2.2.2事件的相互独立性
- 格式:pptx
- 大小:187.13 KB
- 文档页数:10
2.2.2事件的相互独立性三维目标1.知识与技能(1)理解相互独立事件的定义及意义.(2)掌握相互独立事件概率的乘法公式.2.过程与方法通过进行一些与事件独立有关的概率的计算,掌握相互独立事件概率问题.3.情感、态度与价值观通过实例的分析,学会进行简单的应用,提高数学的学习兴趣.重点、难点重点:相互独立事件的概率.难点:利用相互独立事件同时发生的概率公式求概率.教学时引导学生结合学习过的互斥事件、对立事件,不断比较、分析理解相互独立事件.再通过例题与练习进一步理解P(AB)=P(A)P(B).教学建议在概率论中,独立性是极其重要的概念,它的主要作用是简化概率计算.本节中引入独立性的概念主要是为了介绍二项分布的产生背景,两个事件相互独立与两个事件互斥这两个概念,初学者容易混淆,建议教师在教学中要让学生对这两个概念进行比较,让学生在比较中得到提高.教学流程创设问题情境,提出问题.⇒引导学生回答问题,理解相互独立事件的概率.⇒通过例1及变式训练,使学生掌握事件独立性的判断.⇒通过例2及互动探究,使学生掌握求相互独立事件同时发生的概率.⇒通过例3及变式训练,使学生掌握相互独立事件的实际应用.⇒完成当堂双基达标,巩固所学知识,并进行反馈、矫正.⇒归纳整理,进行课堂小结,整体认识所学知识.课标解读1.理解相互独立事件的定义及意义.2.理解概率的乘法公式.3.掌握综合运用互斥事件的概率加法公式及独立事件的乘法公式解题.知识1相互独立事件的概念与性质【问题导思】甲箱里装有3个白球、2个黑球,乙箱里装有2个白球,2个黑球.从这两个箱子里分别摸出1个球,记事件A =“从甲箱里摸出白球”,B =“从乙箱里摸出白球”.(1)事件A 发生会影响事件B 发生的概率吗?(2)试求P (A ),P (B ),P (AB ).(3)P (B |A )与P (B )相等吗?(4)P (AB )与P (A )P (B )相等吗?【提示】 (1)不影响;(2)P (A )=35, P (B )=12,P (AB )=3×25×4=310; (3)∵P (B |A )=P (AB )P (A )=31035=12, ∴P (B |A )=P (B );(4)∵P (B |A )=P (AB )P (A )=P (B ), ∴P (AB )=P (A )P (B ).1.相互独立的概念设A 、B 为两个事件,若P (AB )=P (A )P (B ),则称事件A 与事件B 相互独立.2.相互独立的性质若事件A 与B 相互独立,那么A 与B ,A 与B ,A 与B 也相互独立. 类型1事件独立性的判断例1 判断下列各对事件是否是相互独立事件:(1)甲组3名男生,2名女生;乙组2名男生,3名女生,现从甲、乙两组中各选1名同学参加演讲比赛,“从甲组中选出1名男生”与“从乙组中选出1名女生”;(2)容器内盛有5个白乒乓球和3个黄乒乓球,“从8个球中任意取出1个,取出的是白球”与“从剩下的7个球中任意取出1个,取出的还是白球”;(3)掷一颗骰子一次,“出现偶数点”与“出现3点或6点”.【思路探究】 利用相互独立事件的定义判断.解 (1)“从甲组中选出1名男生”这一事件是否发生,对“从乙组中选出1名女生”这一事件发生的概率没有影响,所以它们是相互独立事件.(2)“从8个球中任意取出1个,取出的是白球”的概率为58,若这一事件发生了,则“从剩下的7个球中任意取出1个,取出的仍是白球”的概率为47;若前一事件没有发生,则后一事件发生的概率为57,可见,前一事件是否发生,对后一事件发生的概率有影响,所以二者不是相互独立事件.(3)记A :出现偶数点,B :出现3点或6点,则A ={2,4,6},B ={3,6},AB ={6},∴P (A )=36=12,P (B )=26=13,P (AB )=16. ∴P (AB )=P (A )·P (B ),∴事件A 与B 相互独立.规律方法1.利用相互独立事件的定义(即P (AB )=P (A )·P (B ))可以准确地判定两个事件是否相互独立,这是用定量计算方法,较准确,因此我们必须熟练掌握.2.判别两个事件是否为相互独立事件也可以从定性的角度进行分析,即看一个事件的发生对另一个事件的发生是否有影响.没有影响就是相互独立事件,有影响就不是相互独立事件.变式训练一个袋子中有4个小球,其中2个白球,2个红球,讨论下列A ,B 事件的相互独立性与互斥性.(1)A :取一个球为红球,B :取出的红球放回后,再从中取一球为白球;(2)从袋中取2个球,A :取出的两球为一白球一红球;B :取出的两球中至少一个白球. 解 (1)由于取出的红球放回,故事件A 与B 的发生互不影响,∴A 与B 相互独立,A ,B 能同时发生,不是互斥事件.(2)设2个白球为a ,b ,两个红球为1,2,则从袋中取2个球的所有取法为{a ,b },{a,1},{a,2},{b,1},{b,2},{1,2},则P (A )=46=23,P (B )=56,P (AB )=23, ∴P (AB )≠P (A )·P (B ).∴事件A ,B 不是相互独立事件,事件A ,B 能同时发生,∴A ,B 不是互斥事件. 类型2 相互独立事件发生的概率例2 面对H7N9流感病毒,各国医疗科研机构都在研究疫苗,现有A 、B 、C 三个独立的研究机构在一定的时期内能研制出疫苗的概率分别是15、14、13. 求:(1)他们都研制出疫苗的概率;(2)他们都失败的概率;(3)他们能够研制出疫苗的概率.【思路探究】 明确已知事件的概率及其关系→把待求事件的概率表示成已知事件的概率→选择公式计算求值解 令事件A 、B 、C 分别表示A 、B 、C 三个独立的研究机构在一定时期内成功研制出该疫苗,依题意可知,事件A 、B 、C 相互独立,且P (A )=15,P (B )=14,P (C )=13. (1)他们都研制出疫苗,即事件ABC 发生,故P (ABC )=P (A )P (B )P (C )=15×14×13=160. (2)他们都失败即事件A B C 同时发生.故P (A B C )=P (A )P (B )P (C )=(1-P (A ))(1-P (B ))(1-P (C ))=(1-15)(1-14)(1-13) =45×34×23=25. (3)“他们能研制出疫苗”的对立事件为“他们都失败”,结合对立事件间的概率关系可得所求事件的概率P =1-P (A B C )=1-25=35. 规律方法在求事件概率时,要明确事件中的“至少有一个发生”、“至多有一个发生”、“恰有一个发生”、“都发生”、“都不发生”、“不都发生”等词语的意义,已知两个事件A 、B ,它们的概率分别为P (A )、P (B ),那么:A 、B 中至少有一个发生的事件为A ∪B ;A 、B 都发生的事件为AB ;A 、B 都不发生的事件为A B ;A 、B 恰有一个发生的事件为A B ∪A B ;A 、B 中至多有一个发生的事件为A B ∪A B ∪A B .互动探究在例中条件不变,求:(1)只有一个机构研制出疫苗的概率;(2)至多有一个机构研制出疫苗的概率.解 (1)只有一个机构研制出疫苗,该事件为(A B C ∪ A B C ∪A B C ),故所求事件的概率为P =P (A B C ∪A B C ∪A B C )=P (A )P (B )P (C )+P (A )P (B )P (C )+P (A )P (B )P (C )=(1-P (A ))(1-P (B ))P (C )+(1-P (A ))·P (B )(1-P (C ))+P (A )(1-P (B ))(1-P (C ))=(1-15)×(1-14)×13+(1-15)×14×(1-13)+15×(1-14)(1-13) =45×34×13+45×14×23+15×34×23=15+215+110=1330. (2)至多有一机构研制出该疫苗,即事件(A B C ∪A B C ∪A B C ∪A B C )发生,故所求事件的概率为P (A B C ∪A B C ∪A B C ∪A B C )=P (A B C )+P (A B C )+P (A B C )+P (A B C )=P (A )P (B )P (C )+P (A )P (B )P (C )+P (A )P (B )P (C )+P (A )P (B )P (C )=45×34×23+15×34×23+45×14×23+45×34×13=25+110+215+15=56. 类型3 相互独立事件的实际应用例3 红队队员甲、乙、丙与蓝队队员A ,B ,C 进行围棋比赛,甲对A 、乙对B 、丙对C 各一盘.已知甲胜A 、乙胜B 、丙胜C 的概率分别为0.6,0.5,0.5.假设各盘比赛结果相互独立.求:(1)红队中有且只有一名队员获胜的概率;(2)求红队至少两名队员获胜的概率.【思路探究】 弄清事件“红队有且只有一名队员获胜”与事件“红队至少两名队员获胜”是由哪些基本事件组成的,及这些事件间的关系,然后选择相应概率公式求值. 解 设甲胜A 的事件为D ,乙胜B 的事件为E ,丙胜C 的事件为F ,则D ,E ,F 分别表示甲不胜A 、乙不胜B 、丙不胜C 的事件.因为P (D )=0.6,P (E )=0.5,P (F )=0.5,由对立事件的概率公式知P (D )=0.4,P (E )=0.5,P (F )=0.5. (1)红队有且只有一名队员获胜的事件有D E F ,D E F ,D E F ,以上3个事件彼此互斥且独立.∴红队有且只有一名队员获胜的概率 P 1=P (D E F +D E F +D E F )=P (D E F )+P (D E F )+P (D E F )=0.6×0.5×0.5+0.4×0.5×0.5+0.4×0.5×0.5=0.35.(2)法一:红队至少两人获胜的事件有:DE F ,D E F ,D EF ,DEF .由于以上四个事件两两互斥且各盘比赛的结果相互独立,因此红队至少两人获胜的概率为P =P (DE F )+P (D E F )+P (D EF )+P (DEF )=0.6×0.5×0.5+0.6×0.5×0.5+0.4×0.5×0.5+0.6×0.5×0.5=0.55.法二:“红队至少两人获胜”与“红队最多一人获胜”为对立事件,而红队都不获胜为事件D E F ,且P (D E F )=0.4×0.5×0.5=0.1.∴红队至少两人获胜的概率为P 2=1-P 1-P (D E F )=1-0.35-0.1=0.55.规律方法1.本题(2)中用到直接法和间接法.当遇到“至少”“至多”问题可以考虑间接法.2.求复杂事件的概率一般可分三步进行:(1)列出题中涉及的各个事件,并用适当的符号表示它们;(2)理清各事件之间的关系,恰当地用事件间的“并”“交”表示所求事件;(3)根据事件之间的关系准确地运用概率公式进行计算.变式训练有三种产品,合格率分别是0.90,0.95和0.95,从中各抽取一件进行检验,求恰有一件不合格的概率.解 设从三种产品各抽取一件,抽到合格产品的事件分别为A 、B 和C .P (A )=0.90,P (B )=P (C )=0.95,则P (A )=0.10,P (B )=P (C )=0.05.因为事件A 、B 、C 相互独立,所以恰有一件不合格的概率为P (AB C )+P (A B C )+P (A BC )=P (A )P (B )P (C )+P (A )P (B )P (C )+P (A )P (B )P (C )=2×0.90×0.95×0.05+0.10×0.95×0.95≈0.176.故恰有一件不合格的概率为0.176.间接法在相互独立事件概率中的应用典例 甲、乙两人参加一次英语口语考试,已知在备选的10道试题中,甲能答对其中的6题,乙能答对其中的8题.规定每次考试都从备选题中随机抽出3题进行测试,至少答对2题才算合格.求甲、乙两人至少有一人考试合格的概率.【思路点拨】 本题可以从反面:甲、乙两人考试均不合格来考虑.【规范解答】 设甲、乙两人考试合格的事件分别为A ,B ,则P (A )=C 26C 14+C 36C 310=60+20120=23, P (B )=C 28C 12+C 38C 310=56+56120=1415, 且事件A ,B 相互独立.甲、乙两人考试均不合格的概率为P (A ·B )=P (A )·P (B )=(1-23)(1-1415)=145.故甲、乙两人至少有一人考试合格的概率为P =1-P (A ·B )=1-145=4445. 答:甲、乙两人至少有一人考试合格的概率为4445. 思维启迪求解此类问题的思路一般有两种:1.直接法,即求解时先把待求事件分解成彼此互斥的事件的和事件,在此基础上求相应事件的概率,采用的是“各个击破”的方针.2.间接法,利用对立事件的知识求解,采用的是“正难则反”的解题原则.课堂小结1.“相互独立事件”与“互斥事件”的区别相互独立事件 互斥事件 判断方法一个事件的发生与否对另一个事件发 生的概率没有影响 两个事件不可能同时发生,即AB =∅ 概率公式 A 与B 相互独立等价于P (AB )= P (A )·P (B ) 若A 与B 互斥,则P (A +B )=P (A )+ P (B ),反之不成立2.相互独立事件同时发生的概率P (AB )=P (A )·P (B ),就是说,两个相互独立事件同时发生的概率等于每个事件发生的概率的积.当堂检测 1.若事件A 与B 相互独立,则下列不相互独立的事件为( )A .A 与B B.A 与BC .B 与BD .B 与A【解析】 由相互独立性质知A 与B ,A 与B ,B 与A 也相互独立.【答案】 C2.若事件E 、F 相互独立,且P (E )=P (F )=14,则P (EF )=( ) A .0 B.116 C.14 D.12【解析】 ∵E 、F 相互独立,∴P (EF )=P (E )·P (F )=116. 【答案】 B3.在同一时间内,两个气象台预报天气准确的概率分别为910,45,两个气象台预报准确的概率互不影响,则在同一时间内,至少有一个气象台预报准确的概率为________.【解析】 P =1-(1-910)(1-45)=4950.【答案】49 504.制造一种零件,甲机床的正品率是0.96,乙机床的正品率是0.95,从它们制造的产品中任取两件.(1)两件都是正品的概率是多少?(2)恰有一件是正品的概率是多少?解分别用A、B表示从甲、乙机床的产品中抽得正品,C表示抽取的两件产品中恰有一件是正品,则C=A B+A B.由题意知,A、B是相互独立事件,A B、A B是互斥事件.(1)P(A·B)=P(A)·P(B)=0.96×0.95=0.912.(2)P(C)=P(A B+A B)=P(A B)+P(A B)=0.96×(1-0.95)+(1-0.96)×0.95=0.086.。
2.2.2事件的相互独立性教学目标:知识与技能:理解两个事件相互独立的概念。
过程与方法:能进行一些与事件独立有关的概率的计算。
情感、态度与价值观:通过对实例的分析,会进行简单的应用。
教学重点:独立事件同时发生的概率教学难点:有关独立事件发生的概率计算授课类型:新授课课时安排:2课时教 具:多媒体、实物投影仪教学过程:一、复习引入: 1 事件的定义:随机事件:在一定条件下可能发生也可能不发生的事件;必然事件:在一定条件下必然发生的事件; 不可能事件:在一定条件下不可能发生的事件2.随机事件的概率:一般地,在大量重复进行同一试验时,事件A 发生的频率m n总是接近某个常数,在它附近摆动,这时就把这个常数叫做事件A 的概率,记作()P A . 3.概率的确定方法:通过进行大量的重复试验,用这个事件发生的频率近似地作为它的概率;4.概率的性质:必然事件的概率为1,不可能事件的概率为0,随机事件的概率为0()1P A ≤≤,必然事件和不可能事件看作随机事件的两个极端情形 5基本事件:一次试验连同其中可能出现的每一个结果(事件A )称为一个基本事件6.等可能性事件:如果一次试验中可能出现的结果有n 个,而且所有结果出现的可能性都相等,那么每个基本事件的概率都是1n ,这种事件叫等可能性事件 7.等可能性事件的概率:如果一次试验中可能出现的结果有n 个,而且所有结果都是等可能的,如果事件A 包含m 个结果,那么事件A 的概率()m P A n = 8.等可能性事件的概率公式及一般求解方法9.事件的和的意义:对于事件A 和事件B 是可以进行加法运算的10 互斥事件:不可能同时发生的两个事件.()()()P A B P A P B +=+一般地:如果事件12,,,n A A A 中的任何两个都是互斥的,那么就说事件12,,,n A A A 彼此互斥 11.对立事件:必然有一个发生的互斥事件.()1()1()P A A P A P A +=⇒=-12.互斥事件的概率的求法:如果事件12,,,n A A A 彼此互斥,那么12()n P A A A +++ =12()()()n P A P A P A +++探究:(1)甲、乙两人各掷一枚硬币,都是正面朝上的概率是多少?事件A :甲掷一枚硬币,正面朝上;事件B :乙掷一枚硬币,正面朝上(2)甲坛子里有3个白球,2个黑球,乙坛子里有2个白球,2个黑球,从这两个坛子里分别摸出1个球,它们都是白球的概率是多少?事件A :从甲坛子里摸出1个球,得到白球;事件B :从乙坛子里摸出1个球,得到白球 问题(1)、(2)中事件A 、B 是否互斥?(不互斥)可以同时发生吗?(可以)问题(1)、(2)中事件A (或B )是否发生对事件B (或A )发生的概率有无影响?(无影响)思考:三张奖券中只有一张能中奖,现分别由三名同学有放回地抽取,事件A 为“第一名同学没有抽到中奖奖券”, 事件B 为“最后一名同学抽到中奖奖券”. 事件A 的发生会影响事件B 发生的概率吗?显然,有放回地抽取奖券时,最后一名同学也是从原来的三张奖券中任抽一张,因此第一名同学抽的结果对最后一名同学的抽奖结果没有影响,即事件A 的发生不会影响事件B 发生的概率.于是P (B| A )=P(B ),P (AB )=P( A ) P ( B |A )=P (A )P(B).二、讲解新课:1.相互独立事件的定义:设A, B 为两个事件,如果 P ( AB ) = P ( A ) P ( B ) , 则称事件A 与事件B 相互独立(mutually independent ) .事件A (或B )是否发生对事件B (或A )发生的概率没有影响,这样的两个事件叫做相互独立事件若A 与B 是相互独立事件,则A 与B ,A 与B ,A 与B 也相互独立2.相互独立事件同时发生的概率:()()()P A B P A P B ⋅=⋅问题2中,“从这两个坛子里分别摸出1个球,它们都是白球”是一个事件,它的发生,就是事件A ,B 同时发生,记作A B ⋅.(简称积事件)从甲坛子里摸出1个球,有5种等可能的结果;从乙坛子里摸出1个球,有4种等可能的结果于是从这两个坛子里分别摸出1个球,共有54⨯种等可能的结果同时摸出白球的结果有32⨯种所以从这两个坛子里分别摸出1个球,它们都是白球的概率323()5410P A B ⨯⋅==⨯. 另一方面,从甲坛子里摸出1个球,得到白球的概率3()5P A =,从乙坛子里摸出1个球,得到白球的概率2()4P B =.显然()()()P A B P A P B ⋅=⋅. 这就是说,两个相互独立事件同时发生的概率,等于每个事件发生的概率的积一般地,如果事件12,,,n A A A 相互独立,那么这n 个事件同时发生的概率,等于每个事件发生的概率的积, 即 1212()()()()n n P A A A P A P A P A ⋅⋅⋅=⋅⋅⋅ .3.对于事件A 与B 及它们的和事件与积事件有下面的关系: )()()()(B A P B P A P B A P ⋅-+=+三、讲解范例:例 1.某商场推出二次开奖活动,凡购买一定价值的商品可以获得一张奖券.奖券上有一个兑奖号码,可以分别参加两次抽奖方式相同的兑奖活动.如果两次兑奖活动的中奖概率都是 0 . 05 ,求两次抽奖中以下事件的概率:(1)都抽到某一指定号码;(2)恰有一次抽到某一指定号码;(3)至少有一次抽到某一指定号码.解: (1)记“第一次抽奖抽到某一指定号码”为事件A, “第二次抽奖抽到某一指定号码”为事件B ,则“两次抽奖都抽到某一指定号码”就是事件AB .由于两次抽奖结果互不影响,因此A 与B 相互独立.于是由独立性可得,两次抽奖都抽到某一指定号码的概率P ( AB ) = P ( A ) P ( B ) = 0. 05×0.05 = 0.0025.(2 ) “两次抽奖恰有一次抽到某一指定号码”可以用(A B )U (A B )表示.由于事件A B 与A B 互斥,根据概率加法公式和相互独立事件的定义,所求的概率为P (A B )十P (A B )=P (A )P (B )+ P (A )P (B )= 0. 05×(1-0.05 ) + (1-0.05 ) ×0.05 = 0. 095.( 3 ) “两次抽奖至少有一次抽到某一指定号码”可以用(AB ) U ( A B )U (A B )表示.由于事件 AB , A B 和A B 两两互斥,根据概率加法公式和相互独立事件的定义,所求的概率为 P ( AB ) + P (A B )+ P (A B ) = 0.0025 +0. 095 = 0. 097 5.例2.甲、乙二射击运动员分别对一目标射击1次,甲射中的概率为0.8,乙射中的概率为0.9,求:(1)2人都射中目标的概率;(2)2人中恰有1人射中目标的概率;(3)2人至少有1人射中目标的概率;(4)2人至多有1人射中目标的概率?解:记“甲射击1次,击中目标”为事件A ,“乙射击1次,击中目标”为事件B ,则A 与B ,A 与B ,A 与B ,A 与B 为相互独立事件,(1)2人都射中的概率为:()()()0.80.90.72P A B P A P B ⋅=⋅=⨯=,∴2人都射中目标的概率是0.72.(2)“2人各射击1次,恰有1人射中目标”包括两种情况:一种是甲击中、乙未击中(事件A B ⋅发生),另一种是甲未击中、乙击中(事件A B ⋅发生)根据题意,事件A B ⋅与A B ⋅互斥,根据互斥事件的概率加法公式和相互独立事件的概率乘法公式,所求的概率为:()()()()()()P A B P A B P A P B P A P B ⋅+⋅=⋅+⋅0.8(10.9)(10.8)0.90.080.180.26=⨯-+-⨯=+=∴2人中恰有1人射中目标的概率是0.26.(3)(法1):2人至少有1人射中包括“2人都中”和“2人有1人不中”2种情况,其概率为()[()()]0.720.260.98P P A B P A B P A B =⋅+⋅+⋅=+=.(法2):“2人至少有一个击中”与“2人都未击中”为对立事件,2个都未击中目标的概率是()()()(10.8)(10.9)0.02P A B P A P B ⋅=⋅=--=,J C J B J A J C J B J A ∴“两人至少有1人击中目标”的概率为1()10.020.98P P A B =-⋅=-=.(4)(法1):“至多有1人击中目标”包括“有1人击中”和“2人都未击中”,故所求概率为:()()()P P A B P A B P A B =⋅+⋅+⋅()()()()()()P A P B P A P B P A P B =⋅+⋅+⋅0.020.080.180.28=++=.(法2):“至多有1人击中目标”的对立事件是“2人都击中目标”,故所求概率为1()1()()10.720.28P P A B P A P B =-⋅=-⋅=-=例 3.在一段线路中并联着3个自动控制的常开开关,只要其中有1个开关能够闭合,线路就能正常工作假定在某段时间内每个开关能够闭合的概率都是0.7,计算在这段时间内线路正常工作的概率 解:分别记这段时间内开关A J ,B J ,C J 能够闭合为事件A ,B ,C .由题意,这段时间内3个开关是否能够闭合相互之间没有影响根据相互独立事件的概率乘法公式,这段时间内3个开关都不能闭合的概率是()()()()P A B C P A P B P C ⋅⋅=⋅⋅[][][]1()1()1()P A P B P C =--- (10.7)(10.7)(10.7)0.027=---=∴这段时间内至少有1个开关能够闭合,,从而使线路能正常工作的概率是 1()10.0270.973P A B C -⋅⋅=-=.答:在这段时间内线路正常工作的概率是0.973.变式题1:如图添加第四个开关D J 与其它三个开关串联,在某段时间内此开关能够闭合的概率也是0.7,计算在这段时间内线路正常工作的概率 (1()()0.9730.70.6811P A B C P D ⎡⎤-⋅⋅⋅=⨯=⎣⎦) 变式题2:如图两个开关串联再与第三个开关并联,在某段时间内每个开关能够闭合的概率都是0.7,计算在这段时间内线路正常工作的概率方法一:()()()()()P A B C P A B C P A B C P A B C P A B C ⋅⋅+⋅⋅+⋅⋅+⋅⋅+⋅⋅()()()()()()()()()()()()()()()P A P B P C P A P B P C P A P B P C P A P B P C P A P B P C =⋅⋅+⋅⋅+⋅⋅+⋅⋅+⋅⋅ 0.847=方法二:分析要使这段时间内线路正常工作只要排除C J 开且A J 与B J 至少有1个开的情况[]21()1()10.3(10.7)0.847P C P A B --⋅=-⨯-=例 4.已知某种高炮在它控制的区域内击中敌机的概率为0.2.(1)假定有5门这种高炮控制某个区域,求敌机进入这个区域后未被击中的概率;(2)要使敌机一旦进入这个区域后有0.9以上的概率被击中,需至少布置几门高炮?分析:因为敌机被击中的就是至少有1门高炮击中敌机,故敌机被击中的概率即为至少有1门高炮击中敌机的概率解:(1)设敌机被第k 门高炮击中的事件为K A (k=1,2,3,4,5),那么5门高炮都未击中敌机的事件为12345A A A A A ⋅⋅⋅⋅.∵事件1A ,2A ,3A ,4A ,5A 相互独立,∴敌机未被击中的概率为12345()P A A A A A ⋅⋅⋅⋅=12345()()()()()P A P A P A P A P A ⋅⋅⋅⋅5(10.2)=-=5)54( ∴敌机未被击中的概率为5)54(.(2)至少需要布置n 门高炮才能有0.9以上的概率被击中,仿(1)可得: 敌机被击中的概率为1-n)54(∴令41()0.95n -≥,∴41()510n ≤ 两边取常用对数,得110.313lg 2n ≥≈- ∵+∈N n ,∴11n = ∴至少需要布置11门高炮才能有0.9以上的概率击中敌机点评:上面例1和例2的解法,都是解应用题的逆向思考方法采用这种方法在解决带有词语“至多”、“至少”的问题时的运用,常常能使问题的解答变得简便四、课堂练习: 1.在一段时间内,甲去某地的概率是14,乙去此地的概率是15,假定两人的行动相互之间没有影响,那么在这段时间内至少有1人去此地的概率是( ) ()A 320 ()B 15 ()C 25 ()D 9202.从甲口袋内摸出1个白球的概率是13,从乙口袋内摸出1个白球的概率是12,从两个口袋内各摸出1个球,那么56等于( ) ()A 2个球都是白球的概率 ()B 2个球都不是白球的概率()C 2个球不都是白球的概率 ()D 2个球中恰好有1个是白球的概率3.电灯泡使用时间在1000小时以上概率为0.2,则3个灯泡在使用1000小时后坏了1个的概率是( )()A 0.128 ()B 0.096 ()C 0.104 ()D 0.3844.某道路的A 、B 、C 三处设有交通灯,这三盏灯在一分钟内开放绿灯的时间分别为25秒、35秒、45秒,某辆车在这条路上行驶时,三处都不停车的概率是 ( )()A 35192 ()B 25192 ()C 35576 ()D 651925.(1)将一个硬币连掷5次,5次都出现正面的概率是 ;(2)甲、乙两个气象台同时作天气预报,如果它们预报准确的概率分别是0.8与0.7,那么在一次预报中两个气象台都预报准确的概率是 .6.棉籽的发芽率为0.9,发育为壮苗的概率为0.6,(1)每穴播两粒,此穴缺苗的概率为 ;此穴无壮苗的概率为 .(2)每穴播三粒,此穴有苗的概率为 ;此穴有壮苗的概率为 .7.一个工人负责看管4台机床,如果在1小时内这些机床不需要人去照顾的概率第1台是0.79,第2台是0.79,第3台是0.80,第4台是0.81,且各台机床是否需要照顾相互之间没有影响,计算在这个小时内这4台机床都不需要人去照顾的概率.8.制造一种零件,甲机床的废品率是0.04,乙机床的废品率是0.05.从它们制造的产品中各任抽1件,其中恰有1件废品的概率是多少?9.甲袋中有8个白球,4个红球;乙袋中有6个白球,6个红球,从每袋中任取一个球,问取得的球是同色的概率是多少?答案:1. C 2. C 3. B 4. A 5.(1)132 (2) 0.56 6.(1) 0.01 , 0.16 (2) 0.999,0.9367. P=220.790.810.404⨯≈8. P=0.040.950.960.050.086⨯+⨯≈9. 提示:86461121212122P =⋅+⋅= 五、小结 :两个事件相互独立,是指它们其中一个事件的发生与否对另一个事件发生的概率没有影响一般地,两个事件不可能即互斥又相互独立,因为互斥事件是不可能同时发生的,而相互独立事件是以它们能够同时发生为前提的相互独立事件同时发生的概率等于每个事件发生的概率的积,这一点与互斥事件的概率和也是不同的六、课后作业:课本58页练习1、2、3 第60页 习题 2. 2A 组4. B 组1七、板书设计(略)八、教学反思:1. 理解两个事件相互独立的概念。
2.2.2事件的相互独立性学习目标:1.理解两个事件相互独立的概念.2、能进行一些与事件独立有关的概率的计算. 温故知新1.互斥事件:不可能同时发生的两个事件.()()()P A B P A P B +=+ 一般地:如果事件12,,,n A A A 中的任何两个都是互斥的,那么就说事件12,,,n A A A 彼此互斥.2.对立事件:必然有一个发生的互斥事件.()1()1()P A A P A P A +=⇒=- 3.互斥事件的概率的求法:如果事件12,,,n A A A 彼此互斥,那么 12()n P A A A +++=12()()()n P A P A P A +++新知概念:1.相互独立事件的定义:设A ,B 为两个事件,如果 , 则称事件A 与事件B 相互独立.事件A (或B )是否发生对事件B (或A )发生的概率没有影响,这样的两个事件叫做相互独立事件.若A 与B 是相互独立事件,则 也相互独立. 2.相互独立事件同时发生的概率:=)(AB P这就是说,两个相互独立事件同时发生的概率,等于每个事件发生的概率的积.一般地,如果事件12,,,n A A A 相互独立,那么这n 个事件同时发生的概率,等于每个事件发生的概率的积,即1212()()()()n n P A A A P A P A P A ⋅⋅⋅=⋅⋅⋅.3.对于事件A 与B 及它们的和事件与积事件有下面的关系:)()()()(B A P B P A P B A P ⋅-+=+.即1212()()()()n n P A A A P A P A P A ⋅⋅⋅=⋅⋅⋅.预习检测1.加工某一零件需经过三道工序,设第一、二、三道工序的次品率分别为170、169、168,且各道工序互不影响,则加工出来的零件的次品率为__________.2.在甲盒内的200个螺杆中有160个是A 型,在乙盒内的240个螺母中有180个是A 型.若从甲、乙两盒内各取一个,则能配成A 型螺栓的概率为________.3.在一条马路上的A 、B 、C 三处设有交通灯,这三盏灯在一分钟内开放绿灯的时间分别为25秒、35秒、45秒,某辆汽车在这条马路上行驶,那么在这三处都不停车的概率是_____. 典例精析例1.从一副扑克牌(52张)中任抽一张,设A =“抽得老K”,B =“抽得红牌”,判断事件A 与B 是否相互独立?是否互斥?是否对立?为什么?例 2. 某商场推出二次开奖活动,凡购买一定价值的商品可以获得一张奖券.奖券上有一个兑奖号码,可以分别参加两次抽奖方式相同的兑奖活动.如果两次兑奖活动的中奖概率都是0.05,求两次抽奖中以下事件的概率: (1)都抽到某一指定号码; (2)恰有一次抽到某一指定号码; (3)至少有一次抽到某一指定号码.例 3.已知某种高炮在它控制的区域内击中敌机的概率为0.2.(1)假定有5门这种高炮控制某个区域,求敌机进入这个区域后未被击中的概率; (2)要使敌机一旦进入这个区域后有0.9以上的概率被击中,需至少布置几门高炮? 活学活用1.甲袋中有8个白球,4个红球;乙袋中有6个白球,6个红球,从每袋中任取一个球,则取得同色球的概率为________.2.投掷一枚均匀硬币和一枚均匀骰子各一次,记“硬币正面向上”为事件A ,“骰子向上的点数是3”为事件B ,则事件A ,B 中至少有一件发生的概率是________.3.在社会主义新农村建设中,某市决定在一个乡镇投资农产品加工、绿色蔬菜种植和水果种植三个项目,据预测,三个项目成功的概率分别为45、56、23,且三个项目是否成功互相独立.(1)求恰有两个项目成功的概率;(2)求至少有一个项目成功的概率.4. 某公司招聘员工,指定三门考试课程,有两种考试方案:方案一:考三门课程至少有两门及格为考试通过;方案二:在三门课程中,随机选取两门,这两门都及格为考试通过.假设某应聘者对三门指定课程考试及格的概率分别为0.5,0.6,0.9,且三门课程考试是否及格相互之间没有影响.(1)求该应聘者用方案一通过的概率;(2)求该应聘者用方案二通过的概率.5. 某商场举行的“三色球”购物摸奖活动规定:在一次摸奖中,摸奖者先从装有3个红球与4个白球的袋中任意摸出3个球,再从装有1个蓝球与2个白球的袋中任意摸出1个球.根据摸出4个球中红球与蓝球的个数,设一、二、三等奖如下:(1)求一次摸奖恰好摸到1个红球的概率;(2)求摸奖者在一次摸奖中获奖金额X的分布列.参考答案预习检测1.【解析】本题考查独立事件,对立事件有关概率的基本知识以及计算方法. 设加工出来的零件为次品为事件A ,则A 为加工出来的零件为正品.P (A )=1-P (A )=1-(1-170)(1-169)(1-168)=370. 2.【解析】从甲盒内取一个A 型螺杆记为事件M ,从乙盒内取一个A 型螺母记为事件N ,因事件M 、N 相互独立,则能配成A 型螺栓(即一个A 型螺杆与一个A 型螺母)的概率为P (MN )=P (M )P (N )=16018032002405⨯=. 3.【解析】由题意P (A )=2560=512;P (B )=3560=712;P(C)=4560=34; 所以所求概率P =P (ABC )=P (A )P (B )P (C )=57312124⨯⨯=35192. 例1.解 由于事件A 为“抽得老K ”,事件B 为“抽得红牌”,故抽得红牌中有可能抽到红桃K 或方块K ,即有可能抽到老K ,故事件A ,B 有可能同时发生,显然它们不是互斥事件,更不是对立事件,以下考虑他们是否互为独立事件:抽到老K 的概率为P (A )=452=113,抽到红牌的概率P (B )=2652=12,故P (A )P (B )=113×12=126,事件AB 即为“既抽得老K 又抽得红牌”,亦即“抽得红桃老K 或方块老K ”,故P (A ·B )=252=126,从而有P (A )·P (B )=P (AB ),因此A与B 互为独立事件.例2. 解 设“第一次抽奖抽到某一指定号码”为事件A ,“第二次抽奖抽到某一指定号码”为事件B ,则“两次抽奖都抽到某一指定号码”就是事件AB .(1)由于两次抽奖结果互不影响,因此事件A 与B 相互独立.于是由独立性可得,两次抽奖都抽到某一指定号码的概率为P (AB )=P (A )P (B )=0.05×0.05=0.002 5.(2)“两次抽奖恰有一次抽到某一指定号码”可以用(A B )∪(A B )表示.由于事件A B 与A B 互斥,根据概率的加法公式和相互独立事件的定义可得,所求事件的概率为 P (A B )+P (A B )=P (A )P (B )+P (A )P (B )=0.05×(1-0.05)+(1-0.05)×0.05=0.095. (3)方法一 “两次抽奖至少有一次抽到某一指定号码”可以用(AB )∪(A B )∪(A B )表示.由于事件AB ,A B 和A B 两两互斥,根据概率的加法公式和相互独立事件的定义可得,所求事件的概率为P (AB )+P (A B )+P (A B )=0.002 5+0.095=0.097 5. 方法二 1-P (A B )=1-(1-0.05)2=0.097 5.例3. 解 (1)设敌机被第k 门高炮击中的事件为A k (k =1,2,3,4,5),那么5门高炮都未击中敌机的事件为A 1·A 2·A 3·A 4·A 5.∵事件A 1,A 2,A 3,A 4,A 5相互独立,∴敌机未被击中的概率为P (A 1·A 2·A 3·A 4·A 5)=P (A 1)·P (A 2)·P (A 3)·P (A 4)·P (A 5)=(1-0.2)5=(45)5.∴敌机未被击中的概率为(45)5.(2)至少需要布置n 门高炮才能有0.9以上的概率被击中,仿(1)可得:敌机被击中的概率为1-(45)n .∴令1-(45)n ≥0.9,∴(45)n ≤110.两边取常用对数,得n ≥11-3lg 2≈10.3.∵n ∈N *,∴n =11.∴至少需要布置11门高炮才能有0.9以上的概率击中敌机. 活学活用1.【解析】 设“从甲袋中取白球”为事件A ,则P (A )=812=23. 设“从乙袋中取白球”为事件B ,则P (B )=612=12.取得同色球为AB +A B .P (AB +A B )=P (AB )+P (A B )=P (A )·P (B )+P (A )·P (B )=23×12+13×12=12.2.【解析】 法一:用间接法考虑,事件A 、B 一个都不发生的概率为P (A B )=P (A )·P (B )=12×C 45C 16=512,则事件A ,B 中至少有一件发生的概率=1-P (A B )=712.法二:P (A +B )=P (A )+P (B )-P (AB )=P (A )+P (B )-P (A )P (B )=12+16-12×16=712,或P (A +B )=1-P (A +B )=1-(1-12)(1-16)=712.3.【解】 (1)只有农产品加工和绿色蔬菜种植两个项目成功的概率为45×56×(1-23)=29,只有农产品加工和水果种植两个项目成功的概率为45×(1-56)×23=445,只有绿色蔬菜种植和水果种植两个项目成功的概率为(1-45)×56×23=19,∴恰有两个项目成功的概率为29+445+19=1945.(2)三个项目全部失败的概率为(1-45)×(1-56)×(1-23)=190,∴至少有一个项目成功的概率为1-190=8990.4.【解】 记“应聘者对三门考试及格的事件”分别为A ,B ,C .P (A )=0.5,P (B )=0.6,P (C )=0.9.(1)该应聘者用方案一通过的概率是P 1=P (AB C )+P (A BC )+P (A B C )+P (ABC ) =0.5×0.6×0.1+0.5×0.6×0.9+0.5×0.4×0.9+0.5×0.6×0.9 =0.03+0.27+0.18+0.27=0.75.(2)应聘者用方案二通过的概率P 2=13P (AB )+13P (BC )+13P (AC )=13(0.5×0.6+0.6×0.9+0.5×0.9)=13×1.29=0.43. 5.【解】 设A i (i =0,1,2,3)表示摸到i 个红球,B j (j =0,1)表示摸到j 个蓝球,则A i 与B j 独立.(1)恰好摸到1个红球的概率为P (A 1)=C 13C 24C 37=1835.(2)X 的所有可能值为:0,10,50,200,且P (X =200)=P (A 3B 1)=P (A 3)P (B 1)=C 33C 37·13=1105,P (X =50)=P (A 3B 0)=P (A 3)P (B 0)=C 33C 37·23=2105,P (X =10)=P (A 2B 1)=P (A 2)P (B 1)=C 23C 14C 37·13=12105=435,P (X =0)=1-1105-2105-435=67.综上可知,获奖金额X 的分布列为。
2.2.2 事件的相互独立性A 组 基础巩固1.把标有1,2的两张卡片随机地分给甲、乙;把标有3,4的两张卡片随机地分给丙、丁,每人一张,事件“甲得1号纸片”与“丙得4号纸片”是( ) A .互斥但非对立事件 B .对立事件 C .相互独立事件D .以上答案都不对2.两个实习生每人加工一个零件,加工为一等品的概率分别为23和34,两个零件是否加工为一等品相互独立,则这两个零件中恰有一个一等品的概率为( ) A.12 B.512 C.14D.163.设两个独立事件A 和B 都不发生的概率为19,A 发生B 不发生的概率与B 发生A 不发生的概率相同,则事件A 发生的概率P (A )是( ) A.29 B.118 C.13D.234.在如图所示的电路图中,开关a ,b ,c 闭合与断开的概率都是12,且是相互独立的,则灯亮的概率是( )A.18B.38C.14D.785.甲、乙两名学生通过某种听力测试的概率分别为12和13,两人同时参加测试,其中有且只有一人能通过的概率是( ) A.13 B.23 C.12 D .16.某条道路的A ,B ,C 三处设有交通灯,这三盏灯在一分钟内平均开放绿灯的时间分别为25秒、35秒、45秒,某辆车在这条路上行驶时,三处都不停车的概率是________. 7.某天上午,李明要参加“青年文明号”活动.为了准时起床,他用甲、乙两个闹钟叫醒自己.假设甲闹钟准时响的概率是0.80,乙闹钟准时响的概率是0.90,则两个闹钟至少有一个准时响的概率是________.8.如图所示,在两个圆盘中,指针落在本圆盘每个数所在区域的机会均等,那么两个指针同时落在奇数所在区域的概率是________.9.从一副除去大小王的扑克牌(52张)中任取一张,设事件A 为“抽得K ”,事件B 为“抽得红牌”,事件A 与B 是否相互独立?是否互斥?是否对立?为什么?10.某班甲、乙、丙三名同学竞选班委,甲当选的概率为45,乙当选的概率为35,丙当选的概率为710.(1)求恰有一名同学当选的概率; (2)求至多有两人当选的概率.B 组 能力提升1.国庆节放假,甲,乙,丙去北京旅游的概率分别为13,14,15.假定三人的行动相互之间没有影响,那么这段时间内至少有1人去北京旅游的概率为( ) A.5960 B.35 C.12D.1602.从甲袋中摸出一个红球的概率是13,从乙袋中摸出一个红球的概率是12且从两个袋中摸球相互之间不受影响,从两袋中各摸出一个球,则23等于( )A .2个球不都是红球的概率B .2个球都是红球的概率C .至少有1个红球的概率D .2个球中恰有1个红球的概率3.甲袋中有8个白球,4个红球;乙袋中有6个白球,6个红球.从每袋中任取一个球,则取得同色球的概率为________.4.设甲、乙、丙三台机器是否需要照顾相互之间没有影响,已知在某一小时内,甲、乙都需要照顾的概率为0.05.甲、丙都需要照顾的概率为0.1,乙、丙都需要照顾的概率为0.125.则求甲、乙、丙每台机器在这个小时内需要照顾的概率分别为________,________,________. 5.某商场举行的“三色球”购物摸奖活动规定:在一次摸奖中,摸奖者先从装有3个红球与4个白球的袋中任意摸出3个球,再从装有1个蓝球与2个白球的袋中任意摸出1个球.根据摸出4个球中红球与蓝球的个数,设一、二、三等奖如下:(1)求一次摸奖恰好摸到1个红球的概率; (2)求摸奖者在一次摸奖中获奖金额X 的分布列.6.某公司招聘员工,指定三门考试课程,有两种考试方案: 方案一:考三门课程至少有两门及格为考试通过;方案二:在三门课程中,随机选取两门,这两门都及格为考试通过.假设某应聘者对三门指定课程考试及格的概率分别为0.5,0.6,0.9,且三门课程考试是否及格相互之间没有影响.(1)求该应聘者用方案一通过的概率;(2)求该应聘者用方案二通过的概率.参考答案A组基础巩固1.【答案】C【解析】相互独立的两个事件彼此没有影响,可以同时发生,因此它们不可能互斥.故选C.2.【答案】B【解析】设“两个零件中恰有一个一等品”为事件A ,因事件相互独立,所以P (A )=23×14+13×34=512. 3.【答案】D【解析】由P (A B )=P (B A )得P (A )P (B )=P (B )·P (A ),即P (A )[1-P (B )]=P (B )[1-P (A )], ∴P (A )=P (B ).又P (A B )=19,∴P (A )=P (B )=13.∴P (A )=23.4.【答案】B【解析】设开关a ,b ,c 闭合的事件分别为A ,B ,C ,则灯亮这一事件E =ABC ∪AB C ∪A B C ,且A ,B ,C 相互独立,ABC ,AB C ,A B C 互斥,所以 P (E )=P (ABC ∪AB C ∪A B C ) =P (ABC )+P (AB C )+P (A B C )=P (A )P (B )P (C )+P (A )P (B )P (C )+P (A )P (B )P (C ) =12×12×12+12×12×⎝⎛⎭⎫1-12+12×⎝⎛⎭⎫1-12×12=38. 5.【答案】C【解析】设事件A 表示“甲通过听力测试”,事件B 表示“乙通过听力测试”. 依题意知,事件A 和B 相互独立,且P (A )=12,P (B )=13.记“有且只有一人通过听力测试”为事件C ,则 C =(A B )∪(A B ),且A B 和A B 互斥.故P (C )=P ((A B )∪(A B ))=P (A B )+P (A B )=P (A )P (B )+P (A )P (B )=12×⎝⎛⎭⎫1-13+⎝⎛⎭⎫1-12×13=12.6.【答案】35192【解析】P =2560×3560×4560=35192.7.【答案】0.98【解析】至少有一个准时响的概率为1-(1-0.90)(1-0.80)=1-0.10×0.20=0.98. 8.【答案】49【解析】左边圆盘指针落在奇数区域的概率为46=23,右边圆盘指针落在奇数区域的概率为23,所以两个指针同时落在奇数区域的概率为23×23=49.9.解:由于事件A 为“抽得K ”,事件B 为“抽得红牌”,故抽到的红牌中可能抽到红桃K 或方块K ,故事件A 与B 有可能同时发生,显然它们不是互斥或对立事件.下面判断它们是否相互独立:“抽得K ”的概率为P (A )=452=113,“抽得红牌”的概率为P (B )=2652=12,“既是K 又是红牌”的概率为P (AB )=252=126.因为126=113×12,所以P (AB )=P (A )P (B ).因此A 与B 相互独立.10.解:设甲、乙、丙当选的事件分别为A 、B 、C , 则P (A )=45,P (B )=35,P (C )=710.(1)易知事件A 、B 、C 相互独立, 所以恰有一名同学当选的概率为P (AB -C -)+P (A B C )+P (A -B -C )=P (A )P (B )P (C )+P (A )P (B )P (C )+P (A )P (B )P (C ) =45×25×310+15×35×310+15×25×710=47250. (2)至多有两人当选的概率为1-P (ABC )=1-P (A )P (B )P (C )=1-45×35×710=83125.B 组 能力提升1.【答案】B【解析】因甲,乙,丙去北京旅游的概率分别为13,14,15.因此,他们不去北京旅游的概率分别为23,34,45,所以,至少有1人去北京旅游的概率为P =1-23×34×45=35.2.【答案】C【解析】分别记从甲、乙袋中摸出一个红球为事件A ,B ,则P (A )=13,P (B )=12,由于A ,B 相互独立,所以1-P (A )P (B )=1-23×12=23.根据互斥事件可知C 正确.3.【答案】12【解析】设从甲袋中任取一个球,事件A 为“取得白球”,则事件A 为“取得红球”,从乙袋中任取一个球,事件B 为“取得白球”,则事件B 为“取得红球”. ∵事件A 与B 相互独立,∴事件A 与B 相互独立. ∴从每袋中任取一个球,取得同色球的概率为P ((A ∩B )∪(A ∩B ))=P (A ∩B )+P (A ∩B )=P (A )P (B )+P (A )P (B )=23×12+13×12=12.4.【答案】0.2 0.25 0.5【解析】记“机器甲需要照顾”为事件A ,“机器乙需要照顾”为事件B ,“机器丙需要照顾”为事件C ,由题意可知A ,B ,C 是相互独立事件. 由题意可知⎩⎪⎨⎪⎧P (AB )=P (A )P (B )=0.05,P (AC )=P (A )P (C )=0.1,P (BC )=P (B )P (C )=0.125,得⎩⎪⎨⎪⎧P (A )=0.2,P (B )=0.25,P (C )=0.5.所以甲、乙、丙每台机器需要照顾的概率分别为0.2,0.25,0.5.5.解:设A i (i =0,1,2,3)表示摸到i 个红球,B j (j =0,1)表示摸到j 个蓝球,则A i 与B j 独立. (1)恰好摸到1个红球的概率为P (A 1)=C 13C 24C 37=1835.(2)X 的所有可能值为:0,10,50,200,且 P (X =200)=P (A 3B 1)=P (A 3)P (B 1)=C 33C 37·13=1105;P (X =50)=P (A 3B 0)=P (A 3)P (B 0)=C 33C 37·23=2105,P (X =10)=P (A 2B 1)=P (A 2)P (B 1)=C 23C 14C 37·13=12105=435,P (X =0)=1-1105-2105-435=67.综上可知,获奖金额X 的分布列为6.解:记“,P (B )=0.6,P (C )=0.9. (1)该应聘者用方案一通过的概率为P 1=P (AB C )+P (A BC )+P (A B C )+P (ABC )=0.5×0.6×0.1+0.5×0.6×0.9+0.5×0.4×0.9+0.5×0.6×0.9 =0.03+0.27+0.18+0.27=0.75. (2)应聘者用方案二通过的概率为 P 2=13P (AB )+13P (BC )+13P (AC )=13(0.5×0.6+0.6×0.9+0.5×0.9) =13×1.29=0.43.。
§2.2.2事件的相互独立性教学目标:知识与技能:理解两个事件相互独立的概念。
过程与方法:能进行一些与事件独立有关的概率的计算。
情感、态度与价值观:通过对实例的分析,会进行简单的应用。
教学重点:独立事件同时发生的概率教学难点:有关独立事件发生的概率计算授课类型:新授课课时安排:2课时教学过程:一、复习引入:1 事件的定义:随机事件:在一定条件下可能发生也可能不发生的事件;必然事件:在一定条件下必然发生的事件;不可能事件:在一定条件下不可能发生的事件2.随机事件的概率:一般地,在大量重复进行同一试验时,事件A 发生的频率m n 总是接近某个常数,在它附近摆动,这时就把这个常数叫做事件A 的概率,记作()P A .3.概率的确定方法:通过进行大量的重复试验,用这个事件发生的频率近似地作为它的概率;4.概率的性质:必然事件的概率为1,不可能事件的概率为0,随机事件的概率为0()1P A ≤≤,必然事件和不可能事件看作随机事件的两个极端情形5基本事件:一次试验连同其中可能出现的每一个结果(事件A )称为一个基本事件6.等可能性事件:如果一次试验中可能出现的结果有n 个,而且所有结果出现的可能性都相等,那么每个基本事件的概率都是1n,这种事件叫等可能性事件 7.等可能性事件的概率:如果一次试验中可能出现的结果有n 个,而且所有结果都是等可能的,如果事件A 包含m 个结果,那么事件A 的概率()m P A n =8.等可能性事件的概率公式及一般求解方法9.事件的和的意义:对于事件A 和事件B 是可以进行加法运算的10 互斥事件:不可能同时发生的两个事件.()()()P A B P A P B +=+一般地:如果事件12,,,n A A A 中的任何两个都是互斥的,那么就说事件12,,,n A A A 彼此互斥11.对立事件:必然有一个发生的互斥事件.()1()1()P A A P A P A +=⇒=-12.互斥事件的概率的求法:如果事件12,,,n A A A 彼此互斥,那么12()n P A A A +++=12()()()n P A P A P A +++探究:(1)甲、乙两人各掷一枚硬币,都是正面朝上的概率是多少?事件A :甲掷一枚硬币,正面朝上;事件B :乙掷一枚硬币,正面朝上(2)甲坛子里有3个白球,2个黑球,乙坛子里有2个白球,2个黑球,从这两个坛子里分别摸出1个球,它们都是白球的概率是多少?事件A :从甲坛子里摸出1个球,得到白球;事件B :从乙坛子里摸出1个球,得到白球问题(1)、(2)中事件A 、B 是否互斥?(不互斥)可以同时发生吗?(可以)问题(1)、(2)中事件A (或B )是否发生对事件B (或A )发生的概率有无影响?(无影响) 思考:三张奖券中只有一张能中奖,现分别由三名同学有放回地抽取,事件A 为“第一名同学没有抽到中奖奖券”, 事件B 为“最后一名同学抽到中奖奖券”. 事件A 的发生会影响事件B 发生的概率吗?显然,有放回地抽取奖券时,最后一名同学也是从原来的三张奖券中任抽一张,因此第一名同学抽的结果对最后一名同学的抽奖结果没有影响,即事件A 的发生不会影响事件B 发生的概率.于是P (B| A )=P(B ),P (AB )=P( A ) P ( B |A )=P (A )P(B).二、讲解新课:1.相互独立事件的定义:设A, B 为两个事件,如果 P ( AB ) = P ( A ) P ( B ) , 则称事件A 与事件B 相互独立(mutually independent ) .事件A (或B )是否发生对事件B (或A )发生的概率没有影响,这样的两个事件叫做相互独立事件 若A 与B 是相互独立事件,则A 与B ,A 与B ,A 与B 也相互独立2.相互独立事件同时发生的概率:()()()P A B P A P B ⋅=⋅问题2中,“从这两个坛子里分别摸出1个球,它们都是白球”是一个事件,它的发生,就是事件A ,B 同时发生,记作A B ⋅.(简称积事件) 从甲坛子里摸出1个球,有5种等可能的结果;从乙坛子里摸出1个球,有4种等可能的结果于是从这两个坛子里分别摸出1个球,共有54⨯种等可能的结果同时摸出白球的结果有32⨯种所以从这两个坛子里分别摸出1个球,它们都是白球的概率323()5410P A B ⨯⋅==⨯. 另一方面,从甲坛子里摸出1个球,得到白球的概率3()5P A =,从乙坛子里摸出1个球,得到白球的概率2()4P B =.显然()()()P A B P A P B ⋅=⋅. 这就是说,两个相互独立事件同时发生的概率,等于每个事件发生的概率的积一般地,如果事件12,,,n A A A 相互独立,那么这n 个事件同时发生的概率,等于每个事件发生的概率的积,即 1212()()()()n n P A A A P A P A P A ⋅⋅⋅=⋅⋅⋅. 3.对于事件A 与B 及它们的和事件与积事件有下面的关系:)()()()(B A P B P A P B A P ⋅-+=+三、讲解范例:例 1.某商场推出二次开奖活动,凡购买一定价值的商品可以获得一张奖券.奖券上有一个兑奖号码,可以分别参加两次抽奖方式相同的兑奖活动.如果两次兑奖活动的中奖概率都是 0 . 05 ,求两次抽奖中以下事件的概率:(1)都抽到某一指定号码;(2)恰有一次抽到某一指定号码;(3)至少有一次抽到某一指定号码.解: (1)记“第一次抽奖抽到某一指定号码”为事件A, “第二次抽奖抽到某一指定号码”为事件B ,则“两次抽奖都抽到某一指定号码”就是事件AB .由于两次抽奖结果互不影响,因此A 与B 相互独立.于是由独立性可得,两次抽奖都抽到某一指定号码的概率P ( AB ) = P ( A ) P ( B ) = 0. 05×0.05 = 0.0025.(2 ) “两次抽奖恰有一次抽到某一指定号码”可以用(A B )U (A B )表示.由于事件A B 与A B 互斥,根据概率加法公式和相互独立事件的定义,所求的概率为P (A B )十P (A B )=P (A )P (B )+ P (A )P (B )= 0. 05×(1-0.05 ) + (1-0.05 ) ×0.05 = 0. 095.( 3 ) “两次抽奖至少有一次抽到某一指定号码”可以用(AB ) U ( A B )U (A B )表示.由于事件 AB , A B 和A B 两两互斥,根据概率加法公式和相互独立事件的定义,所求的概率为 P ( AB ) + P (A B )+ P (A B ) = 0.0025 +0. 095 = 0. 097 5.例2.甲、乙二射击运动员分别对一目标射击1次,甲射中的概率为0.8,乙射中的概率为0.9,求:(1)2人都射中目标的概率;(2)2人中恰有1人射中目标的概率;(3)2人至少有1人射中目标的概率;(4)2人至多有1人射中目标的概率?解:记“甲射击1次,击中目标”为事件A ,“乙射击1次,击中目标”为事件B ,则A 与B ,A 与B ,A 与B ,A 与B 为相互独立事件,(1)2人都射中的概率为:()()()0.80.90.72P A B P A P B ⋅=⋅=⨯=,∴2人都射中目标的概率是0.72.(2)“2人各射击1次,恰有1人射中目标”包括两种情况:一种是甲击中、乙未击中(事件A B ⋅发生),另一种是甲未击中、乙击中(事件A B ⋅发生)根据题意,事件A B ⋅与A B ⋅互斥,根据互斥事件的概率加法公式和相互独立事件的概率乘法公式,所求的概率为:()()()()()()P A B P A B P A P B P A P B ⋅+⋅=⋅+⋅0.8(10.9)(10.8)0.90.080.180.26=⨯-+-⨯=+=∴2人中恰有1人射中目标的概率是0.26.(3)(法1):2人至少有1人射中包括“2人都中”和“2人有1人不中”2种情况,其概率为()[()()]0.720.260.98P P A B P A B P A B =⋅+⋅+⋅=+=.(法2):“2人至少有一个击中”与“2人都未击中”为对立事件,2个都未击中目标的概率是()()()(10.8)(10.9)0.02P A B P A P B ⋅=⋅=--=,∴“两人至少有1人击中目标”的概率为1()10.020.98P P A B =-⋅=-=.(4)(法1):“至多有1人击中目标”包括“有1人击中”和“2人都未击中”,故所求概率为:()()()P P A B P A B P A B =⋅+⋅+⋅()()()()()()P A P B P A P B P A P B =⋅+⋅+⋅0.020.080.180.28=++=.(法2):“至多有1人击中目标”的对立事件是“2人都击中目标”,故所求概率为1()1()()10.720.28P P A B P A P B =-⋅=-⋅=-= 例 3.在一段线路中并联着3个自动控制的常开开关,只要其中有1个开关能够闭合,线路就能正常工作假定在某段时间内每个开关能够闭合的概率都是0.7,计算在这段时间内线路正常工作的概率解:分别记这段时间内开关A J ,B J ,C J 能够闭合为事件A ,B ,C .由题意,这段时间内3个开关是否能够闭合相互之间没有影响根据相互独立事件的概率乘法公式,这段时间内3个开关都不能闭合的概率是()()()()P A B C P A P B P C ⋅⋅=⋅⋅[][][]1()1()1()P A P B P C =--- (10.7)(10.7)(10.7)0.027=---=∴这段时间内至少有1个开关能够闭合,,从而使线路能正常工作的概率是1()10.0270.973P A B C -⋅⋅=-=.答:在这段时间内线路正常工作的概率是0.973.变式题1:如图添加第四个开关D J 与其它三个开关串联,在某段时间内此开关能够闭合的概率也是0.7,计算在这段时间内线路正常工作的概率 (1()()0.9730.70.6811P A B C P D ⎡⎤-⋅⋅⋅=⨯=⎣⎦)变式题2:如图两个开关串联再与第三个开关并联,在某段时间内每个开关能够闭合的概率都是0.7,计算在这段时间内线路正常工作的概率方法一:()()()()()P A B C P A B C P A B C P A B C P A B C ⋅⋅+⋅⋅+⋅⋅+⋅⋅+⋅⋅()()()()()()()()()()()()()()()P A P B P C P A P B P C P A P B P C P A P B P C P A P B P C =⋅⋅+⋅⋅+⋅⋅+⋅⋅+⋅⋅0.847=方法二:分析要使这段时间内线路正常工作只要排除C J 开且A J 与BJ 至少有1个开的情况 []21()1()10.3(10.7)0.847P C P A B --⋅=-⨯-=例 4.已知某种高炮在它控制的区域内击中敌机的概率为0.2.(1)假定有5门这种高炮控制某个区域,求敌机进入这个区域后未被击中的概率;(2)要使敌机一旦进入这个区域后有0.9以上的概率被击中,需至少布置几门高炮?分析:因为敌机被击中的就是至少有1门高炮击中敌机,故敌机被击中的概率即为至少有1门高炮击中敌机的概率解:(1)设敌机被第k 门高炮击中的事件为K A (k=1,2,3,4,5),那么5门高炮都未击中敌机的事件为12345A A A A A ⋅⋅⋅⋅.∵事件1A ,2A ,3A ,4A ,5A 相互独立,∴敌机未被击中的概率为12345()P A A A A A ⋅⋅⋅⋅=12345()()()()()P A P A P A P A P A ⋅⋅⋅⋅5(10.2)=-=5)54( ∴敌机未被击中的概率为5)54(.(2)至少需要布置n 门高炮才能有0.9以上的概率被击中,仿(1)可得: 敌机被击中的概率为1-n)54( ∴令41()0.95n -≥,∴41()510n ≤ 两边取常用对数,得110.313lg 2n ≥≈- ∵+∈N n ,∴11n =∴至少需要布置11门高炮才能有0.9以上的概率击中敌机点评:上面例1和例2的解法,都是解应用题的逆向思考方法采用这种方法在解决带有词语“至多”、“至少”的问题时的运用,常常能使问题的解答变得简便四、课堂练习:1.在一段时间内,甲去某地的概率是14,乙去此地的概率是15,假定两人的行动相互之间没有影响,那么在这段时间内至少有1人去此地的概率是( )()A 320 ()B 15 ()C 25 ()D 9202.从甲口袋内摸出1个白球的概率是13,从乙口袋内摸出1个白球的概率是12,从两个口袋内各摸出1个球,那么56等于( ) ()A 2个球都是白球的概率 ()B 2个球都不是白球的概率()C 2个球不都是白球的概率 ()D 2个球中恰好有1个是白球的概率3.电灯泡使用时间在1000小时以上概率为0.2,则3个灯泡在使用1000小时后坏了1个的概率是( )()A 0.128 ()B 0.096 ()C 0.104 ()D 0.3844.某道路的A 、B 、C 三处设有交通灯,这三盏灯在一分钟内开放绿灯的时间分别为25秒、35秒、45秒,某辆车在这条路上行驶时,三处都不停车的概率是 ( )()A 35192 ()B 25192 ()C 35576 ()D 651925.(1)将一个硬币连掷5次,5次都出现正面的概率是 ;(2)甲、乙两个气象台同时作天气预报,如果它们预报准确的概率分别是0.8与0.7,那么在一次预报中两个气象台都预报准确的概率是 .6.棉籽的发芽率为0.9,发育为壮苗的概率为0.6,(1)每穴播两粒,此穴缺苗的概率为 ;此穴无壮苗的概率为 .(2)每穴播三粒,此穴有苗的概率为 ;此穴有壮苗的概率为 .7.一个工人负责看管4台机床,如果在1小时内这些机床不需要人去照顾的概率第1台是0.79,第2台是0.79,第3台是0.80,第4台是0.81,且各台机床是否需要照顾相互之间没有影响,计算在这个小时内这4台机床都不需要人去照顾的概率.8.制造一种零件,甲机床的废品率是0.04,乙机床的废品率是0.05.从它们制造的产品中各任抽1件,其中恰有1件废品的概率是多少?9.甲袋中有8个白球,4个红球;乙袋中有6个白球,6个红球,从每袋中任取一个球,问取得的球是同色的概率是多少?答案:1. C 2. C 3. B 4. A 5.(1)132 (2) 0.56 6.(1) 0.01 , 0.16 (2) 0.999,0.9367. P=220.790.810.404⨯≈8. P=0.040.950.960.050.086⨯+⨯≈9. 提示:86461121212122P =⋅+⋅= 五、小结 :两个事件相互独立,是指它们其中一个事件的发生与否对另一个事件发生的概率没有影响一般地,两个事件不可能即互斥又相互独立,因为互斥事件是不可能同时发生的,而相互独立事件是以它们能够同时发生为前提的相互独立事件同时发生的概率等于每个事件发生的概率的积,这一点与互斥事件的概率和也是不同的六、课后作业:课本58页练习1、2、3第60页 习题 2. 2A 组4. B 组1七、板书设计(略)八、教学反思:1. 理解两个事件相互独立的概念。
2.2.2事件的相互独立性导学案【学习目标】知识与技能:理解两个事件相互独立的概念;过程与方法:能进行一些与事件独立有关的概率的计算;情感、态度与价值观:通过对实例的分析,会进行简单的应用。
重点:独立事件同时发生的概率;难点:有关独立事件发生的概率计算。
【温故知新】知识点回顾:定义:一般的,设A、B为两个事件,且__>0,称_______为在_____条件下,事件B发生的条件概率。
P(B∣A)读作__________。
条件概率公式: P(B∣A)=___=___。
【自主学习】(要求:认真阅读课本第54——55页,完成下列内容)1、什么是相互独立事件?有什么特点?2、独立事件同时发生的概率怎么求?3、分清楚互斥事件和相互独立事件。
【检验成果】知识点梳理:定义:设A、B两个事件,如果事件A是否发生对事件B发生的概率__影响,则称事件A与事件B相互独立。
即:P(AB)=____。
如果事件A与B相互独立,那么_与_,_与_,_与_也都相互独立。
注意: 1、必然事件Ω与任何事件A____(是否相互独立);2、不可能事件∅与任何事件A____(是否相互独立)。
巩固练习:(每个小组任选下列四个“表情”中的一个,并在8分钟内给大家讲解你所选的“表情”下的题目。
)注意:不退不换!1、判断下列事件是否为相互独立事件:①篮球比赛的“罚球两次”中,事件A:第一次罚球,球进了;事件B:第二次罚球,球进了。
②袋中有三个红球,两个白球,采取不放回的取球,事件A:第一次从中任取一个球是白球;事件B:第二次从中任取一个球是白球。
③袋中有三个红球,两个白球,采取有放回的取球,事件A:第一次从中任取一个球是白球;事件B:第二次从中任取一个球是白球。
2、若A、B、C为相互独立事件,则用数学符号语言表示下列关系:(1) A、B、C同时发生;(2) A、B、C都不发生;(3) A、B、C中恰有一个发生;(4) A、B、C中至少有一个发生的概率;(5) A、B、C中至多有一个发生。