深度优先与广度优先
- 格式:docx
- 大小:16.13 KB
- 文档页数:2
深度优先算法和广度优先算法的时间复杂度深度优先算法和广度优先算法是在图论中常见的两种搜索算法,它们在解决各种问题时都有很重要的作用。
本文将以深入浅出的方式从时间复杂度的角度对这两种算法进行全面评估,并探讨它们在实际应用中的优劣势。
1. 深度优先算法的时间复杂度深度优先算法是一种用于遍历或搜索树或图的算法。
它从图中的某个顶点出发,沿着一条路径一直走到底,直到不能再前进为止,然后回溯到上一个节点,尝试走其他的路径,直到所有路径都被走过为止。
深度优先算法的时间复杂度与图的深度有关。
在最坏情况下,深度优先算法的时间复杂度为O(V+E),其中V表示顶点的数量,E表示边的数量。
2. 广度优先算法的时间复杂度广度优先算法也是一种用于遍历或搜索树或图的算法。
与深度优先算法不同的是,广度优先算法是从图的某个顶点出发,首先访问这个顶点的所有邻接节点,然后再依次访问这些节点的邻接节点,依次类推。
广度优先算法的时间复杂度与图中边的数量有关。
在最坏情况下,广度优先算法的时间复杂度为O(V+E)。
3. 深度优先算法与广度优先算法的比较从时间复杂度的角度来看,深度优先算法和广度优先算法在最坏情况下都是O(V+E),并没有明显的差异。
但从实际运行情况来看,深度优先算法和广度优先算法的性能差异是显而易见的。
在一般情况下,广度优先算法要比深度优先算法快,因为广度优先算法的搜索速度更快,且能够更快地找到最短路径。
4. 个人观点和理解在实际应用中,选择深度优先算法还是广度优先算法取决于具体的问题。
如果要找到两个节点之间的最短路径,那么广度优先算法是更好的选择;而如果要搜索整个图,那么深度优先算法可能是更好的选择。
要根据具体的问题来选择合适的算法。
5. 总结和回顾本文从时间复杂度的角度对深度优先算法和广度优先算法进行了全面评估,探讨了它们的优劣势和实际应用中的选择。
通过对两种算法的时间复杂度进行比较,可以更全面、深刻和灵活地理解深度优先算法和广度优先算法的特点和适用场景。
一、深度优先搜索和广度优先搜索的深入讨论(一)深度优先搜索的特点是:(1)从上面几个实例看出,可以用深度优先搜索的方法处理的题目是各种各样的。
有的搜索深度是已知和固定的,如例题2-4,2-5,2-6;有的是未知的,如例题2-7、例题2-8;有的搜索深度是有限制的,但达到目标的深度是不定的。
但也看到,无论问题的内容和性质以及求解要求如何不同,它们的程序结构都是相同的,即都是深度优先算法(一)和深度优先算法(二)中描述的算法结构,不相同的仅仅是存储结点数据结构和产生规则以及输出要求。
(2)深度优先搜索法有递归以及非递归两种设计方法。
一般的,当搜索深度较小、问题递归方式比较明显时,用递归方法设计好,它可以使得程序结构更简捷易懂。
当搜索深度较大时,如例题2-5、2-6。
当数据量较大时,由于系统堆栈容量的限制,递归容易产生溢出,用非递归方法设计比较好。
(3)深度优先搜索方法有广义和狭义两种理解。
广义的理解是,只要最新产生的结点(即深度最大的结点)先进行扩展的方法,就称为深度优先搜索方法。
在这种理解情况下,深度优先搜索算法有全部保留和不全部保留产生的结点的两种情况。
而狭义的理解是,仅仅只保留全部产生结点的算法。
本书取前一种广义的理解。
不保留全部结点的算法属于一般的回溯算法范畴。
保留全部结点的算法,实际上是在数据库中产生一个结点之间的搜索树,因此也属于图搜索算法的范畴。
(4)不保留全部结点的深度优先搜索法,由于把扩展望的结点从数据库中弹出删除,这样,一般在数据库中存储的结点数就是深度值,因此它占用的空间较少,所以,当搜索树的结点较多,用其他方法易产生内存溢出时,深度优先搜索不失为一种有效的算法。
(5)从输出结果可看出,深度优先搜索找到的第一个解并不一定是最优解。
例如例题2-8得最优解为13,但第一个解却是17。
如果要求出最优解的话,一种方法将是后面要介绍的动态规划法,另一种方法是修改原算法:把原输出过程的地方改为记录过程,即记录达到当前目标的路径和相应的路程值,并与前面已记录的值进行比较,保留其中最优的,等全部搜索完成后,才把保留的最优解输出。
⼆叉树遍历(前序、中序、后序、层次、⼴度优先、深度优先遍历)⽬录转载:⼆叉树概念⼆叉树是⼀种⾮常重要的数据结构,⾮常多其他数据结构都是基于⼆叉树的基础演变⽽来的。
对于⼆叉树,有深度遍历和⼴度遍历,深度遍历有前序、中序以及后序三种遍历⽅法,⼴度遍历即我们寻常所说的层次遍历。
由于树的定义本⾝就是递归定义,因此採⽤递归的⽅法去实现树的三种遍历不仅easy理解并且代码⾮常简洁,⽽对于⼴度遍历来说,须要其他数据结构的⽀撑。
⽐⽅堆了。
所以。
对于⼀段代码来说,可读性有时候要⽐代码本⾝的效率要重要的多。
四种基本的遍历思想前序遍历:根结点 ---> 左⼦树 ---> 右⼦树中序遍历:左⼦树---> 根结点 ---> 右⼦树后序遍历:左⼦树 ---> 右⼦树 ---> 根结点层次遍历:仅仅需按层次遍历就可以⽐如。
求以下⼆叉树的各种遍历前序遍历:1 2 4 5 7 8 3 6中序遍历:4 2 7 5 8 1 3 6后序遍历:4 7 8 5 2 6 3 1层次遍历:1 2 3 4 5 6 7 8⼀、前序遍历1)依据上⽂提到的遍历思路:根结点 ---> 左⼦树 ---> 右⼦树,⾮常easy写出递归版本号:public void preOrderTraverse1(TreeNode root) {if (root != null) {System.out.print(root.val+" ");preOrderTraverse1(root.left);preOrderTraverse1(root.right);}}2)如今讨论⾮递归的版本号:依据前序遍历的顺序,优先訪问根结点。
然后在訪问左⼦树和右⼦树。
所以。
对于随意结点node。
第⼀部分即直接訪问之,之后在推断左⼦树是否为空,不为空时即反复上⾯的步骤,直到其为空。
若为空。
则须要訪问右⼦树。
注意。
在訪问过左孩⼦之后。
什么是深度优先和⼴度优先1.深度优先2.⼴度优先两者的区别对于算法来说⽆⾮就是时间换空间空间换时间1. 深度优先不需要记住所有的节点, 所以占⽤空间⼩, ⽽⼴度优先需要先记录所有的节点占⽤空间⼤2. 深度优先有回溯的操作(没有路⾛了需要回头)所以相对⽽⾔时间会长⼀点深度优先采⽤的是堆栈的形式, 即先进后出⼴度优先则采⽤的是队列的形式, 即先进先出具体代码const data = [{name: 'a',children: [{ name: 'b', children: [{ name: 'e'}] },{ name: 'c', children: [{ name: 'f'}] },{ name: 'd', children: [{ name: 'g'}] },],},{name: 'a2',children: [{ name: 'b2', children: [{ name: 'e2'}] },{ name: 'c2', children: [{ name: 'f2'}] },{ name: 'd2', children: [{ name: 'g2'}] },],}]// 深度遍历, 使⽤递归function getName(data) {const result = [];data.forEach(item => {const map = data => {result.push();data.children && data.children.forEach(child => map(child));}map(item);})return result.join(',');}// ⼴度遍历, 创建⼀个执⾏队列, 当队列为空的时候则结束function getName2(data) {let result = [];let queue = data;while(queue.length > 0) {[...queue].forEach(child => {queue.shift();result.push();child.children && (queue.push(...child.children));});}return result.join(',');}console.log(getName(data))console.log(getName2(data))。
深度优先和⼴度优先⽐较区别:1)⼆叉树的深度优先遍历的⾮递归的通⽤做法是采⽤栈,⼴度优先遍历的⾮递归的通⽤做法是采⽤队列。
2)深度优先遍历:对每⼀个可能的分⽀路径深⼊到不能再深⼊为⽌,⽽且每个结点只能访问⼀次。
要特别注意的是,⼆叉树的深度优先遍历⽐较特殊,可以细分为先序遍历、中序遍历、后序遍历。
具体说明如下:先序遍历:对任⼀⼦树,先访问根,然后遍历其左⼦树,最后遍历其右⼦树。
中序遍历:对任⼀⼦树,先遍历其左⼦树,然后访问根,最后遍历其右⼦树。
后序遍历:对任⼀⼦树,先遍历其左⼦树,然后遍历其右⼦树,最后访问根。
⼴度优先遍历:⼜叫层次遍历,从上往下对每⼀层依次访问,在每⼀层中,从左往右(也可以从右往左)访问结点,访问完⼀层就进⼊下⼀层,直到没有结点可以访问为⽌。
3)深度优先搜素算法:不全部保留结点,占⽤空间少;有回溯操作(即有⼊栈、出栈操作),运⾏速度慢。
⼴度优先搜索算法:保留全部结点,占⽤空间⼤;⽆回溯操作(即⽆⼊栈、出栈操作),运⾏速度快。
通常深度优先搜索法不全部保留结点,扩展完的结点从数据库中弹出删去,这样,⼀般在数据库中存储的结点数就是深度值,因此它占⽤空间较少。
所以,当搜索树的结点较多,⽤其它⽅法易产⽣内存溢出时,深度优先搜索不失为⼀种有效的求解⽅法。
⼴度优先搜索算法,⼀般需存储产⽣的所有结点,占⽤的存储空间要⽐深度优先搜索⼤得多,因此,程序设计中,必须考虑溢出和节省内存空间的问题。
但⼴度优先搜索法⼀般⽆回溯操作,即⼊栈和出栈的操作,所以运⾏速度⽐深度优先搜索要快些深度优先:前序遍历:35,20,15,16,29,28,30,40,50,45,55中序遍历:15,16,20,28,29,30,35,40,45,50,55后序遍历:16,15,28,30,29,20,45,55,50,40,35⼴度优先遍历:35 20 40 15 29 50 16 28 30 45 55代码:package www.hhy;import java.beans.beancontext.BeanContextChild;import java.util.*;class Binarytree {class TreeNode{int value;TreeNode left;TreeNode right;public TreeNode(int value) {this.value = value;}}//⽤递归创建⼆叉树public int i = 0;TreeNode creatTesttree(String s){TreeNode root = null;if (s.charAt(i)!='#') {root = new TreeNode(s.charAt(i));i++;root.left = creatTesttree(s);root.right = creatTesttree(s);}else{i++;}return root;}//⼆叉树的前序遍历递归void binaryTreePrevOrder(TreeNode root){if(root==null){return;}System.out.println(root.value+" ");binaryTreePrevOrder(root.left);binaryTreePrevOrder(root.right);}//⼆叉树的中序遍历递归void binaryTreeInOrder(TreeNode root){if(root==null){return;}binaryTreeInOrder(root.left);System.out.println(root.value+" ");binaryTreeInOrder(root.right);}//⼆叉树的后续遍历递归void binaryTreePostOrder(TreeNode root){if(root==null){return;}binaryTreePostOrder(root.left);binaryTreePostOrder(root.right);System.out.println(root.value+" ");}//层序遍历void binaryTreeLevelOrder(TreeNode root,int level){if(root ==null||level<1){return;}if(level==1){System.out.print(root.value+" ");}binaryTreeLevelOrder(root.left,level-1);binaryTreeLevelOrder(root.right,level-1);}void BTreeLevelOrder(TreeNode root){if (root == null)return;int dep = getHeight(root);for (int i = 1; i <= dep; i++){binaryTreeLevelOrder(root,i);}}//⼆叉树的层序遍历⾮递归void binaryTreeLevelOrder(TreeNode root) {Queue<TreeNode> queue = new LinkedList<>();if(root != null) {queue.offer(root);//LinkedList offer add}while (!queue.isEmpty()) {//1、拿到队头的元素把队头元素的左右⼦树⼊队 TreeNode cur = queue.poll();System.out.print(cur.value+" ");//2、不为空的时候才能⼊队if(cur.left != null) {queue.offer(cur.left);}if(cur.right != null) {queue.offer(cur.right);}}}//⼆叉树的前序遍历⾮递归void binaryTreePrevOrderNonR(TreeNode root){Stack<TreeNode> stack = new Stack<>();TreeNode cur = root;TreeNode top = null;while (cur != null || !stack.empty()) {while (cur != null) {stack.push(cur);System.out.print(cur.value + " ");cur = cur.left;}top = stack.pop();cur = top.right;}System.out.println();}//⼆叉树的中序遍历⾮递归void binaryTreeInOrderNonR(TreeNode root){Stack<TreeNode> stack = new Stack<>();TreeNode cur = root;TreeNode top = null;while (cur != null || !stack.empty()) {while (cur != null) {stack.push(cur);cur = cur.left;}top = stack.pop();System.out.print(top.value+" ");cur = top.right;}System.out.println();}//⼆叉树的后序遍历⾮递归void binaryTreePostOrderNonR(TreeNode root) {Stack<TreeNode> stack = new Stack<>();TreeNode cur = root;TreeNode prev = null;while (cur != null || !stack.empty()) {while (cur != null) {stack.push(cur);cur = cur.left;}cur = stack.peek();//L D//cur.right == prev 代表的是 cur的右边已经打印过了if(cur.right == null || cur.right == prev) {stack.pop();System.out.println(cur.value);prev = cur;cur = null;}else {cur = cur.right;}}}//⼆叉树的节点个数递归int getSize(TreeNode root){if(root==null){return 0;}return getSize(root.left)+getSize(root.right)+1;}//⼆叉树的叶⼦节点的个数递归int getLeafSize(TreeNode root){if(root==null){return 0;}if(root.left==null && root.right==null){return 1;}return getLeafSize(root.left)+getLeafSize(root.right); }//⼆叉树得到第K层结点的个数int getKlevelSize(TreeNode root ,int k){if(root==null){return 0;}if(k == 1){return 1;}return getKlevelSize(root.left,k-1)+getKlevelSize(root.right,k-1);}//⼆叉树查找并返回该结点递归// 查找,依次在⼆叉树的根、左⼦树、// 右⼦树中查找 value,如果找到,返回结点,否则返回 nullTreeNode find(TreeNode root, int value){if(root == null) {return null;}if(root.value == value){return root;}TreeNode ret = find(root.left,value);if(ret != null) {return ret;}ret = find(root.right,value);if(ret != null) {return ret;}return null;}//⼆叉树的⾼度int getHeight(TreeNode root){if(root==null){return 0;}int leftHeight = getHeight(root.left);int rightHeight = getHeight(root.right);return leftHeight>rightHeight ? leftHeight+1:rightHeight+1;}//判断⼀个树是不是完全⼆叉树public int binaryTreeComplete(TreeNode root) {Queue<TreeNode> queue = new LinkedList<TreeNode>();if(root != null) {queue.add(root);//offer}while(!queue.isEmpty()) {TreeNode cur = queue.peek();queue.poll();if(cur != null) {queue.add(cur.left);queue.add(cur.right);}else {break;}}while(!queue.isEmpty()) {TreeNode cur = queue.peek();if (cur != null){//说明不是满⼆叉树return -1;}else{queue.poll();}}return 0;//代表是完全⼆叉树}//检查两棵树是否是相同的,如果两棵树结构相同,并且在结点上的值相同,那么这两棵树是相同返回true public boolean isSameTree(TreeNode p,TreeNode q){if((p==null&&q!=null)||(p!=null&&q==null)){}if(p==null && q==null){return true;}if(p.value!=q.value){return false;}return isSameTree(p.left,q.left)&&isSameTree(p.right,q.left);}//检查是否为⼦树public boolean isSubTree(TreeNode s,TreeNode t){if(s==null||t==null){return false;}if(isSameTree(s,t)){return true;}else if (isSubTree(s.left,t)){return true;}else if(isSubTree(s.right,t)){return true;}else{return false;}}//1.判断是否为平衡⼆叉树,左右⼦树的⾼度之差不超过 "1"(⼤根本⾝是平衡⼆叉树,左右⼦树也必须是平衡⼆叉树) // 时间复杂度为n^2//2.求复杂度为O(n)的解法public boolean isBanlanced(TreeNode root){if(root==null){return true;}else{int leftHeight = getHeight(root.left);int rightHeight = getHeight(root.right);return Math.abs(leftHeight-rightHeight)<2&&isBanlanced(root.left)&&isBanlanced(root.right);}}//判断是否为对称⼆叉树public boolean isSymmetric(TreeNode root){if(root==null){return true;}return isSymmetric(root.left,root.right);}public boolean isSymmetric(TreeNode lefttree,TreeNode righttree){if((lefttree==null && righttree!=null)||(lefttree!=null && righttree ==null)){return false;}if(lefttree == null && righttree == null){return true;}return lefttree.value == righttree.value && isSymmetric(lefttree.left,righttree.right)&& isSymmetric(lefttree.right,righttree.left);}//⼆叉树创建字符串⾮递归写法public String tree2str(TreeNode t){StringBuilder sb = new StringBuilder();tree2strchild(t,sb);return sb.toString();}public void tree2strchild(TreeNode t ,StringBuilder sb){if (t==null){}sb.append(t.value);if (t.left!=null){sb.append("(");tree2strchild(t.left,sb);sb.append(")");}else {if (t.right==null){}}}//⼆叉树字符串递归写法public String CreateStr(TreeNode t){if(t==null){return "";}if(t.left==null&&t.right==null){return t.value+"";}if(t.left==null){return t.value+"()"+"("+CreateStr(t.right)+")";}if(t.right==null){return t.value+"("+CreateStr(t.left)+")";}return t.value+"("+CreateStr(t.left)+")"+"("+CreateStr(t.right)+")";}public int rob(TreeNode root) {if (root == null) return 0;return Math.max(robOK(root), robNG(root));}private int robOK(TreeNode root) {if (root == null) return 0;return root.value + robNG(root.left) + robNG(root.right);}private int robNG(TreeNode root) {if (root == null) return 0;return rob(root.left) + rob(root.right);}//⼆叉树的公共祖先public TreeNode lowestCommonAncestor(TreeNode root, TreeNode p, TreeNode q) { if(root==null){return null;}if(root==p||root==q){return root;}TreeNode leftTree = lowestCommonAncestor(root.left,p,q);//p||q nullTreeNode rightTree = lowestCommonAncestor(root.right,p,q);//p||q null//3if(leftTree!=null && rightTree!=null){return root;}//左边找到else if (leftTree!=null ){return leftTree;}//右边找到else if(rightTree!=null){return rightTree;}//都没找到的情况下return null;}//⼆叉搜索树,若他的左⼦树不为空,左⼦树上的所有节点都⼩于根节点,//如果他的右⼦树不为空,右⼦树上的所有节点都⼤于根节点//最终他的中序排列都是有序结果//输⼊⼀棵⼆叉搜索树,将该⼆叉搜索树转换成⼀个排序的双向链表。
浅析深度优先和⼴度优先遍历实现过程、区别及使⽤场景⼀、什么是深度/⼴度优先遍历? 深度优先遍历简称DFS(Depth First Search),⼴度优先遍历简称BFS(Breadth First Search),它们是遍历图当中所有顶点的两种⽅式。
这两种遍历⽅式有什么不同呢?我们来举个栗⼦: 我们来到⼀个游乐场,游乐场⾥有11个景点。
我们从景点0开始,要玩遍游乐场的所有景点,可以有什么样的游玩次序呢?1、深度优先遍历 第⼀种是⼀头扎到底的玩法。
我们选择⼀条⽀路,尽可能不断地深⼊,如果遇到死路就往回退,回退过程中如果遇到没探索过的⽀路,就进⼊该⽀路继续深⼊。
在图中,我们⾸先选择景点1的这条路,继续深⼊到景点7、景点8,终于发现⾛不动了: 于是,我们退回到景点7,然后探索景点10,⼜⾛到了死胡同。
于是,退回到景点1,探索景点9: 按照这个思路,我们再退回到景点0,后续依次探索景点2、3、5、4、发现相邻的都玩过了,再回退到3,再接着玩6,终于玩遍了整个游乐场: 具体次序如下图,景点旁边的数字代表探索次序。
当然还可以有别的排法。
像这样先深⼊探索,⾛到头再回退寻找其他出路的遍历⽅式,就叫做深度优先遍历(DFS)。
这⽅式看起来很像⼆叉树的前序遍历。
没错,其实⼆叉树的前序、中序、后序遍历,本质上也可以认为是深度优先遍历。
2、⼴度优先遍历 除了像深度优先遍历这样⼀头扎到底的玩法以外,我们还有另⼀种玩法:⾸先把起点相邻的⼏个景点玩遍,然后去玩距离起点稍远⼀些(隔⼀层)的景点,然后再去玩距离起点更远⼀些(隔两层)的景点… 在图中,我们⾸先探索景点0的相邻景点1、2、3、4: 接着,我们探索与景点0相隔⼀层的景点7、9、5、6: 最后,我们探索与景点0相隔两层的景点8、10: 像这样⼀层⼀层由内⽽外的遍历⽅式,就叫做⼴度优先遍历(BFS)。
这⽅式看起来很像⼆叉树的层序遍历。
没错,其实⼆叉树的层序遍历,本质上也可以认为是⼴度优先遍历。
深度优先搜索和广度优先搜索一、产生式系统首先通过一个具体事例说明什么是产生式系统。
[例题4-1八数码难题]在3X3的棋盘上,摆有八个棋子,每个棋子上标有1至8的某一数字。
棋盘中留有一个空格。
空格周围的棋子可以移到空格中。
要求解的问题是:找到一种移动方法,实现从初始布局到目标布局的转变。
例如输入:(代表从前一布局到后一布局)2 83 1 64 7 05 1 2 3 8 0 4 76 5[分析]状态表示:用二维数组来表示布局。
(s i,s j)表示第i行、第j列上放的棋子数字。
空格用0表示。
产生规则:原规则规定空格周围的棋子可以向空格移动。
但如果换一种角度观察,也可看做空格向四周移动。
这样处理更便于编程。
如果空格位置在(s i,s j),则有四条规则:(1)空格向上移动: If s i-1>=1 then ch(s i,s j):=ch(s i-1,s j);ch(s i-1,s j):=0(2)空格向下移动: If s i+1<=3 then ch(s i,s j):=ch(s i+1,s j);ch(s i+1,s j):=0(3)空格向左移动: If s j-1>=1 then ch(s i,s j):=ch(s i,s j-1);ch(s i,s j-1):=0(4)空格向右移动: If s j+1<=3 then ch(s i,s j):=ch(s i,s j+1);ch(s i,s j+1):=0搜索策略:(1)把初始状态作为当前状态;(2)从当前状态出发,运用四条移动规则,产生新的状态;(3)判断新的状态是否达到目的状态,如果是,转(5);(4)把新的状态记录下来,取出下一个中间状态作为当前状态,返回(2);(5)输出从初始状态到目标状态的路径,结束。
这个例子就是产生式系统。
产生式系统的组成:产生式系统是由三个基本要素组成的:一个综合数据库(GOLBLE DA TABASE),一组产生式规则(Set of rules),和一个控制系统(Control System)。
深度优先和广度优先算法深度优先和广度优先算法深度优先遍历和广度优先遍历是两种常用的图遍历算法。
它们的策略不同,各有优缺点,可以在不同的场景中使用。
一、深度优先遍历深度优先遍历(Depth First Search,DFS)是一种搜索算法,它从一个顶点开始遍历,尽可能深地搜索图中的每一个可能的路径,直到找到所有的路径。
该算法使用栈来实现。
1. 算法描述深度优先遍历的过程可以描述为:- 访问起始顶点v,并标记为已访问; - 从v的未被访问的邻接顶点开始深度优先遍历,直到所有的邻接顶点都被访问过或不存在未访问的邻接顶点; - 如果图中还有未被访问的顶点,则从这些顶点中任选一个,重复步骤1。
2. 算法实现深度优先遍历算法可以使用递归或者栈来实现。
以下是使用栈实现深度优先遍历的示例代码:``` void DFS(Graph g, int v, bool[] visited) { visited[v] = true; printf("%d ", v);for (int w : g.adj(v)) { if(!visited[w]) { DFS(g, w,visited); } } } ```3. 算法分析深度优先遍历的时间复杂度为O(V+E),其中V是顶点数,E是边数。
由于该算法使用栈来实现,因此空间复杂度为O(V)。
二、广度优先遍历广度优先遍历(Breadth First Search,BFS)是一种搜索算法,它从一个顶点开始遍历,逐步扩展到它的邻接顶点,直到找到所有的路径。
该算法使用队列来实现。
1. 算法描述广度优先遍历的过程可以描述为:- 访问起始顶点v,并标记为已访问; - 将v的所有未被访问的邻接顶点加入队列中; - 从队列头取出一个顶点w,并标记为已访问; - 将w的所有未被访问的邻接顶点加入队列中; - 如果队列不为空,则重复步骤3。
2. 算法实现广度优先遍历算法可以使用队列来实现。
深度优先算法与广度优先算法的比较深度优先算法以深度为优先,从一个节点开始,逐个遍历其邻居节点直至最深处,然后回溯到上一个节点,再继续遍历其他分支。
它是通过栈来实现的,先进后出的特性决定了深度优先算法是一个递归算法。
深度优先算法在过程中,不需要记住所有的路径,只需要记住当前路径上的节点即可。
对于树而言,深度优先算法通常沿着左子树一直深入,直到最深的叶节点,然后再回溯到前一个节点继续右子树的遍历。
广度优先算法以广度为优先,从一个节点开始,逐层遍历其所有邻居节点,然后再遍历下一层的节点,直至遍历完所有节点。
它是通过队列来实现的,先进先出的特性决定了广度优先算法是一个非递归算法。
广度优先算法在过程中,需要记住每一层的节点,并且按照先进先出的顺序进行遍历。
对于树而言,广度优先算法会先遍历根节点,然后是根节点的子节点,再然后是子节点的子节点,按照层次逐层遍历。
以下是深度优先算法和广度优先算法的比较:1.方式:深度优先算法通过一条路径一直遍历到最深处,然后回溯到上一个节点,再继续遍历其他分支。
广度优先算法逐层遍历,先遍历当前层的节点,再遍历下一层的节点。
2.存储结构:深度优先算法使用栈进行遍历,而广度优先算法使用队列进行遍历。
3.内存占用:深度优先算法只需要记住当前路径上的节点,所以内存占用较小。
而广度优先算法需要记住每一层的节点,所以内存占用较大。
4.时间效率:深度优先算法通常适用于解决单个解或路径的问题,因为它首先深入其中一个分支,整个分支再回溯,因此它可能会浪费一些时间在不必要的路径上。
而广度优先算法通常适用于解决最短路径或最小步数的问题,因为它遍历一层后再遍历下一层,所以找到的解很可能是最优解。
5.应用场景:深度优先算法适用于解决迷宫问题、拓扑排序和连通性等问题。
广度优先算法适用于解决最短路径、社交网络中的人际关系、图的遍历和等问题。
总结起来,深度优先算法和广度优先算法都有各自的特点和适用场景。
深度优先算法适合解决单个解或路径的问题,而广度优先算法适合解决最短路径或最小步数的问题。
深度优先搜索和⼴度优先搜索的区别1、深度优先算法占内存少但速度较慢,⼴度优先算法占内存多但速度较快,在距离和深度成正⽐的情况下能较快地求出最优解。
2、深度优先与⼴度优先的控制结构和产⽣系统很相似,唯⼀的区别在于对扩展节点选取上。
由于其保留了所有的前继节点,所以在产⽣后继节点时可以去掉⼀部分重复的节点,从⽽提⾼了搜索效率。
3、这两种算法每次都扩展⼀个节点的所有⼦节点,⽽不同的是,深度优先下⼀次扩展的是本次扩展出来的⼦节点中的⼀个,⽽⼴度优先扩展的则是本次扩展的节点的兄弟点。
在具体实现上为了提⾼效率,所以采⽤了不同的数据结构。
4、深度优先搜索的基本思想:任意选择图G的⼀个顶点v0作为根,通过相继地添加边来形成在顶点v0开始的路,其中每条新边都与路上的最后⼀个顶点以及不在路上的⼀个顶点相关联。
继续尽可能多地添加边到这条路。
若这条路经过图G的所有顶点,则这条路即为G的⼀棵⽣成树;若这条路没有经过G的所有顶点,不妨设形成这条路的顶点顺序v0,v1,......,vn。
则返回到路⾥的次最后顶点v(n-1).若有可能,则形成在顶点v(n-1)开始的经过的还没有放过的顶点的路;否则,返回到路⾥的顶点v(n-2)。
然后再试。
重复这个过程,在所访问过的最后⼀个顶点开始,在路上次返回的顶点,只要有可能就形成新的路,知道不能添加更多的边为⽌。
5、⼴度优先搜索的基本思想:从图的顶点中任意第选择⼀个根,然后添加与这个顶点相关联的所有边,在这个阶段添加的新顶点成为⽣成树⾥1层上的顶点,任意地排序它们。
下⼀步,按照顺序访问1层上的每⼀个顶点,只要不产⽣回路,就添加与这个顶点相关联的每个边。
这样就产⽣了树⾥2的上的顶点。
遵循同样的原则继续下去,经有限步骤就产⽣了⽣成树。
广度优先和深度优先算法
广度优先算法和深度优先算法是常见的图遍历算法。
广度优先算法又称为宽度优先搜索,它从起点开始,逐层遍历图,直到找到目标节点为止。
在遍历过程中,每一层的节点按照从左到右的顺序依次被访问,因此也称为层次遍历。
广度优先算法通常借助队列来实现。
深度优先算法则是从起点开始,沿着一条路径一直走到底,直到不能再走为止,然后回退到上一个节点,继续探索下一条路径。
深度优先算法采用栈结构实现,因为需要回溯,所以每次访问完一个节点后,需要将该节点从栈中弹出。
广度优先算法和深度优先算法各有优缺点。
广度优先算法能够保证找到的解一定是最优解,但在搜索深度较大的图时,需要维护大量的节点,因此空间复杂度较高。
而深度优先算法则不需要维护过多的节点,但不能保证找到的解一定是最优解。
在选择算法时,需要根据实际情况进行权衡。
- 1 -。
深度优先算法和广度优先算法广度优先算法(BFS)则从图中的一个节点开始,首先访问其所有邻居节点,然后再逐层访问其邻居的邻居,直到所有节点都被访问完为止。
BFS使用队列来保存待访问的节点,并通过循环方式实现。
DFS和BFS各有自己的特点和应用场景。
DFS的特点:1.访问一个节点后,立即访问其一个未被访问的邻居节点。
这使得DFS更适合解决一些问题,如图的连通性、路径等。
2.深度优先的深度较大,可能会陷入无限循环,所以需要设置限制条件,如避免访问已访问的节点、设置最大深度等。
3.DFS通过递归实现,所以实现较为简单。
BFS的特点:1.广度优先一层层地访问节点,可以找到最短路径。
因此,BFS更适合解决图中两点之间最短路径的问题。
2.BFS通过队列来保存未访问的节点,所以需要额外的空间来存储节点信息。
在处理大图时可能会占用较大的内存。
3.由于BFS访问节点的顺序是按照层次递进的,所以其结果是具有广度特点的。
综上所述,DFS和BFS在不同情况下有不同的应用。
一般来说,如果我们只关心是否存在一条路径或访问所有连通节点,可以使用DFS。
而如果我们需要找到两个节点之间的最短路径,或者需要按照层次访问节点,那么就应该使用BFS。
举例来说,如果我们需要在一个迷宫中找到从起点到终点的路径,我们可以使用DFS。
在这种情况下,我们只关心是否存在一条路径,而不关心路径的长度。
而如果我们需要找到从起点到终点的最短路径,我们应该使用BFS。
因为BFS一层一层地访问节点,所以当遇到终点时,即可得到最短路径。
总之,DFS和BFS是图遍历常用的两种算法,各有自己的特点和应用场景。
根据具体问题的需求选择合适的算法,可以提高算法的效率和正确性。
深度优先搜索和广度优先搜索深度优先搜索(DFS)和广度优先搜索(BFS)是图论中常用的两种搜索算法。
它们是解决许多与图相关的问题的重要工具。
本文将着重介绍深度优先搜索和广度优先搜索的原理、应用场景以及优缺点。
一、深度优先搜索(DFS)深度优先搜索是一种先序遍历二叉树的思想。
从图的一个顶点出发,递归地访问与该顶点相邻的顶点,直到无法再继续前进为止,然后回溯到前一个顶点,继续访问其未被访问的邻接顶点,直到遍历完整个图。
深度优先搜索的基本思想可用以下步骤总结:1. 选择一个初始顶点;2. 访问该顶点,并标记为已访问;3. 递归访问该顶点的邻接顶点,直到所有邻接顶点均被访问过。
深度优先搜索的应用场景较为广泛。
在寻找连通分量、解决迷宫问题、查找拓扑排序等问题中,深度优先搜索都能够发挥重要作用。
它的主要优点是容易实现,缺点是可能进入无限循环。
二、广度优先搜索(BFS)广度优先搜索是一种逐层访问的思想。
从图的一个顶点出发,先访问该顶点,然后依次访问与该顶点邻接且未被访问的顶点,直到遍历完整个图。
广度优先搜索的基本思想可用以下步骤总结:1. 选择一个初始顶点;2. 访问该顶点,并标记为已访问;3. 将该顶点的所有邻接顶点加入一个队列;4. 从队列中依次取出一个顶点,并访问该顶点的邻接顶点,标记为已访问;5. 重复步骤4,直到队列为空。
广度优先搜索的应用场景也非常广泛。
在求最短路径、社交网络分析、网络爬虫等方面都可以使用广度优先搜索算法。
它的主要优点是可以找到最短路径,缺点是需要使用队列数据结构。
三、DFS与BFS的比较深度优先搜索和广度优先搜索各自有着不同的优缺点,适用于不同的场景。
深度优先搜索的优点是在空间复杂度较低的情况下找到解,但可能陷入无限循环,搜索路径不一定是最短的。
广度优先搜索能找到最短路径,但需要保存所有搜索过的节点,空间复杂度较高。
需要根据实际问题选择合适的搜索算法,例如在求最短路径问题中,广度优先搜索更加合适;而在解决连通分量问题时,深度优先搜索更为适用。
深度优先遍历算法和广度优先遍历算法实验小结一、引言在计算机科学领域,图的遍历是一种基本的算法操作。
深度优先遍历算法(Depth First Search,DFS)和广度优先遍历算法(Breadth First Search,BFS)是两种常用的图遍历算法。
它们在解决图的连通性和可达性等问题上具有重要的应用价值。
本文将从理论基础、算法原理、实验设计和实验结果等方面对深度优先遍历算法和广度优先遍历算法进行实验小结。
二、深度优先遍历算法深度优先遍历算法是一种用于遍历或搜索树或图的算法。
该算法从图的某个顶点开始遍历,沿着一条路径一直向前直到不能再继续前进为止,然后退回到上一个节点,尝试下一个节点,直到遍历完整个图。
深度优先遍历算法通常使用栈来实现。
以下是深度优先遍历算法的伪代码:1. 创建一个栈并将起始节点压入栈中2. 将起始节点标记为已访问3. 当栈不为空时,执行以下步骤:a. 弹出栈顶节点,并访问该节点b. 将该节点尚未访问的邻居节点压入栈中,并标记为已访问4. 重复步骤3,直到栈为空三、广度优先遍历算法广度优先遍历算法是一种用于遍历或搜索树或图的算法。
该算法从图的某个顶点开始遍历,先访问起始节点的所有相邻节点,然后再依次访问这些相邻节点的相邻节点,依次类推,直到遍历完整个图。
广度优先遍历算法通常使用队列来实现。
以下是广度优先遍历算法的伪代码:1. 创建一个队列并将起始节点入队2. 将起始节点标记为已访问3. 当队列不为空时,执行以下步骤:a. 出队一个节点,并访问该节点b. 将该节点尚未访问的邻居节点入队,并标记为已访问4. 重复步骤3,直到队列为空四、实验设计本次实验旨在通过编程实现深度优先遍历算法和广度优先遍历算法,并通过对比它们在不同图结构下的遍历效果,验证其算法的正确性和有效性。
具体实验设计如下:1. 实验工具:使用Python编程语言实现深度优先遍历算法和广度优先遍历算法2. 实验数据:设计多组图结构数据,包括树、稠密图、稀疏图等3. 实验环境:在相同的硬件环境下运行实验程序,确保实验结果的可比性4. 实验步骤:编写程序实现深度优先遍历算法和广度优先遍历算法,进行多次实验并记录实验结果5. 实验指标:记录每种算法的遍历路径、遍历时间和空间复杂度等指标,进行对比分析五、实验结果在不同图结构下,经过多次实验,分别记录了深度优先遍历算法和广度优先遍历算法的实验结果。
浅谈蜘蛛抓取策略:广度优先和深度优先分析----名词释义及相关原理广度优先:是指网络蜘蛛会先抓取起始网页中链接的所有网页,然后再选择其中的一个链接网页,继续抓取在此网页中链接的所有网页。
这是最常用的方式,因为这个方法可以让网络蜘蛛并行处理,提高其抓取速度。
深度优先:是指网络蜘蛛会从起始页开始,一个链接一个链接跟踪下去,处理完这条线路之后再转入下一个起始页,继续跟踪链接。
这个方法有个优点是网络蜘蛛在设计的时候比较容易。
影响蜘蛛抓取因素分析:网站收录良好与否跟蜘蛛爬行频繁次数、抓取页面有关是众所周知的,但是对于蜘蛛抓取了哪些页面我们不知道,那么我们只能依靠蜘蛛爬行过的访问日志进行分析了。
从日志中我们可以分析出很多的数据,那么今天笔者主要给大家讲解一下影响蜘蛛抓取的因素和爬行时间,不要小看这个日志,它可以帮助你知道网站对于蜘蛛来说,是不是意味着友好的状态,蜘蛛喜不喜欢自己的站,如果爬行量大的话,那么就可以简单的得出网站很合蜘蛛的胃口,如果蜘蛛几天都不来的话,那么就要检查一下,是不是网站没有蜘蛛喜欢的“食物”了,下面就说说影响抓取的有关要点:因素一,是否有网站地图网站地图对于蜘蛛来说就是一幅爬行路线图,当蜘蛛拥有了这张路线图的时候,那么在网站上爬行就不会那么的吃力,而且也不会有随时会转到头晕的感觉。
网站地图是专门给蜘蛛用的,目的就是减少蜘蛛爬行时间,加快蜘蛛爬行速度,毕竟,如果你的网站不配地图的话,就像自己去一个陌生的地方,没有地图,就要靠盲目的找了,这要花的时间多了多少,笔者不知道。
所以,同样的道理,网站地图对于蜘蛛来说也一样的重要,省什么都不要省了地图,他是战前的准备、战中的方向、战后的总结。
因素二,是否设置404页面很多的网站对于这个根本不在意,其实按笔者的实战心得来说,这个对于一个存在死链的网站有着很重要的意义,因为他可以帮网站告诉蜘蛛,当它爬到死角的时候,给他一条出来返生之道,404页面就是为了避免蜘蛛走进死胡同出不来而准备的,谁敢保证自己的网站不会有死链的出现,死链对于一个网站的影响是很重要的,如果网站的死链过多,而又缺少404页面,那么用站长工具查询分析的时候,你会发现,很多的页面都抓取错误,这一方面说明,网站对蜘蛛的友好度不够,让蜘蛛产生排斥的心理。
深度优先算法与⼴度优先算法深度优先搜索和⼴度优先搜索,都是图形搜索算法,它两相似,⼜却不同,在应⽤上也被⽤到不同的地⽅。
这⾥拿⼀起讨论,⽅便⽐较。
⼀、深度优先搜索深度优先搜索属于图算法的⼀种,是⼀个针对图和树的遍历算法,英⽂缩写为DFS即Depth First Search。
深度优先搜索是图论中的经典算法,利⽤深度优先搜索算法可以产⽣⽬标图的相应拓扑排序表,利⽤拓扑排序表可以⽅便的解决很多相关的图论问题,如最⼤路径问题等等。
⼀般⽤堆数据结构来辅助实现DFS算法。
其过程简要来说是对每⼀个可能的分⽀路径深⼊到不能再深⼊为⽌,⽽且每个节点只能访问⼀次。
基本步奏(1)对于下⾯的树⽽⾔,DFS⽅法⾸先从根节点1开始,其搜索节点顺序是1,2,3,4,5,6,7,8(假定左分枝和右分枝中优先选择左分枝)。
(2)从stack中访问栈顶的点;(3)找出与此点邻接的且尚未遍历的点,进⾏标记,然后放⼊stack中,依次进⾏;(4)如果此点没有尚未遍历的邻接点,则将此点从stack中弹出,再按照(3)依次进⾏;(5)直到遍历完整个树,stack⾥的元素都将弹出,最后栈为空,DFS遍历完成。
⼆、⼴度优先搜索⼴度优先搜索(也称宽度优先搜索,缩写BFS,以下采⽤⼴度来描述)是连通图的⼀种遍历算法这⼀算法也是很多重要的图的算法的原型。
Dijkstra单源最短路径算法和Prim最⼩⽣成树算法都采⽤了和宽度优先搜索类似的思想。
其别名⼜叫BFS,属于⼀种盲⽬搜寻法,⽬的是系统地展开并检查图中的所有节点,以找寻结果。
换句话说,它并不考虑结果的可能位置,彻底地搜索整张图,直到找到结果为⽌。
基本过程,BFS是从根节点开始,沿着树(图)的宽度遍历树(图)的节点。
如果所有节点均被访问,则算法中⽌。
⼀般⽤队列数据结构来辅助实现BFS算法。
基本步奏(1)给出⼀连通图,如图,初始化全是⽩⾊(未访问);(2)搜索起点V1(灰⾊);(3)已搜索V1(⿊⾊),即将搜索V2,V3,V4(标灰);(4)对V2,V3,V4重复以上操作;(5)直到终点V7被染灰,终⽌;(6)最短路径为V1,V4,V7.作者:安然若知链接:https:///p/bff70b786bb6来源:简书简书著作权归作者所有,任何形式的转载都请联系作者获得授权并注明出处。
关于广度优先搜索和深度优先搜索的一些想法在说两种算法之前先说说什么叫“搜索”:可能很多人对搜索的想法有点不对,很多人认为搜索是对已知的一棵树或者是已知的图进行搜索,所以我们常常把搜索和遍历给搞混了,但是其实搜索针对的并不是已知的,这并不代表搜索不能用于已知的,搜索一般用于未知的树,或者未知的图,而我们仅仅是知道这个树或图的产生规则。
这个时候才会产生深度优先搜索和广度优先搜索。
然后说一下深度优先搜索和广度优先搜索的区别以及适用范围:广度优先搜索:广度优先搜索是按照树的层次进行的搜索,如果此层没有搜索完成的情况下不会进行下一层的搜索。
深度优先搜索:深度优先搜索是按照树的深度进行搜索的,所以又叫纵向搜索,在每一层只扩展一个节点,直到为树的规定深度或叶子节点为止。
这个便称为深度优先搜索。
我先来说说两种算法的不同点。
广度优先搜索,适用于所有情况下的搜索,但是深度优先搜索不一定能适用于所有情况下的搜索。
因为由于一个有解的问题树可能含有无穷分枝,深度优先搜索如果误入无穷分枝(即深度无限),则不可能找到目标节点。
所以,深度优先搜索策略是不完备的。
适用范围:这点很重要,因为知道两者的适用范围对于编程人员很有好处,至少可以少走弯路。
(这些都是开个人观点,有缺少的欢迎补充)广度优先搜索适用范围:在未知树深度情况下,用这种算法很保险和安全。
在树体系相对小不庞大的时候,广度优先也会更好些。
深度优先搜索适用范围:刚才说了深度优先搜索又自己的缺陷,但是并不代表深度优先搜索没有自己的价值。
在树深度已知情况下,并且树体系相当庞大时,深度优先搜索往往会比广度优先搜索优秀,因为比如8*8的马踏棋盘中,如果用广度搜索,必须要记录所有节点的信息,这个存储量一般电脑是达不到的。
然而如果用深度优先搜索的时候却能在一个棋盘被判定出来后释放之前的节点内存。
当让具体情况还是根据具体的实际问题而定,并没有哪种绝对的好。
所以,理解这两种算法的本质是关键。
深度优先搜索和广度优先搜索的比较
(一)深度优先搜索的特点是:
(1)从上面几个实例看出,可以用深度优先搜索的方法处理的题目是各种各样的。
有的搜索深度是已知和固定的,如例题2-4,2-5,2-6;有的是未知的,如例题2-7、例题2-8;有的搜索深度是有限制的,但达到目标的深度是不定的。
但也看到,无论问题的内容和性质以及求解要求如何不同,它们的程序结构都是相同的,即都是深度优先算法(一)和深度优先算法(二)中描述的算法结构,不相同的仅仅是存储结点数据结构和产生规则以及输出要求。
(2)深度优先搜索法有递归以及非递归两种设计方法。
一般的,当搜索深度较小、问题递归方式比较明显时,用递归方法设计好,它可以使得程序结构更简捷易懂。
当搜索深度较大时,如例题2-5、2-6。
当数据量较大时,由于系统堆栈容量的限制,递归容易产生溢出,用非递归方法设计比较好。
(3)深度优先搜索方法有广义和狭义两种理解。
广义的理解是,只要最新产生的结点(即深度最大的结点)先进行扩展的方法,就称为深度优先搜索方法。
在这种理解情况下,深度优先搜索算法有全部保留和不全部保留产生的结点的两种情况。
而狭义的理解是,仅仅只保留全部产生结点的算法。
本书取前一种广义的理解。
不保留全部结点的算法属于一般的回溯算法范畴。
保留全部结点的算法,实际上是在数据库中产生一个结点之间的搜索树,因此也属于图搜索算法的范畴。
(4)不保留全部结点的深度优先搜索法,由于把扩展望的结点从数据库中弹出删除,这样,一般在数据库中存储的结点数就是深度值,因此它占用的空间较少,所以,当搜索树的结点较多,用其他方法易产生内存溢出时,深度优先搜索不失为一种有效的算法。
(5)从输出结果可看出,深度优先搜索找到的第一个解并不一定是最优解。
例如例题2-8得最优解为13,但第一个解却是17。
如果要求出最优解的话,一种方法将是后面要介绍的动态规划法,另一种方法是修改原算法:把原输出过程的地方改为记录过程,即记录达到当前目标的路径和相应的路程值,并与前面已记录的值进行比较,保留其中最优的,等全部搜索完成后,才把保留的最优解输出。
二、广度优先搜索法的显著特点是:
(1)在产生新的子结点时,深度越小的结点越先得到扩展,即先产生它的子结点。
为使算法便于实现,存放结点的数据库一般用队列的结构。
(2)无论问题性质如何不同,利用广度优先搜索法解题的基本算法是相同的,但数据库中每一结点内容,产生式规则,根据不同的问题,有不同的内容和结构,就是同一问题也可以有不同的表示方法。
(3)当结点到跟结点的费用(有的书称为耗散值)和结点的深度成正比时,特别是当每一结点到根结点的费用等于深度时,用广度优先法得到的解是最优解,但如果不成正比,则得到的解不一定是最优解。
这一类问题要求出最优解,一种方法是使用后面要介绍的其他方法求解,另外一种方法是改进前面深度(或广度)优先搜索算法:找到一个目标后,不是立即退出,而是记录下目标结点的路径和费用,如果有多个目标结点,就加以比较,留下较优的结点。
把所有可能的路径都搜索完后,才输出记录的最优路径。
(4)广度优先搜索算法,一般需要存储产生的所有结点,占的存储空间要比深度优先大得多,因此程序设计中,必须考虑溢出和节省内存空间得问题。
(5)比较深度优先和广度优先两种搜索法,广度优先搜索法一般无回溯操作,即入栈和出栈的操作,所以运行速度比深度优先搜索算法法要快些。
总之,一般情况下,深度优先搜索法占内存少但速度较慢,广度优先搜索算法占内存多但速度较快,在距离和深度成正比的情况下能较快地求出最优解。
因此在选择用哪种算法时,要综合考虑。
决定取舍。