高考数学二轮复习第二部分突破热点分层教学专项二专题四3第3讲立体几何中的向量方法课件
- 格式:ppt
- 大小:3.04 MB
- 文档页数:45
第2讲 空间向量与立体几何[做小题——激活思维]1.在正方体A 1B 1C 1D 1ABCD 中,AC 与B 1D 所成角的大小为( ) A.π6 B.π4 C.π3D.π2D [如图,连接BD ,易证AC ⊥平面BB 1D , ∴AC ⊥B 1D ,∴AC 与B 1D 所成角的大小为π2.] 2.已知两平面的法向量分别为m =(0,1,0),n =(0,1,1),则两平面所成的二面角为( ) A .45° B .135° C .45°或135°D .90°C [∵m =(0,1,0),n =(0,1,1), ∴|m |=1,|n |=2,m ·n =1,∴cos〈m ,n 〉=m ·n |m ||n |=12=22,设两平面所成的二面角为α,则 |cos α|=22,∴α=45°或135°,故选C.] 3.用a ,b ,c 表示空间中三条不同的直线,γ表示平面,给出下列命题: ①若a ⊥b ,b ⊥c ,则a ∥c ;②若a ∥b ,a ∥c ,则b ∥c ; ③若a ∥γ,b ∥γ,则a ∥b ;④若a ⊥γ,b ⊥γ,则a ∥b . 其中真命题的序号是( ) A .①② B .②③ C .①④D .②④D [对于①,正方体从同一顶点引出的三条直线a ,b ,c ,满足a ⊥b ,b ⊥c ,但是a ⊥c ,所以①错误;对于②,若a ∥b ,a ∥c ,则b ∥c ,满足平行线公理,所以②正确;对于③,平行于同一平面的两条直线的位置关系可能是平行、相交或者异面,所以③错误;对于④,由垂直于同一平面的两条直线平行,知④正确.故选D.]4.已知向量m ,n 分别是直线l 和平面α的方向向量和法向量,若cos 〈m ,n 〉=-12,则l 与α所成的角为________.π6[设l 与α所成的角为θ,则 sin θ=|cos 〈m ,n 〉|=12,又θ∈⎣⎢⎡⎦⎥⎤0,π2,∴θ=π6.][扣要点——查缺补漏]1.证明线线平行和线线垂直的常用方法(1)证明线线平行:①利用平行公理;②利用平行四边形进行平行转换;③利用三角形的中位线定理;④利用线面平行、面面平行的性质定理进行平行转换.如T 3.(2)证明线线垂直:①利用等腰三角形底边上的中线即高线的性质;②勾股定理;③线面垂直的性质.2.证明线面平行和线面垂直的常用方法(1)证明线面平行:①利用线面平行的判定定理;②利用面面平行的性质定理. (2)证明线面垂直:①利用线面垂直的判定定理;②利用面面垂直的性质定理. 3.异面直线所成的角求法 (1)平移法:解三角形.(2)向量法:注意角的范围.如T 1. 4.二面角的求法cos θ=cos 〈m ,n 〉=m ·n|m ||n |,如T 2.5.线面角的求法sin θ=|cos 〈m ,n 〉|,如T 4.利用空间向量求空间角(5年15考)[高考解读] 主要考查通过建立空间直角坐标系,解决空间图形中的线线角、线面角和面面角的求解,考查学生的空间想象能力、运算能力、三种角的定义及求法等.(2018·全国卷Ⅱ)如图,在三棱锥P ABC 中,AB =BC =22,PA =PB =PC =AC =4,O 为AC 的中点.(1)证明:PO ⊥平面ABC ;(2)若点M 在棱BC 上,且二面角M PA C 为30°,求PC 与平面PAM 所成角的正弦值.切入点:(1)借助勾股定理,证明PO ⊥OB ;(2)建立空间直角坐标系,利用二面角M PA C 为30°求出点M 的坐标,进而求出PC 与平面PAM 所成角的正弦值.[解](1)证明:因为AP =CP =AC =4,O 为AC 的中点,所以OP ⊥AC ,且OP =2 3. 连接OB .因为AB =BC =22AC ,所以△ABC 为等腰直角三角形, 且OB ⊥AC ,OB =12AC =2.由OP 2+OB 2=PB 2知PO ⊥OB .由OP ⊥OB ,OP ⊥AC ,OB ∩AC =O ,知PO ⊥平面ABC . (2)如图,以O 为坐标原点,OB →的方向为x 轴正方向,建立空间直角坐标系O xyz .由已知得O (0,0,0),B (2,0,0),A (0,-2,0),C (0,2,0),P (0,0,23),AP →=(0,2,23).取平面PAC 的一个法向量OB →=(2,0,0).设M (a,2-a,0)(0≤a ≤2),则AM →=(a,4-a,0). 设平面PAM 的法向量为n =(x ,y ,z ). 由AP →·n =0,AM →·n =0得⎩⎨⎧2y +23z =0,ax +-a y =0,可取n =(3(a -4),3a ,-a ), 所以cos 〈OB →,n 〉=23a -2a -2+3a 2+a2.由已知可得|cos 〈OB →,n 〉|=32,所以23|a -4|2a -2+3a 2+a2=32, 解得a =-4(舍去),a =43,所以n =⎝ ⎛⎭⎪⎫-833,433,-43.又PC →=(0,2,-23),所以cos 〈PC →,n 〉=34.所以PC 与平面PAM 所成角的正弦值为34. [教师备选题]1.(2015·全国卷Ⅰ)如图,四边形ABCD 为菱形,∠ABC =120°,E ,F 是平面ABCD 同一侧的两点,BE ⊥平面ABCD ,DF ⊥平面ABCD ,BE =2DF ,AE ⊥EC .(1)证明:平面AEC ⊥平面AFC ;(2)求直线AE 与直线CF 所成角的余弦值.[解](1)证明:如图,连接BD ,设BD ∩AC =G ,连接EG ,FG ,EF . 在菱形ABCD 中,不妨设GB =1.由∠ABC =120°,可得AG =GC = 3.由BE ⊥平面ABCD ,AB =BC ,可知AE =EC . 又AE ⊥EC ,所以EG =3,且EG ⊥AC . 在Rt△EBG 中,可得BE =2,故DF =22. 在Rt△FDG 中,可得FG =62. 在直角梯形BDFE 中,由BD =2,BE =2,DF =22,可得EF =322. 从而EG 2+FG 2=EF 2,所以EG ⊥FG . 又AC ∩FG =G ,所以EG ⊥平面AFC . 因为EG平面AEC ,所以平面AEC ⊥平面AFC .(2)如图,以G 为坐标原点,分别以GB →,GC →的方向为x 轴,y 轴正方向,|GB →|为单位长度,建立空间直角坐标系G xyz .由(1)可得A (0,-3,0),E (1,0,2),F -1,0,22,C (0,3,0), 所以A E →=(1,3,2),CF →=⎝ ⎛⎭⎪⎫-1,-3,22.故cos 〈A E →,CF →〉=A E →·CF →|A E →||CF →|=-33.所以直线AE 与直线CF 所成角的余弦值为33. 2.(2019·全国卷Ⅰ)如图,直四棱柱ABCD A 1B 1C 1D 1的底面是菱形,AA 1=4,AB =2,∠BAD =60°,E ,M ,N 分别是BC ,BB 1,A 1D 的中点.(1)证明:MN ∥平面C 1DE ; (2)求二面角A MA 1N 的正弦值.[解](1)连接B 1C ,ME .因为M ,E 分别为BB 1,BC 的中点,所以ME ∥B 1C ,且ME =12B 1C .又因为N 为A 1D 的中点,所以ND =12A 1D .由题设知A 1B 1DC ,可得B 1C A 1D ,故ME ND ,因此四边形MNDE 为平行四边形,MN ∥ED .又MN平面EDC 1,所以MN ∥平面C 1DE .(2)由已知可得DE ⊥D A.以D 为坐标原点,DA →的方向为x 轴正方向,建立如图所示的空间直角坐标系D xyz ,则A (2,0,0),A 1(2,0,4),M (1,3,2),N (1,0,2),A 1A →=(0,0,-4),A 1M →=(-1,3,-2),A 1N →=(-1,0,-2),MN →=(0,-3,0).设m =(x ,y ,z )为平面A 1MA 的法向量,则 ⎩⎪⎨⎪⎧m ·A 1M →=0,m ·A 1A →=0.所以⎩⎨⎧-x +3y -2z =0,-4z =0.可取m =(3,1,0).设n =(p ,q ,r )为平面A 1MN 的法向量,则 ⎩⎪⎨⎪⎧n ·MN →=0,n ·A 1N →=0.所以⎩⎨⎧-3q =0,-p -2r =0.可取n =(2,0,-1).于是cos 〈m ,n 〉=m·n |m||n|=232×5=155,所以二面角A MA 1N 的正弦值为105.1.利用向量法求线面角的两种方法(1)法一:分别求出斜线和它在平面内的射影直线的方向向量,转化为求两个方向向量的夹角(或其补角);(2)法二:通过平面的法向量来求,即求出斜线的方向向量与平面的法向量所夹的锐角或钝角的补角,取其余角就是斜线和平面所成的角.2.利用向量计算二面角大小的常用方法(1)找法向量法:分别求出二面角的两个半平面所在平面的法向量,然后通过两个平面的法向量的夹角得到二面角的大小,但要注意结合实际图形判断所求角是锐(钝)二面角.(2)找与棱垂直的方向向量法:分别在二面角的两个半平面内找到与棱垂直且以垂足为起点的两个向量,则这两个向量的夹角的大小就是二面角的大小.提醒:判断二面角的平面角是锐角还是钝角,可结合图形进行.1.[一题多解](以圆柱为载体)如图,圆柱的轴截面ABCD 为正方形,E 为弧BC 的中点,则异面直线AE 与BC 所成角的余弦值为 ( )A.33 B.55 C.306D.66D [法一:(平移法)取BC 的中点H ,连接EH ,AH ,∠EHA =90°,设AB =2,则BH =HE =1,AH =5,所以AE =6,连接ED ,ED =6,因为BC ∥AD ,所以异面直线AE 与BC 所成角即为∠EAD ,在△EAD 中cos∠EAD =6+4-62×2×6=66,故选D.法二:(向量法)取圆柱底面的圆心O 为原点,建立空间直角坐标系O xyz ,设AB =2,则A (1,0,0),B (1,0,2),C (-1,0,2),E (0,1,2),∴A E →=(-1,1,2),BC →=(-2,0,0)∴cos〈A E →,BC →〉=26×2=66,故选D.] 2.(以棱柱为载体)在三棱柱ABC A1B 1C 1中, AB ⊥平面BCC 1B 1,∠BCC 1=π3, AB =BC =2, BB 1=4,点D 在棱CC 1上,且CD =λCC 1(0<λ≤1).建立如图所示的空间直角坐标系.(1)当λ=12时,求异面直线AB 1与A 1D 的夹角的余弦值;(2)若二面角A B 1D A 1的平面角为π3,求λ的值.[解](1)易知A ()0,0,2, B 1()0,4,0, A 1()0,4,2. 当λ=12时, 因为BC =CD =2, ∠BCC 1=π3,所以C ()3,-1,0,D ()3,1,0.所以AB 1→=()0,4,-2, A 1D →=()3,-3,-2. 所以cos 〈AB 1→,A 1D →〉=AB 1→·A 1D→||AB 1→||A 1D →=0×3+4×()-3+()-2×()-242+()-22·()32+()-32+()-22=-55. 故异面直线AB 1与A 1D 的夹角的余弦值为55. (2)由CD =λCC 1可知, D ()3,4λ-1,0, 所以DB 1→=()-3,5-4λ,0, 由(1)知, AB 1→=()0,4,-2.设平面AB 1D 的法向量为m =()x ,y ,z , 则⎩⎪⎨⎪⎧AB 1→·m =0,DB 1→·m =0,即⎩⎨⎧4y -2z =0,()5-4λy -3x =0,令y =1,解得x =5-4λ3, z =2,所以平面AB 1D 的一个法向量为m =⎝ ⎛⎭⎪⎫5-4λ3,1,2.设平面A 1B 1D 的法向量为n =()x ,y ,z , 则⎩⎪⎨⎪⎧B 1A 1→·n =0,DB 1→·n =0,即⎩⎨⎧2z =0,()5-4λy -3x =0,令y =1,解得x =5-4λ3, z =0,所以平面A 1B 1D 的一个法向量为n =⎝ ⎛⎭⎪⎫5-4λ3,1,0.因为二面角A B 1D A 1的平面角为π3,所以||cos 〈m ,n 〉=|m·n |||m ||n=⎪⎪⎪⎪⎪⎪5-4λ3×5-4λ3+1×1+2×0⎝ ⎛⎭⎪⎫5-4λ32+12+22·⎝ ⎛⎭⎪⎫5-4λ32+12=12, 即()5-4λ2=1,解得λ=32(舍)或λ=1,故λ的值为1.3.(以棱台为载体)如图,在三棱台DEF ABC 中,AB =2DE ,G ,H 分别为AC ,BC 的中点. (1)求证:BD ∥平面FGH ;(2)若CF ⊥平面ABC ,AB ⊥BC ,CF =DE ,∠BAC =45°,求平面FGH 与平面ACFD 所成的角(锐角)的大小.[解](1)证明:在三棱台DEF ABC 中, 由BC =2EF ,H 为BC 的中点, 可得BH ∥EF ,BH =EF ,所以四边形BHFE 为平行四边形, 可得BE ∥HF .在△ABC 中,G 为AC 的中点,H 为BC 的中点, 所以GH ∥AB .又GH ∩HF =H ,所以平面FGH ∥平面ABED . 因为BD平面ABED ,所以BD ∥平面FGH .(2)设AB =2,则CF =1.在三棱台DEF ABC 中,G 为AC 的中点,由DF =12AC =GC ,可得四边形DGCF 为平行四边形, 因此DG ∥FC . 又FC ⊥平面ABC , 所以DG ⊥平面ABC .连接GB ,在△ABC 中,由AB ⊥BC ,∠BAC =45°,G 是AC 的中点, 所以AB =BC ,GB ⊥GC , 因此GB ,GC ,GD 两两垂直.以G 为坐标原点,建立如图所示的空间直角坐标系G xyz .所以G (0,0,0),B (2,0,0),C (0,2,0),D (0,0,1).可得H ⎝⎛⎭⎪⎫22,22,0,F (0,2,1). 故GH →=⎝ ⎛⎭⎪⎫22,22,0,GF →=(0,2,1).设n =(x ,y ,z )是平面FGH 的法向量,则 由⎩⎪⎨⎪⎧n ·GH →=0,n ·GF →=0,可得⎩⎨⎧x +y =0,2y +z =0.可得平面FGH 的一个法向量n =(1,-1,2). 因为GB →是平面ACFD 的一个法向量,GB →=(2,0,0), 所以cos 〈GB →,n 〉=GB →·n |GB →|·|n |=222=12.所以平面FGH 与平面ACFD 所成角(锐角)的大小为60°. 4.(以五面体为载体)如图,在以A ,B ,C ,D ,E ,F 为顶点的五面体中,平面ABEF 为正方形,AF =2FD ,∠AFD =90°,且二面角D AF E 与二面角C BE F 都是60°.(1)证明:平面ABEF ⊥平面EFDC ; (2)求二面角E BC A 的余弦值.[解](1)证明:由已知可得AF ⊥DF ,AF ⊥FE ,DF ∩EF =F , 所以AF ⊥平面EFDC .又AF 平面ABEF ,故平面ABEF ⊥平面EFDC .(2)过D 作DG ⊥EF ,垂足为G ,由(1)知DG ⊥平面ABEF . 以G 为坐标原点,GF →的方向为x 轴正方向,|GF →|为单位长,建立如图所示的空间直角坐标系G xyz .由(1)知∠DEF 为二面角D AF E 的平面角,故∠DFE =60°,则|DF |=2,|DG |=3,可得A (1,4,0),B (-3,4,0),E (-3,0,0),D (0,0,3).由已知得,AB ∥EF ,所以AB ∥平面EFDC . 又平面ABCD ∩平面EFDC =CD , 故AB ∥CD ,CD ∥EF .由BE ∥AF ,可得BE ⊥平面EFDC ,所以∠CEF 为二面角C BE F 的平面角,∠CEF =60°.从而可得C (-2,0,3).连接AC ,所以E C →=(1,0,3),E B →=(0,4,0),AC →=(-3,-4,3),AB →=(-4,0,0). 设n =(x ,y ,z )是平面BCE 的法向量,则 ⎩⎪⎨⎪⎧n ·E C →=0,n ·E B →=0,即⎩⎨⎧x +3z =0,4y =0.所以可取n =(3,0,-3).设m 是平面ABCD 的法向量,则⎩⎪⎨⎪⎧m ·AC →=0,m ·AB →=0.同理可取m =(0,3,4). 则cos 〈n ,m 〉=n ·m |n ||m |=-21919. 故二面角E BC A 的余弦值为-21919.利用空间向量解决折叠性问题(5年3考)[高考解读] 以平面图形的翻折为载体,考查空间想象能力,在线面位置关系的证明中考查逻辑推理能力,在空间角的求解中,考查转化化归及数学运算的核心素养.1.(2018·全国卷Ⅰ)如图,四边形ABCD 为正方形,E ,F 分别为AD ,BC 的中点,以DF 为折痕把△DFC 折起,使点C 到达点P的位置,且PF ⊥BF .(1)证明:平面PEF ⊥平面ABFD ; (2)求DP 与平面ABFD 所成角的正弦值. 切入点:(1)对照折叠前后的线面关系给予证明; (2)建立空间直角坐标系通过向量法求解. [解](1)由已知可得,BF ⊥PF ,BF ⊥EF ,又PF 平面PEF ,EF平面PEF ,且PF ∩EF =F ,所以BF ⊥平面PEF .又BF平面ABFD ,所以平面PEF ⊥平面ABFD .(2)作PH ⊥EF ,垂足为H .由(1)得,PH ⊥平面ABFD . 以H 为坐标原点,HF →的方向为y 轴正方向,|BF →|为单位长,建立如图所示的空间直角坐标系H xyz .由(1)可得,DE ⊥PE .又DP =2,DE =1,所以PE = 3.又PF =1,EF =2,PF 2+PE 2=EF 2,故PE ⊥PF .可得PH =32,EH =32. 则H (0,0,0),P ⎝ ⎛⎭⎪⎫0,0,32,D ⎝ ⎛⎭⎪⎫-1,-32,0,DP →=⎝ ⎛⎭⎪⎫1,32,32,HP →=⎝⎛⎭⎪⎫0,0,32为平面ABFD 的法向量.设DP 与平面ABFD 所成角为θ, 则sin θ=⎪⎪⎪⎪⎪⎪⎪⎪HP →·DP →|HP →||DP →|=343=34. 所以DP 与平面ABFD 所成角的正弦值为34. [教师备选题](2016·全国卷Ⅱ)如图,菱形ABCD 的对角线AC 与BD 交于点O ,AB =5,AC =6,点E ,F 分别在AD ,CD 上,AE =CF =54,EF 交BD 于点H .将△DEF 沿EF 折到△D ′EF 的位置,OD ′=10.(1)证明:D ′H ⊥平面ABCD ; (2)求二面角B D ′A C 的正弦值. [解](1)证明:由已知得AC ⊥BD ,AD =CD .又由AE =CF 得A EAD =CFCD,故AC ∥EF .因此EF ⊥HD ,从而EF ⊥D ′H .由AB =5,AC =6得DO =BO =AB 2-AO 2=4.由EF ∥AC ,得OH DO =A E AD =14.所以OH =1,D ′H =DH =3.于是D ′H 2+OH 2=32+12=10=D ′O 2,故D ′H ⊥OH . 又D ′H ⊥EF ,而OH ∩EF =H ,所以D ′H ⊥平面ABCD . (2)如图,以H 为坐标原点,HF →的方向为x 轴正方向,建立空间直角坐标系H xyz ,则H (0,0,0),A (-3,-1,0),B (0,-5,0),C (3,-1,0),D ′(0,0,3),AB →=(3,-4,0),AC →=(6,0,0),AD ′→=(3,1,3).设m =(x 1,y 1,z 1)是平面ABD ′的法向量,则 ⎩⎪⎨⎪⎧ m ·AB →=0,m ·AD ′→=0,即⎩⎪⎨⎪⎧ 3x 1-4y 1=0,3x 1+y 1+3z 1=0,所以可取m =(4,3,-5).设n =(x 2,y 2,z 2)是平面ACD ′的法向量,则 ⎩⎪⎨⎪⎧n ·AC →=0,n ·AD ′→=0,即⎩⎪⎨⎪⎧6x 2=0,3x 2+y 2+3z 2=0,所以可取n =(0,-3,1).于是cos 〈m ,n 〉=m·n |m||n |=-1450×10=-7525.sin 〈m ,n 〉=29525.因此二面角B D ′A C 的正弦值是29525.平面图形翻折问题的求解方法(1)解决与折叠有关的问题的关键是搞清折叠前后的变和不变,一般情况下,线段的长度是不变量,而位置关系往往会发生变化,抓住不变量是解决问题的突破口.(2)在解决问题时,要综合考虑折叠前后的图形,既要分析折叠后的图形,也要分析折叠前的图形.(以梯形为载体)如图,等腰梯形ABCD 中,AB ∥CD ,AD =AB =BC =1,CD =2,E 为CD 中点,以AE 为折痕把△ADE 折起,使点D 到达点P 的位置(P 平面ABCE ).(1)证明:AE ⊥PB ;(2)若直线PB 与平面ABCE 所成的角为π4,求二面角A PE C 的余弦值.[解](1)证明:连接BD ,设AE 的中点为O , ∵AB ∥CE ,AB =CE =12CD ,∴四边形ABCE 为平行四边形,∴AE =BC =AD =DE , ∴△ADE ,△ABE 为等边三角形, ∴OD ⊥AE ,OB ⊥AE , 又OP ∩OB =O , ∴AE ⊥平面POB ,又PB 平面POB ,∴AE ⊥PB .(2)在平面POB 内作PQ ⊥平面ABCE ,垂足为Q ,则Q 在直线OB 上, ∴直线PB 与平面ABCE 夹角为∠PBO =π4,又OP =OB ,∴OP ⊥OB ,∴O 、Q 两点重合,即PO ⊥平面ABCE ,以O 为原点,OE 为x 轴,OB 为y 轴,OP 为z 轴,建立空间直角坐标系, 则P ⎝ ⎛⎭⎪⎫0,0,32,E ⎝ ⎛⎭⎪⎫12,0,0,C ⎝ ⎛⎭⎪⎫1,32,0,∴P E →=⎝ ⎛⎭⎪⎫12,0,-32,E C →=⎝ ⎛⎭⎪⎫12,32,0,设平面PCE 的一个法向量为n 1=(x ,y ,z ),则⎩⎪⎨⎪⎧n 1·P E →=0,n 1·E C →=0,即⎩⎪⎨⎪⎧12x -32z =0,12x +32y =0,令x =3得n 1=(3,-1,1), 又OB ⊥平面PAE ,∴n 2=(0,1,0)为平面PAE 的一个法向量,设二面角A EP C 为α,则|cos α|=cos 〈n 1,n 2〉=|n 1·n 2||n 1||n 2|=15=55,易知二面角A EP C 为钝角,所以cos α=-55.立体几何的综合问题(5年3考)[高考解读] 将圆的几何性质、空间线面的位置关系、空间几何体的体积等知识融于一体,综合考查学生的逻辑推理能力.(2018·全国卷Ⅲ)如图,边长为2的正方形ABCD 所在的平面与半圆弧CD ︵所在平面垂直,M 是CD ︵上异于C ,D 的点.(1)证明:平面AMD ⊥平面BMC ;(2)当三棱锥M ABC 体积最大时,求平面MAB 与平面MCD 所成二面角的正弦值. 切入点:(1)借助圆的几何性质得出DM ⊥CM ,进而借助面面垂直的判定求解. (2)借助体积公式先探寻M 点的位置,建系借助坐标法求解. [解](1)由题设知,平面CMD ⊥平面ABCD ,交线为CD .因为BC ⊥CD ,BC 平面ABCD ,所以BC ⊥平面CMD ,故BC ⊥DM .因为M 为CD ︵上异于C ,D 的点,且DC 为直径,所以DM ⊥CM . 又BC ∩CM =C ,所以DM ⊥平面BMC . 而DM平面AMD ,故平面AMD ⊥平面BMC .(2)以D 为坐标原点,DA →的方向为x 轴正方向,建立如图所示的空间直角坐标系D xyz . 当三棱锥M ABC 体积最大时,M 为CD ︵的中点.由题设得D (0,0,0),A (2,0,0),B (2,2,0),C (0,2,0),M (0,1,1),AM →=(-2,1,1),AB →=(0,2,0),DA →=(2,0,0).设n =(x ,y ,z )是平面MAB 的法向量,则⎩⎪⎨⎪⎧n ·AM →=0,n ·AB →=0,即⎩⎪⎨⎪⎧-2x +y +z =0,2y =0.可取n =(1,0,2).DA →是平面MCD 的法向量,因为cos 〈n ,DA →〉=n ·DA →|n ||DA →|=55,sin 〈n ,DA →〉=255.所以平面MAB 与平面MCD 所成二面角的正弦值是255.存在性问题的求解策略(1)对于存在判断型问题的求解,应先假设存在,把要成立的结论当作条件,据此列方程或方程组,把“是否存在”问题转化为“是否有解”“是否有规定范围内的解”等.(2)对于位置探究型问题,通常是借助向量,引入参数,综合条件和结论列方程,解出参数,从而确定位置.(3)在棱上是否存在一点时,要充分利用共线向量定理.(探索位置型)如图所示,四棱锥P ABCD 中,PA ⊥底面ABCD .四边形ABCD 中,AB ⊥AD ,AB +AD =4,CD =2,∠CDA =45°,且AB =AP .(1)若直线PB 与平面PCD 所成的角为30°,求线段AB 的长;(2)在线段AD 上是否存在一点G ,使得点G 到点P ,B ,C ,D 的距离都相等?说明理由. [解] (1)以A 为坐标原点,建立空间直角坐标系A xyz ,如图1所示.图1在平面ABCD 内,作CE ∥AB ,交AD 于点E ,则CE ⊥AD . 在Rt△CDE 中,DE =CD ·cos 45°=1,CE =CD ·sin 45°=1. 设AB =AP =t (t >0),则B (t,0,0),P (0,0,t ). 由AB +AD =4得AD =4-t ,∴E (0,3-t,0),C (1,3-t,0),D (0,4-t,0), ∴CD →=(-1,1,0),PD →=(0,4-t ,-t ). 设平面PCD 的法向量为n =(x ,y ,z ),由n ⊥CD →,n ⊥PD →得⎩⎪⎨⎪⎧-x +y =0,-t y -tz =0.取x =t ,得平面PCD 的一个法向量n =(t ,t,4-t ). cos 60°=|n ·PB →||n |·|PB →|,即|2t 2-4t |t 2+t 2+-t 2·2t 2=12, 解得t =45或t =4(舍去,因为AD =4-t >0),∴AB =45.(2)法一:(向量法)假设在线段AD 上存在一点G (如图2所示),使得点G 到点P ,B ,C ,D 的距离都相等.设G (0,m,0)(其中0≤m ≤4-t ),则GC →=(1,3-t -m,0),GD →=(0,4-t -m,0),GP →(0,-m ,t ).图2由|GC →|=|GD →|得12+(3-t -m )2=(4-t -m )2, 即t =3-m . ①由|GD →|=|GP →|,得(4-m -t )2=m 2+t 2. ② 由①,②消去t ,化简得m 2-3m +4=0. ③由于方程③没有实数根,所以在线段AD 上不存在点G 到点P ,B ,C ,D 的距离都相等. 法二:(几何法)假设在线段AD 上存在一点G ,使得点G 到点P ,B ,C ,D 的距离都相等.图3由GC =GD 得∠GCD =∠GDC =45°, ∴∠CGD =90°,即CG ⊥AD , ∴GD =CD ·cos 45°=1.设AB =λ,则AD =4-λ,AG =AD -GD =3-λ. 如图3所示,在Rt△ABG 中,GB =AB 2+AG 2=λ2+-λ2=2⎝⎛⎭⎪⎫λ-322+92>1, 这与GB =GD 矛盾.∴在线段AD 上不存在点G 到点P ,B ,C ,D 的距离都相等.。
第3讲 圆锥曲线中的定点、定值、最值与范围问题高考定位 圆锥曲线中的定点与定值、最值与范围问题是高考必考的问题之一,主要以解答题形式考查,往往作为试卷的压轴题之一,一般以椭圆或抛物线为背景,试题难度较大,对考生的代数恒等变形能力、计算能力有较高的要求.真 题 感 悟(2018·北京卷)已知抛物线C :y 2=2px 经过点P (1,2).过点Q (0,1)的直线l 与抛物线C 有两个不同的交点A ,B ,且直线PA 交y 轴于M ,直线PB 交y 轴于N . (1)求直线l 的斜率的取值范围;(2)设O 为原点,QM →=λQO →,QN →=μQO →,求证:1λ+1μ为定值.解 (1)因为抛物线y 2=2px 过点(1,2), 所以2p =4,即p =2. 故抛物线C 的方程为y 2=4x .由题意知,直线l 的斜率存在且不为0. 设直线l 的方程为y =kx +1(k ≠0).由⎩⎪⎨⎪⎧y 2=4x ,y =kx +1得k 2x 2+(2k -4)x +1=0. 依题意Δ=(2k -4)2-4×k 2×1>0, 解得k <0或0<k <1.又PA ,PB 与y 轴相交,故直线l 不过点(1,-2). 从而k ≠-3.所以直线l 斜率的取值范围是(-∞,-3)∪(-3,0)∪(0,1). (2)设A (x 1,y 1),B (x 2,y 2). 由(1)知x 1+x 2=-2k -4k 2,x 1x 2=1k2.直线PA 的方程为y -2=y 1-2x 1-1(x -1). 令x =0,得点M 的纵坐标为y M =-y 1+2x 1-1+2=-kx 1+1x 1-1+2.同理得点N 的纵坐标为y N =-kx 2+1x 2-1+2. 由QM →=λQO →,QN →=μQO →得λ=1-y M ,μ=1-y N . 所以1λ+1μ=11-y M +11-y N=x 1-1(k -1)x 1+x 2-1(k -1)x 2=1k -1·2x 1x 2-(x 1+x 2)x 1x 2=1k -1·2k 2+2k -4k 21k 2=2.所以1λ+1μ为定值.考 点 整 合1.定点、定值问题(1)定点问题:在解析几何中,有些含有参数的直线或曲线的方程,不论参数如何变化,其都过某定点,这类问题称为定点问题.若得到了直线方程的点斜式:y -y 0=k (x -x 0),则直线必过定点(x 0,y 0);若得到了直线方程的斜截式:y =kx +m ,则直线必过定点(0,m ).(2)定值问题:在解析几何中,有些几何量,如斜率、距离、面积、比值等基本量和动点坐标或动直线中的参变量无关,这类问题统称为定值问题.2.求解圆锥曲线中的范围问题的关键是选取合适的变量建立目标函数和不等关系.该问题主要有以下三种情况:(1)距离型:若涉及焦点,则可以考虑将圆锥曲线定义和平面几何性质结合起来求解;若是圆锥曲线上的点到直线的距离,则可设出与已知直线平行的直线方程,再代入圆锥曲线方程中,用判别式等于零求得切点坐标,这个切点就是距离取得最值的点,若是在圆或椭圆上,则可将点的坐标以参数形式设出,转化为三角函数的最值求解.(2)斜率、截距型:一般解法是将直线方程代入圆锥曲线方程中,利用判别式列出对应的不等式,解出参数的范围,如果给出的只是圆锥曲线的一部分,则需要结合图形具体分析,得出相应的不等关系.(3)面积型:求面积型的最值,即求两个量的乘积的范围,可以考虑能否使用不等式求解,或者消元转化为某个参数的函数关系,用函数方法求解.热点一 定点与定值问题 [考法1] 定点的探究与证明【例1-1】 (2018·杭州调研)椭圆C :x 2a 2+y 2b 2=1(a >b >0)的离心率为12,其左焦点到点P (2,1)的距离为10.(1)求椭圆C 的标准方程;(2)若直线l :y =kx +m 与椭圆C 相交于A ,B 两点(A ,B 不是左、右顶点),且以AB 为直径的圆过椭圆C 的右顶点,求证:直线l 过定点,并求出该定点的坐标.(1)解 由e =c a =12,得a =2c ,∵a 2=b 2+c 2,∴b 2=3c 2,则椭圆方程变为x 24c 2+y 23c2=1.又由题意知(2+c )2+12=10,解得c =1, 故a 2=4,b 2=3,即得椭圆的标准方程为x 24+y 23=1.(2)证明 设A (x 1,y 1),B (x 2,y 2),联立⎩⎪⎨⎪⎧y =kx +m ,x 24+y 23=1,得(3+4k 2)x 2+8mkx +4(m 2-3)=0,则⎩⎪⎨⎪⎧Δ=64m 2k 2-16(3+4k 2)(m 2-3)>0,x 1+x 2=-8mk 3+4k 2,x 1·x 2=4(m 2-3)3+4k2.①∴y 1y 2=(kx 1+m )(kx 2+m )=k 2x 1x 2+mk (x 1+x 2)+m 2=3(m 2-4k 2)3+4k 2. ∵椭圆的右顶点为A 2(2,0),AA 2⊥BA 2, ∴(x 1-2)(x 2-2)+y 1y 2=0, ∴y 1y 2+x 1x 2-2(x 1+x 2)+4=0,∴3(m 2-4k 2)3+4k 2+4(m 2-3)3+4k 2+16mk 3+4k 2+4=0,∴7m 2+16mk +4k 2=0,解得m 1=-2k ,m 2=-2k 7.由Δ>0,得3+4k 2-m 2>0,②当m 1=-2k 时,l 的方程为y =k (x -2), 直线过定点(2,0),与已知矛盾. 当m 2=-2k 7时,l 的方程为y =k ⎝ ⎛⎭⎪⎫x -27, 直线过定点⎝ ⎛⎭⎪⎫27,0,且满足②, ∴直线l 过定点,定点坐标为⎝ ⎛⎭⎪⎫27,0. 探究提高 (1)动直线l 过定点问题解法:设动直线方程(斜率存在)为y =kx +t ,由题设条件将t 用k 表示为t =mk ,得y =k (x +m ),故动直线过定点(-m ,0).(2)动曲线C 过定点问题解法:引入参变量建立曲线C 的方程,再根据其对参变量恒成立,令其系数等于零,得出定点.[考法2] 定值的探究与证明【例1-2】 (2018·金丽衢联考)已知O 为坐标原点,直线l :x =my +b 与抛物线E :y 2=2px (p >0)相交于A ,B 两点. (1)当b =2p 时,求OA →·OB →;(2)当p =12且b =3时,设点C 的坐标为(-3,0),记直线CA ,CB 的斜率分别为k 1,k 2,证明:1k 21+1k 22-2m 2为定值.解 设A (x 1,y 1),B (x 2,y 2),联立方程⎩⎪⎨⎪⎧y 2=2px ,x =my +b ,消元得y 2-2mpy -2pb =0,所以y 1+y 2=2mp ,y 1y 2=-2pb .(1)当b =2p 时,y 1y 2=-4p 2,x 1x 2=(y 1y 2)24p2=4p 2, 所以OA →·OB →=x 1x 2+y 1y 2=4p 2-4p 2=0.(2)证明 当p =12且b =3时,y 1+y 2=m ,y 1y 2=-3.因为k 1=y 1x 1+3=y 1my 1+6,k 2=y 2x 2+3=y 2my 2+6, 所以1k 1=m +6y 1,1k 2=m +6y 2.因此1k 21+1k 22-2m 2=⎝ ⎛⎭⎪⎫m +6y 12+⎝ ⎛⎭⎪⎫m +6y 22-2m 2=2m 2+12m ⎝ ⎛⎭⎪⎫1y 1+1y 2+36⎝ ⎛⎭⎪⎫1y 21+1y 22-2m 2=12m ×y 1+y 2y 1y 2+36×(y 1+y 2)2-2y 1y 2y 21y 22=12m ×-m 3+36×m 2+69=24,即1k 21+1k 22-2m 2为定值.探究提高 (1)求定值问题常见的方法有两种:①从特殊入手,求出定值,再证明这个值与变量无关.②直接推理、计算,并在计算推理的过程中消去变量,从而得到定值.(2)定值问题求解的基本思路是使用参数表示要解决的问题,然后证明与参数无关,这类问题选择消元的方向是非常关键的.【训练1-1】 (2017·北京卷)已知抛物线C :y 2=2px 过点P (1,1),过点⎝ ⎛⎭⎪⎫0,12作直线l与抛物线C 交于不同的两点M ,N ,过点M 作x 轴的垂线分别与直线OP ,ON 交于点A ,B ,其中O 为原点.(1)求抛物线C 的方程,并求其焦点坐标和准线方程; (2)求证:A 为线段BM 的中点.(1)解 把P (1,1)代入y 2=2px ,得p =12,所以抛物线C 的方程为y 2=x ,焦点坐标为⎝ ⎛⎭⎪⎫14,0,准线方程为x =-14. (2)证明 当直线MN 斜率不存在或斜率为零时,显然与抛物线只有一个交点不满足题意,所以直线MN (也就是直线l )斜率存在且不为零.由题意,设直线l 的方程为y =kx +12(k ≠0),l 与抛物线C 的交点为M (x 1,y 1),N (x 2,y 2).由⎩⎪⎨⎪⎧y =kx +12,y 2=x ,得4k 2x 2+(4k -4)x +1=0. 考虑Δ=(4k -4)2-4×4k 2=16(1-2k ), 由题可知有两交点,所以判别式大于零,所以k <12.则x 1+x 2=1-k k 2,x 1x 2=14k2.因为点P 的坐标为(1,1),所以直线OP 的方程为y =x ,点A 的坐标为(x 1,x 1). 直线ON 的方程为y =y 2x 2x ,点B 的坐标为⎝⎛⎭⎪⎫x 1,y 2x 1x 2. 因为y 1+y 2x 1x 2-2x 1=y 1x 2+y 2x 1-2x 1x 2x 2=⎝ ⎛⎭⎪⎫kx 1+12x 2+⎝⎛⎭⎪⎫kx 2+12x 1-2x 1x2x 2=(2k -2)x 1x 2+12(x 2+x 1)x 2=(2k -2)×14k 2+1-k 2k2x 2=0.所以y 1+y 2x 1x 2=2x 1.故A 为线段BM 的中点. 【训练1-2】 已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的离心率为32,A (a ,0),B (0,b ),O (0,0),△OAB 的面积为1. (1)求椭圆C 的方程;(2)设P 是椭圆C 上一点,直线PA 与y 轴交于点M ,直线PB 与x 轴交于点N .求证:|AN |·|BM |为定值. (1)解 由已知ca =32,12ab =1. 又a 2=b 2+c 2,解得a =2,b =1,c = 3.∴椭圆方程为x 24+y 2=1.(2)证明 由(1)知A (2,0),B (0,1). 设椭圆上一点P (x 0,y 0),则x 204+y 0=1.当x 0≠0时,直线PA 方程为y =y 0x 0-2(x -2),令x =0得y M =-2y 0x 0-2.从而|BM |=|1-y M |=⎪⎪⎪⎪⎪⎪1+2y 0x 0-2. 直线PB 方程为y =y 0-1x 0x +1. 令y =0得x N =-x 0y 0-1. ∴|AN |=|2-x N |=⎪⎪⎪⎪⎪⎪2+x 0y 0-1.∴|AN |·|BM |=⎪⎪⎪⎪⎪⎪2+x 0y 0-1·⎪⎪⎪⎪⎪⎪1+2y 0x 0-2 =⎪⎪⎪⎪⎪⎪x 0+2y 0-2x 0-2·⎪⎪⎪⎪⎪⎪x 0+2y 0-2y 0-1=⎪⎪⎪⎪⎪⎪x 20+4y 20+4x 0y 0-4x 0-8y 0+4x 0y 0-x 0-2y 0+2 =⎪⎪⎪⎪⎪⎪4x 0y 0-4x 0-8y 0+8x 0y 0-x 0-2y 0+2=4.当x 0=0时,y 0=-1,|BM |=2,|AN |=2, 所以|AN |·|BM |=4.故|AN |·|BM |为定值.热点二 最值与范围问题[考法1] 求线段长度、面积(比值)的最值【例2-1】 (2018·湖州调研)已知抛物线C :y 2=4x 的焦点为F ,直线l :y =kx -4(1<k <2)与y 轴、抛物线C 分别相交于P ,A ,B (自下而上),记△PAF ,△PBF 的面积分别为S 1,S 2.(1)求AB 的中点M 到y 轴的距离d 的取值范围; (2)求S 1S 2的取值范围.解 (1)联立⎩⎪⎨⎪⎧y =kx -4,y 2=4x ,消去y 得,k 2x 2-(8k +4)x +16=0(1<k <2).设A (x 1,y 1),B (x 2,y 2), 则x 1+x 2=8k +4k 2,x 1x 2=16k2,所以d =x 1+x 22=4k +2k2 =2⎝ ⎛⎭⎪⎫1k +12-2∈⎝ ⎛⎭⎪⎫52,6.(2)由于S 1S 2=|PA ||PB |=x 1x 2,由(1)可知S 1S 2+S 2S 1=x 1x 2+x 2x 1=(x 1+x 2)2-2x 1x 2x 1x 2=k 216·(8k +4)2k 4-2=⎝ ⎛⎭⎪⎫1k +22-2∈⎝ ⎛⎭⎪⎫174,7, 由S 1S 2+S 2S 1>174得,4⎝ ⎛⎭⎪⎫S 1S 22-17·S 1S 2+4>0, 解得S 1S 2>4或S 1S 2<14.因为0<S 1S 2<1,所以0<S 1S 2<14.由S 1S 2+S 2S 1<7得,⎝ ⎛⎭⎪⎫S 1S 22-7·S 1S 2+1<0, 解得7-352<S 1S 2<7+352,又S 1S 2<1,所以7-352<S 1S 2<1. 综上,7-352<S 1S 2<14,即S 1S 2的取值范围为⎝⎛⎭⎪⎫7-352,14. 探究提高 (1)处理求最值的式子常用两种方式:①转化为函数图象的最值;②转化为能利用基本不等式求最值的形式.(2)若得到的函数式是分式形式,函数式的分子次数不低于分母时,可利用分离法求最值;若分子次数低于分母,则可分子、分母同除分子,利用基本不等式求最值(注意出现复杂的式子时可用换元法).【训练2-1】 (2018·温州质检)已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的离心率为63,且过点⎝⎛⎭⎪⎫1,63.(1)求椭圆C 的方程;(2)设与圆O :x 2+y 2=34相切的直线l 交椭圆C 与A ,B 两点,求△OAB 面积的最大值,及取得最大值时直线l 的方程.解 (1)由题意可得⎩⎪⎨⎪⎧1a 2+23b2=1,c a =63,a 2=b 2+c 2,解得a 2=3,b 2=1,∴x 23+y 2=1.(2)①当k 不存在时,直线为x =±32,代入x 23+y 2=1,得y =±32, ∴S △OAB =12×3×32=34;②当k 存在时,设直线为y =kx +m ,A (x 1,y 1),B (x 2,y 2),联立方程得⎩⎪⎨⎪⎧x 23+y 2=1,y =kx +m ,消y 得(1+3k 2)x 2+6kmx +3m 2-3=0,∴x 1+x 2=-6km1+3k2,x 1x 2=3m 2-31+3k2,直线l 与圆O 相切d =r 4m 2=3(1+k 2), ∴|AB |=1+k 2·⎝ ⎛⎭⎪⎫-6km 1+3k 22-12(m 2-1)1+3k 2=3·1+10k 2+9k41+6k 2+9k 4=3·1+4k21+6k 2+9k4 =3×1+41k 2+9k 2+6≤2.当且仅当1k 2=9k 2,即k =±33时等号成立,∴S △OAB =12|AB |×r ≤12×2×32=32,∴△OAB 面积的最大值为32, ∴m =±34⎝ ⎛⎭⎪⎫1+13=±1, 此时直线方程为y =±33x ±1. [考法2] 求几何量、某个参数的取值范围【例2-2】 已知椭圆E :x 2t +y 23=1的焦点在x 轴上,A 是E 的左顶点,斜率为k (k >0)的直线交E 于A ,M 两点,点N 在E 上,MA ⊥NA . (1)当t =4,|AM |=|AN |时,求△AMN 的面积; (2)当2|AM |=|AN |时,求k 的取值范围. 解 设M (x 1,y 1),则由题意知y 1>0.(1)当t =4时,E 的方程为x 24+y 23=1,A (-2,0).由|AM |=|AN |及椭圆的对称性知,直线AM 的倾斜角为π4. 因此直线AM 的方程为y =x +2.将x =y -2代入x 24+y 23=1得7y 2-12y =0,解得y =0或y =127,所以y 1=127.因此△AMN 的面积S △AMN =2×12×127×127=14449.(2)由题意t >3,k >0,A (-t ,0),将直线AM 的方程y =k (x +t )代入x 2t +y 23=1得(3+tk 2)x2+2t ·tk 2x +t 2k 2-3t =0.由x 1·(-t )=t 2k 2-3t 3+tk 2得x 1=t (3-tk 2)3+tk2, 故|AM |=|x 1+t |1+k 2=6t (1+k 2)3+tk2. 由题设,直线AN 的方程为y =-1k(x +t ),故同理可得|AN |=6k t (1+k 2)3k 2+t. 由2|AM |=|AN |得23+tk 2=k3k 2+t , 即(k 3-2)t =3k (2k -1),当k =32时上式不成立,因此t =3k (2k -1)k 3-2.t >3等价于k 3-2k 2+k -2k 3-2=(k -2)(k 2+1)k 3-2<0,即k -2k 3-2<0. 由此得⎩⎪⎨⎪⎧k -2>0,k 3-2<0,或⎩⎪⎨⎪⎧k -2<0,k 3-2>0,解得32<k <2. 因此k 的取值范围是(32,2).探究提高 解决范围问题的常用方法:(1)构建不等式法:利用已知或隐含的不等关系,构建以待求量为元的不等式求解.(2)构建函数法:先引入变量构建以待求量为因变量的函数,再求其值域. (3)数形结合法:利用待求量的几何意义,确定出极端位置后数形结合求解.【训练2-2】 (2018·台州调研)已知椭圆x 2a 2+y 2b2=1(a >b >0)的左焦点为F (-c ,0),离心率为33,点M 在椭圆上且位于第一象限,直线FM 被圆x 2+y 2=b 24截得的线段的长为c ,|FM |=433.(1)求直线FM 的斜率; (2)求椭圆的方程;(3)设动点P 在椭圆上,若直线FP 的斜率大于2,求直线OP (O 为原点)的斜率的取值范围.解 (1)由已知,有c 2a 2=13,又由a 2=b 2+c 2,可得a 2=3c 2,b 2=2c 2. 设直线FM 的斜率为k (k >0),F (-c ,0), 则直线FM 的方程为y =k (x +c ).由已知,有⎝ ⎛⎭⎪⎫kc k 2+12+⎝ ⎛⎭⎪⎫c 22=⎝ ⎛⎭⎪⎫b 22,解得k =33.(2)由(1)得椭圆方程为x 23c 2+y 22c 2=1,直线FM 的方程为y =33(x +c ),两个方程联立,消去y ,整理得3x 2+2cx -5c 2=0,解得x =-53c ,或x =c .因为点M 在第一象限,可得M 的坐标为⎝⎛⎭⎪⎫c ,233c .由|FM |=(c +c )2+⎝ ⎛⎭⎪⎫233c -02=433, 解得c =1,所以椭圆的方程为x 23+y 22=1.(3)设点P 的坐标为(x ,y ),直线FP 的斜率为t , 得t =yx +1,即y =t (x +1)(x ≠-1),与椭圆方程联立⎩⎪⎨⎪⎧y =t (x +1),x 23+y22=1,消去y ,整理得2x 2+3t 2(x +1)2=6, 又由已知,得t =6-2x23(x +1)2>2,解得-32<x <-1,或-1<x <0.设直线OP 的斜率为m ,得m =y x, 即y =mx (x ≠0),与椭圆方程联立, 整理得m 2=2x 2-23.①当x ∈⎝ ⎛⎭⎪⎫-32,-1时,有y =t (x +1)<0, 因此m >0,于是m =2x 2-23,得m ∈⎝ ⎛⎭⎪⎫23,233. ②当x ∈(-1,0)时,有y =t (x +1)>0. 因此m <0,于是m =-2x 2-23, 得m ∈⎝⎛⎭⎪⎫-∞,-233.综上,直线OP 的斜率的取值范围是 ⎝⎛⎭⎪⎫-∞,-233∪⎝ ⎛⎭⎪⎫23,233.1.解答圆锥曲线的定值、定点问题,从三个方面把握:(1)从特殊开始,求出定值,再证明该值与变量无关;(2)直接推理、计算,在整个过程中消去变量,得定值;(3)在含有参数的曲线方程里面,把参数从含有参数的项里面分离出来,并令其系数为零,可以解出定点坐标. 2.圆锥曲线的范围问题的常见求法(1)几何法:若题目的条件和结论能明显体现几何特征和意义,则考虑利用图形性质来解决; (2)代数法:若题目的条件和结论能体现一种明确的函数关系,则可首先建立起目标函数,再求这个函数的最值,在利用代数法解决范围问题时常从以下五个方面考虑: ①利用判别式来构造不等关系,从而确定参数的取值范围;②利用已知参数的范围,求新参数的范围,解这类问题的核心是在两个参数之间建立等量关系;③利用隐含或已知的不等关系建立不等式,从而求出参数的取值范围; ④利用基本不等式求出参数的取值范围; ⑤利用函数的值域的求法,确定参数的取值范围.一、选择题1.F 1,F 2是椭圆x 24+y 2=1的左、右焦点,点P 在椭圆上运动,则PF 1→·PF 2→的最大值是( )A.-2B.1C.2D.4解析 设P (x ,y ),依题意得点F 1(-3,0),F 2(3,0),PF 1→·PF 2→=(-3-x )(3-x )+y 2=x 2+y 2-3=34x 2-2,注意到-2≤34x 2-2≤1,因此PF 1→·PF 2→的最大值是1.答案 B2.(2018·镇海中学二模)若点P 为抛物线y =2x 2上的动点,F 为抛物线的焦点,则|PF |的最小值为( ) A.2B.12C.14D.18解析 根据题意,设P 到准线的距离为d ,则有|PF |=d .抛物线的方程为y =2x 2,即x 2=12y ,其准线方程为y =-18,∴当点P 在抛物线的顶点时,d 有最小值18,即|PF |min =18.答案 D3.设A ,B 是椭圆C :x 23+y 2m=1长轴的两个端点.若C 上存在点M 满足∠AMB =120°,则m的取值范围是( ) A.(0,1]∪[9,+∞) B.(0,3]∪[9,+∞) C.(0,1]∪[4,+∞)D.(0,3]∪[4,+∞)解析 (1)当焦点在x 轴上,依题意得 0<m <3,且3m ≥tan ∠AMB 2= 3.∴0<m <3且m ≤1,则0<m ≤1. (2)当焦点在y 轴上,依题意m >3,且m3≥tan ∠AMB2=3,∴m ≥9,综上,m 的取值范围是(0,1]∪[9,+∞). 答案 A4.已知F 是抛物线C :y 2=8x 的焦点,M 是C 上一点,FM 的延长线交y 轴于点N .若M 为FN 的中点,则|FN |=( ) A.3B.5C.6D.10解析 因y 2=8x ,则p =4,焦点为F (2,0),准线l :x =-2.如图,M 为FN 中点, 故易知线段BM 为梯形AFNC 的中位线, ∵|CN |=2,|AF |=4, ∴|MB |=3,又由定义|MB |=|MF |, 且|MN |=|MF |,∴|NF |=|NM |+|MF |=2|MB |=6. 答案 C5.(2018·北京西城区调研)过抛物线y 2=43x 的焦点的直线l 与双曲线C :x 22-y 2=1的两个交点分别为(x 1,y 1),(x 2,y 2),若x 1·x 2>0,则直线l 的斜率k 的取值范围是( )A.⎝ ⎛⎭⎪⎫-12,12B.⎝ ⎛⎭⎪⎫-∞,-12∪⎝ ⎛⎭⎪⎫12,+∞C.⎝ ⎛⎭⎪⎫-22,22D.⎝ ⎛⎭⎪⎫-∞,-22∪⎝ ⎛⎭⎪⎫22,+∞ 解析 易知双曲线两渐近线为y =±22x ,抛物线的焦点为双曲线的右焦点,当k >22或k <-22时,l 与双曲线的右支有两个交点,满足x 1x 2>0. 答案 D6.在直线y =-2上任取一点Q ,过Q 作抛物线x 2=4y 的切线,切点分别为A ,B ,则直线AB 恒过的点的坐标为( ) A.(0,1)B.(0,2)C.(2,0)D.(1,0)解析 设Q (t ,-2),A (x 1,y 1),B (x 2,y 2),抛物线方程变为y =14x 2,则y ′=12x ,则在点A 处的切线方程为y -y 1=12x 1(x -x 1),化简得y =12x 1x -y 1,同理,在点B 处的切线方程为y =12x 2x -y 2,又点Q (t ,-2)的坐标适合这两个方程, 代入得-2=12x 1t -y 1,-2=12x 2t -y 2,这说明A (x 1,y 1),B (x 2,y 2)都满足方程-2=12xt -y ,即直线AB 的方程为y -2=12tx ,因此直线AB 恒过点(0,2).答案 B 二、填空题7.已知双曲线x 2a 2-y 2b2=1(a >0,b >0)的渐近线与圆x 2-4x +y 2+2=0相交,则双曲线的离心率的取值范围是______.解析 双曲线的渐近线方程为y =±b ax ,即bx ±ay =0,圆x 2-4x +y 2+2=0可化为(x -2)2+y 2=2,其圆心为(2,0),半径为 2. 因为直线bx ±ay =0和圆(x -2)2+y 2=2相交, 所以|2b |a 2+b2<2,整理得b 2<a 2.从而c 2-a 2<a 2,即c 2<2a 2,所以e 2<2.又e >1,故双曲线的离心率的取值范围是(1,2). 答案 (1,2)8.(2018·金华质检)已知椭圆x 24+y 2b 2=1(0<b <2)的左、右焦点分别为F 1,F 2,过F 1的直线l 交椭圆于A ,B 两点,若|BF 2|+|AF 2|的最大值为5,则b 的值是________,椭圆的离心率为________.解析 由椭圆的方程,可知长半轴长a =2;由椭圆的定义,可知|AF 2|+|BF 2|+|AB |=4a =8,所以|AB |=8-(|AF 2|+|BF 2|)≥3.由椭圆的性质,可知过椭圆焦点的弦中垂直于长轴的弦最短,即2b 2a=3,可求得b 2=3,即b=3,e =ca=1-⎝ ⎛⎭⎪⎫b a 2=1-34=12.答案3 129.已知抛物线C :x 2=8y 的焦点为F ,动点Q 在C 上,圆Q 的半径为1,过点F 的直线与圆Q 切于点P ,则FP →·FQ →的最小值为________,此时圆Q 的方程为________. 解析 如图,在Rt △QPF 中,FP →·FQ →=|FP →||FQ →|cos ∠PFQ =|FP →||FQ →||PF →||FQ →|=|FP →|2= |FQ →|2-1.由抛物线的定义知:|FQ →|=d (d 为点Q 到准线的距离),易知,抛物线的顶点到准线的距离最短,∴|FQ →|min =2, ∴FP →·FQ →的最小值为3. 此时圆Q 的方程为x 2+y 2=1. 答案 3 x 2+y 2=110.(2018·温州模拟)已知抛物线y 2=4x ,过焦点F 的直线与抛物线交于A ,B 两点,过A ,B 分别作x 轴、y 轴的垂线,垂足分别为C ,D ,则|AC |+|BD |的最小值为________.解析 不妨设A (x 1,y 1)(y 1>0),B (x 2,y 2)(y 2<0). 则|AC |+|BD |=y 1+x 2=y 1+y 224.又y 1y 2=-p 2=-4,∴|AC |+|BD |=y 224-4y 2(y 2<0).设g (x )=x 24-4x (x <0),则g ′(x )=x 3+82x2,从而g (x )在(-∞,-2)递减,在(-2,0)递增.∴当x =-2时,|AC |+|BD |取最小值为3. 答案 311.如图,在平面直角坐标系xOy 中,F 是椭圆x 2a 2+y 2b2=1(a >b >0)的右焦点,直线y =b2与椭圆交于B ,C 两点,且∠BFC =90°,则该椭圆的离心率是________.解析 联立方程组⎩⎪⎨⎪⎧x 2a 2+y 2b 2=1,y =b2,解得B ,C 两点坐标为B ⎝ ⎛⎭⎪⎫-32a ,b 2,C ⎝ ⎛⎭⎪⎫32a ,b 2,又F (c ,0), 则FB →=⎝ ⎛⎭⎪⎫-32a -c ,b 2,FC →=⎝ ⎛⎭⎪⎫3a 2-c ,b 2,又由∠BFC =90°,可得FB →·FC →=0,代入坐标可得: c 2-34a 2+b24=0,①又因为b 2=a 2-c 2,代入①式可化简为c 2a 2=23,则椭圆离心率为e =c a=23=63. 答案 63三、解答题12.(2018·北京海淀区调研)如图,椭圆E :x 2a 2+y 2b2=1(a >b >0)经过点A (0,-1),且离心率为22. (1)求椭圆E 的方程;(2)经过点(1,1),且斜率为k 的直线与椭圆E 交于不同的两点P ,Q (均异于点A ),证明:直线AP 与AQ 的斜率之和为定值. (1)解 由题设知c a =22,b =1, 结合a 2=b 2+c 2,解得a =2, 所以椭圆的方程为x 22+y 2=1.(2)证明 由题设知,直线PQ 的方程为y =k (x -1)+1(k ≠2),代入x 22+y 2=1,得(1+2k 2)x 2-4k (k -1)x +2k (k -2)=0,由已知Δ>0. 设P (x 1,y 1),Q (x 2,y 2),x 1x 2≠0, 则x 1+x 2=4k (k -1)1+2k 2,x 1x 2=2k (k -2)1+2k 2, 从而直线AP ,AQ 的斜率之和k AP +k AQ =y 1+1x 1+y 2+1x 2=kx 1+2-k x 1+kx 2+2-kx 2=2k +(2-k )⎝ ⎛⎭⎪⎫1x 1+1x 2=2k +(2-k )x 1+x 2x 1x 2=2k +(2-k )4k (k -1)2k (k -2)=2k -2(k -1)=2.故k AP +k AQ 为定值2.13.(2018·杭州调研)已知F 是抛物线T :y 2=2px (p >0)的焦点,点P ()1,m 是抛物线上一点,且|PF |=2,直线l 过定点(4,0),与抛物线T 交于A ,B 两点,点P 在直线l 上的射影是Q .(1)求m ,p 的值;(2)若m >0,且|PQ |2=|QA |·|QB |,求直线l 的方程. 解 (1)由|PF |=2得,1+p2=2,所以p =2,将x =1,y =m 代入y 2=2px 得,m =±2.(2)因为m >0,故由(1)知点P (1,2),抛物线T :y 2=4x .设直线l 的方程是x =ny +4,由⎩⎪⎨⎪⎧x =ny +4,y 2=4x 得,y 2-4ny -16=0.设A (x 1,y 1),B (x 2,y 2),则y 1+y 2=4n ,y 1·y 2=-16. 因为|PQ |2=|QA |·|QB |,所以PA ⊥PB , 所以PA →·PB →=0,且1≠2n +4,所以(x 1-1)(x 2-1)+(y 1-2)(y 2-2)=0,且n ≠-32.由(ny 1+3)(ny 2+3)+(y 1-2)(y 2-2)=0得, (n 2+1)y 1y 2+(3n -2)(y 1+y 2)+13=0,-16(n 2+1)+(3n -2)·4n +13=0,4n 2+8n +3=0,解得,n =-32(舍去)或n =-12,所以直线l 的方程是:x =-12y +4,即2x +y -8=0.14.(2018·绍兴模拟)如图,已知函数y 2=x 图象上三点C ,D ,E ,直线CD 经过点(1,0),直线CE 经过点(2,0).(1)若|CD |=10,求直线CD 的方程; (2)当△CDE 的面积最小时,求点C 的横坐标. 解 设C (x 1,y 1),D (x 2,y 2),E (x 3,y 3), 直线CD 的方程为:x =my +1.由⎩⎪⎨⎪⎧x =my +1,y 2=x 得:y 2-my -1=0,从而⎩⎪⎨⎪⎧y 1y 2=-1,y 1+y 2=m . (1)由题意,得|CD |=1+m 2×m 2+4=10,得m =±1, 故所求直线方程为x =±y +1,即x ±y -1=0.(2)由(1)知y 2=-1y 1,同理可得y 3=-2y 1,E ⎝ ⎛⎭⎪⎫4y 21,-2y 1,并不妨设y 1>0,则E 到直线CD 的距离为d =⎪⎪⎪⎪⎪⎪4y 21+2m y 1-11+m2,S △CDE =121+m 2×m 2+4×⎪⎪⎪⎪⎪⎪4y 21+2m y 1-11+m2=12m 2+4×⎪⎪⎪⎪⎪⎪4y 21+2m y 1-1,而m =y 1+y 2=y 1-1y 1,所以S △CDE =12y 21+1y 21+2×⎪⎪⎪⎪⎪⎪2y 21+1=12⎪⎪⎪⎪⎪⎪⎝⎛⎭⎪⎫y 1+1y 1×⎝ ⎛⎭⎪⎫2y 21+1,得S △CDE =12⎝ ⎛⎭⎪⎫y 1+3y 1+2y 31.考虑函数f (x )=x +3x +2x3,令f ′(x )=1-3x 2-6x 4=x 4-3x 2-6x 4=0,得x 2=3+332时f (x )有最小值, 即x 1=y 21=3+332时,△CDE 的面积最小, 也即△CDE 的面积最小时,点C 的横坐标为3+332. 15.(2018·湖州调研)已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的离心率为22,短轴长为2.直线l :y =kx +m 与椭圆C 交于M ,N 两点,又l 与直线y =12x ,y =-12x 分别交于A ,B 两点,其中点A 在第一象限,点B 在第二象限,且△OAB 的面积为2(O 为坐标原点).(1)求椭圆C 的方程;(2)求OM →·ON →的取值范围.解 (1)由于b =1且离心率e =22, ∴c a =a 2-1a =22,则a 2=2, 因此椭圆的方程为x 22+y 2=1. (2)联立直线l 与直线y =12x ,可得点A ⎝ ⎛⎭⎪⎫2m 1-2k ,m 1-2k , 联立直线l 与直线y =-12x ,可得点B ⎝ ⎛⎭⎪⎫-2m 1+2k ,m 1+2k , 又点A 在第一象限,点B 在第二象限,∴⎩⎪⎨⎪⎧2m 1-2k >0,-2m 1+2k <0⎩⎪⎨⎪⎧m (1-2k )>0,m (1+2k )>0, 化为m 2(1-4k 2)>0,而m 2≥0,∴1-4k 2>0.又|AB |=⎝ ⎛⎭⎪⎫2m 1-2k +2m 1+2k 2+⎝ ⎛⎭⎪⎫m 1-2k -m 1+2k 2=4|m |1-4k 21+k 2, 原点O 到直线l 的距离为|m |1+k 2,即△OAB 底边AB 上的高为|m |1+k 2, ∴S △OAB =124|m |1+k 21-4k 2·|m |1+k 2=2m 21-4k2=2,∴m 2=1-4k 2.设M (x 1,y 1),N (x 2,y 2),将直线l 代入椭圆方程,整理可得: (1+2k 2)x 2+4kmx +2m 2-2=0,∴x 1+x 2=-4km 1+2k 2,x 1·x 2=2m 2-21+2k 2, Δ=16k 2m 2-4(1+2k 2)(2m 2-2)=48k 2>0,则k 2>0,∴y 1·y 2=(kx 1+m )(kx 2+m )=m 2-2k 21+2k 2, ∴OM →·ON →=x 1x 2+y 1y 2=2m 2-21+2k 2+m 2-2k 21+2k 2=81+2k 2-7. ∵0<k 2<14,∴1+2k 2∈⎝ ⎛⎭⎪⎫1,32, ∴81+2k 2∈⎝ ⎛⎭⎪⎫163,8,∴OM →·ON →∈⎝ ⎛⎭⎪⎫-53,1. 故OM →·ON →的取值范围为⎝ ⎛⎭⎪⎫-53,1.。
第3讲立体几何中的向量方法[真题再现]1.(2018·课标Ⅰ)如图,四边形ABCD为正方形,E,F分别为AD,BC的中点,以DF为折痕把△DFC使点C到达点P的位置,且PF⊥BF。
(1)证明:平面PEF⊥平面ABFD;(2)求DP与平面ABFD所成角的正弦值.[解](1)证明:由已知可得BF⊥PF,BF⊥EF,所以BF⊥平面PEF.又BF⊂平面ABFD,所以平面PEF⊥平面ABFD。
(2)解:如图,作PH⊥EF,垂足为H.由(1)得,PH⊥平面ABFD。
以H为坐标原点,错误!的方向为y轴正方向,|错误!|为单位长,建立如图所示的空间直角坐标系H.xyz.由(1)可得,DE⊥PE.又DP=2,DE=1,所以PE=错误!.又PF=1,EF=2,所以PE⊥PF.所以PH=错误!,EH=错误!.则H(0,0,0),P错误!,D错误!,错误!=错误!,错误!=错误!.又错误!为平面ABFD的法向量,设DP与平面ABFD所成角为θ,则sin θ=错误!=错误!=错误!。
所以DP与平面ABFD所成角的正弦值为错误!.2.(2018·课标Ⅱ)如图,在三棱锥P-ABC中,AB=BC=22,P A=PB=PC=AC=4,O为AC的中点.(1)证明:PO⊥平面ABC;(2)若点M在棱BC上,且二面角M。
P A-C为30°,求PC与平面P AM所成角的正弦值[解](1)证明:因为P A=PC=AC=4,O为AC的中点,所以OP⊥AC,且OP=2错误!.如图,连接OB.因为AB=BC=错误!AC,所以△ABC为等腰直角三角形,且OB ⊥AC,OB=错误!AC=2。
由OP2+OB2=PB2知PO⊥OB.由OP⊥OB,OP⊥AC,OB∩AC=O,得PO⊥平面ABC.(2)解:如图,以O为坐标原点,错误!的方向为x轴正方向,建立空间直角坐标系O。
xyz。
由已知得O(0,0,0),B(2,0,0),A(0,-2,0),C(0,2,0),P(0,0,2错误!),错误!=(0,2,2错误!).取平面P AC的一个法向量错误!=(2,0,0).设M (a ,2-a,0)(0≤a ≤2),则错误!=(a ,4-a,0).设平面P AM 的法向量为n =(x ,y ,z ).由AP ,→·n =0,错误!·n =0得错误!可取y =错误!a ,得平面P AM 的一个法向量为n =(错误!(a -4),错误!a ,-a ),所以cos 错误!,n =错误!。
高考数学全面突破轮复习必考题型巩固提升学案立体几何中的向量方法Coca-cola standardization office【ZZ5AB-ZZSYT-ZZ2C-ZZ682T-ZZT18】立体几何中的向量方法(二)考情分析考查用向量方法求异面直线所成的角,直线与平面所成的角、二面角的大小.基础知识1.空间的角(1)异面直线所成的角如图,已知两条异面直线a、b,经过空间任一点O作直线a′∥a,b′∥b.则把a′与b′所成的锐角(或直角)叫做异面直线a与b所成的角(或夹角).(2)平面的一条斜线和它在平面内的射影所成的锐角,叫做这条直线和这个平面所成的角.①直线垂直于平面,则它们所成的角是直角;②直线和平面平行,或在平面内,则它们所成的角是0°的角.(3)二面角的平面角如图在二面角α-l-β的棱上任取一点O,以点O为垂足,在半平面α和β内分别作垂直于棱l的射线OA和OB,则∠AOB叫做二面角的平面角.2.空间向量与空间角的关系(1)设异面直线l1,l2的方向向量分别为m1,m2,则l1与l2的夹角θ满足cos θ=|cos 〈m1,m2〉|.(2)设直线l的方向向量和平面α的法向量分别为m,n,则直线l与平面α的夹角θ满足sin θ=|cos〈m,n〉|.(3)求二面角的大小(ⅰ)如图①,AB、CD是二面角α-l-β的两个面内与棱l垂直的直线,则二面角的大小θ=〈AB→,CD→〉.(ⅱ)如图②③,n 1,n 2分别是二面角α-l -β的两个半平面α,β的法向量,则二面角的大小θ满足cos θ=cos 〈n 1,n 2〉或-cos 〈n 1,n 2〉. 注意事项1.(1)异面直线所成的角的范围是⎝ ⎛⎦⎥⎤0,π2;(2)直线与平面所成角的范围是⎣⎢⎡⎦⎥⎤0,π2; (3)二面角的范围是[0,π].2.利用平面的法向量求二面角的大小时,当求出两半平面α、β的法向量n 1,n 2时,要根据向量坐标在图形中观察法向量的方向,从而确定二面角与向量n 1,n 2的夹角是相等,还是互补,这是利用向量求二面角的难点、易错点. 题型一 求异面直线所成的角【例1】已知ABCD -A 1B 1C 1D 1是底面边长为1的正四棱柱,高AA 1=2,求 (1)异面直线BD 与AB 1所成角的余弦值;解 (1)如图建立空间直角坐标系A 1-xyz ,由已知条件:B (1,0,2),D (0,1,2), A (0,0,2),B 1(1,0,0).则BD →=(-1,1,0),AB 1→=(1,0,-2)设异面直线BD 与AB 1所成角为θ, cos θ=|cos 〈BD →,AB 1→〉|=1010.(2)VAB 1D 1C =VABCDA 1B 1C 1D 1-4VCB 1C 1D 1=23.【变式1】已知正方体ABCD -A 1B 1C 1D 1中,E 为C 1D 1的中点,则异面直线AE 与BC 所成角的余弦值为________.解析 如图建立直角坐标系D -xyz ,设DA =1,由已知条件A (1,0,0),E ⎝⎛⎭⎪⎫0,12,1,B (1,1,0),C (0,1,0),AE →=⎝⎛⎭⎪⎫-1,12,1,BC →=(-1,0,0)设异面直线AE 与BC 所成角为θ. cos θ=|cos 〈AE →,BC →〉|=|AE →·BC →||AE →||BC →|=23.答案 23题型二 利用向量求直线与平面所成的角【例2】如图所示,已知点P 在正方体ABCD -A ′B ′C ′D ′的对角线BD ′上,∠PDA =60°. (1)求DP 与CC ′所成角的大小;(2)求DP 与平面AA ′D ′D 所成角的大小.解 如图所示,以D 为原点,DA 为单位长度建立空间直角坐标系D -xyz . 则DA →=(1,0,0),CC ′→=(0,0,1). 连接BD ,B ′D ′.在平面BB ′D ′D 中,延长DP 交B ′D ′于H .设DH →=(m ,m,1)(m >0),由已知〈DH →,DA →〉=60°,即DA →·DH →=|DA →||DH →|cos 〈DH →,DA →〉, 可得2m =2m 2+1. 解得m =22,所以DH →=⎝ ⎛⎭⎪⎫22,22,1.(1)因为cos 〈DH →,CC ′→〉=22×0+22×0+1×11×2=22, 所以〈DH →,CC ′→〉=45°,即DP 与CC ′所成的角为45°. (2)平面AA ′D ′D 的一个法向量是DC →=(0,1,0). 因为cos 〈DH →,DC →〉=22×0+22×1+1×01×2=12,所以〈DH →,DC →〉=60°,可得DP 与平面AA ′D ′D 所成的角为30°.【变式2】已知三棱锥P -ABC 中,PA ⊥平面ABC ,AB ⊥AC ,PA =AC =12AB ,N 为AB 上一点,AB =4AN ,M ,S 分别为PB ,BC 的中点.(1)证明:CM ⊥SN ;(2)求SN 与平面CMN 所成角的大小.解:设PA =1,以A 为原点,射线AB ,AC ,AP 分别为x ,y ,z 轴正向建立空间直角坐标系如图.则P (0,0,1),C (0,1,0),B (2,0,0),M ⎝ ⎛⎭⎪⎫1,0,12,N ⎝ ⎛⎭⎪⎫12,0,0,S ⎝⎛⎭⎪⎫1,12,0. (1)证明:CM →=(1,-1,12),SN →=⎝ ⎛⎭⎪⎫-12,-12,0,因为CM →·SN →=-12+12+0=0,所以CM ⊥SN .(2)NC →=⎝ ⎛⎭⎪⎫-12,1,0,设a =(x ,y ,z )为平面CMN 的一个法向量,则⎩⎪⎨⎪⎧CM →·a =0NC →·a =0∴⎩⎪⎨⎪⎧x-y+12z=0,-12x+y=0,取x=2,得a=(2,1,-2).因为|cos〈a,SN→〉|=⎪⎪⎪⎪⎪⎪⎪⎪-1-123×22=22,所以SN与平面CMN所成角为45°.题型三利用向量求二面角【例3】如图,四棱锥P-ABCD中,底面ABCD为平行四边形,∠DAB=60°,AB=2AD,PD ⊥底面ABCD.(1)证明:PA⊥BD;(2)若PD=AD,求二面角A-PB-C的余弦值.(1)证明因为∠DAB=60°,AB=2AD,由余弦定理得BD=3AD.从而BD2+AD2=AB2,故BD⊥AD.又PD⊥底面ABCD,可得BD⊥PD.又AD∩PD=D.所以BD⊥平面PAD.故PA⊥BD.(2)解如图,以D为坐标原点,AD的长为单位长,射线DA为x轴的正半轴建立空间直角坐标系D-xyz,则A(1,0,0),B(0,3,0),C(-1,3,0),P(0,0,1).AB→=(-1,3,0),PB→=(0,3,-1),BC→=(-1,0,0).设平面PAB的法向量为n=(x,y,z),则⎩⎪⎨⎪⎧n·AB→=0,n·PB→=0.即⎩⎨⎧-x+3y=0,3y-z=0.因此可取n=(3,1,3).设平面PBC 的法向量为m ,则⎩⎪⎨⎪⎧m ·PB →=0,m ·BC →=0.可取m =(0,-1,-3),则cos 〈m ,n 〉=-427=-277.故二面角A -PB -C 的余弦值为-277.【变式3】 如图,在四棱锥P -ABCD 中,底面ABCD 是矩形,PA ⊥平面ABCD ,AP =AB =2,BC =22,E ,F 分别是AD ,PC 的中点.(1)证明:PC ⊥平面BEF ;(2)求平面BEF 与平面BAP 夹角的大小.(1)证明 如图,以A 为坐标原点,AB ,AD ,AP 所在直线分别为x ,y ,z 轴建立空间直角坐标系.∵AP =AB =2,BC =AD =22,四边形ABCD 是矩形,∴A ,B ,C ,D ,P 的坐标为A (0,0,0),B (2,0,0),C (2,22,0),D (0,22,0),P (0,0,2).又E ,F 分别是AD ,PC 的中点,∴E (0,2,0),F (1,2,1). ∴PC →=(2,22,-2),BF →=(-1,2,1),EF →=(1,0,1). ∴PC →·BF →=-2+4-2=0,PC →·EF →=2+0-2=0. ∴PC →⊥BF →,PC →⊥EF →∴PC ⊥BF ,PC ⊥EF .又BF ∩EF =F , ∴PC ⊥平面BEF .(2)解 由(1)知平面BEF 的一个法向量n 1=PC →=(2,22,-2),平面BAP 的一个法向量n 2=AD →=(0,22,0), ∴n 1·n 2=8.设平面BEF 与平面BAP 的夹角为θ, 则cos θ=|cos 〈n 1,n 2〉|=|n 1·n 2||n 1||n 2|=84×22=22,∴θ=45°.∴平面BEF 与平面BAP 的夹角为45°. 重难点突破【例4】如图,四边形ABCD 为正方形,PD ⊥平面ABCD ,PD ∥QA ,QA =AB =12PD .(1)证明:平面PQC ⊥平面DCQ ; (2)求二面角Q -BP -C 的余弦值. 解析 (1)略(2)依题意有B (1,0,1),CB →=(1,0,0),BP →=(-1,2,-1). 设n =(x ,y ,z )是平面PBC 的法向量,则⎩⎪⎨⎪⎧n ·CB →=0,n ·BP →=0.即⎩⎪⎨⎪⎧x =0,-x +2y -z =0.因此可取n =(0,-1,-2).设m 是平面PBQ 的法向量,则⎩⎪⎨⎪⎧m ·BP →=0,m ·PQ →=0.可取m =(1,1,1),所以cos 〈m ,n 〉=-155. 故二面角QBPC 的余弦值为-155. 巩固提高1.在正三棱柱ABC -A 1B 1C 1中,已知AB =1,D 在棱BB 1上,且BD =1,则AD 与平面AA 1C 1C 所成的角的正弦值为( )A.64 B. -64 C. 104D. -104答案:A解析:取AC 中点E ,连接BE ,则BE ⊥AC ,如图,建立空间直角坐标系Bxyz , 则A (32,12,0),D (0,0,1), 则A D →=(-32,-12,1). ∵平面ABC ⊥平面AA 1C 1C ,BE ⊥AC , ∴BE ⊥平面AA 1C 1C . ∴B E →=(32,0,0)为平面AA 1C 1C 的一个法向量, ∴cos 〈A D →,B E →〉=-64, 设AD 与平面AA 1C 1C 所成的角为α, ∴sin α=|cos|〈A D →,B E →〉|=64,故选A. 2.在直三棱柱A 1B 1C 1-ABC 中,∠BCA =90°,点D 1、F 1分别是A 1B 1、A 1C 1的中点,BC =CA =CC 1,则BD 1与AF 1所成的角的余弦值是( )A.3010 B. 12 C.3015D.1510答案:A解析:建立如图所示的坐标系,设BC =1,则A (-1,0,0),F 1(-12,0,1),B (0,-1,0),D 1(-12,-12,1),即AF 1→=(12,0,1),BD 1→=(-12,12,1).∴cos 〈AF 1→,BD 1→〉=AF 1→·BD 1→|AF 1→|·|BD 1→|=3010.3.如图,在四棱锥P -ABCD 中,侧面PAD 为正三角形,底面ABCD 为正方形,侧面PAD ⊥底面ABCD ,M 为底面ABCD 内的一个动点,且满足MP =MC ,则点M 在正方形ABCD 内的轨迹为( )答案:A解析:以D 为原点,DA 、DC 所在直线分别为x 、y 轴建系如图:设M (x ,y,0),设正方形边长为a ,则P (a 2,0,32a ),C (0,a,0),则|MC |=x 2+y -a 2,|MP |=x -a 22+y 2+32a 2.由|MP |=|MC |得x =2y ,所以点M 在正方形ABCD 内的轨迹为直线y =12x 的一部分.4.已知在长方体ABCD -A 1B 1C 1D 1中,底面是边长为2的正方形,高为4,则点A 1到截面AB 1D 1的距离是________.答案:43解析:如图建立空间直角坐标系Dxyz , 则A 1(2,0,4),A (2,0,0),B 1(2,2,4),D 1(0,0,4), AD 1→=(-2,0,4),AB 1→=(0,2,4),AA 1→=(0,0,4),设平面AB 1D 1的法向量为n =(x ,y ,z ),则⎩⎪⎨⎪⎧ n ·AD 1→=0,n ·AB 1→=0,即⎩⎪⎨⎪⎧ -2x +4z =0,2y +4z =0,解得x =2z 且y =-2z ,不妨设n =(2,-2,1),设点A 1到平面AB 1D 1的距离为d ,则d =|AA 1→·n ||n |=43. 5.已知在几何体A -BCED 中,∠ACB =90°,CE ⊥平面ABC ,平面BCED 为梯形,且AC =CE =BC =4,DB =1.(1)求异面直线DE 与AB 所成角的余弦值;(2)试探究在DE 上是否存在点Q ,使得AQ ⊥BQ ,并说明理由.解:(1)由题知,CA ,CB ,CE 两两垂直,以C 为原点,以CA ,CB ,CE 所在直线分别为x ,y ,z 轴建立空间直角坐标系.则A (4,0,0),B (0,4,0),D (0,4,1),E (0,0,4),∴DE →=(0,-4,3),AB →=(-4,4,0),∴cos 〈DE →,AB →〉=-225, ∴异面直线DE 与AB 所成角的余弦值为225. (2)设满足题设的点Q 存在,其坐标为(0,m ,n ),则A Q →=(-4,m ,n ),B Q →=(0,m -4,n ),E Q →=(0,m ,n -4),Q D →=(0,4-m,1-n ).∵AQ ⊥BQ ,∴m (m -4)+n 2=0,① ∵点Q 在ED 上,∴存在λ∈R(λ>0)使得EQ →=λQD →,∴(0,m ,n -4)=λ(0,4-m,1-n ),∴m =4λ1+λ,②n =4+λ1+λ.③ 由①②③得(λ+41+λ)2=16λ1+λ2, ∴λ2-8λ+16=0,解得λ=4.∴m =165,n =85. ∴满足题设的点Q 存在,其坐标为(0,165,85).。
第3讲 立体几何中的向量方法(建议用时:60分钟) 一、选择题1.已知平面ABC ,点M 是空间任意一点,点M 满足条件OM→=34OA →+18OB →+18OC →,则直线AM( ).A .与平面ABC 平行B .是平面ABC 的斜线 C .是平面ABC 的垂线D .在平面ABC 内解析 由已知得M ,A ,B ,C 四点共面,所以AM 在平面ABC 内,选D. 答案 D2.如图,正方体ABCD -A 1B 1C 1D 1的棱长为a ,M ,N 分别为A 1B 和AC 上的点,A 1M =AN =2a3,则MN 与平面BB 1C 1C 的位置关系是 ( ).A .相交B .平行C .垂直D .不能确定解析 MN →=MB →+BC →+CN →=23A 1B →+BC →+23CA → =23(A 1B 1→+B 1B →)+BC →+23(CD →+DA →) =23B 1B →+BC →+23DA →, 又CD →是平面BB 1C 1C 的一个法向量,且MN →·CD →=23B 1B →+BC →+23DA →·CD →=0,∴MN →⊥CD →,又MN ⊄面BB 1C 1C ,∴MN ∥平面BB 1C 1C . 答案 B3.如图,四棱锥S -ABCD 的底面为正方形,SD ⊥底面ABCD ,则下列结论中不正确的是 ( ).A .AC ⊥SB B .AB ∥平面SCDC .SA 与平面SBD 所成的角等于SC 与平面SBD 所成的角 D .AB 与SC 所成的角等于DC 与SA 所成的角解析 选项A 正确,由于SD 垂直于底面ABCD ,而AC ⊂平面ABCD ,所以AC ⊥SD ;再由四边形ABCD 为正方形,所以AC ⊥BD ;而BD 与SD 相交,所以,AC ⊥平面SBD ,AC ⊥SB . 选项B 正确,由于AB ∥CD ,而CD ⊂平面SCD ,AB ⊄平面SCD ,所以AB ∥平面SCD . 选项C 正确,设AC 与BD 的交点为O ,易知SA 与平面SBD 所成的角就是∠ASO ,SC 与平面SBD 所成的角就是∠CSO ,易知这两个角相等.选项D 错误,AB 与SC 所成的角等于∠SCD ,而DC 与SA 所成的角是∠SAB ,这两个角不相等. 答案 D4.已知正三棱柱ABC -A 1B 1C 1的侧棱长与底面边长相等,则AB 1与侧面ACC 1A 1所成角的正弦等于 ( ).A.64B.104C.22D.32解析 如图所示建立空间直角坐标系,设正三棱柱的棱长为2,O (0,0,0),B (3,0,0),A (0,-1,0),B 1(3,0,2),则AB 1→=(3,1,2),则BO →=(-3,0,0)为侧面ACC 1A 1的法向量,由sin θ=|AB 1→·BO →||AB1→||BO →|=64.答案 A5.(2022·新课标全国Ⅱ卷)直三棱柱ABC -A 1B 1C 1中,∠BCA =90°,M ,N 分别是A 1B 1,A 1C 1的中点,BC =CA =CC 1,则BM 与AN 所成角的余弦值为 ( ). A.110 B.25 C.3010D.22解析 法一 由于∠BCA =90°,三棱柱为直三棱柱,且BC =CA =CC 1,可将三棱柱补成正方体.建立如图(1)所示空间直角坐标系.设正方体棱长为2,则可得A (0,0,0),B (2,2,0),M (1,1,2),N (0,1,2),∴BM→=(1,1,2)-(2,2,0)=(-1,-1,2),AN →=(0,1,2).∴cos 〈BM →,AN →〉=BM →·AN →|BM →||AN →|=-1+4(-1)2+(-1)2+22×02+12+22=36×5=3010. 法二 如图(2),取BC 的中点D ,连接MN ,ND ,AD ,由于MN 綉12B 1C 1綉BD ,因此有ND 綉BM ,则ND 与NA 所成角即为异面直线BM 与AN 所成角.设BC =2,则BM =ND =6,AN =5,AD =5,因此cos ∠AND =ND 2+NA 2-AD 22ND ·NA =3010.答案 C6.如图,点P 是单位正方体ABCD -A 1B 1C 1D 1中异于A 的一个顶点,则AP →·AB→的值为( ).A .0B .1C .0或1D .任意实数 解析 AP→可为下列7个向量:AB →,AC →,AD →,AA 1→,AB 1→,AC 1→,AD 1→. 其中一个与AB →重合,AP →·AB →=|AB →|2=1; AD →,AD 1→,AA 1→与AB →垂直, 这时AP →·AB→=0; AC →,AB 1→与AB →的夹角为45°, 这时AP →·AB→=2×1×cos π4=1, 最终AC 1→·AB →=3×1×cos ∠BAC 1=3×13=1,故选C. 答案 C7.(2021·浙江卷)如图,已知△ABC ,D 是AB 的中点,沿直线CD 将△ACD 翻折成△A ′CD ,。
第3讲立体几何中的向量方法【高考考情解读】高考对本节知识的考查以解答题的形式为主,主要从以下三个方面命题:1.以多面体(特别是棱柱、棱锥或其组合体)为载体,考查空间中平行与垂直的证明,常出现在解答题的第(1)问中,考查空间想象能力,推理论证能力及计算能力,属低中档问题.2.以多面体(特别是棱柱、棱锥或其组合体)为载体,考查空间角(主要是线面角和二面角)的计算,是高考的必考内容,属中档题.3.以已知结论寻求成立的条件(或是否存在问题)的探索性问题,考查逻辑推理能力、空间想象能力以及探索能力,是近几年高考命题的新亮点,属中高档问题.1.直线与平面、平面与平面的平行与垂直的向量方法设直线l,m的方向向量分别为a=(a1,b1,c1),b=(a2,b2,c2).平面α、β的法向量分别为μ=(a3,b3,c3),v=(a4,b4,c4)(以下相同).(1)线面平行l∥α⇔a⊥μ⇔a·μ=0⇔a1a3+b1b3+c1c3=0.(2)线面垂直l ⊥α⇔a ∥μ⇔a =k μ⇔a 1=ka 3,b 1=kb 3,c 1=kc 3. (3)面面平行α∥β⇔μ∥v ⇔μ=λv ⇔a 3=λa 4,b 3=λb 4,c 3=λc 4. (4)面面垂直α⊥β⇔μ⊥v ⇔μ·v =0⇔a 3a 4+b 3b 4+c 3c 4=0. 2. 直线与直线、直线与平面、平面与平面的夹角计算设直线l ,m 的方向向量分别为a =(a 1,b 1,c 1),b =(a 2,b 2,c 2).平面α、β的法向量分别为μ=(a 3,b 3,c 3),v =(a 4,b 4,c 4)(以下相同). (1)线线夹角设l ,m 的夹角为θ(0≤θ≤π2),则cos θ=|a ·b ||a ||b |=|a 1a 2+b 1b 2+c 1c 2|a 21+b 21+c 21a 22+b 22+c 22. (2)线面夹角设直线l 与平面α的夹角为θ(0≤θ≤π2),则sin θ=|a ·μ||a ||μ|=|cos 〈a ,μ〉|. (3)面面夹角设平面α、β的夹角为θ(0≤θ<π), 则|cos θ|=|μ·v ||μ||v |=|cos 〈μ,v 〉|. 提醒 求二面角时,两法向量的夹角有可能是二面角的补角,要注意从图中分析. 3. 求空间距离直线到平面的距离,两平行平面的距离均可转化为点到平面的距离,点P 到平面α的距离:d =|PM →·n ||n |(其中n 为α的法向量,M 为α内任一点).考点一 利用向量证明平行与垂直关系例1 如图,在直三棱柱ADE —BCF 中,面ABFE 和面ABCD 都是正方形且互相垂直,M 为AB 的中点,O 为DF 的中点.运用向量方 法证明:(1)OM ∥平面BCF ; (2)平面MDF ⊥平面EFCD .证明 方法一 由题意,得AB ,AD ,AE 两两垂直,以A 为原点 建立如图所示的空间直角坐标系.设正方形边长为1,则A (0,0,0),B (1,0,0),C (1,1,0),D (0,1,0), F (1,0,1),M ⎝⎛⎭⎫12,0,0, O ⎝⎛⎭⎫12,12,12.(1)OM →=⎝⎛⎭⎫0,-12,-12,BA →=(-1,0,0), ∴OM →·BA →=0, ∴OM →⊥BA →. ∵棱柱ADE —BCF 是直三棱柱,∴AB ⊥平面BCF ,∴BA →是平面BCF 的一个法向量, 且OM ⊄平面BCF ,∴OM ∥平面BCF .(2)设平面MDF 与平面EFCD 的一个法向量分别为 n 1=(x 1,y 1,z 1),n 2=(x 2,y 2,z 2).∵DF →=(1,-1,1),DM →=⎝⎛⎭⎫12,-1,0,DC →=(1,0,0), 由n 1·DF →=n 1·DM →=0,得⎩⎪⎨⎪⎧x 1-y 1+z 1=0,12x 1-y 1=0,解得⎩⎨⎧y 1=12x 1,z 1=-12x 1,令x 1=1,则n 1=⎝⎛⎭⎫1,12,-12. 同理可得n 2=(0,1,1).∵n 1·n 2=0,∴平面MDF ⊥平面EFCD .方法二 (1)OM →=OF →+FB →+BM →=12DF →-BF →+12BA →=12(DB →+BF →)-BF →+12BA →=-12BD →-12BF →+12BA →=-12(BC →+BA →)-12BF →+12BA →=-12BC →-12BF →.∴向量OM →与向量BF →,BC →共面, 又OM ⊄平面BCF ,∴OM ∥平面BCF . (2)由题意知,BF ,BC ,BA 两两垂直, ∵CD →=BA →,FC →=BC →-BF →, ∴OM →·CD →=⎝⎛⎭⎫-12BC →-12BF →·BA →=0, OM →·FC →=⎝⎛⎭⎫-12BC →-12BF →·(BC →-BF →) =-12BC →2+12BF →2=0.∴OM ⊥CD ,OM ⊥FC ,又CD ∩FC =C , ∴OM ⊥平面EFCD .又OM ⊂平面MDF ,∴平面MDF ⊥平面EFCD .(1)要证明线面平行,只需证明向量OM →与平面BCF 的法向量垂直;另一个思路则是根据共面向量定理证明向量OM →与BF →,BC →共面.(2)要证明面面垂直,只要证明这两个平面的法向量互相垂直;也可根据面面垂直的判定定理证明直线OM 垂直于平面EFCD ,即证OM 垂直于平面EFCD 内的两条相交直线,从而转化为证明向量OM →与向量FC →、DC →垂直.如图所示,正方形ABCD 所在平面与平面四边形ABEF 所在平面互相垂直,△ABE 是等腰直角三角形,AB =AE , F A =FE ,∠AEF =45°. (1)求证:EF ⊥平面BCE ;(2)设线段CD 、AE 的中点分别为P 、M ,求证:PM ∥平面BCE . 证明 ∵△ABE 是等腰直角三角形,AB =AE ,∴AE ⊥AB ,∵平面ABEF ⊥平面ABCD 且平面ABEF ∩平面ABCD =AB ,∴AE ⊥平面ABCD ,∴AE ⊥AD ,即AD 、AB 、AE 两两垂直,建立如图空间直角坐标系. (1)设AB =1,则AD =AE =1,A (0,0,0),B (0,1,0),D (1,0,0),E (0,0,1),C (1,1,0), ∵F A =FE ,∠AEF =45°, ∴∠AFE =90°,从而F ⎝⎛⎭⎫0,-12,12,EF →=⎝⎛⎭⎫0,-12,-12, BE →=(0,-1,1),BC →=(1,0,0). 于是EF →·BE →=0+12-12=0,EF →·BC →=0,∴EF ⊥BE ,EF ⊥BC ,∵BE ⊂平面BCE ,BC ⊂平面BCE ,BC ∩BE =B , ∴EF ⊥平面BCE .(2)M ⎝⎛⎭⎫0,0,12,P ⎝⎛⎭⎫1,12,0, 从而PM →=⎝⎛⎭⎫-1,-12,12, 于是PM →·EF →=⎝⎛⎭⎫-1,-12,12·(0,-12,-12) =0+14-14=0.∴PM ⊥EF ,又EF ⊥平面BCE ,直线PM 不在平面BCE 内,故PM ∥平面BCE . 考点二 利用向量求空间角例2 (2013·湖北)如图,AB 是圆O 的直径,点C 是圆O 上异于A ,B 的点,直线PC ⊥平面ABC ,E ,F 分别是P A ,PC 的中点.(1)记平面BEF 与平面ABC 的交线为l ,试判断直线l 与平面P AC 的位置关系,并加以证明;(2)设(1)中的直线l 与圆O 的另一个交点为D ,且点Q 满足DQ →=12CP →,记直线PQ 与平面ABC 所成的角为θ,异面直线PQ 与EF 所成的角为α,二面角E -l -C 的大小为β,求证:sin θ=sin αsin β.(1)解 直线l ∥平面P AC ,证明如下: 连接EF ,因为E ,F 分别是P A ,PC 的中点, 所以EF ∥AC .又EF ⊄平面ABC ,且AC ⊂平面ABC , 所以EF ∥平面ABC .而EF ⊂平面BEF ,且平面BEF ∩平面ABC =l , 所以EF ∥l .因为l ⊄平面P AC ,EF ⊂平面P AC , 所以直线l ∥平面P AC .(2)证明 如图,由DQ →=12CP →,作DQ ∥CP ,且DQ =12CP .连接PQ ,EF ,BE ,BF ,BD , 由(1)可知交线l 即为直线BD .以点C 为原点,向量CA →,CB →,CP →所在直线分别为x ,y ,z 轴,建立如图所示的空间直角坐标系,设CA =a ,CB =b ,CP =2c ,则有C (0,0,0),A (a,0,0),B (0,b,0),P (0,0,2c ),Q (a ,b ,c ),E ⎝⎛⎭⎫12a ,0,c ,F (0,0,c ). 于是FE →=⎝⎛⎭⎫12a ,0,0,QP →=(-a ,-b ,c ),BF →=(0,-b ,c ), 所以cos α=|FE →·QP →||FE →||QP →|=a a 2+b 2+c2,从而sin α=1-cos 2α=b 2+c 2a 2+b 2+c2,又取平面ABC 的一个法向量为m =(0,0,1), 可得sin θ=|m ·QP →||m ||QP →|=c a 2+b 2+c2,设平面BEF 的一个法向量为n =(x ,y ,z ). 所以由⎩⎪⎨⎪⎧ n ·FE →=0,n ·BF →=0.可得⎩⎪⎨⎪⎧12ax =0,-by +cz =0.取n =(0,c ,b ).于是|cos β|=|m ·n ||m ||n |=b b 2+c2. 从而sin β=1-cos 2β=cb 2+c2.故sin αsin β=b 2+c 2a 2+b 2+c2·cb 2+c2=ca2+b2+c2=sin θ,即sin θ=sin αsin β.(1)运用空间向量坐标运算求空间角的一般步骤:①建立恰当的空间直角坐标系;②求出相关点的坐标;③写出向量坐标;④结合公式进行论证、计算;⑤转化为几何结论.(2)求空间角注意:①两条异面直线所成的角α不一定是直线的方向向量的夹角β,即cos α=|cos β|.②两平面的法向量的夹角不一定是所求的二面角,有可能为两法向量夹角的补角.(2013·山东)如图所示,在三棱锥P-ABQ中,PB⊥平面ABQ,BA=BP=BQ,D,C,E,F分别是AQ,BQ,AP,BP的中点,AQ=2BD,PD与EQ交于点G,PC与FQ交于点H,连接GH.(1)求证:AB∥GH;(2)求二面角D-GH-E的余弦值.(1)证明因为D,C,E,F分别是AQ,BQ,AP,BP的中点,所以EF∥AB,DC∥AB. 所以EF∥DC.又EF⊄平面PCD,DC⊂平面PCD,所以EF∥平面PCD.又EF⊂平面EFQ,平面EFQ∩平面PCD=GH,所以EF∥GH.又EF∥AB,所以AB∥GH.(2)解方法一在△ABQ中,AQ=2BD,AD=DQ,所以∠ABQ=90°,即AB⊥BQ. 因为PB⊥平面ABQ,所以AB⊥PB.又BP∩BQ=B,所以AB⊥平面PBQ.由(1)知AB∥GH,所以GH⊥平面PBQ.又FH⊂平面PBQ,所以GH⊥FH.同理可得GH⊥HC,所以∠FHC为二面角D-GH-E的平面角.设BA=BQ=BP=2,连接FC,在Rt△FBC中,由勾股定理得FC=2,在Rt△PBC中,由勾股定理PC = 5.又H 为△PBQ 的重心,所以HC =13PC =53.同理FH =53.在△FHC 中,由余弦定理得cos ∠FHC =59+59-22×59=-45.即二面角D -GH -E 的余弦值为-45.方法二 在△ABQ 中,AQ =2BD ,AD =DQ ,所以∠ABQ =90° 又PB ⊥平面ABQ ,所以BA ,BQ ,BP 两两垂直.以B 为坐标原点,分别以BA ,BQ ,BP 所在直线为x 轴,y 轴, z 轴,建立如图所示的空间直角坐标系.设BA =BQ =BP =2,则E (1,0,1),F (0,0,1),Q (0,2,0),D (1,1,0),C (0,1,0),P (0,0,2). 所以EQ →=(-1,2,-1),FQ →=(0,2,-1),DP →=(-1,-1,2),CP →=(0,-1,2). 设平面EFQ 的一个法向量为m =(x 1,y 1,z 1),由m ·EQ →=0,m ·FQ →=0,得⎩⎪⎨⎪⎧ -x 1+2y 1-z 1=0,2y 1-z 1=0,取y 1=1,得m =(0,1,2). 设平面PDC 的一个法向量为n =(x 2,y 2,z 2),由n ·DP →=0,n ·CP →=0,得⎩⎪⎨⎪⎧-x 2-y 2+2z 2=0,-y 2+2z 2=0,取z 2=1,得n =(0,2,1). 所以cos 〈m ,n 〉=m ·n |m ||n |=45.因为二面角D -GH -E 为钝角,所以二面角D -GH -E 的余弦值为-45.考点三 利用空间向量解决探索性问题例3 如图,在直三棱柱ABC -A 1B 1C 1中,AB =BC =2AA 1,∠ABC=90°,D 是BC 的中点. (1)求证:A 1B ∥平面ADC 1; (2)求二面角C 1-AD-C 的余弦值;(3)试问线段A 1B 1上是否存在点E ,使AE 与DC 1成60°角?若存在,确定E 点位置;若不存在,说明理由.(1)证明 连接A 1C ,交AC 1于点O ,连接OD .由ABC -A 1B 1C 1是直三棱柱,得四边形ACC 1A 1为矩形,O 为 A 1C 的中点. 又D 为BC 的中点,所以OD 为△A 1BC 的中位线, 所以A 1B ∥OD .因为OD ⊂平面ADC 1,A 1B ⊄平面ADC 1, 所以A 1B ∥平面ADC 1.(2)解 由ABC -A 1B 1C 1是直三棱柱,且∠ABC =90°,得BA ,BC ,BB 1两两垂直. 以BC ,BA ,BB 1所在直线分别为x ,y ,z 轴,建立如图所示的空间直角坐标系B -xyz . 设BA =2,则B (0,0,0),C (2,0,0),A (0,2,0),C 1(2,0,1),D (1,0,0), 所以AD →=(1,-2,0),AC →1=(2,-2,1).设平面ADC 1的法向量为n =(x ,y ,z ),则有⎩⎪⎨⎪⎧n ·AD →=0,n ·AC →1=0.所以⎩⎪⎨⎪⎧x -2y =0,2x -2y +z =0.取y =1,得n =(2,1,-2).易知平面ADC 的一个法向量为v =(0,0,1). 所以cos 〈n ,v 〉=n ·v |n |·|v |=-23.因为二面角C 1-AD -C 是锐二面角, 所以二面角C 1-AD -C 的余弦值为23.(3)解 假设存在满足条件的点E .因为点E 在线段A 1B 1上,A 1(0,2,1),B 1(0,0,1),故可设E (0,λ,1),其中0≤λ≤2. 所以AE →=(0,λ-2,1),DC →1=(1,0,1).因为AE 与DC 1成60°角,所以|cos 〈AE →,DC →1〉|=|AE →·DC →1||AE →|·|DC →1|=12,即1(λ-2)2+1·2=12,解得λ=1或λ=3(舍去). 所以当点E 为线段A 1B 1的中点时,AE 与DC 1成60°角.空间向量最适合于解决这类立体几何中的探索性问题,它无需进行复杂的作图、论证、推理,只需通过坐标运算进行判断.解题时,把要成立的结论当作条件,据此列方程或方程组,把“是否存在”问题转化为“点的坐标是否有解,是否有规定范围内的解”等,所以为使问题的解决更简单、有效,应善于运用这一方法.如图,在三棱锥P —ABC 中,AC =BC =2,∠ACB =90°,AP =BP =AB ,PC ⊥AC ,点D 为BC 的中点; (1)求二面角A —PD —B 的余弦值;(2)在直线AB 上是否存在点M ,使得PM 与平面P AD 所成角的正弦值 为16,若存在,求出点M 的位置;若不存在,说明理由.解 (1)∵AC =BC ,P A =PB ,PC =PC , ∴△PCA ≌△PCB , ∴∠PCA =∠PCB , ∵PC ⊥AC ,∴PC ⊥CB , 又AC ∩CB =C ,∴PC ⊥平面ACB ,且PC ,CA ,CB 两两垂直,故以C 为坐标原点,分别以CB ,CA ,CP 所在直线为x ,y ,z 轴建立空间直角坐标系,则C (0,0,0),A (0,2,0),D (1,0,0),P (0,0,2),∴AD →=(1,-2,0),PD →=(1,0,-2), 设平面P AD 的一个法向量为n =(x ,y ,z ),∴⎩⎪⎨⎪⎧n ·AD →=0n ·PD →=0,∴取n =(2,1,1),平面PDB 的一个法向量为CA →=(0,2,0), ∴cos 〈n ,CA →〉=66,设二面角A —PD —B 的平面角为θ,且θ为钝角, ∴cos θ=-66,∴二面角A —PD —B 的余弦值为-66. (2)方法一 存在,M 是AB 的中点或A 是MB 的中点. 设M (x,2-x,0) (x ∈R ),∴PM →=(x,2-x ,-2), ∴|cos 〈PM →,n 〉|=|x |x 2+(2-x )2+4·6=16, 解得x =1或x =-2,∴M (1,1,0)或M (-2,4,0),∴在直线AB 上存在点M ,且当M 是AB 的中点或A 是MB 的中点时,使得PM 与平面P AD 所成角的正弦值为16.方法二 存在,M 是AB 的中点或A 是MB 的中点. 设AM →=λAB →,则AM →=λ(2,-2,0)=(2λ,-2λ,0) (λ∈R ), ∴PM →=P A →+AM →=(2λ,2-2λ,-2), ∴|cos 〈PM →,n 〉|=|2λ|(2λ)2+(2-2λ)2+4·6=16. 解得λ=12或λ=-1.∴M 是AB 的中点或A 是MB 的中点.∴在直线AB 上存在点M ,且当M 是AB 的中点或A 是MB 的中点时,使得PM 与平面P AD 所成角的正弦值为16.空间向量在处理空间问题时具有很大的优越性,能把“非运算”问题“运算”化,即通过直线的方向向量和平面的法向量,把立体几何中的平行、垂直关系,各类角、距离以向量的方式表达出来,把立体几何问题转化为空间向量的运算问题.应用的核心是充分认识形体特征,进而建立空间直角坐标系,通过向量的运算解答问题,达到几何问题代数化的目的,同时注意运算的准确性.提醒三点:(1)直线的方向向量和平面的法向量所成角的余弦值的绝对值是线面角的正弦值,而不是余弦值.(2)求二面角除利用法向量外,还可以按照二面角的平面角的定义和空间任意两个向量都是共面向量的知识,我们只要是在二面角的两个半平面内分别作和二面角的棱垂直的向量,并且两个向量的方向均指向棱或者都从棱指向外,那么这两个向量所成的角的大小就是二面角的大小.如图所示.(3)对于空间任意一点O 和不共线的三点A ,B ,C ,且有OP →=xOA →+yOB →+zOC →(x ,y ,z ∈R ),四点P ,A ,B ,C 共面的充要条件是x +y +z =1.空间一点P 位于平面MAB 内⇔存在有序实数对x ,y ,使MP →=xMA →+yMB →,或对空间任一定点O ,有序实数对x ,y ,使OP →=OM →+xMA →+yMB →.如图,在边长为4的菱形ABCD 中,∠DAB =60°.点E 、F 分别在边CD 、CB 上,点E 与点C 、D 不重合,EF ⊥AC ,EF ∩AC =O .沿EF 将△CEF 翻折到△PEF 的位置,使平面PEF ⊥平面ABFED .(1)求证:BD ⊥平面POA ;(2)设点Q 满足AQ →=λQP →(λ>0),试探究:当PB 取得最小值时,直线OQ 与平面PBD 所成角的大小是否一定大于π4?并说明理由.(1)证明 ∵菱形ABCD 的对角线互相垂直, ∴BD ⊥AC ,∴BD ⊥AO , ∵EF ⊥AC ,∴PO ⊥EF .∵平面PEF ⊥平面ABFED ,平面PEF ∩平面ABFED =EF ,且PO ⊂平面PEF , ∴PO ⊥平面ABFED ,∵BD ⊂平面ABFED ,∴PO ⊥BD . ∵AO ∩PO =O ,∴BD ⊥平面POA .(2)解 如图,以O 为原点,建立空间直角坐标系 O -xyz . 设AO ∩BD =H .因为∠DAB =60°,所以△BDC 为等边三角形. 故BD =4,HB =2,HC =2 3.又设PO =x ,则OH =23-x ,OA =43-x . 所以O (0,0,0),P (0,0,x ),B (23-x,2,0), 故PB →=(23-x,2,-x ), 所以|PB →|=(23-x )2+22+(-x )2=2(x -3)2+10,当x =3时,|PB |min =10.此时PO =3, 设点Q 的坐标为(a,0,c ), ∵OP =3,则A (33,0,0),B (3,2,0),D (3,-2,0),P (0,0,3). ∴AQ →=(a -33,0,c ),QP →=(-a,0,3-c ),∵AQ →=λQP →,∴⎩⎪⎨⎪⎧a -33=-λa ,c =3λ-λc⇒⎩⎪⎨⎪⎧a =331+λ,c =3λ1+λ.∴Q (33λ+1,0,3λλ+1),∴OQ →=(33λ+1,0,3λλ+1).设平面PBD 的法向量为n =(x ,y ,z ), 则n ·PB →=0,n ·BD →=0.∵PB →=(3,2,-3),BD →=(0,-4,0),∴⎩⎪⎨⎪⎧3x +2y -3z =0,-4y =0. 取x =1,解得y =0,z =1, ∴n =(1,0,1).设直线OQ 与平面PBD 所成的角为θ, ∴sin θ=|cos 〈OQ →,n 〉|=|OQ →·n ||OQ →|·|n |=|33λ+1+3λλ+1|2·(33λ+1)2+(3λλ+1)2=|3+λ|2·9+λ2=129+6λ+λ29+λ2=121+6λ9+λ2. 又∵λ>0,∴sin θ>22. ∵θ∈[0,π2],∴θ>π4.因此直线OQ 与平面PBD 所成的角大于π4,则结论成立.(推荐时间:60分钟)一、选择题1. 已知平面ABC ,点M 是空间任意一点,点M 满足条件OM →=34OA →+18OB →+18OC →,则直线AM( )A .与平面ABC 平行B .是平面ABC 的斜线 C .是平面ABC 的垂线D .在平面ABC 内 答案 D解析 由已知得M 、A 、B 、C 四点共面.所以AM 在平面ABC 内,选D. 2. 如图,三棱锥A -BCD 的棱长全相等,E 为AD 的中点,则直线CE与BD 所成角的余弦值为( )A.36 B.32C.336D.12答案 A解析 设AB =1,则CE →·BD →=(AE →-AC →)·(AD →-AB →) =12AD →2-12AD →·AB →-AC →·AD →+AC →·AB → =12-12cos 60°-cos 60°+cos 60°=14. ∴cos 〈CE →,BD →〉=CE →·BD →|CE →||BD →|=1432=36.选A.3. 如图,点P 是单位正方体ABCD -A 1B 1C 1D 1中异于A 的一个顶点,则AP →·AB →的值为( )A .0B .1C .0或1D .任意实数答案 C解析 AP →可为下列7个向量:AB →,AC →,AD →,AA 1→,AB →1,AC →1,AD →1,其中一个与AB →重合,AP →·AB →=|AB →|2=1;AD →,AD →1,AA →1与AB →垂直,这时AP →·AB →=0;AC →,AB →1与AB →的夹角为45°,这时AP →·AB →=2×1×cos π4=1,最后AC →1·AB →=3×1×cos ∠BAC 1=3×13=1,故选C.4. (2013·山东)已知三棱柱ABC -A 1B 1C 1的侧棱与底面垂直,体积为94,底面是边长为3的正三角形.若P 为底面A 1B 1C 1的中心,则P A 与平面ABC 所成角的大小为 ( )A.5π12 B.π3C.π4D.π6答案 B解析 如图所示:S ABC =12×3×3×sin 60°=334.∴VABC -A 1B 1C 1=S ABC ×OP =334×OP =94,∴OP = 3.又OA =32×3×23=1, ∴tan ∠OAP =OP OA =3,又0<∠OAP <π2,∴∠OAP =π3.二、填空题5. 在一直角坐标系中已知A (-1,6),B (3,-8),现沿x 轴将坐标平面折成60°的二面角,则折叠后A 、B 两点间的距离为________. 答案 217解析 如图为折叠后的图形,其中作AC ⊥CD ,BD ⊥CD , 则AC =6,BD =8,CD =4, 两异面直线AC 、BD 所成的角为60°, 故由AB →=AC →+CD →+DB →, 得|AB →|2=|AC →+CD →+DB →|2=68, ∴|AB →|=217.6. 已知正方形ABCD 的边长为4,CG ⊥平面ABCD ,CG =2,E ,F 分别是AB ,AD 的中点,则点C 到平面GEF 的距离为________.答案61111解析 建立如图所示的空间直角坐标系C -xyz , GF →=(4,2,-2),GE →=(2,4,-2),由⎩⎪⎨⎪⎧GF →·n =0,GE →·n =0,得平面GEF 的一个法向量为n =(1,1,3),所以点C 到平面GEF 的距离d =|n ·CG →||n |=61111.7. 如图,在正方形ABCD 中,E ,F 分别是AB ,BC 的中点,现在沿DE ,DF 及EF 将三个角折起,使A ,B ,C 三点重合,重合后的点记为P ,那么在四面体P -DEF 中,二面角D -PE -F 的大小为________.答案 90°解析 由已知可得,PD ⊥PE ,PF ⊥PE , 所以∠DPF 是二面角D -PE -F 的平面角.又因为PD ⊥PF ,所以二面角D -PE -F 的大小为90°.8. 如图,正方体ABCD -A 1B 1C 1D 1,则下列四个命题:①P 在直线BC 1上运动时,三棱锥A -D 1PC 的体积不变; ②P 在直线BC 1上运动时,直线AP 与平面ACD 1所成角的大小不 变;③P 在直线BC 1上运动时,二面角P -AD 1-C 的大小不变;④M 是平面A 1B 1C 1D 1上到点D 和C 1距离相等的点,则M 点的轨迹是过D 1点的直线. 其中真命题的编号是________(写出所有真命题的编号). 答案 ①③④解析 ∵BC 1∥AD 1,∴BC 1∥平面ACD 1,BC 1上任一点到平面ACD 1的距离为定值,∴VA -D 1PC =VP -ACD 1为定值,①正确;P 到面ACD 1的距离不变,但AP 的长在变化,∴AP 与面ACD 1所成角的大小是变量,②错误;面P AD 1即面ABC 1D 1,∴ABC 1D 1与面ACD 1所成二面角的大小不变,③正确;M 点的轨迹为A 1D 1,④正确. 三、解答题9. 如图,已知四棱锥P —ABCD 的底面为等腰梯形,AB ∥CD ,AC ⊥BD ,垂足为H ,PH 是四棱锥的高,E 为AD 的中点. (1)证明:PE ⊥BC ;(2)若∠APB =∠ADB =60°,求直线P A 与平面PEH 所成角的正弦值.(1)证明 以H 为原点,HA ,HB ,HP 所在直线分别为x ,y ,z 轴, 线段HA 的长为单位长度,建立空间直角坐标系(如图), 则A (1,0,0),B (0,1,0).设C (m,0,0),P (0,0,n ) (m <0,n >0), 则D (0,m,0),E ⎝⎛⎭⎫12,m 2,0.可得PE →=⎝⎛⎭⎫12,m 2,-n ,BC →=(m ,-1,0). 因为PE →·BC →=m 2-m2+0=0,所以PE ⊥BC .(2)解 由已知条件可得m =-33,n =1, 故C ⎝⎛⎭⎫-33,0,0,D ⎝⎛⎭⎫0,-33,0,E ⎝⎛⎭⎫12,-36,0, P (0,0,1).设n =(x ,y ,z )为平面PEH 的法向量, 则⎩⎪⎨⎪⎧n ·HE →=0,n ·HP →=0,即⎩⎪⎨⎪⎧12x -36y =0,z =0.因此可以取n =(1,3,0).又P A →=(1,0,-1), 所以|cos 〈P A →,n 〉|=24.所以直线P A 与平面PEH 所成角的正弦值为24.10.如图,五面体中,四边形ABCD 是矩形,AD ⊥面ABEF ,且AD =1,AB ∥EF ,AB =12EF =22,AF =BE =2,P 、Q 、M分别为AE 、BD 、EF 的中点.(1)求证:PQ ∥平面BCE ; (2)求证:AM ⊥平面ADF ; (3)求二面角A -DF -E 的余弦值.(1)证明 连接AC ,因为四边形ABCD 是矩形,Q 为BD 的中点, ∴Q 为AC 的中点,又在△AEC 中,P 为AE 的中点,∴PQ ∥EC , ∵EC ⊂面BCE ,PQ ⊄面BCE ,∴PQ ∥平面BCE . (2)证明 ∵M 为EF 的中点,∴EM =AB =22, 又∵EF ∥AB ,∴四边形ABEM 是平行四边形. ∴AM ∥BE ,AM =BE =2, 又∵AF =2,MF =22, ∴△MAF 是Rt △且∠MAF =90°. ∴MA ⊥AF .又∵DA ⊥平面ABEF ,MA ⊂面ABEF , ∴MA ⊥DA ,又∵DA ∩AF =A , ∴AM ⊥平面ADF .(3)解 如图,以A 为坐标原点,以AM 、AF 、AD 所在直线 分别为x ,y ,z 轴建立空间直角坐标系. 则A (0,0,0),D (0,0,1),M (2,0,0),F (0,2,0).可得AM →=(2,0,0),MF →=(-2,2,0),DF →=(0,2,-1). 设平面DEF 的法向量为n =(x ,y ,z ),则⎩⎪⎨⎪⎧n ·MF →=0n ·DF →=0.故⎩⎪⎨⎪⎧ -2x +2y =02y -z =0,即⎩⎪⎨⎪⎧x -y =02y -z =0. 令x =1,则y =1,z =2,故n =(1,1,2)是平面DEF 的一个法向量.∵AM ⊥面ADF ,∴AM →为平面ADF 的一个法向量.所以cos 〈n ,AM →〉=n ·AM →|n |·|AM →|=2×1+0×1+0×26×2=66. 由图可知所求二面角为锐角,所以二面角A -DF -E 的余弦值为66.11.(2013·重庆)如图,四棱锥P -ABCD 中,P A ⊥底面ABCD ,BC =CD =2,AC =4,∠ACB =∠ACD =π3,F 为PC 的中点,AF ⊥PB . (1)求P A 的长;(2)求二面角B -AF -D 的正弦值.解 (1)如图,连接BD 交AC 于点O ,因为BC =CD ,即△BCD 为等腰三角形,又AC 平分∠BCD ,故AC ⊥BD .以O 为坐标原点,OB →,OC →,AP →的方向分别为x 轴,y 轴,z 轴的正方向,建立空间直角坐标系O -xyz ,则OC =CD cos π3=1, 而AC =4,得AO =AC -OC =3,又OD =CD sin π3= 3. 故A (0,-3,0),B (3,0,0),C (0,1,0),D (-3,0,0).因为P A ⊥底面ABCD ,可设P (0,-3,z ),因为F 为PC 的中点,所以F ⎝⎛⎭⎫0,-1,z 2. 又AF →=⎝⎛⎭⎫0,2,z 2,PB →=(3,3,-z ), 因为AF ⊥PB ,故AF →·PB →=0,即6-z 22=0,z =23(舍去-23), 所以|P A →|=23,所以P A 的长为2 3.(2)由(1)知,AD →=(-3,3,0),AB →=(3,3,0),AF →=(0,2,3).设平面F AD 的法向量为n 1=(x 1,y 1,z 1),平面F AB 的法向量为n 2=(x 2,y 2,z 2).由n 1·AD →=0,n 1·AF →=0得⎩⎪⎨⎪⎧ -3x 1+3y 1=0,2y 1+3z 1=0,因此可取n 1=(3,3,-2). 由n 2·AB →=0,n 2·AF →=0得 ⎩⎪⎨⎪⎧3x 2+3y 2=0,2y 2+3z 2=0,故可取n 2=(3,-3,2). 从而法向量n 1,n 2的夹角的余弦值为cos 〈n 1,n 2〉=n 1·n 2|n 1|·|n 2|=18. 故二面角B -AF -D 的正弦值为378.12.如图,AB 为圆O 的直径,点E ,F 在圆上且EF ∥AB ,矩形ABCD所在平面和圆O 所在平面垂直,已知AB =2,EF =1.(1)求证:平面ADE ⊥平面BCE ;(2)当AD 的长为何值时,二面角D -EF -B 的大小为60°?(1)证明 ∵平面ABCD ⊥平面ABEF 且DA ⊥AB ,∴DA ⊥平面ABEF .又∵BE ⊂平面ABEF ,∴DA ⊥BE ,∵AB 为圆O 的直径,∴BE ⊥AE .又DA ∩AE =A ,∴BE ⊥平面ADE .∵BE ⊂平面BCE ,∴平面ADE ⊥平面BCE .(2)解 取EF ,CD 的中点M ,N ,连接OM ,ON ,易知OA ,OM ,ON 两两垂直.以O 为坐标原点,OA ,OM ,ON 所在直线为x 轴,y 轴,z 轴建立如 图所示的空间直角坐标系,设AD =t (t >0),过点E 作EH ⊥AB ,垂足为H .∵AB =2,EF =1,∴BH =12.又∵Rt △EBH ∽Rt △ABE ,∴BH BE =BE AB .∴BE =1,EH =32.则O (0,0,0),D (1,0,t ),E (-12,32,0),F (12,32,0)∴DE →=(-32,32,-t ),DF →=(-12,32,-t ).设平面DEF 的一个法向量为n 1=(x ,y ,z ),则n 1·DE →=0,n 1·DF →=0.得⎩⎨⎧ -32x +32y -tz =0,-12x +32y -tz =0.令z =3,解得x =0,y =2t ,∴n 1=(0,2t ,3),取平面BEF 的一个法向量为n 2=(0,0,1).由题意知n 1,n 2所成的角为60°.∴cos 60°=n 1·n 2|n 1||n 2|=0+0+34t 2+3,解得t =±32(负值舍去). 因此,当AD 的长为32时,二面角D -EF -B 的大小为60°.。
第3讲立体几何中的向量方法[A组夯基保分专练]一、选择题1.(2018·某某第一次质量检测)如图,在多面体ABCDEF中,四边形ABCD是正方形,BF⊥平面ABCD,DE⊥平面ABCD,BF=DE,M为棱AE的中点.(1)求证:平面BDM∥平面EFC;(2)若DE=2AB,求直线AE与平面BDM所成角的正弦值.解:(1)证明:连接AC,交BD于点N,连接MN,则N为AC的中点,又M为AE的中点,所以MN∥EC.因为MN⊄平面EFC,EC⊂平面EFC,所以MN∥平面EFC.因为BF,DE都垂直底面ABCD,所以BF∥DE.因为BF=DE,所以四边形BDEF为平行四边形,所以BD∥EF.因为BD⊄平面EFC,EF⊂平面EFC,所以BD∥平面EFC.又MN∩BD=N,所以平面BDM∥平面EFC.(2)因为DE⊥平面ABCD,四边形ABCD是正方形,所以DA,DC,DE两两垂直,如图,建立空间直角坐标系Dxyz.设AB=2,则DE=4,从而D(0,0,0),B(2,2,0),M(1,0,2),A(2,0,0),E(0,0,4),所以DB →=(2,2,0),DM →=(1,0,2), 设平面BDM 的法向量为n =(x ,y ,z ), 则⎩⎪⎨⎪⎧n ·DB →=0,n ·DM →=0,得⎩⎪⎨⎪⎧2x +2y =0,x +2z =0.令x =2,则y =-2,z =-1,从而n =(2,-2,-1)为平面BDM 的一个法向量. 因为AE →=(-2,0,4),设直线AE 与平面BDM 所成的角为θ,则 sin θ=|cos 〈n ·AE →〉|=⎪⎪⎪⎪⎪⎪⎪⎪n ·AE→|n |·|AE →|=4515, 所以直线AE 与平面BDM 所成角的正弦值为4515.2.(2018·高考全国卷Ⅲ)如图,边长为2的正方形ABCD 所在的平面与半圆弧CD ︵所在平面垂直,M 是CD ︵上异于C ,D 的点.(1)证明:平面AMD ⊥平面BMC;(2)当三棱锥M ABC 体积最大时,求平面MAB 与平面MCD 所成二面角的正弦值. 解:(1)证明:由题设知,平面CMD ⊥平面ABCD ,交线为CD . 因为BC ⊥CD ,BC ⊂平面ABCD ,所以BC ⊥平面CMD ,故BC ⊥DM . 因为M 为CD ︵上异于C ,D 的点,且DC 为直径,所以DM ⊥CM . 又BC ∩CM =C ,所以DM ⊥平面BMC . 而DM ⊂平面AMD ,故平面AMD ⊥平面BMC .(2)以D 为坐标原点,DA →的方向为x 轴正方向,建立如图所示的空间直角坐标系D xyz .当三棱锥M ABC 体积最大时,M 为CD ︵的中点.由题设得D (0,0,0),A (2,0,0),B (2,2,0),C (0,2,0),M (0,1,1), AM →=(-2,1,1),AB →=(0,2,0),DA →=(2,0,0).设n =(x ,y ,z )是平面MAB 的法向量,则⎩⎪⎨⎪⎧n ·AM →=0,n ·AB →=0,即⎩⎪⎨⎪⎧-2x +y +z =0,2y =0.可取n =(1,0,2).DA →是平面MCD 的法向量,因此cos 〈n ,DA →〉=n ·DA →|n ||DA →|=55,sin 〈n ,DA →〉=255.所以平面MAB 与平面MCD 所成二面角的正弦值是255.3.(2018·某某教学质量检测(一))如图,四棱柱ABCD A 1B 1C 1D 1的底面ABCD 是菱形,AC∩BD =O ,A 1O ⊥底面ABCD ,AB =2,AA 1=3.(1)证明:平面A 1CO ⊥平面BB 1D 1D ;(2)若∠BAD =60°,求二面角B OB 1C 的余弦值. 解:(1)证明:因为A 1O ⊥平面ABCD ,BD ⊂平面ABCD ,所以A 1O ⊥BD .因为四边形ABCD 是菱形, 所以CO ⊥BD . 因为A 1O ∩CO =O , 所以BD ⊥平面A 1CO . 因为BD ⊂平面BB 1D 1D , 所以平面A 1CO ⊥平面BB 1D 1D . (2)因为A 1O ⊥平面ABCD ,CO ⊥BD ,所以OB ,OC ,OA 1两两垂直,以O 为坐标原点,OB →,OC →,OA 1→的方向为x ,y ,z 轴的正方向建立如图所示的空间直角坐标系.因为AB =2,AA 1=3,∠BAD =60°, 所以OB =OD =1,OA =OC =3,OA 1=AA 21-OA 2= 6.则O (0,0,0),B (1,0,0),C (0,3,0),A (0,-3,0),A 1(0,0,6), 所以OB →=(1,0,0),BB 1→=AA 1→=(0,3,6),OB 1→=OB →+BB 1→=(1,3,6),设平面OBB 1的法向量为n =(x ,y ,z ), ⎩⎪⎨⎪⎧OB →·n =0,OB 1→·n =0,所以⎩⎨⎧x =0,x +3y +6z =0.令y =2,得n =(0,2,-1)是平面OBB 1的一个法向量. 同理可求得平面OCB 1的一个法向量m =(6,0,-1),所以cos 〈n ,m 〉=n ·m |n |·|m |=13×7=2121,由图可知二面角B OB 1C 是锐二面角, 所以二面角B OB 1C 的余弦值为2121. 4.如图,四棱锥P ABCD 中,侧面PAD 为等边三角形且垂直于底面ABCD ,AB =BC =12AD ,∠BAD =∠ABC =90°,E 是PD 的中点.(1)证明:直线CE ∥平面PAB ;(2)点M 在棱PC 上,且直线BM 与底面ABCD 所成角为45° ,求二面角M AB D 的余弦值.解:(1)证明:取PA 的中点F ,连接EF ,BF ,如图所示.因为E 是PD 的中点,所以EF ∥AD ,EF =12AD .由∠BAD =∠ABC =90°得BC ∥AD ,又BC =12AD ,所以EF 綊BC ,四边形BCEF 是平行四边形,CE ∥BF ,又BF ⊂平面PAB ,CE ⊄平面PAB ,故CE ∥平面PAB .(2)由已知得BA ⊥AD ,以A 为坐标原点,AB →的方向为x 轴正方向,设|AB →|为单位长,建立如图所示的空间直角坐标系A xyz ,则A (0,0,0),B (1,0,0),C (1,1,0),P (0,1,3),PC →=(1,0,-3),AB →=(1,0,0).设M (x ,y ,z )(0<x <1),则 BM →=(x -1,y ,z ),PM →=(x ,y -1,z -3).因为BM 与底面ABCD 所成的角为45°,而n =(0,0,1)是底面ABCD 的一个法向量,所以|cos 〈BM →,n 〉|=sin 45°,|z |(x -1)2+y 2+z2=22, 即(x -1)2+y 2-z 2=0.①又M 在棱PC 上,设PM →=λPC →,则x =λ,y =1,z =3-3λ.②由①,②解得⎩⎪⎨⎪⎧x =1+22,y =1,z =-62(舍去),⎩⎪⎨⎪⎧x =1-22,y =1,z =62,所以M ⎝ ⎛⎭⎪⎫1-22,1,62,从而AM →=⎝⎛⎭⎪⎫1-22,1,62. 设m =(x 0,y 0,z 0)是平面ABM 的法向量,则 ⎩⎪⎨⎪⎧m ·AM →=0,m ·AB →=0,即⎩⎨⎧(2-2)x 0+2y 0+6z 0=0,x 0=0, 所以可取m =(0,-6,2).于是cos 〈m ,n 〉=m ·n |m ||n |=105.因此二面角M AB D 的余弦值为105. [B 组 大题增分专练]1.(2018·某某模拟)如图,四棱锥P ABCD 中,PA ⊥底面ABCD ,ABCD 为直角梯形,AD ∥BC ,AD ⊥AB ,AB =BC =AP =12AD =3,AC ∩BD =O ,过O 点作平面α平行于平面PAB ,平面α与棱BC ,AD ,PD ,PC 分别相交于点E ,F ,G ,H .(1)求GH 的长度;(2)求二面角B FH E 的余弦值.解:(1)因为平面α∥平面PAB ,平面α∩平面ABCD =EF , 平面PAB ∩平面ABCD =AB ,所以EF ∥AB . 同理EH ∥BP ,FG ∥AP . 因为BC ∥AD ,AD =6,BC =3,所以△BOC ∽△DOA ,且BC AD =CO AO =12, 所以EO OF =12,CE =13CB =1,BE =AF =2,同理CH PC =EH PB =CO CA =13,连接HO ,则有HO ∥PA , 且HO ⊥EO ,HO =1, 所以EH =13PB =2,同理FG =23PA =2,过点H 作HN ∥EF 交FG 于N ,易得四边形HNFO 为矩形, 则GH =HN 2+GN 2= 5.(2)建立如图所示的空间直角坐标系,则B (3,0,0),F (0,2,0),E (3,2,0),H (2,2,1),BH →=(-1,2,1),FH →=(2,0,1).设平面BFH 的法向量为n =(x ,y ,z ), 则⎩⎪⎨⎪⎧n ·BH →=-x +2y +z =0n ·FH →=2x +z =0,令z =-2,得n =⎝ ⎛⎭⎪⎫1,32,-2.因为平面EFGH ∥平面PAB ,所以平面EFGH 的一个法向量为m =(0,1,0).故cos 〈m ,n 〉=m ·n|m ||n |=321+94+4=32929, 二面角B FH E 的余弦值为32929.2.(2018·某某模拟)如图,在四棱锥P ABCD 中,侧面PAD ⊥底面ABCD ,底面ABCD 是平行四边形,∠ABC =45°,AD =AP =2,AB =DP =22,E 为CD 的中点,点F 在线段PB 上.(1)求证:AD ⊥PC ;(2)试确定点F 的位置,使得直线EF 与平面PDC 所成的角和直线EF 与平面ABCD 所成的角相等.解:(1)证明:在平行四边形ABCD 中,连接AC ,AB =22,BC =2,∠ABC =45°, 由余弦定理得AC 2=8+4-2·22·2·cos 45°=4,得AC =2, 所以∠ACB =90°,即BC ⊥AC ,又AD ∥BC , 所以AD ⊥AC ,又AD =AP =2,DP =22, 所以PA ⊥AD ,又AP ∩AC =A , 所以AD ⊥平面PAC ,所以AD ⊥PC . (2)因为侧面PAD ⊥底面ABCD ,PA ⊥AD , 所以PA ⊥底面ABCD ,所以直线AC ,AD ,AP 互相垂直,以A 为坐标原点,DA ,AC ,AP 所在直线为x 轴,y 轴,z 轴,建立如图所示的空间直角坐标系A xyz ,则A (0,0,0),D (-2,0,0),C (0,2,0),B (2,2,0),E (-1,1,0),P (0,0,2),所以PC →=(0,2,-2),PD →=(-2,0,-2),PB →=(2,2,-2), 设PFPB=λ(λ∈[0,1]),则PF →=(2λ,2λ,-2λ),F (2λ,2λ,-2λ+2), 所以EF →=(2λ+1,2λ-1,-2λ+2), 易得平面ABCD 的法向量m =(0,0,1). 设平面PDC 的法向量为n =(x ,y ,z ), 由⎩⎪⎨⎪⎧n ·PC →=0,n ·PD →=0,得⎩⎪⎨⎪⎧2y -2z =0,-2x -2z =0,令x =1,得n =(1,-1,-1).因为直线EF 与平面PDC 所成的角和直线EF 与平面ABCD 所成的角相等,所以|cos 〈EF →,m 〉|=|cos 〈EF →,n 〉|, 即|EF →·m ||EF →|·|m |=|EF →·n ||EF →|·|n |, 所以|-2λ+2|=⎪⎪⎪⎪⎪⎪2λ3, 即3|λ-1|=|λ|,解得λ=3-32,所以PF PB =3-32.3.(2018·潍坊模拟)在▱PABC 中,PA =4,PC =22,∠P =45°,D 是PA 的中点(如图1).将△PCD 沿CD 折起到图2中△P 1CD 的位置,得到四棱锥P 1ABCD .(1)将△PCD 沿CD 折起的过程中,CD ⊥平面P 1DA 是否成立?请证明你的结论; (2)若P 1D 与平面ABCD 所成的角为60°,且△P 1DA 为锐角三角形,求平面P 1AD 和平面P 1BC 所成角的余弦值.解:(1)将△PCD 沿CD 折起过程中,CD ⊥平面P 1DA 成立.证明如下: 因为D 是PA 的中点,PA =4, 所以DP =DA =2,在△PDC 中,由余弦定理得,CD 2=PC 2+PD 2-2PC ·PD ·cos 45°=8+4-2×22×2×22=4, 所以CD =2=PD , 因为CD 2+DP 2=8=PC 2,所以△PDC 为等腰直角三角形且CD ⊥PA , 所以CD ⊥DA ,CD ⊥P 1D ,P 1D ∩AD =D , 所以CD ⊥平面P 1DA .(2)由(1)知CD ⊥平面P 1DA ,CD ⊂平面ABCD , 所以平面P 1DA ⊥平面ABCD , 因为△P 1DA 为锐角三角形,所以P 1在平面ABCD 内的射影必在棱AD 上,记为O ,连接P 1O ,所以P 1O ⊥平面ABCD ,则∠P 1DA 是P 1D 与平面ABCD 所成的角, 所以∠P 1DA =60°, 因为DP 1=DA =2,所以△P 1DA 为等边三角形,O 为AD 的中点,故以O 为坐标原点,过点O 且与CD 平行的直线为x 轴,DA 所在直线为y 轴,OP 1所在直线为z 轴建立如图所示的空间直角坐标系,设x 轴与BC 交于点M , 因为DA =P 1A =2,所以OP 1=3,易知OD =OA =CM =1,所以BM =3,则P 1(0,0,3),D (0,-1,0),C (2,-1,0),B (2,3,0),DC →=(2,0,0),BC →=(0,-4,0),P 1C →=(2,-1,-3),因为CD ⊥平面P 1DA ,所以可取平面P 1DA 的一个法向量n 1=(1,0,0), 设平面P 1BC 的法向量n 2=(x 2,y 2,z 2), 则⎩⎪⎨⎪⎧n 2·BC →=0,n 2·P 1C →=0,所以⎩⎨⎧-4y 2=0,2x 2-y 2-3z 2=0,解得⎩⎪⎨⎪⎧y 2=0,x 2=32z 2,令z 2=1,则n 2=⎝ ⎛⎭⎪⎫32,0,1, 设平面P 1AD 和平面P 1BC 所成的角为θ,由图易知θ为锐角,所以cos θ=|cos 〈n 1,n 2〉|=|n 1·n 2||n 1|·|n 2|=321×72=217.所以平面P 1AD 和平面P 1BC 所成角的余弦值为217. 4.如图,在四棱锥P ABCD 中,PA ⊥平面ABCD ,AD ∥BC ,AD ⊥CD ,且AD =CD =22,BC =42,PA =2.(1)求证:AB ⊥PC ;(2)在线段PD 上,是否存在一点M ,使得二面角M AC D 的大小为45°,如果存在,求BM 与平面MAC 所成角的正弦值,如果不存在,请说明理由.解:(1)证明:由已知得四边形ABCD 是直角梯形,由AD =CD =22,BC =42,可得AB =AC =4,所以BC 2=AB 2+AC 2,所以∠BAC =90°,即AB ⊥AC , 因为PA ⊥平面ABCD ,所以PA ⊥AB , 又PA ∩AC =A ,所以AB ⊥平面PAC ,所以AB ⊥PC . (2)存在,理由如下:取BC 的中点E ,则AE ⊥BC ,以A 为坐标原点,AE ,AD ,AP 所在直线为x 轴,y 轴,z 轴建立如图所示的空间直角坐标系,则A (0,0,0),C (22,22,0),D (0,22,0),P (0,0,2),B (22,-22,0),PD →=(0,22,-2),AC →=(22,22,0).设PM →=tPD →(0<t <1),则点M 的坐标为(0,22t ,2-2t ), 所以AM →=(0,22t ,2-2t ). 设平面MAC 的法向量是n =(x ,y ,z ), 则⎩⎪⎨⎪⎧n ·AC →=0,n ·AM →=0,即⎩⎨⎧22x +22y =0,22ty +(2-2t )z =0,令x =1,得y =-1,z =2t 1-t, 则n =⎝⎛⎭⎪⎫1,-1,2t 1-t .又m =(0,0,1)是平面ACD 的一个法向量, 所以|cos 〈m ,n 〉|=|m ·n ||m ||n |word =⎪⎪⎪⎪⎪⎪2t t -12+⎝ ⎛⎭⎪⎫2t t -12=22, 解得t =12,即点M 是线段PD 的中点. 此时平面MAC 的一个法向量n =(1,-1,2), 又BM →=(-22,32,1).设BM 与平面MAC 所成的角为θ,则sin θ=|cos 〈n ,BM →〉|=422×33=269. 故BM 与平面MAC 所成角的正弦值为269.。