数字图像处理重点
- 格式:doc
- 大小:21.50 KB
- 文档页数:1
第一.二章.采样,量化,数字图像的表示 基本的数字图像处理系统系统的层次结构I 应用程序 I 开发工具 操作系统 设备驱动程序I硬件I图像处理的主要任务: 图像获取与数字化 图像增强 图像恢复 图像重建 图像变换 图像编码与压缩 图像分割 特点:(1) 处理精度高。
(2) 重现性能好。
(3) 灵活性髙1•图像的数字化包括两个主要步骤:离散和量化2. 在数字图像领域,将图像看成是许多大小相同、形状一致的像素组成3. 为便于数字存储和计算机处理可以通过数模转换(A/D)将连续图像变为数字图像。
4•数字化包括取样和量化两个过程:取样:对空间连续坐标(x,y)的离散化量化:幅值f(x,y)的离散化(使连续信号的幅度用有限级的数码表示的过程。
)5.数字化图像所需的主要硬件:♦采样孔、图像扫描机构、光传感器、量化器、输岀存储体6•取样和量化的结果是一个矩阵 7.其中矩阵中的每个元素代表一个邃塞8•存储一幅图像的数据量又空间分辨率和幅度分辨率决定 9•灵敏度、分辨率、信噪比是三大指标第三章,傅里叶变换,DCT变换,WHT•余弦型变换:•傅里叶变换(DFT)和余弦变换(DCT)O•方波型变换:•沃尔什•哈达玛变换(DWT)1•二维连续傅里叶正反变换:F(u,v)= I f f(x.y)eJ_oc J_ocf g y)= \f F(u, v)ej27r(nA+vv)dwdvJ —oo J —oo二维离散傅里叶变换:M — 1 N — I=乏疋 Fgg 宀SS)if=o v=O。
F(u, v)即为f (x, y)的频谱。
频谱的直流成分说明在频谱原点的傅里叶变换尸(0,0)等于图像的平均灰度级 卷积定理:/(x,y)*^(x, y)= ss /O, n)g(x 一 m, y~n)/?/=() n=02•二维离散余弦变换(DCT)一维离散余弦变换:EO)=%)岳gfg 芈严 其中 c®=怜 ""DCT 逆变换为F(u.v)=1~MN A =0 y=02 A r -1/(«)=咅 C(0) + \1三工 F (gsn(2n +1)« ~~2N3•—维沃尔什变换核g (W ):1 X_JL£(乂申)=丄口(一 1)®(”)為一】一心)<N i=o• 厂、Cn 7V--1 ^T-l码3》=卡吝 /G 〉耳(—1)635—一 3«JC> =牙中 O )n (—O务i二维:•正变换: 1 N —l. N —!■H —1护(“*) = —X X /X%」)口( — 1)4(5—373$一_W] N 宜 U • JO■逆变换二1 AT-l JV-l 片_]/(X.y )=丄 £ 乞 疗(心巧 口弟-i -心)JN 為 v=o ~。
数字图像处理知识点总结第一章导论1.图像:对客观对象的一种相似性的生动性的描述或写真。
2.图像分类:按可见性(可见图像、不可见图像),按波段数(单波段、多波段、超波段),按空间坐标和亮度的连续性(模拟和数字)。
3.图像处理:对图像进行一系列操作,以到达预期目的的技术。
4.图像处理三个层次:狭义图像处理、图像分析和图像理解。
5.图像处理五个模块:采集、显示、存储、通信、处理和分析。
第二章数字图像处理的基本概念6.模拟图像的表示:f(x,y)=i(x,y)×r(x,y),照度分量0<i(x,y)<∞,反射分量0<r(x,y)<1.7.图像数字化:将一幅画面转化成计算机能处理的形式——数字图像的过程。
它包括采样和量化两个过程。
像素的位置和灰度就是像素的属性。
8.将空间上连续的图像变换成离散点的操作称为采样。
采样间隔和采样孔径的大小是两个很重要的参数。
采样方式:有缝、无缝和重叠。
9.将像素灰度转换成离散的整数值的过程叫量化。
10.表示像素明暗程度的整数称为像素的灰度级(或灰度值或灰度)。
11.数字图像根据灰度级数的差异可分为:黑白图像、灰度图像和彩色图像。
12.采样间隔对图像质量的影响:一般来说,采样间隔越大,所得图像像素数越少,空间分辨率低,质量差,严重时出现像素呈块状的国际棋盘效应;采样间隔越小,所得图像像素数越多,空间分辨率高,图像质量好,但数据量大。
13.量化等级对图像质量的影响:量化等级越多,所得图像层次越丰富,灰度分辨率高,图像质量好,但数据量大;量化等级越少,图像层次欠丰富,灰度分辨率低,会出现假轮廓现象,图像质量变差,但数据量小。
但在极少数情况下对固定图像大小时,减少灰度级能改善质量,产生这种情况的最可能原因是减少灰度级一般会增加图像的对比度。
例如对细节比较丰富的图像数字化。
14.数字化器组成:1)采样孔:保证单独观测特定的像素而不受其它部分的影响。
2)图像扫描机构:使采样孔按预先确定的方式在图像上移动。
第一章基本概念1、图像:是对客观存在物体的一种相似性的生动模仿与描述。
(图像是对客观存在的物体的某种属性的平面或空间描述)2、图像分为:物理图像、虚拟图像物理图像:物质和能量的实际分布。
虚拟图像:采用数学的方法,将由概念形成的物体(不是实物)进行表示的图像。
3、图像分为:数字图像(离散的)模拟图像(连续的)4、数字图像是用数字阵列表示的图像。
数字阵列中的每一个数字,表示数字图像的一个最小单位,称为像素。
像素是组成数字图像的基本元素。
5、数字图像的表示方法:(以黑白图像为例)黑白图像可用二维函数f(x,y)表示,其中x,y是平面的二维坐标,f(x,y)表示点(x,y)的亮度值(灰度值) 。
7、数字图像处理(Digital Image Processing)是通过计算机对图像进行去除噪声、增强、复原、分割、提取特征等处理的方法和技术。
8、低级图像处理、中级图像处理和高级图像处理。
(1)低级图像处理:主要对图象进行各种加工以改善图象的视觉效果、或突出有用信息,并为自动识别打基础,或通过编码以减少对其所需存储空间、传输时间或传输带宽的要求。
特点:输入是图像,输出也是图像。
(2)中级图像处理:主要对图像中感兴趣的目标进行检测(或分割)和测量,以获得它们的客观信息从而建立对图像的描述。
特点:输入是图像,输出是特征(如边界、轮廓及物体标识)。
(3)高级图像处理:在中级图像处理的基础上,进一步研究图像中各目标的性质和它们之间相互的联系,并得出对图像内容含义的理解(对象识别)及对原来客观场景的解释(计算机视觉)。
特点:输入是数据,输出是理解。
9、根据你自己的理解,选择一个数字图像处理的应用实例,并简单说明其中涉及的具体技术。
在用手机软件修图时,照片由模糊变清晰用的是图像增强技术、放大缩小用的是图像的几何变换技术、把某个特征提取出来用的是图像分割技术。
第二章采样量化1、黑白图像是指图像的每个像素只能是黑或者白,没有中间的过渡,故又称为2值图像。
1、数字图像处理的主要研究内容包含很多方面,请列出并简述其中的4种。
2、什么是图像识别与理解?5、简述图像几何变换与图像变换的区别。
6、图像的数字化包含哪些步骤?简述这些步骤。
7、图像量化时,如果量化级比较小会出现什么现象?为什么?8、简述二值图像与彩色图像的区别。
9、简述二值图像与灰度图像的区别。
10、简述灰度图像与彩色图像的区别。
11、简述直角坐标系中图像旋转的过程。
13、举例说明使用邻近行插值法进行空穴填充的过程。
14、举例说明使用均值插值法进行空穴填充的过程。
15、均值滤波器对高斯噪声的滤波效果如何?试分析其中的原因。
16、简述均值滤波器对椒盐噪声的滤波原理,并进行效果分析。
17、中值滤波器对椒盐噪声的滤波效果如何?试分析其中的原因。
18、使用中值滤波器对高斯噪声和椒盐噪声的滤波结果相同吗?为什么会出现这种现象?19、使用均值滤波器对高斯噪声和椒盐噪声的滤波结果相同吗?为什么会出现这种现象?20、写出腐蚀运算的处理过程。
21、写出膨胀运算的处理过程。
22、为什么YUV表色系适用于彩色电视的颜色表示?23、简述白平衡方法的主要原理。
24、YUV表色系的优点是什么?25、请简述快速傅里叶变换的原理。
26、傅里叶变换在图像处理中有着广泛的应用,请简述其在图像的高通滤波中的应用原理。
27、傅里叶变换在图像处理中有着广泛的应用,请简述其在图像的低通滤波中的应用原理。
28、小波变换在图像处理中有着广泛的应用,请简述其在图像的压缩中的应用原理。
29、什么是图像的无损压缩?给出2种无损压缩算法。
2、对于扫描结果:aaaabbbccdeeeeefffffff,若对其进行霍夫曼编码之后的结果是:f=01e=11 a=10 b=001 c=0001 d=0000。
若使用行程编码和霍夫曼编码的混合编码,压缩率是否能够比单纯使用霍夫曼编码有所提高?31、DCT变换编码的主要思想是什么?32、简述DCT变换编码的主要过程。
数字图像处理的主要研究内容有哪些?并简要说明。
主要研究内容有:图像增强、图像编码、图像复原、图像分割、图像分类和图像重建。
图像增强用于改善图像视觉质量;图像复原是尽可能地恢复图像本来面目;图像编码是在保证图像质量的前提下压缩数据,使图像便于存储和传输;图像分割就是把图像按其灰度或集合特性分割成区域的过程;图像分类是在将图像经过某些预处理(压缩、增强和复原)后,再将图像中有用物体的特征进行分割,特征提取,进而进行分类;图像重建是指从数据到图像的处理,即输入的是某种数据,而经过处理后得到的结果是图像。
图像可以分为哪几类,常见位图有哪些?图像有许多分类方法,按照图像的动态特性,可以分为静止图像和运动图像;按照图像的色彩,可以分为灰度图像和彩色图像;按照图像的维数,可以分为二维图像、三维图像和多维图像等。
位图通过许多像素点来表示一幅图像,每个像素具有颜色属性和位置属性。
位图分为四种,即二值图像、亮度图像、索引图像和RGB图像。
请用MATLAB程序实现灰度图像camera.jpg的二值化处理,阈值取0.7,并显示原图和处理后的图像。
A=imread('camera.jpg');B=im2bw(A,0.7);subplot(1,2,1),imshow(A);subplot(1,2,2),imshow(B);一帧256灰度级图像由1280X1024个像素构成,那么该帧图像的数据量有多大?数据量为1280X1024X8=10485760bit=1310720Byte=1280KB=1.25MB已知某个像素点p的坐标为(x,y),请指出N4(p)、N D(p)和N8(p)。
N4(p):(x+1,y),(x-1,y),(x,y+1),(x,y-1)N D(p):(x+1,y+1)、(x+1,y-1)、(x-1,y+1)、(x-1,y-1)N8(p):N4(p)+ N D(p)灰度级插值用在什么情况下,有哪些插值处理方法?变换后所产生的图像中的像素在原图像中没有相对应的像素点时,就需要进行灰度级的插值运算,此时可以采用不同复杂程度的线性插值法填充放大后多出来的相关像素点的灰度值。
数字图像处理知识点课程重点:图像数字化,图像变换,图像增强,图像的恢复与重建,图像的编码,图像的分割与特征提取,图像识别。
数字图像处理的基本内容:1、图像获取。
举例:摄像机+图像采集卡、数码相机等。
2、图像增强。
显示图像中被模糊的细节,或是突出图像中感兴趣的特征。
3、图像复原。
以图像退化的数学模型为基础,来改善图像质量。
4、图像压缩。
减小图像的存储量,或者在图像传输时降低带宽。
5、图像分割。
将一幅图像划分为几个组成部分或分割出目标物体。
6、图像的表达与描述。
图像分割后,输出分割标记或目标特征参数。
7、目标识别。
把目标进行分类的过程。
8、彩色图像处理。
9、形态学处理。
10、图像的重建。
第一章导论图像按照描述模型可以分为:模拟图像和数字图像。
1)模拟图像,模拟图像可用连续函数来描述。
其特点:光照位置和光照强度均为连续变化的。
2)数字图像,数字图像是图像的数字表示,像素是其最小的单位,用矩阵或数组来描述图像处理:对图像进行一系列的操作,以达到预期的目的的技术。
内容:研究图像信息的获取、传输、存储,变换、显示、理解与综合利用”的一门崭新学科。
三个层次:狭义图像处理,图像分析,图像理解。
狭义图像处理主要指对图像进行各种操作以改善图像的视觉效果,或对图像进行压缩编码以减少所需存储空间或传输时间、传输通路的要求。
图像分析主要是对图像中感兴趣的目标进行检测和测量,从而建立对图像的描述。
图像分析是一个从图像到数值或符号的过程。
图像理解则是在图像分析的基础上,进一步研究图像中各目标的性质和它们之间的相互联系,并得出对图像内容含义的理解以及对原来客观场景的解译,从而指导和规划行动;图像分析主要是以观察者为中心研究客观世界,图像理解在一定程度上是以客观世界为中心,借助知识、经验等来把握整个客观世界。
图像处理的三个层次:低级图像处理内容:主要对图像进行各种加工以改善图像的视觉效果、或突出有用信息,并为自动识别打基础,或通过编码以减少对其所需存储空间、传输时间或传输带宽的要求。
数字图像处理知识点总结第二章:数字图像处理的基本概念2.3 图像数字化数字化是将一幅画面转化成计算机能处理的数字图像的过程。
包括:采样和量化。
2.3.1、2.3.2采样与量化1.采样:将空间上连续的图像变换成离散点。
(采样间隔、采样孔径)2.量化:采样后的图像被分割成空间上离散的像素,但是灰度是连续的,量化就是将像素灰度转换成离散的整数值。
一幅数字图像中不同灰度值的个数称为灰度级。
二值图像是灰度级只有两级的。
(通常是0和1)存储一幅大小为M×N、灰度级数为G的图像所需的存储空间:(bit)2.3.3像素数、量化参数与数字化所得到的数字图像间的关系1.一般来说,采样间隔越大,所得图像像素数越少,空间分辨率低,质量差,严重时会出现国际棋盘效应。
采样间隔越小,所的图像像素数越多,空间分辨率高,图像质量好,但是数据量大。
2.量化等级越多,图像层次越丰富,灰度分辨率高,图像质量好,但数据量大。
量化等级越少,图像层次欠丰富,灰度分辨率低,会出现假轮廓,质量变差,但数据量小。
2.4 图像灰度直方图2.4.1定义灰度直方图是反映一幅图像中各灰度级像素出现的频率,反映灰度分布情况。
2.4.2性质(1)只能反映灰度分布,丢失像素位置信息(2)一幅图像对应唯一灰度直方图,反之不一定。
(3)一幅图像分成多个区域,多个区域的直方图之和是原图像的直方图。
2.4.3应用(1)判断图像量化是否恰当(2)确定图像二值化的阈值(3)物体部分灰度值比其他部分灰度值大的时候可以统计图像中物体面积。
(4)计算图像信息量(熵)2.5图像处理算法的形式2.5.1基本功能形式(1)单幅->单幅(2)多幅->单幅(3)多幅/单幅->数字或符号2.5.2图像处理的几种具体算法形式(1)局部处理(邻域,如4-邻域,8-邻域)(移动平均平滑法、空间域锐化等)(2)迭代处理反复对图像进行某种运算直到满足给定条件。
(3)跟踪处理选择满足适当条件的像素作为起始像素,检查输入图像和已得到的输出结果,求出下一步应该处理的像素。
《数字图像处理》期末考试重点总结(5篇材料)第一篇:《数字图像处理》期末考试重点总结*数字图像处理的主要内容及特点图像获取、图像变换、图像增强、图像恢复、图像压缩、图像分析、图像识别、图像理解。
(1)处理精度高,再现性好。
(2)易于控制处理效果。
(3)处理的多样性。
(4)图像数据量庞大。
(5)图像处理技术综合性强。
*图像增强:通过某种技术有选择地突出对某一具体应用有用的信息,削弱或抑制一些无用的信息。
图像增强不存在通用理论。
图像增强的方法:空间域方法和变换域方法。
*图像反转:S=L-1-r 1.与原图像视觉内容相同2.适用于增强嵌入于图像暗色区域的白色或灰色细节。
*对数变换 S=C*log(1+r)c为常数,r>=0 作用与特点:对数变换将输入中范围较窄的低灰度值映射为输出中较宽范围的灰度值,同时,对输入中范围较宽的高灰度值映射为输出中较窄范围的灰度值。
对数函数的一个重要特征是可压缩像素值变化较大的图像的动态范围;*幂律(伽马)变换 s=c*(r+ɛ)ɤ伽马小于1时减小图像对比度,伽马大于1时增大对比度。
*灰度直方图:是数字图像中各灰度级与其出现的频数间的统计关系。
*直方图均衡化:直方图均衡化就是通过变换函数将原图像的直方图修正为均匀的直方图,即使各灰度级具有相同的出现频数,图象看起来更清晰。
直方图均衡化变换函数必须为严格单调递增函数。
直方图均衡化的特点:1.能自动增强图像的对比度2.得到了全局均衡化的直方图,即均匀分布3.但其效果不易控制*直方图规定化(匹配):用于产生处理后有特殊直方图的图像的方法*空间滤波即直接对图像像素进行处理。
获得最佳滤波效果的唯一方法是使滤波掩模中心距原图像边缘的距离不小于(n-1)/2个像素。
*平滑滤波器用于模糊处理和减小噪声。
平滑线性空间滤波器的输出是:待处理图像在滤波器掩模邻域内的像素的简单平均值。
优点:减小了图像灰度的“尖锐”变化,故常用于图像降噪。
负面效应:模糊了图像的边缘,因为边缘也是由图像灰度的尖锐变化造成的。
第一章:数字图像处理研究的内容主要有:(1)图像获取,表示和表现(2)图像增强(3)图像复原(4)图像分割(5)图像分析(6)图像重建(7)图像压缩编码数字图像处理:利用计算机对图像进行去除噪声、增强、复原、分割、特征提取、识别等处理的理论、方法和技术。
一般情况下,图像处理是用计算机和实时硬件实现的,因此,也称之为计算机图像的实现。
数字图像处理的特点:(1)处理精度高,再现性好(2)易于控制处理效果(3)处理的多样性(4)图像数据量庞大(5)处理费时(6)图像处理技术综合性强图像:就是三维场景在二维平面上的影像数字图像:是用配置在二维平面(画面)上的灰度值或彩色值来表示信息的,信息扩展在二维平面上。
数字图像以数字格式存储图像数据,数字图像常用矩阵来描述。
图像处理的研究目的:(1)提高图像的视感质量,以达到赏心悦目的目的(2)提取图像中所包含的某些特征或特殊信息,只要用于计算机分析,经常用作模式识别,计算机视觉的预处理(3)对图像数据进行变换、编码和压缩,以便于图像的存储和传输图像工程三层示意图:图像工程的内容可分为图像处理、图像分析和图像理解三个层次,这三个层次既有联系又有区别,如下图所示。
图像处理、图像分析、图像理解各有什么特点?它们之间有何联系和区别?图像处理:的重点是图像之间进行的变换。
尽管人们常用图像处理泛指各种图像技术,但比较狭义的图像处理主要是对图像进行各种加工,以改善图像的视觉效果并为自动识别奠定基础,或对图像进行压缩编码以减少所需存储空间图像分析:主要是对图像中感兴趣的目标进行检测和测量,以获得它们的客观信息,从而建立对图像的描述。
如果说图像处理是一个从图像到图像的过程,则图像分析是一个从图像到数据的过程。
这里的数据可以是目标特征的测量结果,或是基于测量的符号表示,它们描述了目标的特点和性质。
图像理解:的重点是在图像分析的基础上,进一步研究图像中各目标的性质和它们之间的相互联系,并得出对图像内容含义的理解以及对原来客观场景的解释,从而指导和规划行动。
数字图像处理复习第一章概述1. 图像的概念及数字图像的概念。
图-是物体透射或反射光的分布,是客观存在的。
像-是人的视觉系统对图的接受在大脑中形成的印象或反映,图像是图和像的有机结合,是客观世界能量或状态以可视化形式在二维平面上的投影。
数字图像是物体的一个数字表示,是以数字格式存放的图像。
2. 数字图像处理的概念。
数字图像处理又称为计算机图像处理,它是指将图像信号转换成数字信号并利用计算机对其进行处理的过程,以提高图像的实用性。
3. 数字图像处理的优点。
精度高、再现性好、通用性、灵活性强第二章数字图像处理基础1. 人眼视觉系统的基本构造P14 图2.1人眼横截面简图2. 亮度的适应和鉴别人眼对光亮度的适应性非常高,一般情况下跨度达到10的10次方量级,从伸手不见五指到闪光灯强曝光。
3.光强度与主观亮度曲线。
P15 图2.4光强度与主观亮度的关系曲线4. 图像的数字化及表达。
(采样和量化的概念)图像获取即图像的数字化过程,包括扫描、采样和量化。
采样:将空间上连续的图像变成离散点的操作 量化:将像素灰度转换成离散的整数值的过程5. 图像采样过程中决定采样空间分辨率最重要的两个参数。
采样间隔、采样孔径6. 图像量化过程中量化级数与量化灰度取值范围之间的关系量化等级越多,所得图像层次越丰富,灰度分辨率高,图像质量好,但数据量大;量化等级越少,图像层次欠丰富,灰度分辨率低,会出现假轮廓现象,图像质量变差,但数据量小.7. 像素的相邻领域概念(4领域,8领域)。
设为位于坐标处的一个像素(x+1,y ),(x-1,y ),(x,y+1),(x,y-1) 组成的4邻域,用)(4p N 表示。
(x+1,y+1),(x+1,y-1),(x-1,y+1),(x-1,y-1) 像素集用)p (N D 表示)(4p N 和)p (N D 合起来称为p 的8邻域,用)(8p N 表示。
8. 领域空间内像素距离的计算。
(欧式距离,街区距离,棋盘距离) p 和q 之间的欧式距离定义为: 22)()(),(t y s x q p D e -+-=p 和q 之间的4D 距离(也叫城市街区距离)定义为: t y s x q p D -+-=),(4p 和q 之间的8D 距离(也叫棋盘距离)定义为: ),max(),(8t y s x q p D --=第三章 图像的基本运算(书后练习3.2,3.9 ) 1. 线性点运算过程中各参数表示的含义(k ,b )。
1、图像工程的三个层次。
图像处理、图像分析、图像理解2、距离计算3、描述数字图像的基本参数并说明其物理意义。
(分辨率、像素深度、图像大小)图像的空间坐标的离散化叫做空间采样,灰度的离散化叫做灰度量化。
1:分辨率:是指区分图象细节的程度,通常表示一个像素所代表的实际象元的大小,假设1个M*N数组中等间距的采样来近似一幅连续的图像大小为Lx,Ly的f(x,y).,则分辨率为Lx/M,Ly/N2:像素深度:在灰度离散的灰度量化过程中,每个离散的灰度级数为G=2k ,k称为像素深度.3:图像大小: 存储一副图象的大小所需要的位数b(单位bit), 则b=M*N*k.4、说明数字图像的亮度函数I=f(x, y, z, wavelength, t),说明可以表示的图像类型。
对于一般从客观景物的得到的图像是二维的,这种离散化了的图像可以用I=f(x,y)来表示某一具体位置(像素)的某种性质的数值。
因此我们可以根据图像内的不同位置的不同性质来利用图形。
客观世界的空间是三维的,因此我们可以利用I=f(x,y,z)来表示三维图像中的不同体素的不同性质的数值。
由于所观测的物体的某一位值得性质与电磁波的波长有关,所以可以用I=f(x, y, z, wavelength)来表示物体的某一位值的随电磁波波长而变化的某种性质的数值。
而I=f(x, y, z, wavelength, t)反映了时间的变化带来的数值的变化。
5、简述数字图像处理系统的主要组成及其作用。
硬件组成:图像输入设备、输出设备、计算机和显示器。
存储方式:(1)位映射–每个象素存为一个数据。
存储空间大,放大产生模糊;(2)向量存储(矢量存储)-- 图像内容的轮廓存储时计算量大、算法复杂。
适合图表/工程制图等,显示慢。
软件:Photoshop, mat lab, IDL, ….采集:对某种电磁波敏感的物理器件。
电磁波能-----电信号、数字化器常用的器件:显微密度计micro-densitometers、析象管image dissector、视像管光敏感的固态CCD、NTSC 30 frames/sec PAL25frame/sec、CCD 512-4096 线阵列存储:内存、帧缓存、磁盘、MO、光盘显示:电视显示器(液晶、CRT、等离子体、投影仪等)、打印机【主要组成:采集,存储,计算,显示和输出等几部分;作用:采集主要是采集数字图像;图像包含大量的信息,所以存储图像需要大量的空间,而存储器是必不可少的;计算一般是对算法的形式描述,而大多数的算法可以用软件实现;显示和输出是将处理的结果给人看的,对图像处理和分析系统来说非常的重要。
数字图像处理知识点汇总1. 什么是数字图像处理?就是利⽤数字计算机或其他⾼速、⼤规模集成数字硬件,对从图像信息转换来的数字电信号进⾏某些数字运算或处理,以期提⾼图像的质量或达到⼈们所要求的某些预期的结果。
2.图像的表⽰⽅法:.不等长码3. 图像数字化的过程包括两个⽅⾯:采样和量化。
i. 图像在空间上的离散化称为采样,即使空间上连续变化的图像离散化。
也就是⽤空间上部分点的灰度值来表⽰图像,这些点称其为样点。
ii. 对样点灰度值的离散化过程称为量化。
也就是对每个样点值数量化,使其只和有限个可能电平数中的⼀个对应,即使图像的灰度值离散化。
量化也可以分为两种:⼀种是将样点灰度值等间隔分档取数,称为均匀量化;另⼀种是不等间隔分档取整,称为⾮均匀量化。
4. 样点的约束条件:由这些样点,采⽤某种⽅法能够正确重建原图像,采样的⽅法有两类:⼀类是直接对表⽰图像的⼆维函数值进⾏采样,即读取各离散点上的信号值,所得结果就是⼀个样点值阵列,所以也成为点阵采样;另⼀类是先将图像函数进⾏某种正交变换,⽤其变换系数作为采样值,故称为正交系数采样。
5. 最佳量化:6. 图像噪声的分类:按噪声的来源外部噪声:从处理系统外来的影响。
内部噪声:(1)由光和电的基本0(0o)1(45o) 2(90o)3(135o)4(180o) 5(225o)6(270o)7(315o)性质引起的噪声。
(2)电器的机械运动产⽣噪声。
(3)元器件材料本⾝引起的噪声。
(4)系统内部电路噪声。
从统计观点:平稳噪声、⾮平稳噪声从噪声幅度分布:⾼斯噪声、瑞利噪声、椒盐噪声……按噪声和信号之间关系:加法性噪声乘法性噪声7. 图像质量评价:(1)客观保真度准则(2)主观保真度准则相对评价::对⼀批图象从好到坏进⾏排队,按排队关系评分8.三基⾊原理:颜⾊的基本属性:⾊调(hue):由物体反射光线的波长决定,是颜⾊本质的基本特性。
饱和度(saturation):由物体反射光中混⼊⽩光的多少决定,指颜⾊的鲜明程度。
第一章数字图像处理根底1数字图像处理:将图像转换成一个数字矩阵存放在图像存储器中,然后利用计算机对图像信息进行数字运算和处理,以提高图像质量或者提取所需要的信息2数字图像获取:把客观场景发射或者发射的电磁波信息首先利用光学成像系统生成一副模拟图像,然后通过模数转换将模拟图像转换为计算机可以存储的离散化数字图像。
3采样:即图像空间坐标或位置的离散化,也就是把模拟图像划分为假设干图像元素,兵赋予它们唯一的地址。
;离散化的小区域就是数字图像的根本单元,称为像元也称像素。
量化:即电磁辐射能量的离散化,也就是把像元内的连续辐射亮度中离散的数字值来表示,这些离散的数字值也称灰度值,,因为它们代表了图像上不同的亮暗水平。
4遥感数字图像获取特征参数质量特征:⑴空间分辨率:数字图像上能被详细区分的最小单元的尺寸或大小⑵辐射分辨率传感器探测原件在接受光谱信号时,所能分辨的最小辐射度差信息量特征:⑴光谱分辨率:传感器探测元件在接收目标地物辐射能量时所用的波段数目⑵时间分辨率:对同一区域进行重复观测的最小时间间隔。
5模拟图像:在图像处理中通过某种物理量的强弱变化来记录图像亮度信息的图像6数字图像:把连续的模拟图像离散化成规那么网格并用计算机以数字的模式记录图像上各网格点亮度信息的图像7数字图像特性:①空间分布特性:1空间位置:数字图像以二维矩阵的结构的数据来描述物体,矩阵按照行列的顺序定位数据,所以物体的位置也是用行列号表示。
2形状:点状线状和面状3大小:线状物体的长度或面状物体的面积,表现为像元的集聚数量4空间关系:包含,相邻,相离三种拓扑关系②数值统计特性:对图像的灰度分布进行统计分析。
图像的灰度直方图:用来描述一幅数字图像的灰度分布,横坐标为灰度级,纵坐标为灰度级在图中出现8直方图的用途:1图像获取质量评价2边界阙值的选择3噪声类型的判断9遥感数字图像的输出特征参数:1输出分辨率:屏幕分辨率和打印的分辨率2灰度分辨率:指输出设备能区分的最小灰度差3颜色空间模型:RGB 模型CMYK模型HSI颜色模型10数字图像种类:1.黑白图像:二值数字图像,0表示黑色1表示白色;2.灰度图像:单波段图像每个像元的灰度值的取值范围由灰度量决定;3.伪彩色图像:把单波段图像的各灰度值按照一定规那么映射到颜色空间中某一对应颜色;4.彩色图像:由红绿蓝3个颜色通道的数字层组成的图像第二章数字图像存储1比特序:一个字节中8个比特的存储顺序称为比特序。
图像处理知识点总结一、图像采集1. 数字图像数字图像是由像素组成的二维矩阵,每个像素由灰度值或者颜色值来描述。
数字图像的采集通过光学图像传感器来实现,图像传感器可以将光信号转换成电信号,然后通过数模转换器转换成数字信号。
常见的图像传感器包括CCD和CMOS。
2. 分辨率图像的分辨率指的是图像中包含的像素数量,分辨率越高,图像越清晰。
分辨率可以用像素数来描述,常见的分辨率有1024×768、1920×1080等。
分辨率与图像的清晰度成正比,但是高分辨率也会增加图像文件的大小。
3. 颜色空间颜色空间是用来描述颜色的数学模型,常见的颜色空间包括RGB、CMYK、YUV等。
RGB颜色空间是由红、绿、蓝三原色构成,它是最常用的颜色空间。
CMYK颜色空间用于打印颜色,它是由青、品红、黄、黑四原色构成。
二、图像处理1. 空域处理空域处理是指在图像的像素级别上进行处理,包括图像增强、滤波、锐化等操作。
图像增强可以提高图像的对比度和亮度,滤波可以去除图像中的噪声,锐化可以增强图像的边缘和细节。
2. 频域处理频域处理是指在图像的频域上进行处理,包括傅里叶变换、频谱分析、频率滤波等操作。
傅里叶变换可以将图像从空域转换到频域,频谱分析可以分析图像中的频率成分,频率滤波可以去除图像中的某些频率成分。
3. 形态学处理形态学处理是指利用形态学运算对图像进行处理,包括膨胀、腐蚀、开运算、闭运算等操作。
膨胀可以增强图像中的物体,腐蚀可以减弱图像中的物体,开运算可以去除图像中的小孔洞,闭运算可以填充图像中的小孔洞。
三、图像分析1. 图像特征图像特征是用来描述图像的一些重要信息,包括颜色、纹理、形状等。
颜色特征可以用来区分不同物体,纹理特征可以用来区分不同材质,形状特征可以用来区分不同形状。
2. 物体检测物体检测是指在图像中检测出特定物体的位置和数量,常见的物体检测算法包括边缘检测、Hough变换、Haar特征检测等。
第一章名词解释:(2)数字图像:指由被称作像素的小块区域组成的二维矩阵。
将物理图像行列划分后,每个小块称为像素。
(4)数字图像处理:计算机技术或其他数字技术,对图像信息进行某些数字运算和各种加工处理,以改善图像的视觉效果和提高数字实用性的技术。
第二章名词解释(12)图像采样:将空间上连续的图像变换成离散点的操作称为采样,就是对图像的连续空间坐标x和y的离散化。
(14)图像灰度级量化:对图像函数的幅值 f 的离散化.(28)欧氏距离:像素p和q之间的欧氏(Euclidean)距离定义为:De(p,q)=[(x—u)2+(y—v)2]1/2 (2。
12)也即,所有距像素点(x,y)的欧氏距离小于或等于d的像素都包含在以(x,y)为中心,以d为半径的圆平面中。
(29)街区距离:像素p和q之间的D4距离,也即街区(city-block)距离,定义为:D4(p,q)=|x-u| + |y-v| (2.13)也即,所有相距像素点(x,y)的D4距离为小于d或等于d的像素组成一个中心点在(x,y)的菱形。
(30)棋盘距离:像素p和q之间的D8距离,也即棋盘距离,定义为:D8(p,q)=max(|x—u|,|y—v|) (2.14)也即,所有距像素点(x,y)的D8距离为小于d或等于d的像素组成一个中心点在(x,y)的方形(33)调色板:在16色或256色显示系统中,将图像中出现最频繁的16中或256中颜色组成一个颜色表,并将他们分别编号为0—15或0—255,这样就是每一个4位或8位的颜色编号与颜色表中4位颜色值相对应.这种4位或者8位的颜色编号成为颜色的索引号,有颜色索引号及其对应的24位颜色值组成的表成为颜色查找表,也即调色板。
第四章名词解释(1)空间域图像增强:在图像平面中对图像的像素灰度值进行运算处理,使之更适合于人眼的观察或机器的处理的一种技术. (7)图像锐化:图像锐化是一种突出和加强图像中景物的边缘和轮廓的技术。