t>0).(1)当t为何值时,PQ∥CB?(2)在点P从C向A运动的过程中,在CB上是否存在点E使△CEP与△PQA全等?若存在,求出CE的长;若不存在,请说明理由;(3)伴随着P、Q两点的运动,线段PQ的垂直平分线DF交PQ于点D,交折线QB﹣BC﹣CP于点F.当DF经过点C时,求出t的值.5/ 8参考答案1.C2.D3.A4.B5.A6.C7.-28.-63 8x y9.a(a+b)(a﹣b)10.π-211.212.-313.M14.3 2π15.(9625,7225)16.517.218.(1)x≥﹣3,(2)﹣4<a≤﹣3.19.(1)14;(2)游戏不公平,理由见解析.20.甲机器每小时加工16个零件,乙机器每小时加工20个零件.21.22.(1)1030ab=⎧⎨=⎩;(2)①y=25x-300 ;②x至少为12时,商店才不会亏本.23.这个包装盒的体积为90cm324.1/ 825.(1)一次函数,y=-2x+400;(2)售价定为120元时,利润最大为12800元.26.(1)2或8;(2)存在,.27.(1)409;(2)存在,83;(3)5和10.。
2020年江苏省南京市中考数学模拟检测试卷 学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.∠A 是锐角,tanA>33,则∠A ( ) A .小于30° B .大于30° C .小于60° D .大于60°2.下列四个命题:①直径所对的圆周角是直角;②圆既是轴对称图形,又是中心对称图形;③在同一个圆中,相等的圆周角所对的弦相等;④三个点确定一个圆. 其中正确命题的个数为( )A .1 个B .2 个C .3 个D .4 个 3.已知ABC △内接于⊙O ,OD AC ⊥于D ,如果32COD =∠,那么B ∠的度数为( )A .16°B .32°C .16°或164°D .32°或148°4.如图,一块等边三角形的木板,边长为 1,现将木板沿水平线翻滚(如图),那么B 点从开始至结束所走过的路程长度为( )A .32πB .43πC .4D .322π+5.用反证法证明“a b >”时应假设( )A .a b >B .a b <C .a b =D .a b ≤6.证明下列结论不能运用公理“同位角相等,两直线平行”的是 ( )A .同旁内角互补,两直线平行B .内错角相等,两直线平行C .对顶角相等D .平行于同一直线的两条直线平行7.编织一副手套收费3.5元,则加工费y (元)与加工件数x (副)之间的函数解析式为 ( )A .y=3.5+xB .y=3.5-xC .y=3.5xD . 3.5y x = 8.2421-可以被在60 和 70 之间的两个数整除,这两个数是( )A .61,63B .63,65C . 65,67D . 67,699.从1 到 20 的 20 个自然数中任取一个,既是2 的倍数,又是 3 的倍数的概率是( )A .120B .310C . 12 D .320 10.下列英文字母中是轴对称图形的是( )A .SB .HC .PD .Q二、填空题11.在一个有两层的书架中,上层放有语文、数学两本书,下层放有科学、英语、社会 3 本书,由于封面都被同样的纸包起来,无法辨认,现分别从上下层中各抽出一本书,恰好分别是数学和社会的概率是 .12.已知矩形的面积为 24㎝2,那么矩形的长y(㎝)与宽 x(cm)之间的函数解析式为 ,比例系数是 .13.已知223x x --与7x +的值相等,则x 的值是 .14.如图所示,□ABCD 中,AB=8 cm ,64ABCD S =cm 2,OE ⊥AB 于E ,则OE= cm .15.在平面直角坐标系中,横坐标、纵坐标都为整数的点称为整点:观察图中每一个正方形(实线)四条边上的整点的个数,请你猜测由里向外第l0个正方形(实线)四条边上的整点个数共有 个.16.在正数种运算“*”,其规则为a *b =11a b+,根据这个规则(1)*(1)0x x -+=的解为 . 17.(12a 3-8a 2+25a )÷4a= . 18.3227xy z -的次数是 ,系数是 . 19.33亿精确到 位,有 个有效数字,它们是 ;26.5万精确到 位,有 个有效数字,它们是 .三、解答题20.如图所示:大王站在墙前,小明站在墙后,大王不能让小明看见,请你画出小明的活动区域.21.已知:如图,P是正方形ABCD内一点,在正方形ABCD外有一点E,满足∠ABE=∠CBP,BE=BP,(1) 求证:△CPB≌△AEB;(2) 求证:PB⊥BE;(3) 若PA∶PB=1∶2,∠APB=135°,求PA∶AE的值.22.若规定两数a,b通过“※”运算,得到4ab,即a※b=4ab,例如 2※6=4×2×6 =48.(1)求3※5 的值;(2)求x※x+2※x-2※4=0中x的值.23.如图,在矩形ABCD中,AB=2BC,在CD上取一点E.使AE=AB,求∠EBC的度数.24.解不等式,并把不等式的解在数轴上表示出来:(1)3(3)4(1)2y y-<++;(2)323 228x x-≥-25.阅读下列解题过程:已知:a、b、c为△ABC一的三边,且满足222244a cbc a b-=-,试判定△ABC的形状.解:∵222244a cbc a b-=-(A)∴2222222()()()c a b a b a b-=+-,(B)∴222c a b=+, (C)∴△ABC是直角三角形.问:(1)上述解题过程中,从哪一步开始出现错误?请你写出该步的代号:.(2)错误的原因为:.(3)本题正确的结论是:.26.如图,已知∠ABC = 50°,∠ACB = 80°,∠ABC、∠ACB 的平分线交于点O.过点O 作BC 的平行线,分别交 AB、AC 于点D、E.求∠BOC的度数.27.探索发现:两个多项式相除,可以先把这两个多项式都按照同一字母降幂排列,然后再仿照两个多位数相除的计算方法,用竖式进行计算,例如(7x+2+6x2)÷(2x+1)•,•仿照672÷21计算如下:F E D C B A 因此(7x+2+6x 2)÷(2x+1)=3x+2,阅读上述材料后,试判断x 3-x 2-5x-3能否被x+1•整除,说明理由.28.如图,BD =CD ,∠ABD =∠ACD ,DE 、DF 分别垂直于AB 及AC 交延长线于E 、F . 求证:DE =DF .29. 已知一个角的补角比这个角小 30°,求这个角的度数.30.如图,射线OC 和OD 把平角AOB 三等分,OE 平分∠AOC ,OF 平分∠BOD .(1)求∠COD 的度数;(2)写出图中所有的直角;(3)写出∠COD 的所有余角和补角.【参考答案】学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.B2.C3.D4.B5.D6.C7.C8.B9.D10.B二、填空题11. 1612. 24y x=,24 13.5 或-214.415.4016.0x =17.85232+-a a 18. 4,87- 19.亿两;3,3;千,三;2,6,5三、解答题20.如图,阴影部分即为小明的活动区域.21.解(1) 正方形ABCD ,∴AB=BC , ∠ABE =∠CBP ,BE =BP ,∴△CPB ≌△AEB(2) ∠ABC =∠CBP+∠ABP =90°,∠PBE =∠EBA+∠ABP而∠ABE =∠CBP ,∴∠ABC =∠PBE=90°,∴PB ⊥BE .(3)连结PE , △CPB ≌△AEB ∴PB=EB PB ⊥BE ,∴△EPB 为等腰直角三角形,∴∠BPE =∠BEP=45°,∠APB =135°,∴∠APE =90°,PA ∶PB =1∶2,设PA=x ,则PB=2x ,PE=x 22,∴由勾股定理得AE=22)22(x x +=3x ,∴PA ∶AE=x ∶3x =1∶3. 22.(1) 60 (2)12x =,24x =-23.15°24.(1)y>-15;(2)x ≤412图略 25.(1)C ;(2)220a b -=可能成立;(3)△ABC 为等腰三角形或直角三角形26.115°27.能,商式为322--x x .28.∠ABD=∠ACD ,则∠E+∠BDE =∠F+∠CDF, 由于 ∠E=∠F ,∴∠BDE =∠CDF ,∴△BED ≌△CFD(AAS),∴DE=DF .29.105°30.(1)60° (2)∠DOE 与∠COF (2)∠COD 的余角:∠AOE 、∠EOC 、∠DOF 、∠FOB ;∠COD 的补角:∠AOD 、∠EOF 、∠BOC。
2020年江苏省南京市九年级中考数学仿真模拟训练卷一.选择题(共6小题,满分12分,每小题2分)1.4的算术平方根是()A.±2B.2C.﹣2D.±162.计算(x3y)2的结果是()A.x3y2B.x6y C.x5y2D.x6y23.下列说法中,正确的是()A.棱柱的侧面可以是正方形,也可以是三角形B.一个几何体的表面不可能只由曲面组成C.棱柱的各个面面积都相等D.圆锥是由平面和曲面组成的几何体4.甲、乙、丙、丁4支仪仗队队员身高的平均数及方差如下表所示:甲乙丙丁平均数(cm)177178178179方差0.9 1.6 1.10.6哪支仪仗队的身高更为整齐?()A.甲B.乙C.丙D.丁5.已知D是△ABC的边AB上一点,DF交AC于点E,DE=EF,FC∥AB,若BD=2,CF=5,则AB的长为()A.1B.3C.5D.76.如图,在矩形AOBC中,点A的坐标是(﹣2,1),点C的纵坐标是4,则B、C两点的坐标分别是()A.(,3)、(﹣,4)B.(,3)、(﹣,4)C.(,)、(﹣,4)D.(,)、(﹣,4)二.填空题(共10小题,满分20分,每小题2分)7.﹣5的倒数是;﹣的相反数是.8.我国高速公路发展迅速,据报道,到目前为止,全国高速公路总里程约为118000千米,用科学记数法表示为千米.9.要使分式有意义,则x的取值范围是.10.若a是方程3x2﹣x﹣2=0的一个根,则5+2a﹣6a2的值等于.11.已知A(﹣4,y1),B(﹣1,y2)是反比例函数y=﹣图象上的两个点,则y1与y2的大小关系为.12.一个无盖的圆柱形杯子的展开图如图所示,现将一根长18cm的吸管放在杯子中,则吸管露在杯子外面的部分至少有cm.13.如图是某市2013﹣2016年私人汽车拥有量和年增长率的统计图.该市私人汽车拥有量年净增量最多的是年,私人汽车拥有量年增长率最大的是年.14.在△ABC中,分别以点A和点B为圆心,大于AB的长为半径画弧,两弧相交于M,N,作直线MN,交BC于点D,连接AD.如果BC=5,CD=2,那么AD=.15.如图,四边形ABCD是菱形,⊙O经过点A、C、D,与BC相交于点E,连接AC、AE.若∠D=78°,则∠EAC=°.16.如图,菱形ABCD的面积为120cm2,正方形AECF的面积为50cm2,则菱形的边长为cm.三.解答题(共11小题)17.化简:•﹣x.18.解不等式组请结合题意填空,完成本题的解答.(Ⅰ)解不等式①,得;(Ⅱ)解不等式②,得;(Ⅲ)把不等式①和②的解集在数轴上表示出来;(Ⅳ)原不等式组的解集为.19.如图,在平行四边形ABCD中,E、F、为对角线BD上的两点,且∠BAE=∠DCF.求证:AE=CF.20.列方程或方程组解应用题:某校初二年级的同学乘坐大巴车去北京展览馆参观“砥砺奋进的五年”大型成就展,北京展览馆距离该校12千米,1号车出发3分钟后,2号车才出发,结果两车同时到达,已知2号车的平均速度是1号车的平均速度的1.2倍,求2号车的平均速度.21.某甲鱼养殖专业户共养甲鱼200只,为了与客户签订购销合同,对自己所养殖甲鱼的总重量进行评估,随意捞了5只,称得重量分别为1.5、1.4、1.6、2、1.8(单位:千克)(1)根据样本平均数估计甲鱼的总重量约是多少千克?(2)如果甲鱼的市场价为每千克150元,那么该养殖专业户卖出全部甲鱼的收入约为多少元?22.某校组织一项公益知识竞赛,比赛规定:每个班级由2名男生、2名女生及1名班主任老师组成代表队.但参赛时,每班只能有3名队员上场参赛,班主任老师必须参加,另外2名队员分别在2名男生和2名女生中各随机抽出1名.初三(1)班由甲、乙2名男生和丙、丁2名女生及1名班主任组成了代表队,求恰好抽到由男生甲、女生丙和这位班主任一起上场参赛的概率.(请用“画树状图”或“列表”或“列举”等方法给出分析过程)23.如图,某校九年级数学小组为了测量校园内旗杆AB的高度,站在教学楼C处测得旗杆底端B的俯角为45°,测得旗杆顶端A的仰角为30°,若旗杆与教学楼的距离BD=9m,求旗杆AB的高度是多少米?(结果保留根号)24.在平面直角坐标系xOy中,抛物线y=ax2﹣4与x轴的负半轴交于点A、与y轴交于点B,且AB=2.(1)求a的值;(2)如果点P是抛物线上一点,联结AP交y轴正半轴于点C,,求P的坐标.25.有A、B、C三地依次在一条笔直的公路上,B、C两地相距120km,AB两地相距30km,一辆甲车以60km/h的速度从B地到C地;同时一辆乙车以60km/h的速度从B地到达A 地后,然后以150km/h的速度开往C地,两车在各段内均匀速行驶,图中线段EF与折线EMN分别表示甲、乙两车距C地的路程y(千米)与行驶时间x(小时)之间的函数关系图象.(1)填空:点M的坐标为;(2)求线段EF与MN所表示的y与x之间的函数关系式;(3)在乙车到达C地前,请直接写出在何时两车之间的距离为30km?26.(1)如图1,在⊙O中,弦AB与CD相交于点F,∠BCD=68°,∠CF A=108°,求∠ADC的度数.(2)如图2,在正方形ABCD中,点E是CD上一点(DE>CE),连接AE,并过点E 作AE的垂线交BC于点F,若AB=9,BF=7,求DE长.27.在平面直角坐标系xOy中,对于两个点P,Q和图形W,如果在图形W上存在点M,N(M,N可以重合)使得PM=QN,那么称点P与点Q是图形W的一对平衡点.(1)如图1,已知点A(0,3),B(2,3).①设点O与线段AB上一点的距离为d,则d的最小值是,最大值是;②在P1(),P2(1,4),P3(﹣3,0)这三个点中,与点O是线段AB的一对平衡点的是(2)如图2,已知圆O的半径为1,点D的坐标为(5,0),若点E(x,2)在第一象限,且点D与点E是圆O的一对平衡点,求x的取值范围.(3)如图3,已知点H(﹣3,0),以点O为圆心,OH长为半径画弧交x轴的正半轴于点K,点C(a,b)(其中b≥0)是坐标平面内一个动点,且OC=5,圆C是以点C为圆心,半径为2的圆,若弧HK上的任意两个点都是圆C的一对平衡点,直接写出b的取值范围.。
江苏省南京市2020届中考数学仿真模拟试卷一、选择题(本大题共6小题,共12.0分)1.计算:−5−(−12)=()A. 17B. 7C. −17D. −72.(−5)2的平方根是()A. −5B. ±5C. 5D. 253.计算:(x4)2÷x2的结果是()A. x3B. x4C. x5D. x64.如图,所提供的信息正确的是()A. 七年级学生最多B. 九年级的男生是女生的两倍C. 九年级学生女生比男生多D. 八年级比九年级的学生多5.已知x1,x2是一元二次方程2x2−3x+1=0的两个根,下列结论正确的是()A. x1+x2=−32B. x1⋅x2=1C. x1,x2都是有理数D. x1,x2都是无理数6.如图,在矩形ABCD中,AB=8,AD=12,经过A,D两点的⊙O与边BC相切于点E,则⊙O的半径为()A. 4B. 214C. 5 D. 254二、填空题(本大题共10小题,共20.0分)7.在−3、+(−3)、−|−4|、−(+2)、−a中,负数的个数有______个.8.若式子2x+1在实数范围内有意义,则x的取值范围是______.9. 被誉为“中国天眼”的FAST 望远镜,新发现的脉冲星自转周期为0.00519秒,是至今发现的射电流量最弱的高能毫秒脉冲星之一.用科学记数法表示0.00519是______.10. 计算√6−3√3的结果是______.11. 如果关于x 、y 的方程组{x +2y =6+k2x −y =9−2k 的解满足3x +y =5,则k 的值=______.12. 方程3x+1=2x 的解是 .13. 若把一次函数y =kx +b 的图象先绕着原点旋转180°,再向左平移2个单位长度后,恰好经过点A(−4,0)和点B(0,2),则原一次函数的表达式是______. 14. 在正六边形ABCDEF 中,若边长为3,则正六边形ABCDEF 的边心距为______.15. 如图,锐角三角形ABC 中,直线L 为BC 的垂直平分线,直线M为∠ABC 的角平分线,L 与M 相交于P 点,若∠A =60°,∠ACP =24°,则∠ABP = ______ .16. 二次函数y =2x 2+mx +8的图象顶点在x 轴上,则m 的值是______. 三、计算题(本大题共2小题,共15.0分) 17. 解方程:x 2+8x −20=0.18. 如图,C 地在A 地的正东方向,因有大山阻隔,由A 地到C 地需要绕行附近的B 地,已知B 地位于A 地的北偏东67°方向,距离A 地520km ,C 地位于B 地南偏西30°方向,若要打通穿山隧道建高铁,求线段AC 的长(结果保留整数)(参考数据:√3≈1.73,sin67°≈1213,cos67°≈513,tan67°≈125)四、解答题(本大题共9小题,共73.0分) 19. 化简:(1+1a−1)÷aa 2−2a+1.20. 如图,点E 、F 在BC 上,BE =CF ,AB =DC ,AF =DE.求证:∠A =∠D .21. 解不等式组:{2(6−x)>3(x −1),x 3−x−22≤1.,并把解集在数轴上表示出来.22.今年我市体育中考的现场选测项目中有一项是“排球30秒对墙垫球”,为了了解某学校九年级学生此项目平时的训练情况,随机抽取了该校部分九年级学生进行测试,根据测试结果,制作了如下尚不完整的频数分布表:(1)填空:a=,b=;(2)这个样本数据的中位数在第组;(3)下表为《体育与健康》中考察“排球30秒对墙垫球”的中考评分标准,若该校九年级有500名学生,请你估计该校九年级学生在这一项目中得分在7分以上(包括7分)学生约有多少人?23.清明小长假,小明和小华准备到泰兴公园(记为A)、黄桥古镇(记为B)、古银杏森林公园(记为C)中的一个景点去游玩,他们各自在这三个景点中任选一个,每个景点被选中的可能性相同.(1)小明选择去古银杏森林公园游玩的概率为______;(2)用树状图或列表的方法求小明和小华选择去同一个地方游玩的概率.24.如图,已知BD是△ABC的角平分线,点E,F分别在边AB,BC上,ED//BC,EF//AC.求证:BE=CF.25.某学生购进一批单价为20元的T恤进行义卖,并将所得利润捐给贫困山区.经试验发现,若每件按24元的价格销售时,每天能卖出36件;若每件按29元的价格销售时,每天能卖出21件.假定每天销售件数y(件)与销售价格x(元/件)满足一个以x为自变量的一次函数.(1)求y与x满足的函数表达式(不要求写出x的取值范围).(2)在不积压且不考虑其他因素的情况下,销售价格定为多少元时,才能使每天获得的利润p最大?26.如图,△ABC中,∠ACB=90°,D为AB上一点,CE⊥CD,且CDCB =35,CEAC=35.求证:△ACD∽△ECF.27.已知长方形ABCD中,AD=10cm,AB=6cm,点M在边CD上,由C往D运动,速度为1cm/s,运动时间为t秒,将△ADM沿着AM翻折至△AD′M,点D对应点为D′,AD′所在直线与边BC交于点P.(1)如图1,当t=0时,求证:PA=PC;(2)如图2,当t为何值时,点D′恰好落在边BC上;(3)如图3,当t=3时,求CP的长.-------- 答案与解析 --------1.答案:B解析:本题主要考查的是有理数的减法,熟练掌握有理数的减法法则是解题的关键.先将减法转化为加法,然后再进行计算即可.解:原式=−5+12=7.故选B.2.答案:B解析:解:∵(−5)2=25=(±5)2,∴(−5)2的平方根是±5.故选:B.根据平方根的定义进行计算即可得解.本题主要考查了平方根的定义.注意一个正数有两个平方根,它们互为相反数;0的平方根是0;负数没有平方根.3.答案:D解析:先运用幂的乘方化简,再进行同底数幂的除法运算,根据同底数幂的除法,底数不变指数相减,可得答案.本题考查了幂的乘方、同底数幂的除法,按照运算顺序进行计算是解题关键.解:原式=x8÷x2=x8−2=x6.故选:D.4.答案:B解析:本题考查从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据,根据图中数据进行正确计算.根据条形图,可读出各年级的男生和女生人数,进而求出各年级的总人数,根据所得数值,可对四个选项进行判断.解:根据图中数据计算:七年级人数是8+13=21;八年级人数是14+16=30;九年级人数是10+ 20=30.所以A和D错误;根据统计图的高低,显然C 错误;B 中,九年级的男生20人是女生10人的两倍,正确. 故选:B .5.答案:C解析:解:x 1+x 2=32,x 1x 2=12,所以A 、B 选项错误, 因为△=(−3)2−4×2×1=1,所以x 1,x 2都是有理数,则A 选项正确,D 选项错误. 故选:C .利用根与系数的关系对A 、B 进行判断;根据根的判别式对C 、D 进行判断.本题考查了根与系数的关系:若x 1,x 2是一元二次方程ax 2+bx +c =0(a ≠0)的两根时,x 1+x 2=−ba,x 1x 2=ca .也考查了根的判别式的意义.6.答案:D解析:本题考查了切线的性质:圆的切线垂直于经过切点的半径;若出现圆的切线,必连过切点的半径,构造定理图,得出垂直关系.也考查了垂径定理和矩形的性质.解决本题的关键是构建直角三角形,利用勾股定理建立关于半径的方程.连结EO 并延长交AD 于F ,连接AO ,由切线的性质得OE ⊥BC ,再利用平行线的性质得到OF ⊥AD ,则根据垂径定理得到AF =DF =12AD =6,由题意可证四边形ABEF 为矩形,则EF =AB =8,设⊙O 的半径为r ,则OA =r ,OF =8−r ,然后在Rt △AOF 中利用勾股定理得到(8−r)2+62=r 2,再解方程求出r 即可.解:如图,连结EO 并延长交AD 于F ,连接AO ,∵⊙O 与BC 边相切于点E , ∴OE ⊥BC ,∵四边形ABCD 为矩形, ∴BC//AD , ∴OF ⊥AD ,∴AF =DF =12AD =6,。
2020年江苏省南京市中考一模试卷数学试卷一、选择题(本大题共6小题,共12分)1.如果a是无理数,那么下列各数中,一定是有理数的是()D. a0A. −aB. a2C. 1a2.下列各式计算结果不等于211的是()A. 210+210B. 212−210C. 27×24D. 215÷243.下列命题中,是真命题的是()A. 平行四边形的四边相等B. 平行四边形的对角互补C. 平行四边形是轴对称图形D. 平行四边形的对角线互相平分4.下列的立体图形中,有4个面的是()A. 三棱锥B. 三棱柱C. 四棱锥D. 四棱柱5.在平面直角坐标系中,点A、B的坐标分别是(0,3)、(−4,0),则原点到直线AB的距离是()A. 2B. 2.4C. 2.5D. 36.如图,在△ABC中,BC>AB>AC,D是边BC上的一个动点(点D不与点B、C重合),将△ABC沿AD折叠,点B落在点处,连接,,若是等腰三角形,则符合条件的点D的个数是()A. 0个B. 1个C. 2个D. 3个二、填空题(本大题共10小题,共20分)7.根据刘慈欣同名小说改编的电影《流浪地球》将中国独特的思想和价值观念融入对人类未来的畅想与探讨,该电影取得了巨大的成功,国内票房总收入为4 655 000 000元,用科学记数法表示4 655 000 000是______.8.计算√3×√6−√2的结果是______.9.分解因式:−x3+2x2−x=______.10.甲、乙两个班级各20名男生测试“引体向上”,成绩如图所示:设甲、乙两个班级男生“引体向上”个数的方差分别为S甲2和S乙2,则S甲2______S乙2.(填“>”,“<”或“=”)11.如图,点A、B在数轴上所表示的数分别是x、x+1,点C在线段AB上(点C不与点A、B重合).若点C在数轴上表示的数是2x,则x的取值范围是______.12.对于反比例函数y=4,以下四个结论:①函数的图象在第一、三象限;②函数的x图象经过点(−2,−2);③y随x的增大而减小;④当x>−2时,y<−2.其中所有正确结论的序号是______.13.等边三角形外接圆的面积是4π,则该等边三角形的面积是______.14.如图,AB是⊙O的直径,点C、D在半圆AB上,且AC⏜=CD⏜=DB⏜,连接AC、AD,则∠CAD的度数是______°.15.如图,在矩形ABCD中,E是AD的中点,连接AC、BE,AC与BE交于点F,则△ABF的面积和四边形CDEF的面积的比值是______.16.如图,在Rt△ABC中,∠C=90°,AC=2,BC=4.点M1、N1、P1分别在AC、BC、AB上,且四边形M1CN1P1是正方形,点M2、N2、P2分别在P1N1、BN1、BP1上,且四边形M2N1N2P2是正方形,…,点M n、N n、P n分别在P n−1N n−1、BN n−1、BP n−1上,且四边形M n N n−1N n P n是正方形,则BN2019的长度是______.三、计算题(本大题共2小题,共14分)17.计算(−1)3+|−6|×2−1−√273.18.化简:x−3x−2÷(x+2−5x−2)四、解答题(本大题共9小题,共74分)19.如图,在四边形ABCD中,对角线AC与BD相交于点O,AC⊥BD,AC平分∠BAD.(1)给出下列四个条件:①AB=AD,②OB=OD,③∠ACB=∠ACD,④AD//BC,上述四个条件中,选择一个合适的条件,使四边形ABCD是菱形,这个条件是______(填写序号);(2)根据所选择的条件,证明四边形ABCD是菱形.20.在一只不透明的袋子中装有1个红色小球,2个黄色小球和若干个黑色小球,这些小球除颜色以外都一样.已知从袋中任意摸出1个红色小球的概率是14.(1)袋中黑色小球的数量是______个;(2)若从袋中随机摸出1个小球,记录好颜色后放回袋中并搅匀,再从袋中任意摸出1个小球,求两次摸出的都是黄色小球的概率是多少?21.我市某校招聘数学教师,本次招聘进行专业技能笔试和课堂教学展示两个项目的考核,这两项考核的满分均为100分,学校将这两个项目的得分按一定的比例计算出4考生序号1234专业技能笔试90708675课堂教学展示70908086分分别占总成绩的百分比;(2)若学校录取总成绩最高的考生,通过计算说明4名考生中哪一名考生会被录取?22.如图,某数学兴趣小组准备测量长江某处的宽度AB,他们在AB延长线上选择了一座与B距离为200m的大楼,在大楼楼顶的观测点C处分别观测点A和点B,利用测角仪测得俯角(从高处观测低处的目标时,视线与水平线所成的锐角)分别为8°和46°.求该处长江的宽度AB.(参考数据:sin8°≈0.14,cos8°≈0.99,tan8°≈0.16,sin46°≈0.72,cos46°≈0.69,tan46°≈1.04)23.点A(−1,0)是函数y=x2−2x+m2−4m的图象与x轴的一个公共点.(1)求该函数的图象与x轴的另一个公共点的坐标以及m的值;(2)将该函数图象沿y轴向上平移______个单位后,该函数的图象与x轴只有一个公共点.24.两个运输小队分别从两个仓库以相同的工作效率调运一批物资,两队同时开始工作.第二小队工作5天后,由于技术问题检修设备5天,为赶上进度,再次开工后他们将工作效率提高到原先的2倍,结果和第一小队同时完成任务.在两队调运物资的过程中,两个仓库物资的剩余量yt与第一小队工作时间x天的函数图象如图所示.(1)①求线段AC所表示的y与x之间的函数表达式;②求点F的坐标,并解释点F的实际意义.(2)如果第二小队没有检修设备,按原来的工作效率正常工作,那么他们完成任务的天数是______天.25.已知线段AB与点O,利用直尺和圆规按下列要求作△ABC(不写作法,保留作图痕迹).(1)在图①中,点O是△ABC的内心;(2)在图②中,点O是△ABC的重心.26.某商店第一个月以每件100元的价格购进200件衬衫,以每件150元的价格售罄.由于市场火爆,该商店第二个月再次购进一批衬衫,与第一批衬衫相比,这批衬衫的进价和数量都有一定的提高,其数量的增长率是进价增长率的2.5倍,该批衬衫仍以每件150元销售.第二个月结束后,商店对剩余的50件衬衫以每件120元的价格一次性清仓销售,商店出售这两批衬衫共盈利17500元.设第二批衬衫进价的增长率为x.(1)第二批衬衫进价为______元,购进的数量为______件.(都用含x的代数式表示,不需化简)(2)求x的值.27.如图,在矩形ABCD中,AB=5,BC=12,E为BC的中点.⊙O与边BC相切于点E,并交边AD于点M、N,AM=3.(1)求⊙O的半径;(2)将矩形ABCD绕点E顺时针旋转,旋转角为α(0°<α≤90°).在旋转的过程中,⊙O和矩形ABCD的边是否能够相切?若能,直接写出相切时,旋转角α的正弦值;若不能,请说明理由.答案和解析1.【答案】D【解析】解:A、如果a是无理数,那么−a一定是无理数,故这个选项错误;B、如果a是无理数,那么a2可能是无理数,也可能是有理数,故这个选项错误;C、如果a是无理数,那么1a一定是无理数,故这个选项错误;D、如果a是无理数,那么a0一定是有理数,因为a0=1,故这个选项正确.故选:D.根据有理数和无理数的定义解答.本题考查了有理数和无理数的定义,解题的关键是熟练掌握有理数和无理数的定义.2.【答案】B【解析】解:210+210=2×210=211,故选项A不合题意;212与210不是同类项,所以不能合并,故选项B符合题意;27×24=27+4=211,故选项C不合题意;215÷24=215−4=211,故选项D不合题意.故选:B.分别根据合并同类项的法则、同底数幂的乘法法则,同底数幂的除法法则逐一判断即可.本题主要考查了同底数幂的乘除法,熟练掌握运算法则是解答本题的关键.3.【答案】D【解析】解:A、平行四边形的四条边不一定相等,故错误,是假命题;B、平行四边形的对角相等,故错误,是假命题;C、平行四边形是中心对称图形但不是轴对称图形,故错误,是假命题,D、平行四边形的对角线互相平分,故错误,是真命题,故选:D.利用平行四边形的性质分别判断后即可确定正确的选项.本题考查了命题与定理的知识,解题的关键是能够了解平行四边形的性质,难度不大.4.【答案】A【解析】解:A、三棱锥有一个底面,三个侧面组成,共4个面.B、三棱柱有二个底面,三个侧面组成,共5个面.C、四棱锥有一个底面,四个侧面组成,共5个面.D、四棱柱有二个底面,四个侧面组成,共6个面.故有4个面的是三棱锥.故选:A.根据棱柱和棱锥的组成情况,分别求得各立体图形的面数,再进行判断.本题考查了棱柱和棱锥的组成情况.要明确棱柱有两个底面,棱锥有一个底面.5.【答案】B【解析】解:∵点A、B的坐标分别是(0,3)、(−4,0),∴OA=3,OB=4,∴AB=5,△AOB是直角三角形,∴O到AB的距离为3×45=125;故选:B.由△AOB是直角三角形,利用直角三角形面积相等,将O到AB的距离转化为直角三角形OAB斜边上的高求解;本题考查坐标平面内点的特征;将将O到AB的距离转化为直角三角形OAB斜边上的高是解题的关键;6.【答案】C【解析】解:如图1,当BB′=B′C时,是等腰三角形,如图2,当BC=BB′时,是等腰三角形,故若是等腰三角形,则符合条件的点D的个数是2,故选:C.根据折叠的性质和等腰三角形的性质即可得到结论.本题考查了翻折变换(折叠问题),正确的作出图形是解题的关键.7.【答案】4.655×109【解析】解:用科学记数法表示4 655 000 000是4.655×109.故答案为:4.655×109.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.此题考查了科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.8.【答案】2√2【解析】解:√3×√6−√2=3√2−√2=2√2.故答案为:2√2.首先利用二次根式乘法运算法则计算,进而合并同类项得出即可.此题主要考查了二次根式的混合运算,正确掌握二次根式的运算法则是解题关键.9.【答案】−x(x−1)2【解析】解:−x3+2x2−x,=−x(x2−2x+1)…(提取公因式)=−x(x−1)2.…(完全平方公式)先提取公因式−x ,再利用完全平方公式进行二次分解.完全平方公式:(a −b)2=a 2−2ab +b 2.本题考查了提公因式法,公式法分解因式,提取公因式后利用完全平方公式进行二次分解,注意分解要彻底.在提取负号时,要注意各项符号的变化. 10.【答案】<【解析】解:由扇形图知,甲班男生“引体向上”个数分布情况为:5个的5人,6个5人,7个5人,8个5人,乙班男生“引体向上”个数分布情况为:5个的6人,6个4人,7个4人,8个6人, ∴甲班男生“引体向上”个数分布较为均匀、稳定,∴S 甲2<S 乙2,故答案为:<.由扇形图得出个数的具体分布情况,再判断出“引体向上”个数分布较为稳定的班级即可得.本题考查方差的意义.方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定. 11.【答案】0<x <1【解析】解:由题意知{2x >x2x <x +1,解得0<x <1,故答案为:0<x <1.根据题意列出不等式组,解之可得.本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键. 12.【答案】①②【解析】解:①∵k =4>0,∴它的图象在第一、三象限,故正确; ②把点(−2,−2)代入反比例函数y =4x ,成立,故正确;③当x >0时,y 随x 的增大而减小,故错误. ④当x >−2时,y <−2或y >0,所以错误; 故答案为:①②.根据反比例函数的性质,k =4>0,函数位于一、三象限,在每一象限y 随x 的增大而减小.本题考查了反比例函数y =kx (k ≠0)的性质:①当k >0时,图象分别位于第一、三象限;当k <0时,图象分别位于第二、四象限.②当k >0时,在同一个象限内,y 随x 的增大而减小;当k <0时,在同一个象限,y 随x 的增大而增大.13.【答案】3√3【解析】解:如图,⊙O 为等边△ABC 的外心,连接OB ,OC ,作OH ⊥BC ,则BH =CH , ∵π⋅OB 2=4π, ∴OB =2,∵∠BOC=2∠A=120°,∴∠OBC=30°,在Rt△BOH中,OH=12OB=1,BH=√3OH=√3,∴BC=2BH=2√3,∴△ABC的面积=3S△OBC=3×12×1×2√3=3√3.故答案为3√3.如图,⊙O为等边△ABC的外心,连接OB,OC,作OH⊥BC,利用垂径定理得到BH=CH,利用圆的面积公式得到OB=2,再计算出∠OBC=30°,则根据含30度的直角三角形三边的关系得到OH=1,BH=√3,所以BC=2BH=2√3,然后计算△OBC的面积得到△ABC的面积.本题考查了三角形的外接圆与外心:三角形外接圆的圆心是三角形三条边垂直平分线的交点,叫做三角形的外心.也考查了等边三角形的性质.14.【答案】30【解析】解:连接OC,OD,∵AB是⊙O的直径,点C、D在半圆AB上,且AC⏜=CD⏜=DB⏜,∴∠AOC=∠COD=∠DOB=60°,∴∠DAB=30°,∠CAO=60°,∴∠CAD=30°,故答案为:30.连接OC,OD,利用圆周角定理和三角形的内角和解答即可.本题考查的是圆周角定理,熟知在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半是解答此题的关键.15.【答案】25【解析】解:连接CE,∵四边形ABCD是矩形,∴AE//BC,AD=BC,∵E是AD的中点,∴AE=12AD=12BC,即AEBC=12,∴△AEF∽△CBF,则EFBF =AFCF=AEBC=12,设△AEF的面积为s,则△ABF的面积为2s,△CEF的面积为2s,∴△ACE的面积为3s,∵E是AD的中点,∴△CDE的面积为3s,∴四边形CDEF的面积为5s,∴S四边形CDEF =52S△ABF,即△ABF的面积和四边形CDEF的面积的比值是25,故答案为:25.依据AE//BC即可得到△AEF∽△CAB;设△AEF的面积为s,则△ABF的面积为2s,△CEF 的面积为2s,△CDE的面积为3s,四边形CDEF的面积为5s,进而得出结论S四边形CDEF=52S△ABF.本题主要考查了相似三角形的判定和性质,矩形的性质等知识;熟练掌握矩形的性质,证明三角形相似是解决问题的关键.16.【答案】2202132019【解析】解:∵N1P1//AC,∴△B1N1P1∽△BCA,∴BN1BC =N1P1AC,设N1P1=x,则4−x4=x2,解得:x=43,∴BN1=BC−CN1=4−43=83,同理,∵N2P2//AC,∴△P1N1B∽△P2N2B,设P2N2=y,∴y43=83−y83,解得:y=89,∴BN2=83−89=169=2432.同理,BN3=3227=2533,∴BN2019的长度是2202132019.故答案为:220213.根据相似三角形的性质求出BN1,BN2,BN3的值,找出规律即可求出BN2019的长度.此题属规律性题目,考查了相似三角形的性质及正方形的性质,解答此题的关键是求出BN1,BN2,BN3的值,找出规律,根据此规律求解.17.【答案】解:原式=−1+6×12−3=−1+3−3=−1.【解析】直接利用绝对值的性质以及负指数幂的性质、立方根的性质分别化简得出答案.此题主要考查了实数运算,正确化简各数是解题关键.18.【答案】解:x−3x−2÷(x+2−5x−2)=x−3x−2÷(x2−4x−2−5x−2)=x−3x−2⋅x−2(x−3)(x+3)=1x+3.故答案为1x+3.【解析】首先把括号里的式子进行通分,然后把除法运算转化成乘法运算,进行约分化简.分式的四则运算是整式四则运算的进一步发展,在计算时,首先要弄清楚运算顺序,先去括号,再进行分式的乘除.19.【答案】④【解析】解:(1)这个条件是④;故答案为:④;(2)∵AC⊥BD,AC平分∠BAD,∴∠BAO=∠DAO,∠AOB=∠AOD=90°,∵AO=AO,∴△ABO≌△ADO,∴AB=AD,∵AD//BC,∴∠ACB=∠DAC,∴∠BAC=∠ACB,∴AB=BC,∴AD=BC,∴四边形ABCD是菱形;(1)根据题目中的条件即可得到结论;(2)根据垂直和角平分线的定义得到∠BAO=∠DAO,∠AOB=∠AOD=90°,根据全等三角形的性质得到AB=AD,推出AB=BC,根据菱形的判定定理即可得到结论;本题考查了菱形的判定,全等三角形的判定和性质,角平分线的定义,平行线的性质,正确的识别图形是解题的关键.20.【答案】1【解析】解:(1)设袋中黑色小球的数量是x个,根据题意得:11+2+x =14,解得:x=1,经检验x=1是方程的解,答:袋中黑色小球的数量是1个;故答案为:1;(2)根据题意画树状图如下:共有16种等情况数,其中两次摸出的都是黄色小球的有4种,则两次摸出的都是黄色小球的概率是416=14.(1)设袋中黑色小球的数量是x个,根据概率公式列出算式,求出x的值即可得出答案;(2)先画出树状图得出所有等情况数和两次摸出的都是黄色小球的情况数,然后根据概率公式即可得出答案.此题考查的是用列表法或树状图法求概率.列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;解题时要注意此题是放回实验还是不放回实验.用到的知识点为:概率=所求情况数与总情况数之比.21.【答案】解:(1)设专业技能笔试得分占总成绩的百分比是a.根据题意,得90a+70(1−a)=78.解这个方程,得a=40%.1−40%=60%.所以专业技能笔试得分和课堂教学展示得分占总成绩的百分比分别是40%,60%.(2)2号考生总成绩为70×0.4+90×0.6=82(分).3号考生总成绩为86×0.4+80×0.6=82.4(分).4号考生总成绩为75×0.4+86×0.6=81.6(分).因为82.4>82>81.6>78,所以3号考生会被录取.【解析】(1)可设专业技能笔试得分占总成绩的百分比是a,根据1号考生的总成绩为78分列出方程求解即可;(2)根据加权平均数公式分别求出4个考生总成绩,再比较大小即可求解.本题主要考查加权平均数的计算.解题的关键是熟记加权平均数的计算公式.22.【答案】解:如图,连接AC,BC.根据题意,得∠CAD=8°,∠CBD=46°.在Rt△CBD中,∵tan∠CBD=CDBD,∴CD=BD⋅tan∠CBD=200×1.04=208(m).在Rt△CAD中,∵tan∠CAD=CDAD,∴AD=CDtan∠CAD =2080.16=1300(m).∴AB=AD−BD=1300−200=1100(m).答:该处长江的宽度是1100 m.【解析】如图,连接AC,BC.通过解Rt△CBD和Rt△CAD分别求得BD、AD的长度,然后利用线段间的和差关系解答.本题考查解直角三角形的应用−仰角俯角问题,要求学生能借助仰角构造直角三角形并解直角三角形.23.【答案】(1)见解析;(2)4【解析】解:(1)在函数y =x 2−2x +m 2−4m 中,∵a =1,b =−2,∴该二次函数图象的对称轴是过点(1,0)且平行于y 轴的直线.∵点A(−1,0)是函数y =x 2−2x +m 2−4m 的图象与x 轴的一个公共点,根据二次函数图象的对称性,∴该函数与x 轴的另一个公共点的坐标是(3,0),将x =−1,y =0代入函数y =x 2−2x +m 2−4m 中,得0=3+m 2−4m . 解这个方程,得m 1=1,m 2=3,故抛物线的表达式为:y =x 2−2x −3;(2)抛物线顶点坐标为:(1,−4),故函数图象沿y 轴向上平移4单位后,该函数的图象与x 轴只有一个公共点.(1)将点A 坐标代入函数表达式即可求解;(2)求出抛物线顶点坐标(1,−4),即可求解.本题考查的是二次函数与x 轴交点问题,将点A 代入函数表达式,求出m 值是本题的关键.24.【答案】9【解析】解:(1)①设AC 的函数表达式为y =kx +b ,将(12,0),(0,360)代入y =kx +b ,得{12k +b =0b =360,解得{k =−30,b =360.即线段AC 所表示的y 与x 之间的函数表达式为y =−30x +360;②第一小队的工作效率为360÷12=30(t/天),第二小队再次开工后的工作效率为30×2=60(t/天),调运物资为60×2=120(t), 即点E 的坐标为(10,120),所以点F 的纵坐标为120.将y =120代入y =−30x +360,可得x =8,即点F 的坐标为(8,120).点F 的实际意义是:第一小队工作8天后,两个仓库剩余的物资都为120t ;(2)120÷30=4(天),5+4=9(天).故答案为9.(1)①设AC 的函数表达式为y =kx +b ,将(12,0),(0,360)代入y =kx +b ,利用待定系数法即可求出线段AC 所表示的y 与x 之间的函数表达式;②根据工作效率=工作总量÷工作时间,可得第一小队的工作效率为360÷12=30(t/天),进而得出第二小队再次开工后的工作效率为30×2=60(t/天),那么调运物资为60×2=120(t),得出点E 的坐标为(10,120),所以点F 的纵坐标为120.将y =120代入y =−30x +360,求出x ,得到点F 的坐标,点F 的实际意义是:第一小队工作8天后,两个仓库剩余的物资都为120t ;(2)先求出第二小队按原来的工作效率正常工作时调运物资120t 需要的时间,再加上检修设备前调运物资的工作时间即可.此题考查了一次函数的应用,涉及到利用待定系数法求一次函数的解析式,工作效率、工作总量与工作时间关系的应用,理解题意从图象中获取有用信息是解题的关键.25.【答案】解:(1)如图①,△ABC即为所求.(2)如图②,△ABC即为所求.【解析】(1)内心是角平分线的交点,根据AO和BO分别是∠CAB和∠CBA的平分线,作图即可;(2)重心是中线的交点,先作AB的垂直平分线,确定AB的中点,根据重心到中点的距离是到顶点距离的1,确定中线CO,作图即可.2本题是作图题,考查了三角形内心和重心的定义,角平分线和线段垂直平分线的基本作图,三角形重心的性质,掌握基本作图是关键.26.【答案】100(1+x)200(1+2.5x)【解析】解:(1)依题意得:第二批衬衫进价为100(1+x)元,购进的数量为200(1+2.5x)件.故答案是:100(1+x),200(1+2.5x);(2)根据题意,得200×(150−100)+[150−100(1+x)][200(1+2.5x)−50]+50[120−100(1+ x)]=17500.化简,得50x2−5x−1=0.解这个方程,得x1=15,x2=−110(不合题意,舍去).所以x的值是20%.(1)根据“购进二批衬衫数量的增长率是进价增长率的2.5倍”解答;(2)根据销售收入−成本=利润,即可得出关于x的一元一次方程,解方程即可.考查了一元二次方程的应用.解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程,再求解.27.【答案】解:(1)如图①,连接EO并延长,交AD于点F,连接OM.∵⊙O与BC相切于点E,∴OE⊥BC,在矩形ABCD中,∵AD//BC,AD=BC=12,∠A=∠B=∠C=∠D=90°.∴四边形ABEF和四边形DCEF是矩形.∴AF=BE,DF=CE,EF=AB=5.∵BE=CE,∴AF=DF,∵OE⊥BC,AD//BC,∴OF⊥AD.∴MF=NF,∵AF=6,AM=3,∴FM=3,设⊙O的半径为r,则OM=OE= r,OF=5−r.在Rt△OFM中,根据勾股定理,得32+(5−r)2=r2,解这个方程,得r=3.4,即⊙O的半径为3.4;(2)如图②,与⊙O相切,切点为Q,此时旋转角α为,作,连接OQ,OE,则四边形QOPB′是矩形,∴OQ=PB′,∵OE⊥BC,∴∠OPE=∠OEB=90°,∴∠POE+∠OEP=∠OEP+BEP=90°,,,由(1)得,∴PE=6−3.4=2.6,即;如图③,与⊙O相切,切点为Q,此时旋转角α为,作,连接OQ,OE,同理,∵∠A′=∠B′=∠QPB′=90°,∴四边形A′B′PQ是矩形,,由(1)得OQ=OE=3.4,OP=5−3.4=1.6,∴OE2−OP2=PE2,∴PE=3,即.【解析】(1)如图①,连接EO并延长,交AD于点F,连接OM.根据切线的性质得到OE⊥BC,根据矩形的性质得到AD//BC,AD=BC=12,∠A=∠B=∠C=∠D=90°.推出四边形ABEF和四边形DCEF是矩形.得到AF=BE,DF=CE,EF=AB=5.求得FM= 3,设⊙O的半径为r,则OM=OE=r,OF=5−r.根据勾股定理即可得到结论;(2)如图②,与⊙O相切,切点为Q,此时旋转角α为,作,连接OQ,OE,得到四边形QOPB′是矩形,根据矩形的性质得到OQ=PB′,根据余角的性质得到,根据三角函数的定义得到;如图③,与⊙O相切,切点为Q,此时旋转角α为,作,连接OQ,OE,同理,根据矩形的性质得到,由(1)得OQ=OE=3.4,OP=5−3.4=1.6,根据勾股定理得到PE=3,根据三角函数的定义即可得到.本题考查了切线的判定和性质,旋转的性质,矩形的性质,解直角三角形,正确的作出辅助线是解题的关键.。
南京市联合体2020年初中毕业生二模考试卷数学注意事项:1.本试卷共6页.全卷满分120分.考试时间为120分钟.考生答题全部答在答题卡上,答在本试卷上无效.2.请认真核对监考教师在答题卡上所粘贴条形码的姓名、考试证号是否与本人相符合,再将自己的姓名、准考证号用0.5毫米黑色墨水签字笔填写在答题卡及本试卷上.3.答选择题必须用2B 铅笔将答题卡上对应的答案标号涂黑.如需改动,请用橡皮擦干净后,再选涂其他答案.答非选择题必须用0.5毫米黑色墨水签字笔写在答题卡上的指定位置,在其他位置答题一律无效.4.作图必须用2B 铅笔作答,并请加黑加粗,描写清楚.一、选择题(本大题共6小题,每小题2分,共12分.在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将正确选项前的字母代号填涂在答题卡...相应位置....上) 1.下列计算中,结果是a 5的是A .a 2+a 3B .a 2·a 3C .a 10÷a 2D .(a 2)32.面积为4的正方形的边长是A .2的平方根B .4的平方根C .2的算术平方根D .4的算术平方根3.若1<a <2,则a 可以是A .1B .3C .5D .74.已知一组数据5,6,7,8,9,5,9,若增加一个数7,则新的这组数据与原来相比A .平均数变大,方差变大 C .平均数不变,方差变大 C .平均数不变,方差变小D .平均数不变,方差不变5.如图,PQ 、PB 、QC 是⊙O 的切线,切点分别为A 、B 、C ,点D 在⌒BC 上,若∠D =100°,则∠P 与∠Q 的度数之和是 A .160°B .140°C .120°D .100°6. 如图,在△ABC 中,∠ACB =90°,BC =2,∠A =30°,将△ABC 绕点C 顺时针旋转120°, 若P 为AB 上一动点,旋转后点P 的对应点为点P ',则线段PP '长度的最小值是二、填空题(本大题共10小题,每小题2分,共20分.不需写出解答过程,请把答案直接填写在答题卡相应位置.......上) A .3B .2C .3D .23(第5题)A C B'B (第6题)7.计算:||-3=▲;(-3)2=▲.8.若式子xx -1在实数范围内有意义,则x 的取值范围是 ▲ .9.某病毒的直径约为0.000 000 1米,用科学记数法表示0.000 000 1是 ▲ . 10.设x 1、x 2是方程x 2+mx +3=0的两个根,且x 1+x 2-x 1x 2=1,则m = ▲ . 11.已知圆锥的底面半径为3cm ,高为4cm ,则其侧面积是 ▲ cm 2.(结果保留π) 12.计算(8-3)8+(8-3)3的结果是 ▲ .13.如图,在矩形ABCD 中,AB =6,对角线AC 与BD 相交于点O ,AE ⊥BD ,垂足为E ,若BE =EO ,则AD 的长是 ▲ .14.用举反例的方法说明命题“若a <b ,则ab <b 2”是假命题,这个反例可以是a = ▲ ,b = ▲ .15.已知一次函数y 1=x +2与y 2=-x +b (b 为常数),当x <1时,y 1<y 2.则b 的取值范围是 ▲ . 16. 如图,⊙O 是△ABC 的外接圆,BC =10,∠B =45°,tan C =32,则⊙O 的半径是 ▲ .三、解答题(本大题共11小题,共88分.请在答题卡指定区域.......内作答,解答时应写出文字说明、证明过程或演算步骤)17.(6分)计算(a 2-4a 2-4a +4)-2a -2)÷a +2a a -2.18.(6分)解不等式组⎩⎪⎨⎪⎧-1-x ≤0,x +12-1<x 3,并写出它的正整数解.ABCDEO (第13题)19.(8分)为了解九年级女生体质健康变化的情况,体育李老师本学期从九年级全体240名女生中随机抽取20名女生进行体质测试,并调取这20名女生上学期的体质测试成绩进行对比,李老师对两次数据(成绩)进行整理、描述和分析.下面给出了部分信息.a . 两次测试成绩(百分制)的频数分布直方图如下(数据分组:60≤x <70,70≤x <80,80≤x <90,90≤x ≤100):b .成绩在80≤x <90的是:上学期:80 81 85 85 85 86 88 本学期:80 82 83 86 86 86 88 89c . 两个学期样本测试成绩的平均数、中位数、众数如下:根据以上信息,回答下列问题: (1)表中a 的值是 ▲ ;(2)下列关于本学期样本测试成绩的结论:①c =86;②d =86;③成绩的极差可能为41;④b 有可能等于80.其中所有正确结论的序号是 ▲ ;(3)从两个不同角度分析这20名女生从上学期到本学期体质健康变化情况.频数/分(学生人数)上学期测试成绩频数分布直方图频数 (学生人数)分本学期测试成绩频数分布直方图20.(8分)经过某路口的汽车,可能直行,也可能向左转或向右转.如果这三种可能性大小相同,现有甲、乙、丙三辆汽车经过这个路口. (1)求甲、乙两辆汽车向同一方向行驶的概率;(2)甲、乙、丙三辆汽车向同一方向行驶的概率是▲.21.(8分)如图,在 ABCD 中,AC 的垂直平分线分别交BC 、AD 于点E 、F ,垂足为O ,连接AE 、CF . (1)求证:四边形AECF 为菱形;(2)若AB =5,BC =7,则AC =▲时,四边形AECF 为正方形.22.(7分)某超市一种品牌的洗手液一月份的销售总额为8 000元,受2019-nCoV 疫情影响,二月份该超市对此品牌洗手液进行调价,每瓶单价是原来的1.5倍,但销售量仍比一月份增加了1000瓶,二月份的销售额达到了36 000元.该超市这种品牌的洗手液一月份的销售单价是多少元?23.(8分)如图,为了测量建筑物CD 、EF 的高度,在直线CE 上选取观测点A 、B ,AC 的距离为40米.从A 、B 测得建筑物的顶部D 的仰角分别为51.34°、68.20°,从B 、D 测得建筑物的顶部F 的仰角分别为64.43°、26.57°. (1)求建筑物CD 的高度;(2)求建筑物EF 的高度.(参考数据:tan 51.34°≈1.25,tan 68.20°≈2.5,tan64.43°≈2,tan26.57°≈0.5)FCDEBA(第21题)O24.(9分)某观光湖风景区,一观光轮与一巡逻艇同时从甲码头出发驶往乙码头,巡逻艇匀速往返于甲、乙两个码头之间,当观光轮到达乙码头时,巡逻艇也同时到达乙码头.设出发x h 后,观光轮、巡逻艇离甲码头的距离分别为y 1 km 、y 2 km .图中的线段OG 、折线OABCDEFG 分别表示y 1、y 2 与x 之间的函数关系. (1)观光轮的速度是▲km/h ,巡逻艇的速度是▲km/h ; (2)求整个过程中观光轮与巡逻艇的最大距离;(3)求整个过程中观光轮与巡逻艇相遇的最短时间间隔.25.(9分)在正方形ABCD 中,点E 是BC 边上一动点,连接AE ,沿AE 将△ABE 翻折得 △AGE ,连接DG ,作△AGD 的外接⊙O ,⊙O 交AE 于点F ,连接FG 、FD . (1)求证∠AGD =∠EFG ; (2)求证△ADF ∽△EGF ;(3)若AB =3,BE =1,求⊙O 的半径.BD F y /km O x /h32ACEG226.(9分) 【概念认识】若以圆的直径的两个端点和圆外一点为顶点的三角形是等腰三角形,则圆外这一点称为这个圆的径等点. 【数学理解】(1)如图①,AB 是⊙O 的直径,点P 为⊙O 外一点,连接AP 交⊙O 于点C ,PC =AC .求证:点P 为⊙O 的径等点.(2)已知AB 是⊙O 的直径,点P 为⊙O 的径等点,连接AP 交⊙O 于点C ,若PC =2AC .求ACAB的值. 【问题解决】(3)如图②,已知AB 是⊙O 的直径.若点P 为⊙O 的径等点,连接AP 交⊙O 于点C ,PC =3AC .利用直尺和圆规作出所有满足条件的点P .(保留作图痕迹,不写作法)27.(10分)已知二次函数y =m (x -1)(x -m -3)(m 为常数,且m ≠0). (1)求证:不论m 为何值,该函数的图像与x 轴总有公共点;(2)设该函数的图像与y 轴交于点A ,若点A 在x 轴上方,求m 的取值范围;(3)该函数图像所过的象限随m 的值变化而变化,直接写出函数图像所经过的象限及对应的m 的取值范围.①②(备用)(备用)南京市2020年初中毕业生二模考试卷数学试卷参考答案及评分标准说明:本评分标准每题给出了一种或几种解法供参考.如果考生的解法与本解答不同,参照本评分标准的精神给分.一、选择题(本大题共6小题,每小题2分,共12分)二、填空题(本大题共10小题,每小题2分,共20分)7.3,3. 8.x ≠1. 9.1×10-7 10.-4. 11.15π. 12.5. 13.63. 14.-1,0(答案不唯一). 15.b ≥4. 16.26. 三、解答题(本大题共11小题,共88分) 17.(本题6分)解:原式=((a +2)(a -2)(a -2)2-)· ···································································· 4分=aa -2·(a -2) a (a +2)· ·············································································· 5分=1 a +2 ···························································································· 6分 18.(本题6分)解:解不等式①,得x ≥-1, ······································································ 2分解不等式②,得x <3. ········································································· 4分∴原不等式组的解集为-1≤x <3, ···························································· 5分正整数解有:1,2. ············································································· 6分19.(本题8分)解:(1)80.5; ··················································································· 2分 (2)①; ··························································································· 4分 (3)答案不唯一.如:从中位数上看,由上学期的80.5分到本学期的86分,一半以上的女生体质情况有较大提升;从成绩达到80分的女生数上看,本学期比上学期增加3人,且90分以上多2人,体质训练有效果. ······································ 8分20.(本题8分)解:(1)所有可能出现的结果有:(直行,直行)、(直行,左转)、(直行,右转)、(左转,直行)、(左转,左转)、(左转,右转)、(右转,直行)、(右转,左转)、(右转,右转)共9种,它们出现的可能性相同.所有的结果中,满足“同一方向行驶”(记为事件A )的结果有3种,所以P (A )=39=13. ············································ 6分(2)19. ······························································································· 8分.21.(本题8分)(1)证明:∵四边形ABCD 是平行四边形, ∴AD ∥BC , ∴∠1=∠2,∵EF 垂直平分AC , ∴AF =CF ,AE =CE ,FCDEBA(第21题)O 1 23∴∠2=∠3, ∴∠1=∠3, ∴AE =AF ,∴AE =AF =CE =CF , ∴四边形AECF 是菱形. ················································································ 6分 (2)32或42. ··························································································· 8分 22.(本题7分)解:设一月份的销售单价为x 元. ······························································· 1分 根据题意,得:8 000x +1 000=36 0001.5 x . ························································ 5分解得x =16. ··························································································· 6分经检验,x =16是所列方程的解. 答:一月份的销售单价为16元. ································································ 7分 23.(本题8分)解:(1)在Rt △ACD 中,∠ACD =90°,∵tan ∠DAC =CDAC ,∴CD =AC ·tan51.34°≈40×1.25=50. ························································· 3分 (2)过点D 作DG ⊥EF 于点G . 在Rt △BCD 中,∠BCD =90°,∵tan ∠DBC =CDBC ,∴BC =CD tan68.20°≈502.5=20. ········································································ 4分易证矩形DCEG ,∴CD =EG =50,DG =CE . 设EF =x 米.在Rt △DFG 中,∠DGF =90°,∵tan ∠FDG =FGDG ,∴DG =x -50tan26.57°, ···················································································· 5分在Rt △FBE 中,∠BEF =90°,∵tan ∠FBE =EFBE ,∴BE =xtan64.43°, ···················································································· 6分∴x -50tan26.57°=20+xtan64.43°, ······································································ 7分∴x ≈80. ······························································································· 8分 答:建筑物CD 的高度为50米,建筑物EF 的高度为80米.24.(本题9分)解:(1)观光轮16 km/h ,巡逻艇112 km/h ; ··············································· 2分 (2)最大距离:32-16×32112=1927km ; ························································ 5分(3)由题意可得:16x +112x =32×2,解得x =12;·········································· 7分线段BC 所表示的函数表达式为y BC =112(x -47)=112x -64,y 1=16x ,当y 1=y BC 时,112x -64=16x ,解得x =23,23-12=16. ······························· 9分答:最短时间间隔为 16h ;25.(本题9分)(1)证明:∵四边形AFGD 是⊙O 的内接四边形, ∴∠ADG +∠AFG =180°, ∵∠AFG +∠EFG =180°, ∴∠ADG =∠EFG ,由正方形ABCD 及翻折可得AB =AG =AD , ∴∠ADG =∠AGD , ∴∠AGD =∠EFG . ················································· 3分 (2)∵∠AGD =∠AFD ,∠AGD =∠EFG , ∴∠AFD =∠EFG , ∵四边形ABCD 是正方形,∴AD ∥BC . ∴∠DAF =∠AEB .由翻折得∠AEB =∠GEF ,∴∠DAF =∠GEF , ∴△ADF ∽△EGF . ··················································································· 6分 (3)解:设⊙O 与CD 交于点H ,连接AH 、GH , ∵∠ADH =90°,∴AH 是⊙O 的直径, ∴∠AGH =90°,由翻折得∠AGE =90°,则∠AGE +∠AGH =180°, ∴E 、G 、H 三点在一条直线上. ································································· 7分 ∵AH =AH ,AD =AG ,∴Rt △ADH ≌Rt △AGH ,∴GH =DH ,设GH =DH =x ,则在Rt △ECH 中,CH =3-x ,EH =1+x ,EC =3-1=2,由CH 2+EC 2=EH 2,即(3-x )2+22=(1+x )2,解得x =32, ································ 8分在Rt △ADH 中,AD 2+DH 2=AH 2,即32+(32)2=AH 2,解得AH =325,∴⊙O 的半径为345. ··············································································· 9分26.(本题9分) (1)证明:如图①,连接BC , ∵AB 是⊙O 的直径, ∴∠ACB =90°, ∵AC =PC ,∴BC 垂直平分AP ,∴AB =PB ,即△APB 为等腰三角形,∴点P 为⊙O 的径等点. ·························· 3分 (2)①如图②-1,当AB =AP 时,若PC =2AC ,则AC AP =13,∴AC AB =13; ····················· 4分②如图②-2,当P A =PB 时,易证△ABC ∽△APO ,∴AC AO =ABAP, ① (第25题)∵2AC =PC ,设AC =k ,则PC =2k ,∴k 12AB =AB 3k ,AB =6k ,∴AC AB =16=66. ··· 6分(3)如图③④,满足条件的点P 共有4个. ·················································· ····· 9分27.(本题10分) (1)证明:当y =0时,m (x -1)(x -m -3)=0, 解得x 1=1,x 2=m +3, 当m +3=1,即m =-2时,方程有两个相等的实数根; 当m +3≠1,即m ≠-2时,方程有两个不相等的实数根, ∴不论m 为何值,该函数的图像与x 轴总有公共点; ········································ 3分 (2)当x =0时,y =m 2+3m , ····································································· 4分∴点A 的纵坐标为m 2+3m ,∵该函数的图像与y 轴交于点A ,点A 在x 轴上方, ∴m 2+3m >0.设z =m 2+3m ,即z 是m 的二次函数,当m =0或-3时,z =0. ∵抛物线开口向上,∴当m >0或m <-3时,z >0.∴m 的取值范围是m >0或m <-3.……………………………………………………6分 (3)①当m >0时,图像经过一、二、四象限; ·············································· 7分②当-2<m <0或-3≤m <-2时,图像经过一、三、四象限; 也可写成:当-3<m <0(m ≠-2)时,图像经过一、三、四象限; ·············· 8分 ③当m =-2时,图像经过三、四象限;··················································· 9分 ④当m <-3时,图像经过一、二、三、四象限. ···································· 10分②-1②-23。
2020年中考考前(江苏南京卷)全真模拟卷(5)数学(考试时间:120分钟试卷满分:120分)注意事项:1.答卷前,考生务必将自己的姓名、考生号等填写在答题卡和试卷指定位置上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
回答非选择题时,将答案写在答题卡上。
写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
一、选择题(本大题有6个小题,共2分,满分12分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.据统计截止2019年南京常住人口为843.62万人,共有55个民族,其中汉族占总人口的98.76%,少数民族约9.92万人,843.62万用科学记数法表示为()A.8.4362×102B.8.4362×104C.8.4362×105D.8.4362×106【解析】解:843.62万=843.62×104=8.4362×106.故选D.2.下列运算正确的是()A.a2•a4=a8 B.(a2)4=a8 C.(a4b2)2=a6b4 D.a8÷a4=a2【解析】解:A.a2•a4=a6,故本选项不符合题意;B.(a2)4=a8,正确,故本选项符合题意;C.(a4b2)2=a8b4,故本选项不符合题意;D.a8÷a4=a4,故本选项不符合题意.故选:B.3.下列说法正确的是()A.-3是-9的平方根B.1的立方根是±1C.a是a2的算术平方根D.4的负的平方根是-2【解析】解:A.-9没有平方根,此选项错误;B.1的立方根是1,此选项错误;C.|a|是a2的算术平方根,此选项错误;D.4的负的平方根是-2,此选项正确;故选:D.4.如图,已知有理数a,b,c在数轴上对应的点分别为A,B,C,则下列不等式中不正确的是()A.c<b<a B.ac>ab C.cb>ab D.c+b<a+b【解析】解:由题意,可知a>0>b>c.A、∵a>0>b>c,∴c<b<a,故此选项错误;B、∵b>c,a>0,∴ac<ab,故此选项正确;C、∵c<a,b<0,∴cb>ab,故此选项错误;D、∵c<a,∴c+b<a+b,故此选项错误;故选:B.5.若正数x的平方等于10,则下列对x的估算正确的是()A.1<x<2B.2<x<3C.3<x<4D.4<x<5【解析】解:∵x2=10且x>0,∴x=10,34,∴3<x<4.故选:C.6.如图,在矩形ABCD中,AB=4,AD=6,E是AB边的中点,F是线段BC上的动点,将△EBF 沿EF所在直线折叠得到△EB′F,连接B′D,则B′D的最小值是()A.2B.6C.2D.4【解析】解:如图,B′的运动路径是以E为圆心,以AE的长为半径的圆.所以,当B′点落在DE上时,B′D取得最小值.根据折叠的性质,△EBF≌△EB′F,∴EB′⊥B′F,∴EB′=EB,∵E是AB边的中点,AB=4,∴AE=EB′=2,∵AD=6,∴DE DB′=2.故选:A.二、填空题(本大题有10个小题,每小题2分,共20分)7.已知|x|=2020,则x=______.【解析】解:∵|±2020|=2020,∴x=±2020.故答案为:±2020.8.计算__________.6=5+- 5.故答案为:5.9.因式分解:-2ab2+12ab-18a=__________.【解析】解:原式=-2a(b2-6b+9)=-2(b-3)2.故答案为:-2(b-3)2.10.已知方程x2-x-7=0的两个实数根分别为m,n,则m2+n的值为__________.【解析】解:由题意可知m+n=1,m2-m-7=0,∴m2=m+7,∴原式=m+7+n=8,故答案为:8.11.如图,若∠1=∠D=39°,∠C=52°,则∠B=__________°.【解析】解:∵∠1=∠D,∴AB∥CD,∴∠B+∠C=180°,∴∠B=180°-∠C=180°-52°=128°,故答案为:128.12.如图,一座城墙高11.7米,墙外有一个宽为9米的护城河,那么一个长为15米的云梯_______(填“能”或“否”)到达墙的顶端.【解析】解:设这把梯子能够到达的墙的最大高度是h米,根据勾股定理h=12(米)∵h=12>11.7∴一个长为15米的云梯能够到达墙的顶端.故答案为:能.13.某电视台招聘一名记者,甲应聘参加了采访写作、计算机操作和创意设计的三项素质测试得分分别为70、60、90,三项成绩依次按照5:2:3计算出最后成绩,那么甲的成绩为________.【解析】解:甲的成绩为(70×5+60×2+90×3)÷(5+2+3)=74,故答案为:74.14.有一块三角板ABC,∠C为直角,∠ABC=30°,将它放置在⊙O中,如图,点A、B在圆上,»AB的度数等于________.边BC经过圆心O,劣弧【解析】解:如图,延长BC交⊙O于点D,连接AD,OA.∵BD是直径,∴∠DAB=90°,∵∠B=30°,∴∠D=90°-30°=60°,∵OA=OD,∴∠D=∠OAD=60°,∴∠AOB=∠D+∠OAD=120°,»AB的度数等于120°.∴劣弧故答案为:120°.15.如图,在矩形ABCD中,AB=4,BC=8,点E,F分别在BC,CD上.若BE=2,∠EAF=45°,则DF的长是______.【解析】解:如图,过点E作EG⊥AE交AF于点G,过点G作MN∥AB交BC于点M,交AD 于点N.∵∠EAF=45°,∴△AEG是等腰直角三角形,∴△BEA≌△MGE,∴AB=EM,BE=MG,∴EM=4,MG=2,∴AF=6,NG=2,∵△ANG∽△ADF,∴AN NGAD DF=,即628DF=,解得DF=8 3 .故答案为:8 3 .16.如图,∠MAN=60°,若△ABC的顶点B在射线AM上,且AB=点C在射线AN上运动,当△ABC是锐角三角形时,BC的取值范围是____________.【解析】解:如图,过点B作BC1⊥AN,垂足为C1,BC2⊥AM,交AN于点C2在Rt△ABC1中,AB=A=60°,∴∠ABC1=30°,∴AC1=AB=3,由勾股定理得:BC1=3,在Rt△ABC2中,AB=A=60°,∴∠AC2B=30°,∴AC2=BC2=6,当△ABC 是锐角三角形时,点C 在C 1C 2上移动,此时3<BC <6.故答案为:3<BC <6.三、解答题(本大题有11个小题,共88分.解答应写出文字说明、证明过程或演算步骤)17.(7分)计算:3(2x -1)-(-3x -4)(3x -4).【解析】解:原式=6x -3-(16-9x 2)=6x -3-16+9x 2=9x 2+6x -19.18.(7分)已知关于x 的分式方程211x k x x-=--的解为正数,求k 的取值范围. 【解析】解:∵211x k x x -=--,∴1x k x +-=2,∴x =2+k , ∵该分式方程有解,∴x ≠1,∴2+k ≠1,∴k ≠﹣1,∵x >0,∴2+k >0,∴k >﹣2,∴k >﹣2且k ≠﹣1,19.(7分))如图,正方形ABCD 的对角线AC 与BD 相交于点O ,E 是OB 上一点,DH ⊥CE ,垂足为H ,DH 与OC 相交于点F ,求证:OE =OF .证明:∵四边形ABCD 是正方形,∴AC ⊥BD ,AC =BD ,∴∠COB =∠DOC =90°,CO =DO ,∵DH ⊥CE ,∴∠DHE =90°,∠EDH +∠DEH =90°,∵∠ECO +∠DEH =90°,∴∠ECO =∠EDH ,∴△ECO ≌△FDO (ASA ),∴OE =OF .20.(8分)为了使“祖国在我心中”为主题的读书活动更具有针对性,海庆中学在全校范围内随机抽取部分学生进行问卷调查,要求学生在“教育、科技、国防、农业、工业”五类书籍中,选取自己最想读的一种(必选且只选一种),学校将收集到的调查结果适当整理后,绘制成如图所示的不完整的统计图.请根据图中所给的信息解答下列问题:(1)在这次调查中,一共抽取了多少名学生?(2)请通过计算补全条形统计图;(3)如果海庆中学共有1500名学生,请你估计该校最想读科技类书籍的学生有多少名.【解析】解:(1)根据题意得:18÷30%=60(名),答:在这次调查中,一共抽取了60名学生;(2)60﹣(18+9+12+6)=15(名),则本次调查中,选取国防类书籍的学生有15名,补全条形统计图,如图所示:(3)根据题意得:1500×960=225(名),答:该校最想读科技类书籍的学生有225名.21.(8分)为丰富校园文化生活,提高学生的综合素质,促进中学生全面发展,学校开展了多种社团活动.小明喜欢的社团有:合唱社团、足球社团、书法社团、科技社团(分别用字母A,B,C,D依次表示这四个社团),并把这四个字母分别写在四张完全相同的不透明的卡片的正面上,然后将这四张卡片背面朝上洗匀后放在桌面上.(1)小明从中随机抽取一张卡片是足球社团B 的概率是__________.(2)小明先从中随机抽取一张卡片,记录下卡片上的字母后不放回,再从剩余的卡片中随机抽取一张卡片,记录下卡片上的字母.请你用列表法或画树状图法求出小明两次抽取的卡片中有一张是科技社团D 的概率.【解析】解:(1)小明从中随机抽取一张卡片是足球社团B 的概率=14; (2)列表如下:由表可知共有12种等可能结果,小明两次抽取的卡片中有一张是科技社团D 的结果数为6种, 所以小明两次抽取的卡片中有一张是科技社团D 的概率为612=12. 22.(7分))已知:如图,点I 是△ABC 的内心,延长AI 交△ABC 的外接圆于点D ,求证:DB =DC =ID .证明:∵点I 是△ABC 的内心,延长AI 交△ABC 的外接圆于点D ,∴∠BAD =∠CAD =∠DBC =∠DCB =12∠BAC ,∠ABI =∠CBI =12∠ABC , ∴BD =CD ,∵∠BID =∠BAD +∠ABI ,∠DBI =∠DBC +∠IBC ,∴∠DBI =∠BID ,∴BD =DI ,∴DB =DC =ID .23.(8分)如图,一次函数y 1=k 1x +b (k 1、b 为常数,k 1≠0)的图象与反比例函数y 2=2k x(k 2≠0,x >0)的图象交于点A (m ,8)与点B (4,2).①求一次函数与反比例函数的解析式.②根据图象说明,当x 为何值时,k 1x +b ﹣2k x<0.【解析】解:①把点B (4,2)代入反比例函数y 2=2k x(k 2≠0,x >0)得,k 2=4×2=8, ∴反比例函数的解析式为y 2=8x, 将点A (m ,8)代入y 2得,8=8m ,解得m =1, ∴A (1,8),将A 、B 的坐标代入y 1=k 1x +b (k 1、b 为常数,k 1≠0)得11842k b k b +=⎧⎨+=⎩,解得1210k b =-⎧⎨=⎩, ∴一次函数的解析式为y 1=﹣2x +10;②由图象可知:当0<x <1或x >4时,y 1<y 2,即k 1x +b ﹣2k x<0. 24.(8分)如图,拦水坝的横断面为梯形ABCD ,AD =3m ,坝高AE =DF =6m ,坡角α=45°,β=30°,求BC 的长.【解析】解:过A 点作AE ⊥BC 于点E ,过D 作DF ⊥BC 于点F ,则四边形AEFD 是矩形,有AE =DF =6,AD =EF =3,∵坡角α=45°,β=30°,∴BE =AE =6,CF=,∴BC =BE +EF +CF =6+3+=9+,∴BC =(9+)m ,答:BC的长(9+m.25.(8分)2017年,某贫困户的家庭年人均纯收入为2500元,通过政府产业扶持,发展了养殖业后,到2019年,家庭年人均纯收入达到了3600元.(1)求该贫困户2017年到2019年家庭年人均纯收入的年平均增长率;(2)若年平均增长率保持不变,2020年该贫困户的家庭年人均纯收入是否能达到4200元?【解析】解:(1)设该贫困户2017年到2019年家庭年人均纯收入的年平均增长率为x,依题意,得:2500(1+x)2=3600,解得:x1=0.2=20%,x2=﹣2.2(舍去).答:该贫困户2017年到2019年家庭年人均纯收入的年平均增长率为20%.(2)3600×(1+20%)=4320(元),4320>4200.答:2020年该贫困户的家庭年人均纯收入能达到4200元.26.(9分)如图,在矩形ABCD中,AD=4cm,AB=3cm,E为边BC上一点,BE=AB,连接AE.动点P、Q从点A同时出发,点P cm/s的速度沿AE向终点E运动;点Q以2cm/s的速度沿折线AD﹣DC向终点C运动.设点Q运动的时间为x(s),在运动过程中,点P,点Q经过的路线与线段PQ围成的图形面积为y(cm2).(1)AE=________cm,∠EAD=________°;(2)求y关于x的函数解析式,并写出自变量x的取值范围;(3)当PQ=cm时,直接写出x的值.【解析】解:(1)∵AB=3cm,BE=AB=3cm,∴AE cm,∠BAE=∠BEA=45°∵∠BAD=90°∴∠DAE=45°故答案为:,45(2)当0<x ≤2时,如图,过点P 作PF ⊥AD ,∵AQ =2x ,APx ,∠DAE =45°,PF ⊥AD ,∴PA =PQx ,∴y =S △PQA =12×PQ 2=x 2; 当2<x ≤3时,如图,过点P 作PF ⊥AD ,∵APx ,PF =AF =x ,QD =2x ﹣4,∴DF =4﹣x ,∴y =12x 2+12(2x ﹣4+x )(4﹣x )=﹣x 2+8x ﹣8; 当3<x ≤72时,如图,点P 与点E 重合.∵CQ =(3+4)﹣2x =7﹣2x ,CE =4﹣3=1cm ,∴y =12(1+4)×3﹣12(7﹣2x )×1=x +4. 综上所述,y =22884x x x x ⎧⎪-+-⎨⎪+⎩()()0223732x x x <≤<≤⎛⎫<≤ ⎪⎝⎭.(3)当0<x ≤2时∵QF =AF =x ,PF ⊥AD ,∴PQ =AP ,∵PQ =54cm ,x =54,∴x . 当2<x ≤3时,过点P 作PM ⊥CD ,∴四边形MPFD 是矩形,∴PM =DF =4﹣x ,MD =PF =x ,∴MQ =x ﹣(2x ﹣4)=4﹣x ,∵MP 2+MQ 2=PQ 2,∴(4﹣x )2+(4﹣x )2=2516,∵x =4±8>3(舍), 当3<x ≤72时,如图,∵PQ 2=CP 2+CQ 2,∴2516=1+(7﹣2x )2,∴x =258.综上所述:x =258或8. 27.(11分)问题提出:(1)如图1,已知△ABC ,试确定一点D ,使得以A ,B ,C ,D 为顶点的四边形为平行四边形,请画出这个平行四边形;问题探究:(2)如图2,在矩形ABCD中,AB=4,BC=10,若要在该矩形中作出一个面积最大的△BPC,且使∠BPC=90°,求满足条件的点P到点A的距离;问题解决:(3)如图3,有一座草根塔A,按规定,要以塔A为对称中心,建一个面积尽可能大的形状为平行四边形的草根景区BCDE.根据实际情况,要求顶点B是定点,点B到塔A的距离为50米,∠CBE=120°,那么,是否可以建一个满足要求的面积最大的平行四边形景区BCDE?若可以,求出满足要求的平行四边形BCDE的最大面积;若不可以,请说明理由.(塔A的占地面积忽略不计)【解析】解:(1)如图记为点D所在的位置.(2)如图,∵AB=4,BC=10,∴取BC的中点O,则OB>AB.∴以点O为圆心,OB=5长为半径作⊙O,⊙O一定与AD相交于P1,P2两点,连接BP1,P1C,P1O,∵∠BPC=90°,点P不能在矩形外;∴△BPC的顶点P在点P1或P2位置时,△BPC的面积最大,作P1E⊥BC,垂足为E,则OE=3,∴AP1=BE=OB﹣OE=5﹣3=2,由对称性得AP2=8.(3)可以,如图所示,连接BD,∵点A为□BCDE的对称中心,BA=50,∠CBE=120°,∴BD=100,∠BED=60°作△BDE的外接圆⊙O,则点E在优弧»BD上,取¼BED的中点E′,连接E′B,E′D,则E′B=E′D,且∠BE′D=60°,∴△BE′D为等边三角形.连接E′O并延长,经过点A至C′,使E′A=AC′,连接BC′,DC′,∵E′A⊥BD,∴四边形BC′DE′为菱形,且∠C′BE′=120°,作EF⊥BD,垂足为F,连接EO,则EF≤EO+OA﹣E′O+OA=E′A,∴S△BDE=12BD·EF≤12BD·E′A=S△E′BD,∴S□BCDE≤S□BC′DE′=2S△E′BD=1002sin60°=(m2)所以符合要求的□BCDE的最大面积为2.。
2020年江苏省南京市中考数学第三次模拟考试试卷学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.下列不等式组的解,在数轴上表示为如图所示的是( )A .1020x x ->⎧⎨+≤⎩B .1020x x -≤⎧⎨+<⎩C .1020x x +≥⎧⎨-<⎩D .1020x x +>⎧⎨-≤⎩2.在下列实数中,无理数是( )A .13B .πC .16D .2273.将如图所示的图案绕其中心旋转n °时与原图案完全重合,那么n 的最小值是( )A .60B .90C .120D .1804.把多项式m 2(a-2)+m (2-a )分解因式等于( )A .(a-2)(m 2+m )B .(a-2)(m 2-m )C .m (a-2)(m-1)D .m (a-2)(m+1)5.下列各式由左边到右边的变形中,是分解因式的为( ) A .ay ax y x a +=+)( B .4)4(442+-=+-x x x xC .)12(55102-=-x x x xD .x x x x x 3)4)(4(3162+-+=+-6.如图,∠1和∠2是同位角的是( )7.如图,长度为12cm 的线段AB 的中点为M C ,点将线段MB 分成:1:2MC CB =,则线段AC 的长度为( )A .2cmB .8cmC .6cmD .4cm8.如图,将三角形向右平移2个单位长度,再向上平移3个单位长度,则平移后3个顶点的坐标是()A.(2,3),(3,4),(1,7)B.(-2,3),(4,3),(1,7)C.(-2,3),(3,4),(1,7)D.(2,-3),(3,3),(1,7)9.在一个暗箱里放有a个除颜色外其它完全相同的球,这a个球中红球只有3个.每次将球搅拌均匀后,任意摸出一个球记下颜色再放回暗箱.通过大量重复摸球实验后发现,摸到红球的频率稳定在25%,那么可以推算出a大约是()A.12 B.9 C.4 D.310.下列推理正确的是()A.∵a>0,b>0,∴a>bB.∵a>0,b>a,∴b>0C.∵a>0,a>6,∴b>0D.∵a>0,a>b,∴ab>O11.某班共有45位同学,其中近视眼占60%,下列说法不正确...的是()A.该班近视眼的频率是0.6 B.该班近视眼的频数是27C.该班近视眼的频数是0.6 D.该班有18位视力正常的同学12.如图,已知圆锥形烛台的侧面积是底面积的 2 倍,则两条母线所夹的∠AOB 为()A.30°B.45°C.60°D.120°13.如图,在高楼前D点测得楼顶的仰角为30o,向高楼前进60米到C点,又测得仰角为45o,则该高楼的高度大约为()A.82米B.163米C.52米D.30米14.如图所示,一只蚂蚁在正方形纸片上爬行,正好停在质数上的概率是()A.14B.13C.49D.5915.兴趣小组的同学要测量树的高度.在阳光下,一名同学测得一根长为1米的竹竿的影长为0.4米,同时另一名同学测量树的高度时,发现树的影子不全落在地面上,有一部分落在教学楼的第一级台阶上,测得此影子长为0.2米,一级台阶高为0.3米,如图所示,若此时落在地面上的影长为4.4米,则树高为( )A .11.5米B .11.75米C .11.8米D .12.25米16.如图,跷跷板的支柱OC 与地面垂直,点O 是AB 的中点,AB 可以绕着点O 上下转动.当A 端落地时,∠OAC =20°,那么横板上下可转动的最大角度(即∠A′OA )是( )A .40°B .30°C .20°D .10°二、填空题17.如图,点 M 是⊙O 外一点,MC 、MD 分别交⊙O 于点B 、C 、A 、D ,弦AC 、BD 交于点 P ,且∠DAC=40°, ∠ADB=10°,那么∠DBC= 度,∠ACB= 度,∠CMD= 度.18.已知2()4|5|x y z x z z +-++-=--,那么32z x y -+的值是 .19.已知方程组3523x y y x =-⎧⎨=+⎩,用代入法消去x ,可得方程 .(不必化简). 20. 计算:32()5-= ;332⨯= ;3(32)⨯= ;32(3)(4)-⨯-= ; 22233()44--= . 三、解答题21.如图所示,F 表示路口交通信号灯的位置,一辆小汽车停在一辆货车后面,点C 表示 小汽车司机的头部,间小汽车司机抬头向正前方望去,他能否看到信号灯F ?为什么?22.如图,在直角坐标系中,P是第一象限的点,其坐标是(3,y),且OP与x轴的正半轴的夹角α的正切值是43,求(1)y的值;(2)角α的正弦值.23.将图中的△ABC 依次做下列变换,画出相应的图形.(1)沿y轴正向平移1个单位;(2)以B点为位似中心,放大到2倍.24.已知⊙O的半径为10cm,弦MN∥EF,且MN= 12cm,EF=16cm,求弦 MN和EF之间的距离.25.要做一个高是8cm,底面的长比宽多5cm,体积是528cm3的长方体木箱,问底面的长和宽各是多少?26.已知一个几何体的三视图和有关的尺寸如图所示.求这个几何体的表面积.27.已知一个几何体的三视图和有关的尺寸如图,写出这个几何体的名称,并求出这个几何体的表面积.28.尺规作图:把图(实线部分)补成以虚线l为对称轴的轴对称图形,你会得到一只美丽蝴蝶的图案(不用写作法,保留作图痕迹).29.在依次标有数字3、6、9、12……的卡片中,小明拿到3张卡片,它们的数字相邻,且数字之和为117.(1)小明拿到的卡片是标有哪些数字的?(2)你能否拿到数字相邻的4张卡片,使其数字之和为177?若能,请指出这4张卡片中数字最大的卡片,若不能,请说明理由.30.七(1)班一次数学测验平均成绩是 85 分,老师以平均成绩为基准,记为 0,超过 85 分的记为正,那么92 分、78 分各记作什么?若老师把某 3 名同学的成绩简记为:-5,0,+8,则这3 名同学的实际成绩分别为多少分?【参考答案】学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.D2.B3.C4.C5.C6.D7.B8.C9.A10.B11.C12.C13.A14.C15.C16.A二、填空题17.40,10,3018.-919.2(35)3y y =-+20. 8125-,24,216,432,4516三、解答题21.由图可知小汽车司机看不到信号灯F ,因为信号灯被前面的汽车挡住了,处于小汽车司机的盲区中.22.(1)4;(2)54. 23.如图所示.24.如解图所示,过点O作OA⊥MN于点 A,作OB⊥EF于点B.∵MN∥EF,∴.A、O、B 三点在一直线上.连结OM、OE,∵MN=12 cm,EF= 16 cm,∴AM= 6 cm,BE= 8 cm,∴.Rt△AOM 和 Rt△BOE 中,221068OA=-=,22086OB l=-=∴ AB=8+6= 14 cm 或 AB=8—6=2 cm25.11 cm,6cm26.1432422352362⨯⨯⨯+⨯+⨯+⨯=(cm2)27.该几何体为直三棱柱;表面积为36cm228.如图:29.(1)小明拿到的卡片标有的数字是36、39、42(2)设相邻的4张卡片为x,x+3,x+6,x+9,则x+(x+3)+(x+6)+(x+9)=117,994x=不是整数,∴不能拿到数字相邻的4张卡片,使其数字之和为177.30.各记作+7,-7;实际成绩分别为 80 分,85分,93 分。
2020年江苏省南京市九年级中考数学仿真模拟训练卷参考答案一.选择题(共6小题,满分12分,每小题2分)1.解:∵22=4,∴4的算术平方根是2.故选:B.2.解:(x3y)2=x6y2.故选:D.3.解:A、棱柱的侧面是矩形,故选项A原说法错误;B、球的表面是曲面,故选项B原说法错误;C、棱柱的侧棱都相等,侧棱与底棱不一定相等,故选项C原说法错误;D、圆锥的侧面是曲面,底面是平面,故选项D原说法正确;故选:D.4.解:∵甲、乙、丙、丁4支仪仗队队员身高的方差中丁的方差最小,∴丁仪仗队的身高更为整齐,故选:D.5.解:∵FC∥AB,∴∠ADF=∠F.∵∠AED=∠CEF,DE=EF,∴△ADE≌△CEF(ASA).∴AD=CF=5.又∵BD=2,∴AB=AD+BD=5+2=7,故选:D.6.解:过点A作AD⊥x轴于点D,过点B作BE⊥x轴于点E,过点C作CF∥y轴,过点A作AF∥x轴,交点为F,延长CA交x轴于点H,∵四边形AOBC是矩形,∴AC∥OB,AC=OB,∴∠CAF=∠BOE=∠CHO,在△ACF和△OBE中,,∴△CAF≌△BOE(AAS),∴BE=CF=4﹣1=3,∵∠AOD+∠BOE=∠BOE+∠OBE=90°,∴∠AOD=∠OBE,∵∠ADO=∠OEB=90°,∴△AOD∽△OBE,∴,即,∴OE=,即点B(,3),∴AF=OE=,∴点C的横坐标为:﹣(2﹣)=﹣,∴点C(﹣,4).故选:B.二.填空题(共10小题,满分20分,每小题2分)7.解:﹣5的倒数是﹣;﹣的相反数是.故答案为:﹣;.8.解:将118000用科学记数法表示为:1.18×105.故答案为:1.18×105.9.解:根据题意得,2﹣x≠0,解得x≠2.故答案为:x≠2.10.解:∵a是方程3x2﹣x﹣2=0的一个根,∴3a2﹣a﹣2=0,故3a2﹣a=2,则5+2a﹣6a2=5﹣2(3a2﹣a)=5﹣2×2=1.故答案为:1.11.解:∵反比例函数y=﹣,﹣4<0,∴在每个象限内,y随x的增大而增大,∵A(﹣4,y1),B(﹣1,y2)是反比例函数y=﹣图象上的两个点,﹣4<﹣1,∴y1<y2,故答案为:y1<y2.12.解:由题意可得:杯子内的筷子长度为:=15,则筷子露在杯子外面的筷子长度为:18﹣15=3(cm).故答案为:3.13.解:由条形统计图可得:该市私人汽车拥有量年净增量最多的是2016年,净增183﹣150=33(万辆),由折线统计图可得,私人汽车拥有量年增长率最大的是:2015年.故答案为:2016,2015.14.解:由作图步骤可得:MN垂直平分AB,则AD=BD,∵BC=5,CD=2,∴BD=AD=BC﹣DC=5﹣2=3.故答案为:3.15.解:∵四边形ABCD是菱形,∠D=78°,∴∠ACB=∠DCB=(180°﹣∠D)=51°,∵四边形AECD是圆内接四边形,∴∠AEB=∠D=78°,∴∠EAC=∠AEB﹣∠ACE=27°,故答案为:27.16.解:因为正方形AECF的面积为50cm2,所以AC=cm,因为菱形ABCD的面积为120cm2,所以BD=cm,所以菱形的边长=cm.故答案为:13.三.解答题(共11小题)17.解:原式=•﹣x=x﹣1﹣x=﹣1.18.解:(Ⅰ)解不等式①,得:x<3;(Ⅱ)解不等式②,得:x≥﹣2;(Ⅲ)把不等式①和②的解集在数轴上表示出来如下:(Ⅳ)原不等式组的解集为:﹣2≤x<3,故答案为:x<3、x≥﹣2、﹣2≤x<3.19.证明∵四边形ABCD为平行四边形∴AB∥CD,AB=CD∴∠ABD=∠CDB在△ABE与△CDF中∴△ABE≌△CDF(ASA)∴AE=CF20.解:设1号车的平均速度为x千米/时,则2号车的平均速度是1.2x千米/时,根据题意可得:﹣=,解得:x=40,经检验得:x=40是原方程的根,并且符合题意,则1.2x=48,答:2号车的平均速度是48千米/时.21.解:(1)所抽取样本的平均质量为(1.5+1.4+1.6+2+1.8)÷5=1.66(千克/条),所以可估计所有200只甲鱼的总质量约为1.66×200=332(千克).(2)该养殖专业户卖出全部甲鱼的收入约为332×150=49800元.22.解:可能出现的所有结果列表如下:甲乙丙(甲,丙)(乙,丙)丁(甲,丁)(乙,丁)共有4种可能的结果,且每种的可能性相同,其中恰好抽到由男生甲、女生丙和这位班主任一起上场参赛的结果有1种,所以恰好抽到由男生甲、女生丙和这位班主任一起上场参赛的概率为.23.解:在Rt△ACD中,∵tan∠ACD=,∴tan30°=,∴,∴AD=3m,在Rt△BCD中,∵∠BCD=45°,∴BD=CD=9m,∴AB=AD+BD=3+9(m).24.解:(1)抛物线y=ax2﹣4与x轴的负半轴交于点A、与y轴交于点B,则点B(0,﹣4),AB=2,则OA=2,故点A(﹣2,0),将点A的坐标代入抛物线表达式得:0=4a﹣4,解得:a=1,故抛物线的表达式为:y=x2﹣4;(2)设点C(0,b),,则OA:y P=1:3,则y P=3b,则直线AC的表达式为:y=kx+b,将点A的坐标代入上式得:0=﹣2k+b,解得:k=b,直线AC的表达式为:y=bx+b,联立直线AC与抛物线的表达式并整理得:x2﹣bx﹣(4+b)=0,则﹣2+x P=b,解得:x P=2+b,将点P的坐标代入抛物线表达式并解得:b=0或4(舍去0),故点P(4,12).25.解:(1)30÷60=0.5(h),120+30=150(km),故点M的坐标为(0.5,150);(2)120÷60=2(h),则F(2,0),设线段EF所表示的y与x之间的函数关系式为y=k1x+b1,则,解得.故线段EF所表示的y与x之间的函数关系式为y=﹣60x+120;150÷150=1(h),0.5+1=1.5(h),则N(1.5,0),设线段MN所表示的y与x之间的函数关系式为y=k2x+b2,则,解得.故线段MN所表示的y与x之间的函数关系式为y=﹣150x+225;(3)在乙车到达C地前,相遇前两车之间的距离为30km,30÷(60+60)=0.25(h),(30+60×0.5﹣30)÷(150﹣60)+0.5=30÷90+0.5=+0.5=(h),在乙车到达C地前,相遇后两车之间的距离为30km,(30+60×0.5+30)÷(150﹣60)+0.5=90÷90+0.5=1+0.5=1.5(h)(舍去)故在乙车到达C地前,在0.25h或h时两车之间的距离为30km.故答案为:(0.5,150).26.解:(1)∵∠BCD=68°,∠CF A=108°,∴∠B=∠CF A﹣∠BCD=108°﹣68°=40°,∴∠ADC=∠B=40°.(2)解:∵四边形ABCD是正方形,∴CD=AD=BC=AB=9,∠D=∠C=90°,∴CF=BC﹣BF=2,在Rt△ADE中,∠DAE+∠AED=90°,∵AE⊥EF于E,∴∠AED+∠FEC=90°,∴∠DAE=∠FEC,∴△ADE∽△ECF,∴,设DE=x,则EC=9﹣x,∴,解得x1=3,x2=6,∵DE>CE,∴DE=6.27.解:(1)①由题意知:OA=3,OB==,则d的最小值是3,最大值是;②根据平衡点的定义,点P1与点O是线段AB的一对平衡点,故答案为3,,P1.(2)如图2中,由题意点D到⊙O的最近距离是4,最远距离是6,∵点D与点E是⊙O的一对平衡点,此时需要满足E1到⊙O的最大距离是4,即OE1=3,可得x==,同理:当E2到⊙的最小距离为是6时,OE2=7,此时x==3,综上所述,满足条件的x的值为≤x≤3.(3)∵点C在以O为圆心5为半径的上半圆上运动,∴以C为圆心2为半径的圆刚好与弧相切,此时要想上任意两点都是圆C的平衡点,需要满足CK≤6,CH≤6,如图3﹣1中,当CK=6时,作CM⊥HK于M.由题意:,解得:或(舍弃),如图3﹣3中,当CH=6时,同法可得a=,b=,在两者中间时,a=0,b=5,观察图象可知:满足条件的b的值为≤b≤5.。
2020年江苏省南京市中考数学模拟试卷 学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.已知,在等腰梯形 ABCD 中,AD ∥BC ,AD= 4 cm ,BC= 10 cm ,AB = 5 cm ,以点A 为圆心,AD 为半径作⊙A ,则⊙A 与 BC 的位置关系是( )A .相离B . 相切C . 相交D .不能确定2.二次函数221(0)y kx x k =++<的图象可能是( )3. 地图上1cm 2 面积表示实际面积400m 2,该地图的比例尺是( )A .1 :400B .1:4000C .1:2000D .1:200 4.抛物线24y x x =-的对称轴是( )A .直线x=2B .直线x=-2C .直线x=4D .直线x=-4 5.如图,等腰梯形ABCD 下底与上底的差恰好等于腰长,DE AB ∥.则DEC ∠等于( )A .75°B .60°C .45°D .30°6.某商店出售下列四种形状的地砖:①正三角形;②正方形;③正五边形;④正六边形.若只选购其中一种地砖镶嵌地面,可供选择的地砖共有( )A .4种B .3种C .2种D .1种7.如图,所有的四边形都是正方形,所有的三角形都是直角三角形,其中最大的正方形的边长为10cm ,正方形A 的边长为6cm 、B 的边长为5cm 、C 的边长为5cm ,则正方形D 的边长为( )A . 14cmB .4cmC .15cmD .3cm8.用长为4 cm 、5 cm 、6 cm 的三条线段围成三角形的事件是( )A .随机事件B .必然事件C .不可能事件D .以上都不是9.与23a b 是同类项的是( )A .2aB .2abC .23abD .24ba 10. 在数轴上表示-1.2 的点在( )A .-1 与0之间B .-2 与- 1 之间C .1 与2之间D .-1 与 1 之间 二、填空题11.如图,过点P 画⊙O 的切线PQ ,Q 为切点,过P ﹑O 两点的直线交⊙O 于A ﹑B 两点,且2sin ,12,5P AB ∠==则OP=__________. 12.已知512a -=,512b +=,则 a 、b 的比例中项为 . 13.如图,已知:⊙O 的半径为5,弦AB = 8,P 是弦AB 上任意一点,则OP 的取值范围是 .14.将一长方形的纸片按如图方式折叠,BC ,BD 为折痕,则∠CBD= 度.15.某中学今年“五一”长假期问要求学生参加一项社会调查活动.为此,小明在他所居住 小区的600个家庭中,随机调查了50个家庭在新工资制度实施后的收人情况,并绘制了如下的频数分布表和频数分布直方图(收入取整数,单位:元).分组频数 频率 1000~12003 0.060 1200~140012 0.240 1400~160018 0.360 1600~l8000.200 1800~20005 2000~22002 0.040 合计 50 1.000请你根据以上提供的信息,解答下列问题:(1)补全频数分布表和频数分布直方图;(2)这50个家庭收入的中位数落在第 小组内; (3)请你估算该小区600个家庭中收入较低(不足l400元)的家庭个数大约有 个.16.若点A 的坐标是(-7,-4),则它到x 轴的距离是 .17.点A(1-a ,3),B(-3,b)关于y 轴对称,则b a = .18.用有45°直角三角板画∠AOB=45°,并将三角板沿OB 方向平移到如图所示的虚线处后绕点M 逆时针方向旋转22°,则三角板的斜边与射线OA 的夹角α为 .19.直接写出因式分解的结果:(1)=-222y y x ;(2)=+-3632a a .20.看图填空.(A 、0、B 在一条直线上)(1)∠AOD= + =∠AOE- ;(2)∠BOE+∠EOC= ;(3)∠EOA-∠AOD= ;(4)∠AOC+ = 180°;(5)若0C 平分∠AOD ,0E 平分∠BOD ,则∠AOD=2 =2 .∠BOE= =12.三、解答题21.判断 222,1 2为比例中项的一个比例式.22.求出抛物线225y x x =-++的对称轴和顶点坐标.23.如图,在△ABC中,∠ACB=90°,CA=CB,CD⊥AB,垂足是D,E是AB上一点,EF ⊥AC,垂足是F,G是BC上一点,CG=EF.求证:△DFG是等腰直角三角形.24.某商场今年二月份的营业额为400万元,三月份的营业额比二月份增加10%,五月份的营业额达到633.6万元.求三月份到五月份营业额的平均月增长率.25.从甲、乙、丙三个厂家生产的同一种产品中,各抽出8件产品,对其使用寿命进行跟踪调查,结果如下(单位:年):甲:3,4,5,6,8,8,8,10;乙:4,6,6,6,8,9,12,13;丙:3,3,4,7,9,10,11,12.三家在广告中都称该种产品的使用寿命是8年,请根据调查结果判断厂家在广告中分别运用了平均数、众数、中位数的的哪一种集中趋势的特征数.26.上海到北京的航线全程为 s(km),飞行时间需 a(h). 而上海到北京的铁路全长为航线长的m倍,乘车时间需 b(h). 问飞机的速度是火车速度的多少倍?(用含 a,b,s,m 的分式表示)27.读句画图,并回答问题.(1)画三角形ABC,取AB的中点M;(2)过点M画直线MN∥BC,交AC于点N;(3)过点M画直线MP∥AC,交BC于点P;(4)测量AN与NC,BP与PC是否相等?(5)测量MN与BC,MP与AC之间的关系?(6)再重新任意画一个三角形,重复以上的画图步骤,观察(5)的关系是否仍然成立?28.当 x= -2 时,代数式 x(2-m)+4 的值等于18,求当 x=3 时这个代数式的值.29. 在一次环保知识测试中,三年级一班的两名学生根据班级成绩(分数为整数)分别绘制了组距不同的频数分布直方图,如图1、图2.已知,图1从左到右每个小组的频率分别为:0.04,0.08,0.24,0.32,0.20,0.12,其中68.5~76.5小组的频数为12;图2从左到右每个小组的频数之比为1∶2∶4∶7∶6∶3∶2,请结合条件和频数分布直方图回答下列问题:(1)三年级一班参加测试的人数为多少? (2)若这次测试成绩80分以上(含80分)为优秀,则优秀率是多少?(3)若这次测试成绩60分以上(含60分)为及格,则及格率是多少?30.如图,△OAB 中,OA=OB ,以O 为圆心的圆交BC 于点C 、D ,求证:AC=BD. D C B A O【参考答案】学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.B2.C3.C4.A5.B6.B7.A8.B9.D10.B二、填空题11.1512.1±13.≤OP14.53≤9015.(1)略;(2)三;(3)18016.417.-818.22°19.(1))1xa(3-y;(2)2)1)(+x1(2-20.(1)∠AOC,∠COD,∠DOE (2)∠BOC (3)∠DOE (4)∠COB (5)∠AOC,∠COD,∠DOE,∠BOD三、解答题21.∵2×=.22.顶点坐标(1,6),对称轴为直线x=1.23.证△AFD≌△CGD,FD=GD,∠ADF=∠CDG,得∠FDG=90°24.20%25.甲使用了众数,乙使用了平均数,丙使用了中位数26.b am倍27.(1)(2)(3)略 (4)AN=NC,BP=PC;(5)MN=12BC,MP=12AC;(6)仍然成立.28.-1729.⑴50;⑵44%;⑶96%.30.证:如图过O作OE⊥AB于E,∵OA=OB,OE⊥AB于E,∴AE=BE.又∵CD是⊙O的弦,OE⊥CD,∴CE=DE,∴AE-CE=BE-DE,即AC=BD.。
2020年江苏省南京市中考数学综合模拟试卷 学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.如图,分别是由若干个完全相同的小正方体组成的一个几何体的主视图和俯视图,则组成这个几何体的小正方体的个数是( )A .3个或4个B .4个或5个C .5个或6个D .6个或7个2.如图所示,草地上一根长5米的绳子,一端拴在墙角的木桩上,加一端栓着一只小羊R .那么,小羊在草地上的最大活动区域的面积是( )A .m 2213πB .m 2427πC .m 2213πD .m 2427π3. 关于2y x=,下列判断正确的是( ) A .y 随x 的增大而增大B .y 随x 的增大而减小C .在每一个象限内,y 随x 的增大而增大D .在每一个象限内,y 随x 的增大而减小4.下列多边形中,不能铺满地面的是 ( )A .五边形B .三角形C .四边形D .正六边形 5.若方程20ax bx c ++=(0a ≠)中,a ,b ,c 满足0a b c ++=,0a b c -+=,则方程的根是( )A .1,0B . -1,0C .1, -1D . 无法确定 6.弹簧的长度与所挂物体的质量关系为一次函数,如图所示,由图可知不挂物体时弹簧的长度为( )A .7 cmB .8 cmC .9 cmD .10 cm7.“上升数”是一个数中右边数字比左边数字大的自然数(如:34,568,2469等),任取一个两位数,是“上升数”的概率是( )A .21B .52C .53D .187 8.有下列长度的三条线段:①3、3、1;②2、2、4;③4、5、6;④4、4、3. 其中能构成等腰三角形的有( )A . ①④B . ①②④C . ②④D . ①② 9.等腰三角形的周长为l3,各边长均为自然数,这样的三角形有( ) A .0个B .l 个C . 2个D .3个 10.如图△ABC 中,AB 的中垂线交AC 于D ,AB =10,AC =8,△DBC 的周长是a ,则BC等于 ( )A . a -6B .a -8C .a -10D .10-a 二、填空题11.四边形ABCD 中,∠A=70°,欲使此四边形为平行四边形,那么∠B= ,∠C= .12.某村共有银行储户110户,存款在2~3万元之间的银行储户的频率是0.2,则该村存款在2~3万元的银行储户有 户.13.为了解全国初中生的睡眠状况,比较适合的调查方式是 (填“普查”或“抽样调查”).14.A 是坐标平面上的一点,若点A 与x 轴的距离是2,与y 轴的距离是l ,则点A 的坐标为 .15.直棱柱的上底面的面积为80cm 2,则下底面面积是 cm 2.16.一个正方体的每个面分别标有数字l ,2,3,4,5,6.根据下图中该正方体A 、B 、C 三种状态所显示的数字,可推出“?”处的数字是 .解答题17.估算方程2233x -=的解是 .18.计算:1009998976543+21-+-++-+--= .三、解答题19.小明为了测量某一高楼 MN的高,在离 N点 200 m 的 A处水平放置了一个平面镜,小明沿 NA 方向后退到点C 正好从镑中看到楼的顶点M,若 AC=l5m,小明的眼睛离地面的高度为1.6m,请你帮助小明计算一下楼房的高度(精确到0.1 m).20.AB 是半圆0的直径,C、D是半圆的三等分点,半圆的半径为R.(1)CD 与 AB 平行吗?为什么?(2)求阴影部分的面积.21.如图,已知矩形ABCD中,E是AD上的一点,F是AB上的一点,EF⊥EC,且EF=EC,DE=4cm,矩形ABCD的周长为32cm,求AE的长.22.某中学团委会为研究该校学生的课余活动情况,采取抽样的方法,从阅读、运动、娱乐、其他等四个方面调查了若干名学生的兴趣爱好,并将调查的结果绘制成了如下的两幅不完整的统计图(如图①,图②).(1)在这次研究中,一共调查了名学生.(2)“其他”在扇形图中所占的圆心角是度.(3)补全频数分布折线图.23.判断命题“两边及第三边上的高分别对应相等的两个三角形全等”的真假,并给出证明.24.求下列问题中两个变量的函数解析式,并写出自变量的取值范围,判断其是否为一次函数:现要利用64 m长的旧围栏建一个长方形的花圃.设花圃一边长x(m),分别写出下列变量和x的函数解析式:(1)花圃另一边长y(m);(2)花圃的面积S(m2).25.已知王明同学将父母给的钱按每月相等的数额存在储蓄盒内,准备捐给希望工程,盒内原有55元钱,两个月后盒内有85元钱.(1)求盒内钱数y(元)与存钱月数x(个)之间的函数解析式;(2)按上述方法,王明同学6个月后存到多少钱?几个月后能够存到235元钱?26.填空.已知:AB∥CD,(1)如图①,∠B+∠=∠BEC.理由如下:解:过点E 作EF ∥AB ,则∠l=∠B( ).∵EF ∥AB ,AB ∥CD( ),∴EF ∥CD( ),∴∠2=∠C( ).∵∠BEC=∠l+∠2,∴∠BEC=∠B+∠C( ).(2)图②中,∠B ,∠E ,∠G ,∠F ,∠C 的数量关系是 ; (3)图③中,∠B ,∠E ,∠F ,∠G ,∠H ,∠M ,∠C 的数量关系是 .27.如图所示,已知线段a ,c ,求作Rt △ABC ,使BC=a ,AB=c .28.(1)用如下图所示的两种正方形纸片甲、乙各 1 张,长方形纸片丙 2 张拼成一个大长方形(画出图示),并运用面积之间的关系,将一个多项式分解因式,并写出这个因式分解的过程.(2)请运用上面的方法将多项式2244a ab b ++分解因式,则需要正方形纸片甲 张,正方形纸片乙 张,长方形纸片丙 张拼成一个大的正方形. 画出图形并写出这个因式分解的过程.(3)假若要将多项式2254a ab b ++分解因式,你将利用什么样的图形的面积关系将它分解因式?29.观代营养学家用身体质量指数判断人体健康状况,这个指数等于人体质量(kg)与人体身高(m)平方的商,一个健康人的身体质量指数在20~25之间,身体质量指数高于30,属于不健康的胖.(1)设一个人的质量为W(kg),身高为h(m),求他的身体质量指数;(2)张老师的身高是1.75 m,他的质量是60kg,求他的身体质量指数,并判断张老师是否健康.30.(精确到0.001 ).【参考答案】学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.B2.B3.D4.A5.C6.D7.B8.A9.D10.B二、填空题110°,70°12.2213.抽样调查14.(1,2)或(-1,2)或(1,-2)或(-1,-2)15.8016.617.如1x =-18.50三、解答题19.∴BC ⊥CA ,MN ⊥AN ,∴∠C=∠N ,∵∠BAC=∠MAN..∴△BCA ∽△MNA. ∴BC AC MN AN =,即1.615200MN =, 1.620015213()MN m =⨯÷≈⋅. 20.(1)由题意知⌒AC =⌒CD =⌒DB ,∴∠CDA=∠DAS, ∴CD ∥AB.(2)由题意知⌒AC 的度数为 60°,∴∠AOC=∠COD=∠DOB=60°,22,64ADC OCD R S s R π∆==扇形,∴222(6464R S R R ππ=+=+阴影 21.解:在Rt △AEF 和Rt △DEC 中,∵EF ⊥CE ,∴∠FEC=90°,∴∠AEF+∠DEC=90°,而∠ECD+∠DEC=90°,∴∠AEF=∠ECD .又∠FAE=∠EDC=90°,EF=EC ,∴Rt △AEF ≌Rt △DCE .∴AE=CD . AD=AE+4.∵矩形ABCD 的周长为32 cm ,∴2(AE+AE+4)=32.解得,AE=6 (cm ).(1)100;(2)36;(3)略23.假命题,证明略24.(1)y=x+32(0<x<32)是一次函数;(2)232=-+(O<x<32)不是一次函数S x x25.(1)y=15x+55;(2)145元,l2个月26.(1)略 (2)∠B+∠G+∠C=∠E+∠F (3)∠B+∠F+∠H+∠C=∠E+∠G+∠M27.提示:两种情况28.(1)如图 1. 222++=+2()a ab b a b(2)1,4,4(如图 2);22244(2)++=+a ab b a b(3)需要 1张正方形纸片甲,4张正方形纸片乙,5张长方形纸片丙拼成一个大的长方形(如图 3)29.(1)身体质量指数为2h ω (2)张老师的身体质量指数为26019.6(1.75)≈,张老师偏瘦,但基本健康. 30.12,12)10.178-=≈。
2020年江苏省南京市中考数学模拟试题含答案一、选择题(本大题共10小题,每小题3分,共30分.在每小题所给出的四个选项中,只有一项是正确的,请用2B 铅笔把答题卡上相应的选项标号...........涂.黑.) 1.-2的倒数是( )A .-12B .12 C .±2 D .22.函数y =x -2中自变量x 的取值范围是( )A .x >2B .x ≥2C .x ≤2D .x ≠2 3.s in45°的值是( )A .12B .22C .32D .1 4.下列地方银行的标志中,既不是轴对称图形,也不是中心对称图形的是 ( )5.已知某圆锥的底面半径为3 cm ,母线长5 cm ,则它的侧面展开图的面积为( )A .30 cm 2B .15 cm 2C .30π cm 2D .15π cm 2 6.六多边形的内角和为( )A .180°B .360°C .720°D .1080° 7.已知,AB 是⊙O 的弦,且OA =AB ,则∠AOB 的度数为( )A .30°B .45°C .60°D .90°8.某区新教师招聘中,七位评委独立给出分数,得到一列数.若去掉一个最高分和一个最低分,得到一列新数,那么这两列数的相关统计量中,一定相等的是 ( ) A .中位数 B .众数 C .方差 D .平均数 9.在△ABC 中,AC =4,AB =5,则△ABC 面积的最大值为( ) A .6 B .10 C .12 D .2010.直线l :y =mx -m +1(m 为常数,且m ≠0)与坐标轴交于A 、B 两点,若△AOB (O 是原点)的面积恰为2,则符合要求的直线l 有( )A .D .B .C .A .1条B .2条C .3条D .4条二、填空题(本大题共8小题,每小题2分,共16分.不需写出解答过程,只需把答案直接填写在答题卡上相应的位置.........) 11.分解因式:xy ―x = .12.去年无锡GDP(国民生产总值)总量实现约916 000 000 000元,该数据用科学记数法表示为 元. 13.分式方程4x = 2x +1的解是 .14.若点A (1,m )在反比例函数y =3x的图像上,则m 的值为 .15.写出命题“两直线平行,同位角相等”的结论部分: . 16.如图,菱形ABCD 中,对角线AC 交BD 于O ,AB =8,E 是CD 的中点,则OE 的长等于___________.17.如图,∠A =110°,在边AN 上取B ,C ,使AB =BC .点P 为边AM 上一点,将△APB 沿PB 折叠,使点A 落在角内点E 处,连接CE ,则∠BPE +∠BCE = °.18.已知,在平面直角坐标系中,点A (4,0),点B (m ,33m ),点C 为线段OA 上一点(点O 为原点),则AB +BC 的最小值为 .三、解答题(本大题共10小题,共84分.请在答题卡指定区域.......内作答,解答时应写出文字说明、证明过程或演算步骤) 19.(本题满分8分)计算:(1)9- (-2)2+(-0.1)0; (2)(x ―2)2―(x +3)(x ―1).20.(本题满分8分)计算:ABC EPM N(第17题)(第16题) ABECDO(1)解不等式:5+x ≥3(x -1); (2)解方程组:⎩⎪⎨⎪⎧x =3-y , ……①2x +y =5.……②21.(本题满分8分)已知,如图,等边△ABC 中,点D 为BC 延长线上一点,点E 为CA 延长线上一点,且AE =DC ,求证:AD =BE .22.(本题满分8分)某校为迎接体育中考,了解学生的体育情况,学校随机调查了本校九年级50名学生“30秒跳绳”的次数,并将调查所得的数据整理如下:成绩段 频数 频率 0≤x <20 5 0.120≤x <40 10a40≤x <60 b 0.1460≤x <80 mc 80≤x <10012n根据以上图表信息,解答下列问题:AC BDE30秒跳绳次数的频数、频率分布表30秒跳绳次数的频数分布直方图5 10 155 10161220 40 60 80 100 频数(人)跳绳次数(1)表中的a = ,m = ;(2)请把频数分布直方图补充完整;(画图后请标注相应的数据)(3)若该校九年级共有600名学生,请你估计“30秒跳绳”的次数60次以上(含60次)的学生有多少人?23.(本题满分8分)在2017年“KFC ”篮球赛进校园活动中,某校甲、乙两队进行决赛,比赛规则规定:两队之间进行3局比赛,3局比赛必须全部打完,只要赢满2局的队为获胜队,假如甲、乙两队之间每局比赛输赢的机会相同,且乙队已经赢得了第1局比赛,那么甲队获胜的概率是多少?(请用“画树状图”或“列表”等方法写出分析过程)24.(本题满分8分)已知,如图,线段AB ,利用无刻度的直尺和圆规,作一个满足条件的△ABC :① △ABC 为直角三角形;② tan ∠A =13.(注:不要求写作法,但保留作图痕迹)25.(本题满分8分)在一张足够大的纸板上截取一个面积为3600平方厘米的矩形纸板ABCD ,AB如图1,再在矩形纸板的四个角上切去边长相等的小正方形,再把它的边沿虚线折起,做成一个无盖的长方体纸盒,底面为矩形EFGH ,如图2.设小正方形的边长为x 厘米. (1)当矩形纸板ABCD 的一边长为90厘米时,求纸盒的侧面积的最大值; (2)当EH :EF =7:2,且侧面积与底面积之比为9:7时,求x 的值.26.(本题满分8分)已知二次函数y =ax 2-8ax (a <0)的图像与x 轴的正半轴交于点A ,它的顶点为P .点C 为y 轴正半轴上一点,直线AC 与该图像的另一交点为B ,与过点P 且垂直于x 轴的直线交于点D ,且CB :AB =1:7. (1)求点A 的坐标及点C 的坐标(用含a 的代数式表示);(2)连接BP ,若△BDP 与△AOC 相似(点O 为原点),求此二次函数的关系式.(图2)(图1) ABCDE FGH27.(本题满分10分)如图,一次函数y =-12x +m (m >0)的图像与x 轴、y 轴分别交于点A 、B ,点C 在线段OA 上,点C 的横坐标为n ,点D 在线段AB 上,且AD =2BD ,将△ACD 绕点D旋转180°后得到△A 1C 1D .(1)若点C 1恰好落在y 轴上,试求n m的值;(2)当n =4时,若△A 1C 1D 被y 轴分得两部分图形的面积比为3:5,求该一次函数的解析式.O AB CD C 1 A 1 xy28.(本题满分10分)阅读理解:小明热爱数学,在课外书上看到了一个有趣的定理——“中线长定理”:三角形两边的平方和等于第三边的一半与第三边上的中线的平方和的两倍.如图1,在△ABC 中,点D 为BC 的中点,根据“中线长定理”,可得:AB 2+AC 2=2AD 2+2BD 2.小明尝试对它进行证明,部分过程如下:解:过点A 作AE ⊥BC 于点E ,如图2,在Rt △ABE 中,AB 2=AE 2+BE 2,同理可得:AC 2=AE 2+CE 2,AD 2=AE 2+DE 2, 为证明的方便,不妨设BD =CD =x ,DE =y , ∴AB 2+AC 2=AE 2+BE 2+AE 2+CE 2=…… (1)请你完成小明剩余的证明过程;理解运用:(2) ① 在△ABC 中,点D 为BC 的中点,AB =6,AC =4,BC =8,则AD =_______;② 如图3,⊙O 的半径为6,点A 在圆内,且OA =22,点B 和点C 在⊙O 上,且∠BAC =90°,点E 、F 分别为AO 、BC 的中点,则EF 的长为________;拓展延伸:(3)小明解决上述问题后,联想到《能力训练》上的题目:如图4,已知⊙O 的半径为55,以A (−3,4)为直角顶点的△ABC 的另两个顶点B ,C 都在⊙O 上,D 为BC 的中点,求AD 长的最大值.请你利用上面的方法和结论,求出AD 长的最大值.ABCD (图1)ABCD E (图2)OA E CBFAB CDO xy(图4)参考答案与评分标准一、选择题:1.A 2.B 3.B 4.D 5.D 6.C 7.C 8.A 9.B 10.C 二、填空题: 11.x (y -1)12.9.16×1011 13.x =-2 14.3 15.同位角相等 16.417.70°18.2 3三、解答题:19.解:(1)原式=3-4+1 ……(3分)(2)原式=x 2-4x +4-(x 2+2x -3) …(2分)=0. ………(4分) =x 2-4x +4-x 2-2x +3…(3分)=-6x +7.……(4分)20.解:(1)5+x ≥3x -3 …(2分) (2)把①代入②,得y =1; …(2分)∴2x ≤8 …(3分) 把y =1代入①,得x =2. …(3分)∴x ≤4.…(4分) ∴原方程组的解为⎩⎪⎨⎪⎧x =2,y =1.…(4分)21.证明:在等边△ABC 中,AB =CA ,∠BAC =∠ACB =60°,∴∠EAB =∠DCA =120°.………(2分)在△EAB 和△DCA 中,⎩⎪⎨⎪⎧AE =DC ,∠EAB =∠DCA ,AB =CA .………(5分)∴△EAB ≌△DCA ,………(6分) ∴AD =BE .………(8分) 22.(1)a =0.2,m =16;……(4分) (2)图略,柱高为7;……(6分)(3)600×16+1250=336(人).……(8分)23.解:画树状图,得(画树状图或列表正确,得5分)∵共有4种等可能的结果,其中甲队获胜的情况有1种,………(6分) ∴甲队获胜的概率为:P (甲队获胜)=14;……………………(8分)24.解:(1)延长AB 至M ,使得AM =3AB ;………(3分) (2)过点M 作MN ⊥AB ,且截取MN =AB ;………(5分)(3)过点B 作AB 的垂线,交AN 于点C .………(7分) ∴Rt △ABC 即为所求.………(8分)作出垂线或垂直,得2分;构出3倍或13,得3分;构图正确,得2分;结论1分.25.解:(1)S 侧=2[x (90-2x )+x (40-2x )] =-8x 2+260x …………………(2分)=-8(x -654)2+42252.………………………………………(3分)∵-8<0,∴当x =654时,S 侧最大=42252.…………………(4分)(2)设EF =2m ,则EH =7m ,………………………………………(5分)则侧面积为2(7mx +2mx )=18mx ,底面积为7m ·2m =14m 2, 由题意,得18mx :14m 2=9:7,∴m =x . …………………(7分) 则AD =7x +2x =9x ,AB =2x +2x =4x由4x ·9x =3600,且x >0,∴x =10.…………………………(8分)26.解:(1)P (4,-16a ),A (8,0),…………………………(2分)∵CB :AB =1:7,∴点B 的横坐标为1,…………(3分) ∴B (1,-7a ),∴C (0,-8a ).………………………(4分) (2)∵△AOC 为直角三角形,∴只可能∠PBD =90°,且△AOC ∽△PBD .………(5分) 设对称轴与x 轴交于点H ,过点B 作BF ⊥PD 于点F ,易知,BF =3,AH =4,DH =-4a ,则FD =-3a ,∴PF =-9a , 由相似,可知:BF 2=DF ·PF ,∴9=-9a ·(-3a ),……(6分)ABMNC 第2局 第3局甲乙甲乙甲 乙∴a =33, a =-33(舍去).…………………(7分) ∴y =-33x 2-833x .…………………(8分) 27.解:(1)由题意,得B (0,m ),A (2m ,0).……………………………(1分)如图,过点D 作x 轴的垂线,交x 轴于点E ,交直线A 1C 1于点F , 易知:DE =23m ,D (23m ,23m ) ,C 1(43m -n ,43m ).………………(3分)∴43m -n =0,∴n m =43;……………………………………………(4分) (2)由(1)得,当m >3时,点C 1在y 轴右侧;当2<m <3时,点C 1在y 轴左侧.① 当m >3时,设A 1C 1与y 轴交于点P ,连接C 1B ,由△A 1C 1D 被y 轴分得两部分图形的面积比为3:5,∴S △BA 1P :S △BC 1P =3:1, ∴A 1P :C 1P =3,∴23m =3(43m -4),∴m =185.……………………(6分)∴y =-12x +185.………………………………………………………(7分)② 当2<m <3时,同理可得:y =-12x +187.……(10分)(参照①给分)综上所述,y =-12x +187或y =-12x +185.28.解:(1)∴AB 2+AC 2=2AE 2+(x +y )2+(x -y )2=2AE 2+2x 2+2y 2=2AE 2+2BD 2+2DE 2=2AD 2+2BD 2.………………(3分) (2)①10;②4;………………(7分)(3)连接OA ,取OA 的中点E ,连接DE .………………(8分)由(2)的②可知:DE =152,………………(9分)在△ADE 中,AE =52, DE =152,∴AD 长的最大值为52+152=10.……(10分)注:只写答案,只给1分.。
2020年江苏省南京市中考数学必刷模拟试卷学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.从 1~10 这十个数中任取两个数。
取到两个数字之和为 9 的概率是()A .445B.490C.845D.2452.Rt△ABC 中,∠C= 90°,如图所示,D 为BC上一点,∠DAC=30°,BD=2,AB=23,则AC 的长是()A.3B.22C.3 D.3223.如图,直角梯形ABCD中,AD∥BC,AB⊥BC,AD=2,BC=3,将腰CD以D为中心逆时针旋转90°至ED,连AE、CE,则△ADE的面积是()A.1 B.2 C.3 D.不能确定4.某班共有45位同学,其中近视眼占60%,下列说法不正确...的是()A.该班近视眼的频率是0.6 B.该班近视眼的频数是27C.该班近视眼的频数是0.6 D.该班有18位视力正常的同学5.样本3、6、4、4、7、6的方差是()A.12 B.23C.2 D.26.如图,a∥b,∠2是∠1的3倍,则∠ 2等于()A°45° B. 90° C. 135° D.150°7.下列各条件中,不能作出惟一三角形的是()A.已知两边和夹角B.已知两角和夹边C.已知两边和其中一边的对角D.已知三边8.已知二元一次方程组1941175x yx y⎧+=⎪⎪⎨⎪+=⎪⎩的解为x ay b=⎧⎨=⎩,则||a b-的值为()A . -11B . 11C . 13D . 16 9.下列图形中,旋转60°后可以和原图形重合的是( )A .正六边形B .正五边形C .正方形D .正三角形 二、填空题10.统计八年级部分同学的跳高测试成绩,得到如下频数分布直方图(图1):则跳高成绩在1.29m 以上的同学估计占八年级总人数的百分之 .(精确到1%) 11.如图,在由16个边长为1的正方形拼成的方格内,A 、B 、C 、D 是四个格点,则线段AB 、CD 中,长度是无理数的线段是________.12.如果(221)(221)63a b a b +++-=,那么a b +的值是 .13.如图,已知在四边形ABCD 中,AB ∥CD ,AB=CD ,求证:AD ∥BC分析:连结AC ,要证AD ∥BC ,只要证∠3= ,只要证△ABC ≌ ,已有两个条件AB=CD ,AC=CA ,只需证∠1= ,易由 证得.14.当a 满足 时,2a -有意义. 15.当y 时,代数式324y -的值至少为1. 16.公园里有甲、乙两群游客正在做团体游戏,两群游客的年龄如下(单位:岁):甲群:13,13,14,15,15,15,l5,l6,17,17;乙群:3,4,4,5,5,6,6,6,54,57.解答下列各题:(1)甲群游客的平均年龄是 岁,中位数是 岁,众数是 岁,其中能较好反映甲群游客年龄特征的是 ;(2)乙群游客的平均年龄是 岁,中位数是 岁,众数是 岁,其中能较好反映甲群游客年龄特征的是 .17.如图,从A 地到B 地走 条路线最近,它根据的是 .18.如图,AB+BC>AC ,其理由是 .19.若2(2)30a b ++-=,则b a = .20.已知||4x =,2149y =,且0x >,0y <,则= .21.如图,小南和小颖正在玩一个游戏:每人先抛掷骰子(骰子共有6个面,分别标有数字1,2,3,4,5,6),骰子朝上的数字是几,就将棋子前进几格,并获得格子中的相应物品.现在轮到小南掷,棋子在标有数字“1”的那一格,小南能一次就获得“汽车”吗?(填“能”或“不能”);小颖下一次抛掷可能得到“汽车”的概率是 .(注:小汽车在第八格内)三、解答题22.已知y 是x 的反比例函数,当x=3时,y=4,则当x=2时求函数y 的值.6.23.一个滑轮起重装置如图所示,滑轮的半径是10cm ,当重物上升10cm 时,滑轮的一条半径OA 绕轴心0 按逆时针方向旋转的角度约为多少呢(假设绳索与滑轮之间没有滑动,π 取3.14,结果精确到1°)?24.函数2y ax =与直线23y x =-的图象交于点(1,b).(1)求a 、b 的值.(2)求抛物线的开口方向、对称轴.25..某商场出售一批进价为 2 元的贺卡,在市场营销中发现此商品日销售单价x(元)与日销售量 y(张)之间有如下关系:x (元)3 4 5 6 y(张) 20 15 12 10(1)根据表中数据在直角坐标系中描出实数 对(x ,y)的对应点;(2)猜测并确定 y 与x 之间的函数关系式,并画出图象;(3)设经营此贺卡的销售利润为ω元,试求ω与x 之间的函数关系式,如果物价局规定此贺卡售价最高不能超过10元/张,请你求出当日销售单价x 定为多少元时,才能获得最大日销售利润?26.如图,菱形OABC的边长为4,∠AOC=60°,点A在x轴负半轴上,求菱形各顶点的坐标.27.在长度为3的线段上取一点,使此点到线段两端点的距离的乘积为2,求此点所分得的两线段长.28.如图所示,正方形ABCD中,E是AD的中点,点F在DC上且DF=14DC,试判断BE与EF的关系,并作出说明.29.如图,育英中学为了保护校内一棵百年古树,打算在古树周围用钢管焊制一排如图所示的护栏,如果图中的1l , 2l ,……,10l 都与上面的横杆垂直,上面的横杆与下面的横杆平行且都等于3 m ,1l = 1.5m ,那么要焊制这样的护栏至少需要多m 的钢管?30.为了方便管理,学校每年都为新的七年级学生制作学生卡片,卡片上有了位数字的编号,其中前六位数表示该生入学年份、所在班及该生在班级中的序号;末位数表示性别;1 表示男生,2表示女生. 如:2007年入学的3班32号男同学的编号为 0703321. 则2008年入学的 10班的 15号女同学的编号为多少?有一次老师捡到一张编号为0 807 021 的学生卡片,你能帮忙找到失主吗?【参考答案】学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.A2.A3.A4.C5.C6.C7.C8.B9.A二、填空题10.约61%11.AB12.4±13.∠4,△CDA ,∠2,AB ∥CD14.0a <15. ≤12-16.(1)15,l5,15,平均数、中位数、众数都可以;(2)15,5.5,6,众数17.②,两点之间线段最短18.两点之间线段最短19.-820.14721. 不能,61三、解答题22.23. 旋转的角度约为:018010573.1410⨯≈⨯ 24.(1)把点 (1,b)代入2y ax =,23y x =-,得 23a b b =⎧⎨=-⎩解得11a b =-⎧⎨=-⎩,∴a 、b 的值分别为 -1,-1. (2)由 (1)得抛物线2y x =-,它的开口向下、对称轴是y 轴. 25.(1)如图,(2)是反比例函数,60yx= (x 为正整数)图象如图.(3)60120(2)60w xx x=-⋅=-,当定价x定为10元/张时,利润最大,为48 元.26.O(0,0),A(-4.0),B(-6,23-,C(-2,23-27.1,228.BE⊥EF.说明BE2+EP2=BF229.21 m30.2008年入学的10班的15号女同学的编号是0810152. 编号为0807021的学生卡是2008年入学的7班的2号男同学的。
南京市2020初中毕业生学业模拟考试(满分:120分 时间:120分钟)第Ⅰ卷(选择题,共12分)一、选择题(本大题共6小题,每小题2分,共12分.在每小题所给出的四个选项中,恰有一项是符合题目要求的)1.下列四个数中,是负数的是( )A.|-2|B.(-2)2C.-√2D.√(-2)22.PM2.5是指大气中直径小于或等于0.000 002 5 m 的颗粒物,将0.000 002 5用科学记数法表示为( ) A.0.25×10-5 B.0.25×10-6 C.2.5×10-5 D.2.5×10-63.计算(a 2)3÷(a 2)2的结果是( ) A.a B.a 2 C.a 3 D.a 44.12的负的平方根介于( ) A.-5与-4之间 B.-4与-3之间 C.-3与-2之间 D.-2与-1之间5.若反比例函数y=kx 与一次函数y=x+2的图象没有..交点,则k 的值可以是( ) A.-2 B.-1 C.1 D.26.如图,在菱形纸片ABCD 中,∠A=60°.将纸片折叠,点A 、D 分别落在点A'、D'处,且A'D'经过点B,EF 为折痕.当D'F ⊥CD 时,CFFD 的值为( )A.√3-12B.√36 C.2√3-16D.√3+18第Ⅱ卷(非选择题,共108分)二、填空题(本大题共10小题,每小题2分,共20分)7.使√1-x 有意义的x 的取值范围是 . 8.计算√2√2的结果是 .9.方程3x -2x -2=0的解是 .10.如图,∠1、∠2、∠3、∠4是五边形ABCDE 的4个外角.若∠A=120°,则∠1+∠2+∠3+∠4= °.11.已知一次函数y=kx+k-3的图象经过点(2,3),则k 的值为 .12.已知下列函数:①y=x 2;②y=-x 2;③y=(x-1)2+2.其中,图象通过平移可以得到函数y=x 2+2x-3的图象的有 (填写所有正确选项的序号). 13.某公司全体员工年薪的具体情况如下表:年薪/万元 30 14 9 6 4 3.5 3 员工数/人 1 1 1 2 7 6 2则该公司全体员工年薪的平均数比中位数多 万元. 14.如图,将45°的∠AOB 按下面的方式放置在一把刻度尺上:顶点O 与尺下沿的端点重合,OA 与尺下沿重合,OB 与尺上沿的交点B 在尺上的读数恰为2 cm.若按相同的方式将37°的∠AOC 放置在该刻度尺上,则OC 与尺上沿的交点C 在尺上的读数约为 cm.(结果精确到0.1 cm,参考数据:sin 37°≈0.60,cos 37°≈0.80,tan 37°≈0.75)15.如图,在▱ABCD 中,AD=10 cm,CD=6 cm.E 为AD 上一点,且BE=BC,CE=CD,则DE= cm.16.在平面直角坐标系中,规定把一个三角形先沿着x 轴翻折,再向右平移2个单位称为1次变换.如图,已知等边三角形ABC 的顶点B 、C 的坐标分别是(-1,-1)、(-3,-1),把△ABC 经过连续9次这样的变换得到△A'B'C',则点A 的对应点A'的坐标是 .三、解答题(本大题共11小题,共88分.解答时应写出文字说明、证明过程或演算步骤)17.(6分)解方程组{x +3y =-1,3x -2y =8.18.(9分)化简代数式x 2-1x 2+2x ÷x -1x ,并判断当x 满足不等式组{x +2<1,2(x -1)>-6时该代数式的符号.19.(8分)如图,在Rt △ABC 中,∠ABC=90°,点D 在BC 的延长线上,且BD=AB.过点B 作BE ⊥AC,与BD 的垂线DE 交于点E. (1)求证:△ABC ≌△BDE;(2)△BDE 可由△ABC 旋转得到,利用尺规作出旋转中心O(保留作图痕迹,不写作法).20.(8分)某中学七年级学生共450人,其中男生250人,女生200人.该校对七年级所有学生进行了一次体育测试,并随机抽取了50名男生和40名女生的测试成绩作为样本进行分析,绘制成如下的统计表:成绩划记频数百分比不及格正910%及格正正正1820%良好正正正正正正正一3640%优秀正正正正正2730%合计9090100%(1)请解释“随机抽取了50名男生和40名女生”的合理性;(2)从上表的“频数”、“百分比”两列数据中选择一列..,用适当的统计图表示;(3)估计该校七年级学生体育测试成绩不及格的人数.17B21.(7分)甲、乙、丙、丁4名同学进行一次羽毛球单打比赛,要从中选出2名同学打第一场比赛.求下列事件的概率:(1)已确定甲打第一场,再从其余3名同学中随机选取1名,恰好选中乙同学;(2)随机选取2名同学,其中有乙同学.22.(8分)如图,在梯形ABCD中,AD∥BC,AB=DC,对角线AC、BD交于点O,AC⊥BD,E、F、G、H分别是AB、BC、CD、DA的中点.(1)求证:四边形EFGH是正方形;(2)若AD=2,BC=4,求四边形EFGH的面积.23.(7分)看图说故事.请你编写一个故事,使故事情境中出现的一对变量x、y满足图示的函数关系.要求:①指出变量x和y的含义;②利用图中的数据说明这对变量变化过程的实际意义,其中须涉及“速度”这个量.24.(8分)某玩具由一个圆形区域和一个扇形区域组成.如图,在☉O1和扇形O2CD中,☉O1与O2C、O2D分别相切于点A、B.已知∠CO2D=60°,E、F是直线O1O2与☉O1、扇形O2CD的两个交点,且EF=24cm.设☉O1的半径为x cm.(1)用含x的代数式表示扇形O2CD的半径;(2)若☉O1和扇形O2CD两个区域的制作成本分别为0.45元/cm2和0.06元/cm2,当☉O1的半径为多少时,该玩具的制作成本最小?25.(8分)某汽车销售公司6月份销售某厂家的汽车.在一定范围内,每部汽车的进价与销售量有如下关系:若当月仅售出1部汽车,则该部汽车的进价为27万元;每多售出1部,所有..售出的汽车的进价均降低0.1万元/部.月底厂家根据销售量一次性返利给销售公司,销售量在10部以内(含10部),每部返利0.5万元;销售量在10部以上,每部返利1万元.(1)若该公司当月售出3部汽车,则每部汽车的进价为万元;(2)如果汽车的售价为28万元/部,该公司计划当月盈利12万元,那么需要售出多少部汽车?(盈利=销售利润+返利)26.(9分)“?”的思考.下框中是小明对一道题目的解答以及老师的批改.种植区域的面积是288m解:设矩形蔬菜种植区域的宽为x m,则长为2x m.我的结果也正确!小明发现他解答的结果是正确的,但是老师却在他的解答中划了一条横线,并打了一个“?”.结果为何正确呢?(1)请指出小明解答中存在的问题,并补充缺少的过程;变化一下会怎样……(2)如图,矩形A'B'C'D'在矩形ABCD的内部,AB∥A'B',AD∥A'D',且AD∶AB=2∶1.设AB与A'B'、BC与B'C'、CD与C'D'、DA与D'A'之间的距离分别为a、b、c、d,要使矩形A'B'C'D'∽矩形ABCD,a、b、c、d应满足什么条件?请说明理由.27.(10分)如图,A、B是☉O上的两个定点,P是☉O上的动点(P不与A、B重合),我们称∠APB 是☉O上关于点A、B的滑动角.(1)已知∠APB是☉O上关于点A、B的滑动角.①若AB是☉O的直径,则∠APB=°;②若☉O的半径是1,AB=√2,求∠APB的度数;(2)已知O2是☉O1外一点,以O2为圆心作一个圆与☉O1相交于A、B两点.∠APB是☉O1上关于点A、B的滑动角,直线PA、PB分别交☉O2于点M、N(点M与点A、点N与点B均不重合),连结AN,试探索∠APB与∠MAN、∠ANB之间的数量关系.一、选择题1.C|-2|=2,(-2)2=4,√(-2)2=2,故选C.2.D把小于1的正数用科学记数法写成a×10-n的形式,其中a是2.5,n为6.故0.000002 5=2.5×10-6.3.B∵(a2)3÷(a2)2=a6÷a4=a2,故选B.4.B∵12的负的平方根是-√12,又∵-√16<-√12<-√9,即-4<-√12<-3,故选B.与一次函数y=x+2的图象没有交点,5.A∵反比例函数y=kx∴关于x的方程k=x+2没有实数解,可得k<-1,故选A.x6.A延长DC与A'D',交于点M.∵在菱形纸片ABCD中,∠A=60°,∴∠DCB=∠A=60°,AB∥CD,∴∠D=180°-∠A=120°,根据折叠的性质,可得∠A'D'F=∠ADC=120°, ∴∠FD'M=180°-∠A'D'F=60°, ∵D'F ⊥CD, ∴∠D'FM=90°,∴∠M=90°-∠FD'M=30°, ∵∠BCM=180°-∠BCD=120°, ∴∠CBM=180°-∠BCM-∠M=30°, ∴∠CBM=∠M, ∴BC=CM,设CF=x,D'F=DF=y,则BC=CM=CD=CF+DF=x+y, ∴FM=CM+CF=2x+y,在Rt △D'FM 中,tan ∠M=tan 30°=D'FFM =y2x+y=√33,∴2√3x=(3-√3)y, ∴CF FD =x y =√3-12.故选A.二、填空题7.答案 x ≤1解析 ∵二次根式中被开方数为非负数,∴1-x ≥0,∴x ≤1. 8.答案 1+√2 解析2+√2√2=√2·(√2+1)√2=√2+1.9.答案 x=6解析 原分式方程可化为3(x-2)-2x=0,解得x=6,检验,当x=6时,x(x-2)≠0,所以分式方程的解为x=6. 10.答案 300解析 ∵五边形ABCDE 中∠A=120°,∴与∠A 相邻的一个外角为60°, 根据多边形外角和为360°,可得∠1+∠2+∠3+∠4=360°-60°=300°. 11.答案 2解析 把(2,3)代入y=kx+k-3,得3=2k+k-3,解得k=2. 12.答案 ①③解析 由于抛物线y=ax 2+bx+c(a ≠0)的形状和开口方向是由解析式中a 的大小所决定的,又根据平移的性质:平移前后不改变图形的形状和大小,因此只要a 的大小相同即符合题意,故选①③. 13.答案 2解析 由表中数据可求出平均数x =120(30+14+9+6×2+4×7+3.5×6+3×2)=6,中位数为4,因此平均数比中位数多2万元. 14.答案 2.7解析记刻度尺上“0”刻度相应的点为点D,∵BC ∥OA,∴∠DBO=∠AOB=45°,∠DCO=∠AOC=37°. 又∵∠BDO=90°,∴△OBD 为等腰直角三角形,∴OD=BD=2. 在Rt △OCD 中,tan ∠DCO=ODCD ,∴tan 37°=ODCD ≈0.75, ∴CD ≈2÷0.75≈2.7.评析 本题主要考查平行的性质、等腰直角三角形的判定与应用和三角函数的应用. 15.答案 3.6解析 如图,分别过点C 、E 作CF ⊥DE,EG ⊥BC,垂足分别为点F,点G,又∵四边形ABCD 为平行四边形, ∴AD ∥BC,AD=BC=10 cm, ∴BE=BC=10 cm,又∵CE=CD=6 cm,∴EF=DF=CG, 设CG=x cm,在Rt △BEG 和Rt △CEG 中,根据勾股定理有EG 2=102-(10-x)2;EG 2=62-x 2, ∴102-(10-x)2=62-x 2,解得x=1.8, ∴DE=DF+EF=2CG=3.6 cm.评析 本题主要考查平行四边形的性质、等腰三角形的性质、勾股定理的应用等知识,利用方程的思想来解决问题. 16.答案 (16,1+√3)解析 ∵B 、C 的坐标分别是(-1,-1),(-3,-1),∴等边三角形ABC 的边长为2,因此高为√3, ∴点A 的坐标是(-2,-1-√3).由题意可知:点A 的横坐标每次变换后都增加2,纵坐标经过奇数次变换后,由原来的-1-√3变为与它关于x 轴对称的点的纵坐标1+√3, ∴经过连续9次这样的变换得到的点A'的坐标是(16, 1+√3).评析 本题主要考查等边三角形底边与高的比例关系、轴对称的性质、平移的规律,结合正确的计算,从而发现坐标的变换规律,得出结论. 三、解答题17.解析 {x +3y =-1, ①3x -2y =8.②解法一:由①,得x=-3y-1.③ 将③代入②,得3(-3y-1)-2y=8. 解这个方程,得y=-1. 将y=-1代入③,得x=2.所以原方程组的解是{x =2,y =-1.(6分)解法二:①×3,得3x+9y=-3.③③-②,得11y=-11.解这个方程,得y=-1. 将y=-1代入①,得x=2.所以原方程组的解是{x =2,y =-1.(6分)18.解析 x 2-1x 2+2x÷x -1x=x 2-1x 2+2x·xx -1=(x+1)(x -1)x(x+2)·x x -1=x+1x+2.解不等式x+2<1,得x<-1.解不等式2(x-1)>-6,得x>-2.所以,不等式组{x +2<1,2(x -1)>-6的解集是-2<x<-1.当-2<x<-1时,x+1<0,x+2>0, 所以x+1x+2<0,即该代数式的符号为负号.(9分)评析 本题先利用提取公因式法、公式法因式分解进行化简;再解一元一次不等式组,先分别解每一个不等式,再求解集的公共部分,即得不等式组的解集;最后判断化简后的分式的符号.综合考查了学生对代数基础知识的掌握程度. 19.解析 (1)证明:在Rt △ABC 中,∵∠ABC=90°,∴∠ABE+∠DBE=90°. ∵BE ⊥AC,∴∠ABE+∠A=90°. ∴∠A=∠DBE.∵DE 是BD 的垂线,∴∠D=90°. 在△ABC 和△BDE 中,∵∠A=∠DBE,AB=BD,∠ABC=∠D, ∴△ABC ≌△BDE.(5分)(2)作法一:如图①,点O 就是所求的旋转中心.(8分)作法二:如图②,点O就是所求的旋转中心.(8分)评析本题首先考查了证明三角形全等的判定方法,第二问利用旋转的性质得出寻找旋转中心的方法:只要先找到这个图形旋转前后的两组对应点,分别连结对应点,然后就会出现两条线段,分别作这两条线段的中垂线,两条中垂线的交点就是旋转中心.20.解析(1)因为250×90450=50(人),200×90450=40(人),所以,该校从七年级学生中随机抽取90名学生,应当抽取50名男生和40名女生.(2分) (2)本题答案不唯一,下列解法供参考.选择“频数”这一列数据可用图①表示;选择“百分比”这一列数据可用图②表示.(5分)(3)450×10%=45(人).答:估计该校七年级学生体育测试成绩不及格45人.(8分)评析本题考查抽样调查时选取样本的基本原则;扇形统计图、条形统计图的合理运用;用样本估计总体的方法.21.解析(1)已确定甲打第一场,再从其余3名同学中随机选取1名,恰好选中乙同学的概率是13.(2分)(2)从甲、乙、丙、丁4名同学中随机选取2名同学,所有可能出现的结果有:(甲,乙)、(甲,丙)、(甲,丁)、(乙,丙)、(乙,丁)、(丙,丁),共有6种,它们出现的可能性相同.所有的结果中,满足“随机选取2名同学,其中有乙同学”(记为事件A)的结果有3种,所以P(A)=36=12.(7分)22.解析(1)证明:在△ABC中,∵E、F分别是AB、BC的中点,∴EF=12AC.同理FG=12BD,GH=12AC,HE=12BD.在梯形ABCD中,∵AB=DC,∴AC=BD.∴EF=FG=GH=HE.∴四边形EFGH是菱形.设AC与EH交于点M.在△ABD中,∵E、H分别是AB、AD的中点,∴EH∥BD.同理GH∥AC.又∵AC⊥BD,∴∠BOC=90°.∴∠EHG=∠EMC=∠BOC=90°.∴四边形EFGH是正方形.(4分)(2)连结EG.在梯形ABCD中,∵E、G分别是AB、DC的中点,∴EG=12(AD+BC)=3,在Rt△EHG中,∵EH2+GH2=EG2,EH=GH,∴EH2=92,即四边形EFGH的面积为92.(8分)23.解析本题答案不唯一,下列解法供参考.该函数图象表示小明骑车离出发地的路程y(单位:km)与他所用的时间x(单位:min)的关系,小明以400m/min的速度匀速骑了5min,在原地休息了6min,然后以500m/min的速度匀速骑回出发地.(7分)评析本题考查一次函数的应用,但是打破常规、利用图象来设计题意,属于一道开放题,答案不唯一,但是要注意符合题目要求.24.解析(1)连结O1A.∵☉O1与O2C、O2D分别相切于点A、B,∴O1A⊥O2C,O2E平分∠CO2D.∴∠AO2O1=12∠CO2D=30°.在Rt△O1AO2中,sin∠AO2O1=AO1O1O2,∴O1O2=AO1sin∠AO2O1=xsin30°=2x.∴FO2=EF-EO1-O1O2=24-3x,即扇形O2CD的半径为(24-3x)cm.(3分)(2)设该玩具的制作成本为y元,则y=0.45πx2+0.06×(360-60)×π×(24-3x)2360=0.9πx2-7.2πx+28.8π=0.9π(x-4)2+14.4π.所以当x-4=0,即x=4时,y的值最小.答:当☉O1的半径为4cm时,该玩具的制作成本最小.(8分)评析本题首先利用切线性质、切线长定理得出含30度角的直角三角形,从而用含x的代数式表示线段O1O2,第二问考查了圆、扇形的面积公式以及二次函数的应用.25.解析(1)26.8.(2分)(2)设需要售出x部汽车.由题意可知,每部汽车的销售利润为28-[27-0.1(x-1)]=(0.1x+0.9)(万元).当0≤x≤10时,根据题意,得x·(0.1x+0.9)+0.5x=12.整理,得x2+14x-120=0.解这个方程,得x1=-20(不合题意,舍去),x2=6.当x>10时,根据题意,得x·(0.1x+0.9)+x=12.整理,得x2+19x-120=0.解这个方程,得x1=-24(不合题意,舍去),x2=5,因为5<10,所以x2=5舍去.答:需要售出6部汽车.(8分)26.解析(1)小明没有说明矩形蔬菜种植区域的长与宽之比为2∶1的理由.在“设矩形蔬菜种植区域的宽为x m,则长为2x m.”前补充以下过程:设温室的宽为y m,则长为2y m.所以矩形蔬菜种植区域的宽为(y-1-1)m,长为(2y-3-1)m.因为2y-3-1y-1-1=2y-4y-2=2,所以矩形蔬菜种植区域的长与宽之比为2∶1.(5分) (2)要使矩形A'B'C'D'∽矩形ABCD,就要A'D'A'B'=ADAB,即AD-(a+c)AB-(b+d)=21,即2AB-(a+c)AB-(b+d)=2 1 ,即a+cb+d=2.(9分)27.解析(1)①90.(2分)②如图,连结AB、OA、OB.在△AOB 中,∵OA=OB=1,AB=√2,∴OA 2+OB 2=AB 2.∴∠AOB=90°.当点P 在优弧AB ⏜上时,∠AP 1B=12∠AOB=45°; 当点P 在劣弧AB ⏜上时,∠AP 2B=12(360°-∠AOB)=135°.(6分) (2)根据点P 在☉O 1上的位置分为以下四种情况:第一种情况:点P 在☉O 2外,且点A 在点P 与点M 之间,点B 在点P 与点N 之间,如图①. ∵∠MAN=∠APB+∠ANB,∴∠APB=∠MAN-∠ANB;第二种情况:点P 在☉O 2外,且点A 在点P 与点M 之间,点N 在点P 与点B 之间,如图②. ∵∠MAN=∠APB+∠ANP=∠APB+(180°-∠ANB),∴∠APB=∠MAN+∠ANB-180°;第三种情况:点P 在☉O 2外,且点M 在点P 与点A 之间,点B 在点P 与点N 之间,如图③. ∵∠APB+∠ANB+∠MAN=180°,∴∠APB=180°-∠ANB-∠MAN;第四种情况:点P 在☉O 2内,如图④. ∠APB=∠MAN+∠ANB.(10分)评析 本题重点考查圆的知识,包括直径所对的圆周角是直角、圆周角与圆心角的关系,也利用到了运用勾股定理的逆定理判断直角三角形,本题关键在于一定要运用分类讨论的思想方法.。
南京市2020届数学中考模拟试卷一、选择题1.如图,四边形ABCD 内接于⊙O ,F 是上一点,且=,连接CF 并延长交AD 的延长线于点E ,连接AC .若∠ABC=105°,∠BAC=25°,则∠E 的度数为( ) A.45° B.50° C.55°D.60°2.下列计算正确的是( )A .b 2•b 3=b 6B .(﹣a 2)3=a 6C .(ab )2=ab 2D .(﹣a )6÷(﹣a )3=﹣a 33.下列计算正确的是( ) A .236a a a ⨯=B .236a a a +=C .()326a a = D .33a a a ÷=4.一组数据:5,7,10,5,7,5,6.这组数据的中位数和众数( ) A .7和10B .7和5C .7和6D .6和55.下列计算正确的是( ) A.221aa -=-B.()()2220m m m m +-=≠C.1155155⨯⨯⎛⎫-+-= ⎪⎝⎭2-6.2018年广东省经济保持平稳健康发展,经国家统计局核定,实现地区生产总值(GDP )9730000000000元,将数据9730000000000用月科学记数法表示为( ) A.1093710⨯B.1193710⨯C.129.3710⨯D.130.93710⨯7.某车间需加工一批零件,车间20名工人每天加工零件数如表所示:A .6,5B .6,6C .5,5D .5,68.下列事件属于必然事件的是( ) A .抛掷两枚硬币,结果一正一反 B .取一个实数x ,x 0的值为1 C .取一个实数x ,分式11x x -+有意义 D .角平分线上的点到角的两边的距离相等9.如图1,△ABC 中,∠A =30°,点P 从点A 出发以2cm/s 的速度沿折线A→C→B 运动,点Q 从点A 出发以vcm/s 的速度沿AB 运动,P ,Q 两点同时出发,当某一点运动到点B 时,两点同时停止运动.设运动时间为x (s ),△APQ 的面积为y (cm 2),y 关于x 的函数图象由C 1,C 2两段组成,如图2所示,有下列结论:①v =1;②sinB =13;③图象C 2段的函数表达式为y =﹣13x 2+103x ;④△APQ 面积的最大值为8,其中正确有( )A.①②B.①②④C.①③④D.①②③④10.若关于x的一元二次方程x2﹣x+a=0没有实数根,则a的取值范围是( )A.a>14B.a<14C.a≥14D.a=1411最接近的是()A.1B.2C.3D.412.某市从不同学校随机抽取100名初中生,对“学校统一使用数学教辅书的册数”进行调查,统计结果如下:关于这组数据,下列说法正确的是()A.众数是2册B.中位数是2册C.极差是2册D.平均数是2册二、填空题13.如图,在△ABC中,AD是高,BD=6,CD=4,tan∠BAD=34,P是线段AD上一动点,一机器人从点A出发沿AD以53个单位/秒的速度走到P点,然后以1个单位/秒的速度沿PC走到C点,共用了t秒,则t的最小值为_____.14___________.15.设a为最小的正整数,b是最大的负整数,c是绝对值最小的数,则a+b+c=_____.16.如图,直线AB、CD相交于点E,DF∥AB.若∠AEC=100°,则∠D等于()A.70°B.80°C.90°D.100°17.上海合作组织青岛峰会期间,为推进“一带一路”建设,中国决定在上海合作组织银行联合体框架内,设立300亿元人民币等值专项贷款.将300亿元用科学记数法表示为___________________元. 18.边长为a、b的长方形,它的周长为14,面积为10,则a2b+ab2的值为_____.三、解答题19.我市组织开展“遵纪守规明礼,安全文明出行”为主题的“交通安全日”活动,引起了市民对交通安全的极大关注,某学校积极响应号召,以答卷的形式对全校学生就交通安全知识的了解情况进行了调查,并随机抽取部分学生的成绩绘制如下不完整的统计图表:(1)这次参与调查的学生人数为(2)频数分布表中a=,b=(3)请补全条形统计图(4)学校准备对成绩不高于70分的学生进行交通安全教育,若全校共有学生1680人,请你统计该校来参加这次教育活动的学生约有多少人?20.如图,一次函数y=mx+2与x轴、y轴分别交于点A(-1,0)和点B,与反比例函数kyx=的图像在第一象限内交于C(1,c).(1)求m的值和反比例函数的表达式;(2)过x轴上的点D(a,0)作平行于轴的直线l(a﹥1),分别与直线AB和双曲线kyx=交于点P、Q,且PQ=2QD,求点D的坐标.21.山地自行车越来越受到中学生的喜爱,各种品牌相继投放市场,某车行经营的A型车1月份销售总额为50000元,2月份销售总额将比1月份减少20%,每辆销售价比1月份降低400元,若这两个月卖出的数量相同。
2020年江苏省南京市中考数学摸底考试试卷学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项: 1.答题前填写好自己的姓名、班级、考号等信息 2.请将答案正确填写在答题卡上一、选择题1.四张完全相同的卡片上,分别画有圆、矩形、等边三角形、等腰梯形,现从中随机抽取一张,卡片上画的恰好是中心对称图形的概率为( ) A .41 B .21 C .43 D .12.如图,在⊙O 中,∠B=37°,则劣弧AB 的度数为( ) A .106°B .126°C .74°D .53°3.某校测量了初三(1)班学生的身高(精确到1cm ),按10cm 为一段进行分组,得到如下频数分布直方图,则下列说法正确的是( ) A .该班人数最多的身高段的学生数为7人 B .该班身高低于160.5cm 的学生数为15人 C .该班身高最高段的学生数为20人 D .该班身高最高段的学生数为7人4.判断两个直角三角形全等,下列方法中,不能应用的是( ) A . AASB .HLC .SASD . AAA5.如图,在△ABC 与△DEF 中,已有条件AB=DE ,还需添加两个条件才能使△ABC ≌△DEF ,不能添加的一组条件是( ) A .∠B=∠E,BC=EFB .BC=EF ,AC=DFC .∠A=∠D ,∠B=∠E D .∠A=∠D ,BC=EF6.将如图所示的两个三角形适当平移,可组成平行四边形的个数为 ( ) A .1个B .2个C .3个D .4个7.下面对么AOB 的理解正确的是( ) A .∠AOB 的边是线段OA 、OB B .∠AOB 中的字母A 、O 、B 可调换次序C .∠AOB 的顶点是0,边是射线OA 、OBD .∠AOB 是由两条边组成的8.某超市推出如下优惠方案:①一次性购物不超过100元不享受优惠;②一次性购物超过l00元但不超过300元一律九折;③一次性购物超过300元一律八折,王波两次购物分别付款80元、252元.若王波一次性购买与上两次相同的商品,则应付款 ( ) A .288元 B .288元或316元C .332元D .332元或363元二、填空题9.已知2(34)|1|0x y a x --+-=中,2y <,则a 的取值范围是 .10.某班50名学生在课外活动中参加作文、美术、文娱、体育兴趣小组的分别有8人、l2人、20人、l0人,那么参加体育兴趣小组的人数所占的百分比为 .11.如图所示,△ABC 中,DE 是AC 的中垂线,AE=5,△ABC 的周长为30,则△ABD 的周长是 .12.从 1,2,3,4,5 中任选两个数,这两个数的和恰好等于7 有 种可能. 13.如果4x 2+mx +25是一个完全平方式,则实数m 的值是__________.14.如图△ABC 中,D 、E 分别在BC 上,∠BAE=∠AEB ,∠CAD=∠CDA .若∠BAC=x 度,则∠DAE 的度数是 . 15.指出下列各式中 a 的取值. (1)若||a a =-,则a 为 ; (2)若||a a -=,则a 为 ; (3)若|1|0a -=,则a 为 ; (4)若|1|2a +=,则a 为 ;16.如图,所有的四边形都是正方形,所有的三角形都是直角三角形,其中最大的正方形的边长为7 cm ,则正方形A 、B 、C 、D 的面积的和为 cm 2.17.如图,已知AB 是⊙O 的直径,弦CD AB ⊥,22AC =1BC =,那么sin ABD ∠的值是 .18.如果三角形底是(23x-)cm,高是4 cm,而面积不大于20 cm 2,那么x的取值范围是.19.一次函数图象经过点(2,0)和(-2,4),这个一次函数的解析式是.20.若方程mx2+3x-4=3x2是关于x的一元二次方程,则m的取值范围是 .21.“平行四边形的对角相等”的逆命题是.22.如图,△ABC 中,AD是 BC上中线,M 是AD 的中点,BM 延长线交AC 于 N,则ANNC= .23.用 3 倍的放大镜照一个面积为 1 的三角形,放大后的三角形面积是.24.两位同学在解方程组时,甲同学由278ax bycx y+=⎧⎨-=⎩正确地解出32xy=⎧⎨=-⎩,乙同学因把c写错而得解22xy=-⎧⎨=⎩,那么a= ,b= ,c= .三、解答题25.在电视台举行的某选秀比赛中,甲、乙、丙三位评委对选手的综合表现,分别给出“待定”或“通过”的结论.(1)写出三位评委给出 A 选手的所有可能的结论;(2)对于选手 A,只有甲、乙两位评委给出相同结论的概率是多少?26.判断下列各组线段的长度是否成比例,说明理由.(1)1,2,3,4;(2) 2, 4,3, 6;(3)1. 2 ,1. 8 ,30 ,45;(4)11,22 ,44,5527.试用两种方法将已知平行四边形ABCD分成面积相等的四个部分(要求用文字简述你所设计的两种方法,并画出示意图).28.将某雷达测速区监测到的一组汽车的时速数据整理,得到其频数及频率如下表(未完成):注:30~40为时速大于等于30千米而小于40千米,其它类同. (1)请你把表中的数据填写完整; (2)补全频数分布直方图;(3)如果此地汽车时速不低于60千米即为违章,则违章车辆共有多少辆?29.求下列各数的算术平方根: (1)144;(2)124;(3) 2( 2.5)-;(4) 9||25-30.木匠张师傅在做家具时遇到一块不规则的木板(如图①),现需要将这块木板锯开后胶合成一正方形,张师傅已锯开了一条线(如图②),请你帮他再锯一线,然后拼成正方形,想想看,在锯拼过程中用到了什么变换?数据段 频 数 频 率 30~40 10 0.0540~50 3650~60 0.39 60~7070~80 200.10 总 计1【参考答案】学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.B2.A3.D4.D5.D6.C7.C8.B二、填空题9.a>-10.520%11.2012.213.20± 14.90°-x 215.16. 4917.22318. 31322x <≤19. 2y x =-+20.3≠m 21.对角相等的四边形是平行四边形22.1223. 924.4,5,-2三、解答题 25.(1)评委给出 A 选手的所有可能结果如下:由上可知评委给出 A 选手所有可能的结果有8种.(2)对于 A 选手,“只有甲、乙两住评委给出相同的结论”有 2 种,即“通过一通过一待定”、“待定一待定一通过”,所以对于 A 选手“只有甲、乙两位评委给出相同结论”的 概率是1426.(1)∵ 1×4≠2×3,∴1,2,3,4 不成比例. (2)由小到大排列为:2,3,4,6,∵2 ×6 = 3 ×4= 12 ∴2,4,3,6成比例,即2346(3)从小到大排列为:1.2,1.8,30,45,∵1.2 ×45 = 1.8×30 , ∴1. 2 ,1. 8 ,30 ,45 成比例. ( 4 ) ∵1 1 ×55≠22×44 ∴.11,22,44,55 不成比例.27.两条对角线;两条对边中点的连线,一组对边四等分连线等等,图略.28.解:(1)如表:(2)如图:(376辆. 29.(1) 12 (2)32 (3) 2.5 (4)3530.略。
2020年江苏省南京市中考数学全真模拟试卷 _1 学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.如图,点 0是△ABC 的内切圆的圆心,若∠BAC=80°,则∠BOCc=()A.130°B.100°C. 65°D. 50°2.如图,Rt△OAC中,∠OAC=90°,OA=6,AC=4,扇形OAB的半径为OA,交OC于点B,如果⌒AB的长等于3,则图中阴影部分的面积为()A.15B.6 C.4 D.33.若A(-4,y1),B(-3,y2),C(1,y3)为二次函数y=x2+4x-5的图象上的三点,则y1,y2,y3的大小关系是()A.y1<y2<y3B.y2<y1<y3C.y3<y1<y2D.y1<y3<y24.关于二次函数247y x x=+-的最值,叙述正确的是()A.当x=2 时,函数有最大值B.当 x=2时,函数有最小值C.当 x=-2 时,函数有是大值D.当 x= 一2 时,函数有最小值5.如图,四边形ABCD是正方形,延长 BC至点E,使CE=CA,连结AE交CD于点F,则∠AFC的度数是()A. 150°B. 135°C.125°D. 112.5°6.下列图形放在一起能镶嵌平面的是()A.正五边形与长方形B.正方形与长方形C.正方形与正六边形D.正三角形与正八边形7.下列说法错误的是()A.x=1是方程x+1=2 的解B.x= -1 是不等式13x+<的一个解C.x=3 是不等式13x+<的一个解D.不等式13x+<的解有无数个8.如图,将四边形AEFG变换到四边形ABCD,其中E、G分别是AB、AD的中点.下列叙述不正确的是()A.这种变换是相似变换B.对应边扩大原来的2倍C.各对应角度不变D.面积扩大到原来的2倍9.如图,有 6 个全等的等边三角形,下列图形中可由△OBC 平移得到的是()A.△OCD B.△OAB C.△OAF D.△OEF10.在边长为a的正方形中挖掉一个边长为b的小正方形(a b>),把余下的部分剪拼成一个矩形(如图). 根据图示可以验证的等式是()A.22()()a b a b a b-=+-B.222()2a b a ab b+=++C.222()2a b a ab b-=-+D.2()a ab a a b-=-11.将一圆形纸片对折后再对折,得到右图,然后沿着图中的虚线剪开,得到两部分,其中一部分展开后的平面图形是()12.下列事件中,属于必然事件的是()A.如果 a>b,那么a+c>b+c B.如果 a>b,那么 ac>bcC.如果 a>b,那么 a2>b2 D.如果 a>b,那么a b>13.钟表上的时针从l0点到ll点,所旋转的角度是()A.10°B.15°C.30°D.60°14.当a=8,b=4时,代数式22baba-的值是()A.62 B.63 C.126 D.102215.阅读下列命题:①圆是轴对称图形,每一条直径都是它的对称轴;②垂直于弦的直线平分这条弦,并且平分弦所对的两条弧;③平分弦的直径垂直于弦,并且平分弦所对的两条弧;④垂直于弦且平分这条弦的直线是这个圆的对称轴.其中判断不正确的命题个数是( ) A .1 个B .2 个C .3 个D .4 个二、填空题16.已知△ABC 中,ACB=AC ,过点A 的直线把三角形分成两个等腰三角形,则∠B= . 解答题17.钢筋的横截面面积是0.25π,长度为h ,则钢筋的体积V=0.257πh ,这里常量是 ,变量是 .18.如图 ,直线a ∥b ,则∠ACB = .19.如图,1l ⊥2l , 3l ⊥2l ,则1l 3l ,理由是 .20. 世界上最轻的昆虫是膜翅目缨小蜂科的一种卵蜂,其质量只有0.000005 g ,用科学记数法表示3只卵蜂的质量是 g.21.若代数式23x y +的值是4,则369x y --的值是 .三、解答题22.有两个可以自由转动的均匀转盘A B ,都被分成了3等份,并在每一份内均标有数字,如图所示,规则如下:①分别转动转盘A B ,;②两个转盘停止后观察两个指针所指份内的数字(若指针停在等份线上,那么重转一次,直到指针指向某一份内为止).(1)用列表法(或树状图)分别求出“两个指针所指的数字都是..方程2560x x -+=的解”的概率和“两个指针所指的数字都不是...方程2560x x -+=的解”的概率; (2)王磊和张浩想用这两个转盘作游戏,他们规定:若“两个指针所指的数字都是..2560x x -+=的解”时,王磊得1分;若“两个指针所指的数字都不是...2560x x -+=的解”时,张浩得3分,这个游戏公平吗?若认为不公平,请修改得分规定,使游戏对双方公平.23.剪一块面积为150cm2的长方形铁片,使它的长比宽多5 cm,这块铁片应怎样剪?24.:请你在3×3 的方格纸上,以其中的格点为顶点分别画出,三个形状不同的三角形(工具不限,只要求画出图形,不必写结论).25.具有自主知识产权的“汉芯三号”于 2004年初在上海诞生,它每秒可处理指令8⨯次以610上,那么它工作3310⨯s至少可处理多少次指令?12⨯1.81026.如图所示,A,B两地之间有一条小河,现在想在河岸搭一座桥(桥与河岸垂直),搭在什么地方才能使A点过桥到B点的路程最短?请你在图中画出示意图.27.如图所示,已知AB=AE,∠B=∠E,BC=ED,F是CD的中点,说出AF是CD的中垂线的理由.解:连结AC,AD,在△ABC和△AED中,AB=AE(已知),∠B=∠E(已知),BC=ED(已知),∴△ABC≌△AED(SAS).∴AC=AD(全等三角形的对应边相等).请把后面的过程补充完整:28.我国国民经济保持良好发展势头,国内生产总值持续较快增长,下图是1998年~2002年国内生产总值统计图:根据图中信息,解答下列问题:(1)1999年国内生产总值是;(2)已知2002年国内生产总值比2000年增加l2956亿元,2001年比2000年增加6491亿元,求2002年国内生产总值比2001年增长的百分率(结果保留2个有效数字);(3)在(2)的条件下,将统计图改为折线统计图;(4)本题哪幅统计图可以较好地反映我国国内生产总值持续较快增长?29.2008年5月12日,四川省汶川发生8.0级强烈地震,给当地人民造成巨大的经济损失.某学校积极组织捐款支援灾区,七年级(1)班55名同学共捐款274元,捐款情况如下表;表中捐款2元和 5元的人数不小心被墨水污染已看不清楚,请你帮助确定表中数据,并说明理由.30.一个重为 10 kg 的大西瓜,它重量的90%是水分,将西瓜放在太阳下晒,被蒸发的水分是西瓜水分的 10%,求晒后西瓜的重量.【参考答案】学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.A2.D3.B4.D5.D6.B7.C8.D9.C10.A11.C12.A13.C14.C15.C二、填空题 16. 45°或36°17.0.25π;V,h18.78°19.∥;∠l=∠2=90°,同位角相等,两直线平行20.51.510-⨯21.15三、解答题 22.解:(1)解方程2560x x -+=得1223x x ==, 列表:2 3 4 1 1,2 1,3 1,4 2 2,2 2,3 2,4 33,23,33,4(或用树状图)由表知:指针所指两数都是该方程解的概率是:49指针所指两数都不是该方程解的概率是:19(2)不公平!411399⨯≠⨯∵. 修改得分规则为:指针所指两个数字都是该方程解时,王磊得1分. 指针所指两个数字都不是该方程解时,张浩得4分. 此时411499⨯=⨯. 23.长 15 cm ,宽 10 cm24.25.121.810⨯26.略27.略28.(1)82067亿元 (2)6.7% (3)略 (4)折线统计图29.捐2元的有4人,捐5元的有38人.理由如下:设捐款2元的有x 人,则捐款5元的有(5567x ---)人. 根据题意,得1625(5567)107274x x ⨯++---+⨯=,解得4x =, ∴556738x ---=(人)30.9.1 kg。
2020年江苏省南京市中考数学模拟冲刺试卷 学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.如图,△ABC 中,CD ⊥AB 于 D ,DE ⊥AC 于 E ,则图中与△ADE 相似的三角形有( )A .1 个B . 2 个C .3 个D .4 个2.沿着虚线将矩形剪成两部分,既能拼成三角形又能拼成梯形的是( )A .B .C .D . 3.为了了解全世界每天婴儿出生的情况,应选择的调查方式是( ) A .普查 B .抽样调查C .普查,抽样调查都可以D .普查,抽样调查都不可以 4.将一个三形平移后得到另一个三角形,则下列说法中,错误的是( ) A .两个三角形的大小不同B .两个三角形的对应边相等C .两个三角形的周长相等D .两个三角形的面积相等5.,已知a ,b ,c 是三角形的三边,那么代数式2222a ab b c -+-的值( )A . 大于零B . 等于零C . 小于零D . 不能确定 6.用长为4 cm 、5 cm 、6 cm 的三条线段围成三角形的事件是( ) A .随机事件 B .必然事件 C .不可能事件 D .以上都不是7.一个均匀的立方体六个面上分别标有数1,2,3,4,5,6.如图是这个立方体表面的展开图.抛掷这个立方体,则朝上一面上的数恰好等于朝下一面上的数的21的概率是( ) A .61 B .31 C .21 D .32 8.如图,将两根钢条AA ′、BB ′的中点O 连在一起,使AA ′、BB ′可以绕着点O 自由转动,就做成了一个测量工件,则A ′B ′的长等于内槽宽AB ,那么判定△OAB ≌△OA ′B ′的理由是( )A .边角边B .角边角C .边边边D .角角边9.c b a 、、是△ABC 的三边,且bc ac ab c b a ++=++222,那么△ABC 的形状是( )A .直角三角形B .等腰三角形C .等腰直角三角形D .等边三角形 10.下列语句中正确的是( )A .自然数是正数B .0 是自然数C .带“-”号的数是负数D .一个数不是正数就是负数 二、填空题11.冲印店将一张 1 寸照冲印成一张5寸照,它们 相似形(填“是”或“不是”).12.如果抛物线21y x ax =-+的对称轴是y 轴,那么a 的值为 . 13.已知直线32x y =+与两个坐标轴交于A 、B 两点,把二次函数24x y =-的图象先左右、后上下作两次平移后,使它通过A 、B ,那么平移后的图象的顶点坐标是 .解答题14.如图,在Rt △ABC 中,∠C=Rt ∠,AC=6,AB=BC+2,则斜边AB 长为 .15.如图,平面镜A 与B 之间的夹角为 120°,光线经平面镜A 反射到平面镜B 上,再反射出去.若∠1=∠2,则∠1 的度数为 .16.22()49x y -+÷( )=23x y +. 17.小王想把 20 元人民币全部兑换成 2元和 5元两种面值的人民币,她有 种不同的兑换方法(只兑换一种币值也可以).18.浙江省教育网开通了网上教学,某校九年级(8)班班主任为了了解学生上网学习时间,对本班40名学生某天上网学习时间进行了调查,将数据(取整数)整理后,绘制出如图所示频率分布直方图,已知从左到右各个小组的频率分别是0.15,0.25,0.35,0.20, 0.05,则根据直方图所提供的信息,这一天上网学习时间在100~119 min 之间的学生人数是人.三、解答题19.小颖有20张大小相同的卡片,上面写有1~20这20个数字,她把卡片放在一个盒子中搅匀,每次从盒中抽出一张卡片,记录结果如下:实验次数204060801001201401601802003的倍数的频数51317263236394955613的倍数的频率(1)完成上表;(2)频率随着实验次数的增加,稳定于什么值左右?(3)从试验数据看,从盒中摸出一张卡片是3的倍数的概率估计是多少?(4)根据推理计算可知,从盒中摸出一张卡片是3的倍数的概率应该是多少?20.已知AD是△ABC的高,CD=6,AD=BD=2,求∠BAC的度数.21.有砖和水泥,可砌长 48m 的墙. 要盖三间面积一样的平房,如图所示,问应怎样砌,才能使房屋的面积最大?22.如图,在等腰梯形ABCD中,AD∥BC,AB=DC,点E是BC边的中点,EM⊥AB,EN ⊥CD,垂足分别为M、N.求证:EM=EN.C B A23.一个多边形的内角和与外角和的比是7:2,求这个多边形的边数.24.如图,已知∠ 1 是它的补角的3 倍,∠2 等于它的补角的13,那么 AB ∥CD 吗?请说明理由.25.分析如图(1)、(2)、(4)中阴影部分的分布规律,按此规律在如图(3)中画出其中的阴影部分.26. 观察下列各式:11011914531231222-=⨯-=⨯-=⨯ ,,,你能发现什么规律,请用代数式表示这一规律,并加以证明.27.如图,∠A :∠B :∠C=2:3:4,求△ABC 的内角的度数.28.如图,将△ABC先向上平移5格得到△A′B′C′,再以直线MN为对称轴,将△A′B′C′作轴对称变换,得到△A″B″C″,作出△A′B′C′和△A″B″C″.29.在数轴上-7 与 37 之间插入三个数,使这五个数的每相邻两个点之间的距离相等. 求插入的三个数.30.图,旋转方格纸中的图形,使点0是它的旋转中心,顺时针旋转90°,画出旋转后的图形.【参考答案】学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.B2.D3.B4.A5.C6.B7.A8.A9.D10.B二、填空题11.是12.13.(—2,4)14.1015.30°16.32y x -17. 318.14三、解答题19.(1)0.25,0.33,0.28,0.33,0.32,0.30,0.33,0.31,0.31,0.31;(2)0.31;(3)0.31;(4)0.320.当AD 在BC 边上时,∠BAC=105°,当AD 在CB 延长线上时,∠BAC=15°. 21.设长为 x(m),则宽为(283x -)m ,∴222(8)+833s x x x x =-=- 当62b x a=-=时,S 最大,即当长为 6m 、宽 4m 时,才能使房屋面积最大. 22.∵AD ∥BC ,AB=DC ,∴B C ∠=∠,∵,,EM AB EN CD ⊥⊥∴90BME CNE ∠=∠=︒,在Rt △BME 和Rt △CNE 中,BME CNE B CBE CE ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴Rt △BME ≌ Rt △CNE ,∴EM =EN . 23.924.AB ∥CD ,说明∠1与它的同位角相等25.如图:26.连续两个奇数的平方差等于夹在这两个奇数之间的偶数的平方与1的差, 1)2()12)(12(2-=-+n n n .27.∠A=40°,∠B=60°,∠C=80°.28.略29.4,15,2630.略。
2020年江苏省南京市初三数学中考模拟试卷数 学本卷须知:1.答卷前将答卷纸上密封线内的项目填写清晰.2.用钢笔或圆珠笔〔蓝色或黑色〕直截了当答在答卷纸上,不能答在试卷上. 以下各题所附的四个选项中,有且只有一个是正确的. 一、选择题〔每题3分,共24分〕1.南京梅花山是全国闻名的赏梅胜地之一.近年来,梅花山的植梅规模不断扩大,新的品种不断显现,现在的梅花山的梅树约15000株,那个数可用科学记数法表示为 A .41015.0⨯ B .51015.0⨯ C .4105.1⨯ D .31015⨯ 2.右图是某几何体的三种视图,那么该几何体是 A .正方体 B .圆锥体 C .圆柱体D .球体3.以下运算中,正确的选项是A .523a a a =+ B .325⋅=a a a C .923)(a a = D .32-=a a a 4.在相同条件下重复试验,假设事件A 发生的概率是1007,以下陈述中,正确的选项是A .讲明做100次这种试验,事件A 必发生7次B .讲明事件A 发生的频率是1007 C .讲明反复大量做这种试验,事件A 平均发生大约7次 D .讲明做100次这种试验,事件A 可能发生7次5.如图,正方形桌面ABCD ,面积为2,铺一块桌布EFGH ,点A 、B 、C 、D 分不是EF 、FG 、GH 、HE 的中点,那么桌布EFGH 的面积是A .2B .22C .4D .86.函数y =x+1 中自变量x 的取值范畴是A .x ≥-1B .x ≤-1C .x >-1D .x <-1主视图俯视图左视图〔第2题〕A DB CF HE G〔第5题〕7.实数a ,b 在数轴上对应点的位置如下图,那么以下各式正确的选项是A .a >bB . a >-bC .-a >bD .-a <-b8.如图,在平面直角坐标系中,⊙M 与y 轴相切于原点O ,平行于x 轴的直线交⊙M 于P ,Q 两点,点P 在点Q 的右方,假设点P 的坐标是〔-1,2〕,那么点Q 的坐标是A .〔-4,2〕B .〔-4.5,2〕C .〔-5,2〕D .〔-5.5,2〕二、填空题〔每题3分,共30分〕9.运算:= ▲.10.如图,AB CD ∥,假设2135=∠,那么1∠的度数是 ▲ °.11.函数y =-x 2+2的图象的顶点坐标是▲.12.关于反比例函数2y x=,以下讲法:① 点(21)--,在它的图象上;② 它的图象在第一、三象限;③ 当0x >时,y 随x 的增大而增大;④ 当0x <时,y 随x 的增大而减小.上述讲法中,正确的序号.....是▲.〔填上所有你认为正确的序号〕13.不等式组()31122225x x x -⎧+⎪⎨⎪--<⎩, ≤②的解集是▲ .14.小明同学身高1.5米,经太阳光照耀,在地面的影长为2米,假设现在测得一塔在同一地面的影长为60米,那么塔高应为 ▲ 米.15.△ABC 中,∠C =90°,BC =2,AC =4,那么tan A = ▲ .16.如图,△ABC 内接于⊙O ,AD 是⊙O 的直径,∠ABC =25°,那么∠CAD = ▲ °. 17.正方形纸片ABCD 和BEFG 的边长分不为5和2,按如下图的方式剪下2个阴影部分的直角三角形,并摆放成正方形DHFI ,那么正方形DHFI 的边长为 ▲ .〔第6题〕ABDC 12〔第10题〕18.如图,矩形ABCD 的边AB 在x 轴上,AB 的中点与原点重合,AB =2,AD =1,过定点Q (0,2)和动点P (a ,0) 的直线与矩形ABCD 的边有公共点,那么a 的取值范畴是 ▲ .三、〔每题8分,共32分〕 19.〔1〕运算:4812332+; 〔2〕化简:232224aa a a a a ⎛⎫-÷ ⎪+--⎝⎭.20.如图,两个全等的直角三角形△ABC 和△A 1B 1C 1中,∠ACB =∠A 1C 1B 1 =90°,两条相等的直角边AC ,A 1C 1在同一直线上,A 1B 1 与AB 交于O ,AB 与B 1C 1交于E 1,A 1B 1 与BC 交于E .〔1〕写出图中除△ABC ≌△A 1B 1C 1外的所有其它各组全等三角形〔不再连线和标注字母〕; 〔2〕求证:B 1E 1= BE .21.将分不标有数字1,2,3的三张卡片洗匀后,背面朝上放在桌面上. 〔1〕随机地抽取一张,求P 〔抽到偶数〕;〔2〕随机地抽取一张作为十位上的数字〔不放回〕,再抽取一张作为个位上的数字,恰好那个两位数是奇数的概率是多少? 22.今年不仅是民间所谓的〝金鼠年〞,又恰逢2018年奥运会,许多准妈妈想借机生个〝奥运宝宝〞.据不完全统计,今年3月份在南京三家大医院出生的宝宝总数如图1所示,其中每家医院出生的男宝宝的百分比如图2所示.A BCO E 1E B 1 C 1 A 1〔第20题〕 IF ABDCHG〔第17题〕ADBOC〔第16题〕〔第18题〕〔1〕求在这三家大医院3月份出生的总人数中男宝宝的百分比;〔2〕3月份南京共有约5000名〝奥运宝宝〞出生,依照上面的运算结果,估量3月份南京共有多少名男宝宝出生?四、〔每题10分,共40分〕23.如图,每个小方格差不多上边长为1个单位的小正方形,B ,C ,D 三点差不多上格点〔每个小方格的顶点叫格点〕.〔1〕找出格点A ,连接AB ,AD 使得四边形ABCD 为菱形; 〔2〕画出菱形ABCD 绕点A 逆时针旋转90°后的菱形AB 1C 1D 1,并求点C 旋转到点C 1所通过的路线长.24.如图,反比例函数 y =kx 的图象与一次函数y =mx +b 的图象交于两点A 〔1,3〕,B 〔n ,-1〕.〔1〕求反比例函数与一次函数的函数关系式;〔2〕在反比例函数的图象上找点P ,使得点A ,O ,P 构成等腰三角形,直截了当写出两个满足条件的点P 的坐标.25.某风景治理区,为提高游客到某景点的安全性,决定将到达该景点的步行台阶进行改善,把倾角由45°减至30°,原台阶坡面AB 的长为5m 〔BC 所在地面为水平面〕.〔第23题〕 B CD〔第24题〕图1 图2〔1〕改善后的台阶坡面会加长多少? 〔2〕改善后的台阶多占多长一段水平地面?〔结果精确到0.1m ,参考数据:2 1.41≈,3 1.73≈〕26.如图〔1〕,∠ABC =90°,O 为射线BC 上一点,OB = 4,以点O 为圆心,21BO长为半径作⊙O 交BC 于点D 、E .〔1〕当射线BA 绕点B 按顺时针方向旋转多少度时与⊙O 相切?请讲明理由. 〔2〕假设射线BA 绕点B 按顺时针方向旋转与⊙O 相交于M 、N 两点〔如图〔2〕〕,MN =22,求⌒MN 的长.五、〔每题12分,共24分〕27.如图,等边三角形ABC ,边长为2,AD 是BC 边上的高.〔1〕在△ABC 内部作一个矩形EFGH 〔如图1〕,其中E 、H 分不在边AB 、AC 上,FG 在边BC 上.①设矩形的一边FG =x ,那么EF = ▲ .〔用含有x 的代数式表示〕 ②设矩形的面积为y ,当x 取何值时,y 的值最大?最大值是多少? 〔2〕在图2中,只用圆规画出点E ,使得上述矩形EFGH 面积最大.写出画法,并保留作图痕迹.AE HABODE CA图〔2〕MN 图〔1〕ABOCDE 〔第26题〕B C A 45º45º30º〔第25题〕28.平面上的点M 关于直线l 有唯独的轴对称点M ',如此平面上的任意一点就与该点关于这条直线的轴对称点之间建立了一种对应关系,我们把这种对应关系叫做点M 关于直线l 的轴对称变换,记为()()M l M M l '−−−→,点M 的轴对称点就记为()M l ',如图(1)所示.假如先作平面上的点M 关于直线l 的轴对称变换()()M l M M l '−−−→,得到对应点()M l ',然后,再作()M l '关于另外一条直线m 的轴对称变换()()(),M m M l M l m '''−−−→,如此点M 就与该点关于直线l 和m 的轴对称点(),M l m ''之间建立了一种对应关系,我们把这种对应关系就叫做点M 关于直线l 和m 的轴对称变换,记为()(,),M l m M M l m ''−−−→,M 的对应点就记为(),M l m ''。
如图(2),M是平面上的一点,直线l 、m 相交所成的角为θ(0°<θ≤90°),且交点为O ,请回答如下咨询题:〔1〕在图〔2〕中,求作()M l '和(),M l m ''.〔要求保留作图痕迹〕 〔2〕当θ= ▲ °时,M 与(),M l m ''关于点O 成中心对称.〔A 〕30 〔B〕45 〔C〕60 〔D〕90 〔3〕〔在以下两题中任选一题作答〕①试探讨∠MO (),M l m ''与θ之间的数量关系,并证明你的结论.),m 之间的数量关系,并证明你的结论.m图(2)m备用图(第28题图)图(1)M南京市2018年中考数学模拟试卷参考答案一、选择题〔每题3分,共24分〕二、填空题〔每题3分,共30分〕9.3- 10.45 11.〔0,2〕 12.①,②,④13.321≤<x 14.45 15. 2116.65 17.29 18.-2≤a ≤2 三、〔每题8分,共32分〕19.〔1〕解:原式=343632+……………………………………………………2分=3438……………………………………………………………3分=2.…………………………………………………………………4分〔2〕解:原式=aa a a a a a a a 2)2)(2()2)(2()2()2(3-+⋅-++--…………………………2分2282a a a-= ………………………………………………………3分4a =-.………………………………………………………………4分20.解: 〔1〕△ACE ≌△A 1C 1 E 1,△OBE ≌△O 1B 1 E 1. ····························· 2分〔2〕∵△ABC ≌△A 1B 1C 1,∴AC = A 1C 1 ,BC = B 1C 1………………3分 ∴A C 1=A 1 C , ………………………………4分∠A =∠A 1 ,∠ACE =∠A 1C 1 E 1 =90°,〔第20题图〕AB COE 1EB 1C 1 1∴△ACE ≌△A 1C 1 E 1, ,…………………………6分∴CE =C 1 E 1,…………………………………………………………………………7分 又∵BC = B 1C 1 ,∴B 1E 1= BE .…………………………………………………………………………8分21.解:〔1〕P 〔抽到偶数〕=31;…………………………………………………3分 〔2〕所有可能两位数列举如下:12,13,21,23,31,32.…………………6分 那个两位数是奇数的概率是31.………………………………………………………8分 22.〔1〕解:%53%1003000%55300%55700%522000=⨯⨯+⨯+⨯.…………4分答:这三家大医院3月份出生的总人数中男宝宝的百分比为53%. ……………5分 〔2〕2650%535000=⨯〔人〕.………………………………………………8分 答:估量3月份南京共有2650名男宝宝出生.四、〔每题10分,共40分〕23.解:〔1〕画图. ………………………………4分 〔2〕画图. ……………………………………5分 AC=4 2 , ………………………………7分 C 旋转到C 1所通过的路线长等于2 2 π. ……10分24.解:〔1〕把A 〔1,3〕代入y =k x,得k =3, …………………………2分把B 〔n ,-1〕代入y =3x,得n =-3,因此B 〔-3,-1〕.………………………………4分把A 〔1,3〕,B 〔-3,-1〕代入y =mx +b , 解得,m =1,b =2. ………………………………6分 因此,反比例函数的关系式是y =3x,〔第24题图〕〔第23题图〕BCD AB 1C 1D一次函数的函数关系式是y =x +2. …………………………………………8分 〔2〕点P 的坐标能够是〔-3,-1〕或〔3,1〕或其它.………………10分 25.解:〔1〕如图,在Rt ABC △中,52sin 45AC AB ==(m).……2分 在Rt ACD △中,521525 1.417.05sin 3022AC AD ==÷=≈⨯≈(m),……………4分7.055 2.1AD AB ∴-=-≈m . ………………………………5分 即改善后的台阶坡面会加长2.1 m .〔2〕如图,在Rt ABC △中,53.322545cos ≈=︒⋅=AB BC (m).………6分 在Rt ACD △中,52 6.10tan 302AC CD ==÷≈33(m),……………………………8分6.10 3.53 2.6BD CD BC ∴=-=-≈(m).………………………9分 即改善后的台阶多占2.6.长的一段水平地面. ……………………10分26.〔1〕当射线BA 绕点B 按顺时针方向旋转60度或120度时与⊙O 相切.…1分 理由:当BA 绕点B 按顺时针方向旋转60度到B A ′的位置. 那么∠A ′BO =30°,过O 作OG ⊥B A ′垂足为G , ∴OG =12OB =2. …………………………3分 ∴B A ′是⊙O 的切线.……………………4分同理,当BA 绕点B 按顺时针方向旋转120度到B A ″的位置时, B A ″也是⊙O 的切线.…………………6分〔如只有一个答案,且讲理正确,给2分〕〔或:当BA 绕点B 按顺时针方向旋转到B A ′的位置时,BA 与⊙O 相切, 设切点为G ,连结OG ,那么OG ⊥AB ,∵OG =12OB ,∴∠A ′BO =30°. ∴BA 绕点B 按顺时针方向旋转了60度.同理可知,当BA 绕点B 按顺时针方向旋转到B A ″的位置时,BA 与⊙O 相〔第25题图〕BA ″A ′OGD E 〔第26题图〕切,BA 绕点B 按顺时针方向旋转了120度.〕 〔2〕∵MN=OM =ON =2,∴MN 2 = OM 2 +ON 2,…………………7分 ∴∠MON =90°. …………………8分∴⌒MN 的长为902180l π⨯==π.…………10分五、〔每题12分,共24分〕 27.解:〔1〕①x 233-.………………………………………………2分 ② x x x x EF FG y 323)233(2+-=-=⋅=………6分 =23)1(232+--x .………………………………………7分 当x =1时,y 有最大值,且最大值为23.………………………8分 〔2〕画法:以B 为圆心,BD 长为半径画弧,交AB 于点E ,那么点E 即为所求…10分画图正确 …………………………………………………………………12分28.解:〔1〕每画对一个给2分.………………………………………………4分 〔2〕D .……………………………………………………………………………7分 〔3〕① 判定:θ∠=∠2),(''m l MOM .……………………………………8分 证明:如图〔1〕,由轴对称性质可知,l 垂直平分)('l MM ,那么)('l OMM ∆为等腰三角形.………………………………………………10分 ∵21∠=∠.同理43∠=∠,………………………………………………11分 ∴θ∠=∠2),(''m l MOM .…………………………………………………12分 ②判定:),(''m l OM OM =.〔第26题图〕证明:如图〔2〕,连接OM 、)('l OM 、),(''m l OM .∵M ,)('l M 关于直线l 成轴对称,∴l 是)('l MM 的垂直平分线.∴)('l OM OM =.………………………………………………………………10分 同理可得:),(")('m l OM l OM =.……………………………………………11分 ∴),(''m l OM OM =.…………………………………………………………12分图〔1〕 图〔2〕〔第28题图〕 m ll m。