统计学课件 第9章 时间序列分析与预测
- 格式:ppt
- 大小:19.19 MB
- 文档页数:89
时间序列分析与预测讲义1. 引言- 时间序列的定义与特点- 时间序列的应用领域2. 时间序列的组成与构建- 时间序列的组成要素:趋势、季节变动、循环、随机波动- 时间序列的构建方法:收集数据、数据清洗、日期化、平滑处理3. 时间序列的可视化与描述统计- 绘制时间序列图- 了解时间序列的基本统计性质:均值、方差、自相关性4. 时间序列的平稳性检验与处理- 平稳时间序列的定义与重要性- 平稳性检验方法:单位根检验、ADF检验- 平稳性处理方法:差分、对数化等5. 时间序列的分析与建模- 自相关性与偏自相关性的概念与图解- ARIMA模型的介绍与原理- 模型拟合、诊断与优化6. 时间序列的预测方法- 单步预测方法:移动平均、指数平滑、ARIMA预测- 多步预测方法:回归、VAR模型、神经网络等7. 时间序列的预测评估与应用- 预测模型的评估指标:均方根误差、平均绝对误差等- 预测结果的可靠性与置信区间- 时间序列预测在实际应用中的例子与案例分析8. 总结与展望- 时间序列分析与预测的重要性和应用潜力- 未来发展方向和挑战参考文献:1. Box, G. E. P. & Jenkins, G. M. (1976). Time Series Analysis: Forecasting and Control. San Francisco, CA: Holden-Day.2. Hyndman, R. J., & Athanasopoulos, G. (2018). Forecasting: Principles and Practice, 2nd Edition. Otexts: Melbourne, Australia.9. 引言时间序列分析与预测是一种重要的数据分析方法,通常应用于各种领域,如经济学、金融学、市场营销、气象学、医学等。
通过对过去数据的分析和模型建立,可以预测未来的趋势和变动,为决策提供参考。