2009年中考数学二轮复习专题训练:数形结合
- 格式:doc
- 大小:538.50 KB
- 文档页数:3
中考数学二轮专题复习之一:配方法与换元法把代数式通过凑配等手段,得到完全平方式,再运用完全平方式是非负数这一性质达到增加问题的条件的目的,这种解题方法叫配方法.所谓换元法,就是在一个比较复杂的数学式子中,用新的变元去代替原式的一个部分或改造原来的式子,使它简化,使问题易于解决。
【范例讲析】: 例1: 填空题:1).将二次三项式x 2+2x -2进行配方,其结果为 。
2).方程x 2+y 2+4x -2y+5=0的解是 。
3).已知M=x 2-8x+22,N=-x 2+6x -3,则M 、N 的大小关系为 。
例2.已知△ABC 的三边分别为a 、b 、c ,且a 2+b 2+c 2=ab+bc+ac ,则△ABC 的形状为 。
例3.解方程:422740x x --=【闯关夺冠】 1.已知13x x +=.则221x x+的值为__________. 2.若a 、b 、c 是三角形的三边长,则代数式a 2–2ab+b 2–c 2的值 ( ) A 大于零 B 等于零 C 小于零 D 不能确定 3已知:a 、b 为实数,且a 2+4b 2-2a+4b+2=0,求4a 2-b1的值。
4. 解方程: 211()65()11x x +=--对于某些数学问题,若得知所求结果具有某种确定的形式,则可研究和引入一些尚待确定的系数(或参数)来表示这样的结果.通过变形与比较.建立起含有待定字母系数(或参数)的方程(组),并求出相应字母系数(或参数)的值,进而使问题获解.这种方法称为待定系数法. 【范例讲析】:【例1】二次函数的图象经过A(1,0)、B(3,0)、C(2,-1)三点.(1)求这个函数的解析式.(2)求函数与直线y=-x+1的交点坐标.【例2】一次函数的图象经过反比例函数xy 8-=的图象上的A 、B 两点,且点A 的横坐标与点B 的纵坐标都是2。
(1)求这个一次函数的解析式;(2)若一条抛物线经过点A 、B 及点C (1,7),求抛物线的解析式。
)中考第二轮专题复习三:数形结合思想数形结合是一个数学思想方法,包含“以形助数”和“以数辅形”两个方面,其应用大致可以分为两种情形:Ⅰ、借助形的生动和直观性来阐明数之间的联系,即以形作为手段,数为目的,比如应用函数的图像来直观地说明函数的性质;Ⅱ、借助于数的精确性和规范严密性来阐明形的某些属性,即以数作为手段,形作为目的,如应用曲线的方程来精确地阐明曲线的几何性质一、借助数轴解数与式的问题[例1](山西·2006中考)实数b a ,在数轴上的位置如图所示,化简:2)(a b b a -++=__________.二、借助平面直角坐标系解函数问题 [例2]如图(1),某抛物线y=ax2+bx+c 交x 轴交于A 、B 两点,A (1,0),B (5,0),当x____________时,y=0.当x_____________时y>0,当x____________时,y<0.(2)如图(2)直线y=kx+b 交x 轴于A 点,交y 轴于B 点,且A (-3,0)、B (0,2),则直线解析式为___________________,根据图象直接写出当x__________时;y>0,当x_____时,y<0;当x_____时,y=0.(3)如图(3)某抛物线y1=ax2+bx+c 与某直线y2=kx+b 交于A 、B 两点,且A (-4,3)、B (2,1)。
当___________时y1>y2;当______________时y1=y2;当_____________时y1<y2.(填x 的取值范围)三、利用图形理解代数恒等式【例3】[2007年辽宁十二市] 图①是一个边长为()m n +的正方形,小颖将图①中的阴影部分拼成图②的形状,由图①和图②能验证的式子是( ) A 、22()()4m n m n mn +--= B 、222()()2m n m n mn +-+= C 、222()2m n mn m n -+=+ D 、22()()m n m n m n +-=-四、借助直角三角形解三角比问题[例4](南京·2007中考)如图,A 、B 两地之间有一座山,汽车原来从A 地到B 地须经C 地沿折线A —C —B 行驶,现开通隧道后,汽车直接沿直线AB 行驶.已知AC=10km,∠A=30°,∠B=45°,则隧道开通后,汽车从A 地到B 地比原来少走多少千米?(结果精确到0.1km)(参考数据:41.12≈,73.13≈)五、借助勾股定理等几何图形的知识解实际问题[例5](上海·2006中考)本市新建的滴水湖是圆形人工湖.为测量该湖的半径,小杰和小丽沿湖边选取A 、B 、C 三根木柱,使得A 、B 之间的距离与A 、C 之间的距离相等,并测得BC 长为240米,A 到BC 的距离为5米,如图1所示.请你帮他们求出滴水湖的半径.· ··0 a b· · · AB C例4图2· OD ABC3045例3【巩固练习】1、一次函数32--=x y 的图象不经过第 象限2、如果正比例函数kx y -=的图象经过第一、三象限,那么直线3+=kx y 经过第_______象限。
第二轮复习一 化归思想Ⅰ、专题精讲:数学思想是数学内容的进一步提炼和概括,是对数学内容的种本质认识,数学方法是实施有关数学思想的一种方式、途径、手段,数学思想方法是数学发现、发明的关键和动力.抓住数学思想方法,善于迅速调用数学思想方法,更是提高解题能力根本之所在.因此,在复习时要注意体会教材例题、习题以及中考试题中所体现的数学思想和方法,培养用数学思想方法解决问题的意识.初中数学的主要数学思想是化归思想、分类讨论思想、数形结合思想等.本专题专门复习化归思想.所谓化归思想就是化未知为已知、化繁为简、化难为易.如将分式方程化为整式方程,将代数问题化为几何问题,将四边形问题转化为三角形问题等.实现这种转化的方法有:待定系数法、配方法、整体代人法以及化动为静、由抽象到具体等. Ⅱ、典型例题剖析【例1】如图3-1-1,反比例函数y=-8x 与一次函数y=-x+2的图象交于A 、B 两点.(1)求 A 、B 两点的坐标; (2)求△AOB 的面积.解:⑴解方程组82y x y x ⎧=-⎪⎨⎪=-+⎩ 得121242;24x x y y ==-⎧⎧⎨⎨=-=⎩⎩ 所以A 、B 两点的坐标分别为A (-2,4)B(4,-2(2)因为直线y=-x+2与y 轴交点D 坐标是(0, 2), 所以11222,24422AOD BOD S S ∆∆=⨯⨯==⨯⨯= 所以246AOB S ∆=+=点拨:两个函数的图象相交,说明交点处的横坐标和纵坐标,既适合于第一个函数,又适合于第二个函数,所以根据题意可以将函数问题转化为方程组的问题,从而求出交点坐标. 【例2】解方程:22(1)5(1)20x x ---+= 解:令y= x —1,则2 y 2—5 y +2=0. 所以y 1=2或y 2=12 ,即x —1=2或x —1=12 .所以x =3或x=32 故原方程的解为x =3或x=32点拨:很显然,此为解关于x -1的一元二次方程.如果把方程展开化简后再求解会非常麻烦,所以可根据方程的特点,含未·知项的都是含有(x —1)所以可将设为y ,这样原方程就可以利用换元法转化为含有y 的一元二次方程,问题就简单化了. 【例3】如图 3-1-2,梯形 ABCD 中,AD ∥BC ,AB=CD ,对角线AC 、BD 相交于O 点,且AC ⊥BD ,AD=3,BC=5,求AC 的长.解:过 D 作DE ⊥AC 交BC 的延长线于E ,则得AD=CE 、AC=DE .所以BE=BC+CE=8. 因为 AC ⊥BD ,所以BD ⊥DE .因为 AB=CD , 所以AC =BD .所以GD=DE . 在Rt △BDE 中,BD 2+DE 2=BE 2所以BDBE=4 2 ,即AC=4 2 . 点拨:此题是根据梯形对角线互相垂直的特点通过平移对角线将等腰梯形转化为直角三角形和平行四边形,使问题得以解决.【例4】已知△ABC 的三边为a ,b ,c ,且222a b c ab ac bc ++=++,试判断△ABC 的形状. 解:因为222a b c ab ac bc ++=++, 所以222222222a b c ab ac bc ++=++, 即:222()()()0a b b c a c -+-+-=所以a=b ,a=c , b=c所以△ABC 为等边三角形.点拨:此题将几何问题转化为代数问题,利用凑完全平方式解决问题.【例5】△ABC 中,BC =a ,AC =b ,AB =c .若90C ∠=︒,如图l ,根据勾股定理,则222a b c +=。
Ⅰ、专题精讲:数学家华罗庚说得好:“数形结合百般好,隔离分家万事休,几何代数统一体,永远联系莫分离”.几何图形的形象直观,便于理解,代数方法的一般性,解题过程的机械化,可操作性强,便于把握,因此数形结合思想是数学中重要的思想方法.所谓数形结合就是根据数学问题的题设和结论之间的内在联系,既分析其数量关系,又揭示其几何意义使数量关系和几何图形巧妙地结合起来,并充分地利用这种结合,探求解决问题的思路,使问题得以解决的思考方法.Ⅱ、典型例题剖析【例1】(2005,嘉峪关,10分)某公司推销一种产品,设x(件)是推销产品的数量,y(元)是推销费,图3-3-1已表示了公司每月付给推销员推销费的两种方案,看图解答下列问题:(1)求y1与y2的函数解析式;(2)解释图中表示的两种方案是如何付推销费的?(3)果你是推销员,应如何选择付费方案?解:(1)y1=20x,y2=10x+300.(2)y1是不推销产品没有推销费,每推销10件产品得推销费200元,y2是保底工资300元,每推销 10件产品再提成100元.(3)若业务能力强,平均每月保证推销多于30件时,就选择y1的付费方案;否则,选择y2的付费方案.点拨:图象在上方的说明它的函数值较大,反之较小,当然,两图象相交时,说明在交点处的函数值是相等的.【例2】(2005,某农场种植一种蔬菜,销售员张平根据往年的销售情况,对今年这种蔬菜的销售价格进行了预测,预测情况如图3-3-2,图中的抛物线(部分)表示这种蔬菜销售价与月份之间的关系,观察图象,你能得到关于这种蔬菜销售情况的哪些信息?答题要求:(1)请提供四条信息;(2)不必求函数的解析.解:(1)2月份每千克销售价是3.5元;7对月份每千克销售价是0.5元;(3)l月到7月的销售价逐月下降;(4)7月到12月的销售价逐月上升;(5)2月与7月的销售差价是每千克3元;(6)7月份销售价最低,1月份销售价最高;(7)6月与8月、5月与9月、4月与10 月、3月与11 月,2月与12 月的销售价分别相同.点拨:可以运用二次函数的性质:增减性、对称性.最大(小)值等,得出多个结论.【例3】(2005,江西课改,8分)某报社为了解读者对本社一种报纸四个版面的喜欢情况,对读者作了一次问卷调查,要求读者选出自己最喜欢的一个版面,将所得数据整理后绘制成了如图3l 司所示的条形统计图:⑴请写出从条形统计图中获得的一条信息;⑵请根据条形统计图中的数据补全如图3-3-3所示的扇形统计图(要求:第二版与第三版相邻人并说明这两幅统计图各有什么特点?⑶请你根据上述数据,对该报社提出一条合理的建议。
沪教版初中数学中考总复习知识点梳理重点题型(常考知识点)巩固练习中考冲刺:数形结合问题—知识讲解(提高)【中考展望】1.用数形结合的思想解题可分两类:(1)利用几何图形的直观性表示数的问题,它常借用数轴、函数图象等;(2)运用数量关系来研究几何图形问题,常需要建立方程(组)或建立函数关系式等.2. 热点内容:在初中教材中,数的常见表现形式为: 实数、代数式、函数和不等式等,而形的常见表现形式为: 直线型、角、三角形、四边形、多边形、圆、抛物线、相似、勾股定理等.在直角坐标系下,一次函数的图象对应着一条直线,二次函数的图象对应着一条抛物线,这些都是初中数学的重要内容.特别是二次函数,不仅是学生学习的难点之一,同时也使数形结合的思想方法在中学数学中得到最充分体现.在平面直角坐标系中,二次函数图象的开口方向、顶点坐标、对称轴以及与坐标轴的交点等都与其系数a,b,c密不可分.事实上,数a 决定抛物线的开口方向, b 与a 一起决定抛物线的对称轴位置, c 决定了抛物线与y 轴的交点位置,与a、b 一起决定抛物线顶点坐标的纵坐标,抛物线的平移的图形关系只是顶点坐标发生变化,其实从代数的角度看是b、c 的大小变化.【方法点拨】数形结合:就是通过数与形之间的对应和转化来解决数学问题,它包含“以形助数”和“以数解形”两个方面.利用它可使复杂问题简单化,抽象问题具体化,它兼有“数的严谨”与“形的直观”之长,是优化解题过程的重要途径之一,是一种基本的数学方法.数形结合问题,也可以看作代数几何综合问题.从内容上来说,是把代数中的数与式、方程与不等式、函数,几何中的三角形、四边形、圆等图形的性质,以及解直角三角形的方法、图形的变换、相似等内容有机地结合在一起,同时也会融入开放性、探究性等问题.经常考查的题目类型主要有坐标系中的几何问题(简称坐标几何问题),以及图形运动过程中求函数解析式的问题等.解决这类问题,第一,需要认真审题,分析、挖掘题目的隐含条件,翻译并转化为显性条件;第二,要善于将复杂问题分解为基本问题;第三,要善于联系与转化,进一步得到新的结论.尤其要注意的是,恰当地使用综合分析法及方程与函数的思想、转化思想、数形结合思想、分类与整合思想等数学思想方法,能更有效地解决问题.【典型例题】类型一、利用数形结合探究数字的变化规律1.如图,网格中的每个四边形都是菱形.如果格点三角形ABC的面积为S,按照如图所示方式得到的格点三角形A1B1C1的面积是,格点三角形A2B2C2的面积是19S,那么格点三角形A3B3C3的面积为().A.39SB. 36SC.37SD.43S【思路点拨】设网络中每个小菱形的边长为一个单位,由于ABC的面积为S,则小菱形的面积为2S;从图上观察可知三角形A2B2C2三个顶点分别在边长为3个单位的菱形的内部,其中一顶点与菱形重合,另两顶点在与前一顶点不相连的两边上,三角形A n B n三顶点分别在边长为(2n+1)个单位的菱形的内部,此菱形与三角形A n B n不重合的部分为三个小三角形;由此得到关于三角形A n B n面积公式,把n=3代入即可求出三角形A3B3C3的面积.【答案】C.【解析】网络中每个小菱形的边长为一个单位,由于ABC的面积为S,则小菱形的面积为2S;从图上观察可知三角形A2B2C2三个顶点分别在边长为3个单位的菱形的内部,其中一顶点与菱形重合,另两顶点在与前一顶点不相连的两边上,三角形A n B n三顶点分别在边长为2n+1个单位的菱形的内部,此菱形与三角形A n B n不重合的部分为三个小三角形;而三角形A n B n面积=边长为2n+1个单位的菱形面积-三个小三角形面积=2S(2n+1)2-,=S(8n2+8n+2-2n2-n-2n2-3n-1-n2-n),=S(3n2+3n+1),把n=3分别代入上式得:S3=S(3×32+3×3+1)=37S.故选C.【总结升华】此题主要考查菱形的性质,也考查了学生的读图能力以及探究问题的规律并有规律解决问题的能力.举一反三:【变式】(2016•潍坊)在平面直角坐标系中,直线l:y=x﹣1与x轴交于点A1,如图所示依次作正方形A1B1C1O、正方形A2B2C2C1、…、正方形A n B n﹣1,使得点A1、A2、A3、…在直线l上,点C1、C2、C3、…在y轴正半轴上,则点B n的坐标是.【答案】(2n﹣1,2n﹣1)【解析】解:∵y=x﹣1与x轴交于点A1,∴A1点坐标(1,0),∵四边形A1B1C1O是正方形,∴B1坐标(1,1),∵C1A2∥x轴,∴A2坐标(2,1),∵四边形A2B2C2C1是正方形,∴B2坐标(2,3),∵C2A3∥x轴,∴A3坐标(4,3),∵四边形A3B3C3C2是正方形,∴B3(4,7),∵B1(20,21﹣1),B2(21,22﹣1),B3(22,23﹣1),…,∴B n坐标(2n﹣1,2n﹣1).类型二、利用数形结合解决数与式的问题2. 已知实数a在数轴上的位置如图所示,则化简|2-a|+的结果为__________.【思路点拨】由数轴可知,0<a<2,由此去绝对值,对二次根式化简.【答案与解析】解:∵0<a<2,∴|2-a|+=2-a+a=2.故答案为:2.【总结升华】本题考查了绝对值的化简和二次根式的性质与化简,实数与数轴的对应关系.关键是根据数轴上的点的位置来判断数a的取值范围,根据取值范围去绝对值,化简二次根式.类型三、利用数形结合解决代数式的恒等变形问题3.(1)在边长为a的正方形纸片中剪去一个边长为b的小正方形,把余下的部分沿虚线剪开,拼成一个矩形,分别计算这两个图形阴影部分的面积,可以验证的乘法公式是__________________(用字母表示).(2)设直角三角形的直角边分别是a,b,斜边为c,将这样的四个完全相同的直角三角形拼成正方形,验证等式a2+b2=c2成立。
【中考数学必备专题】数形结合专题一、单选题(共2道,每道10分)1.不相等的有理数a,b,c在数轴上的对应点分别为A,B,C,如果|a-b|+|b-c|=|a-c|,那么B点应为().A.在A,C点的右边;B.在A,C点的左边;C.在A,C点之间;D.以上三种情况都有可能答案:C解题思路:画数轴,借助数形结合,|a-b|是AB的长度,|b-c|是BC的长度,|a-c|是AC的长度,又因为a,b,c不相等,所以B点应在A、C之间试题难度:三颗星知识点:绝对值2.若m,n(m<n)是关于x的方程1-(x-a)(x-b)=0的两根,且a<b,则a、b、m、n的大小关系是()A.m<a<b<nB.a<m<n<bC.a<m<b<nD.m<a<n<b答案:A解题思路:将1-(x-a)(x-b)=0整理成(x-a)(x-b)=1的形式,就知道m,n是y=(x-a)(x-b)图象与直线y=1交点的横坐标,而a、b是y=(x-a)(x-b)与x轴交点的横坐标。
画出图象及可以比较大小试题难度:三颗星知识点:二次函数的应用二、填空题(共6道,每道10分)1.关于x的不等式组只有4个整数解,则a的取值范围是.答案:5<a≤6解题思路:分三步走,第一步解出不等式的解题;第二步画数轴,根据只有四个整数解确定a的大致取值范围;第三步,借助数轴看等号是否成立试题难度:三颗星知识点:不等式的整数解2.已知一次函数y=-x+4与反比例函数在同一直角坐标系内的图象没有交点,则k的取值范围是.答案:k>4解题思路:因为画图象,很难直接看出k的取值范围,借助于代数的方法,联立表达式,让关于x的一元二次方程无解,进而确定k的取值范围试题难度:三颗星知识点:反比例函数与一次函数的交点问题3.直线y=mx+4经过A点,直线y=kx-3过B点,且两直线交于P(,n)点,则不等式kx-3≤mx+4<kx的解集是.答案:解题思路:利用函数图象,数形结合的方法求解集:将y=kx-3向上平移三个单位,得到y=kx 的图象,然后观察几何特征,存在A字型相似,进而知道对应高之比就等于对应边之比,从而确定另外一个点的横坐标是-2试题难度:三颗星知识点:一次函数的应用4.已知a、b均为正数,且a+b=2。
数形结合Ⅰ、专题精讲:数学家华罗庚说得好:“数形结合百般好,隔离分家万事休,几何代数统一体,永远联系莫分离”.几何图形的形象直观,便于理解,代数方法的一般性,解题过程的机械化,可操作性强,便于把握,因此数形结合思想是数学中重要的思想方法.所谓数形结合就是根据数学问题的题设和结论之间的内在联系,既分析其数量关系,又揭示其几何意义使数量关系和几何图形巧妙地结合起来,并充分地利用这种结合,探求解决问题的思路,使问题得以解决的思考方法.Ⅱ、典型例题剖析【例1】(2005,嘉峪关,10分)某公司推销一种产品,设x(件)是推销产品的数量,y(元)是推销费,图3-3-1已表示了公司每月付给推销员推销费的两种方案,看图解答下列问题:(1)求y1与y2的函数解析式;(2)解释图中表示的两种方案是如何付推销费的?(3)果你是推销员,应如何选择付费方案?解:(1)y1=20x,y2=10x+300.(2)y1是不推销产品没有推销费,每推销10件产品得推销费200元,y2是保底工资300元,每推销 10件产品再提成100元.(3)若业务能力强,平均每月保证推销多于30件时,就选择y1的付费方案;否则,选择y2的付费方案.点拨:图象在上方的说明它的函数值较大,反之较小,当然,两图象相交时,说明在交点处的函数值是相等的.【例2】(2005,某农场种植一种蔬菜,销售员张平根据往年的销售情况,对今年这种蔬菜的销售价格进行了预测,预测情况如图3-3-2,图中的抛物线(部分)表示这种蔬菜销售价与月份之间的关系,观察图象,你能得到关于这种蔬菜销售情况的哪些信息?答题要求:(1)请提供四条信息;(2)不必求函数的解析.解:(1)2月份每千克销售价是3.5元;7对月份每千克销售价是0.5元;(3)l月到7月的销售价逐月下降;(4)7月到12月的销售价逐月上升;(5)2月与7月的销售差价是每千克3元;(6)7月份销售价最低,1月份销售价最高;(7)6月与8月、5月与9月、4月与10 月、3月与11 月,2月与12 月的销售价分别相同.点拨:可以运用二次函数的性质:增减性、对称性.最大(小)值等,得出多个结论.【例3】(2005,江西课改,8分)某报社为了解读者对本社一种报纸四个版面的喜欢情况,对读者作了一次问卷调查,要求读者选出自己最喜欢的一个版面,将所得数据整理后绘制成了如图3l 司所示的条形统计图:⑴请写出从条形统计图中获得的一条信息;⑵请根据条形统计图中的数据补全如图3-3-3所示的扇形统计图(要求:第二版与第三版相邻人并说明这两幅统计图各有什么特点?⑶请你根据上述数据,对该报社提出一条合理的建议。
专题二:数形结合简要分析数形结合思想是一种重要的数学思想方法。
近几年各地中考试题中都体现了这种数学思想方法。
数形结合思想是指从几何直观的角度,利用几何图形的性质研究数量关系,寻求代数问题的解决方法(以形助数),或利用数量关系来研究几何图形的性质,解决几何问题(以数助形)的一种数学思想. 数形结合思想使数量关系和几何图形巧妙地结合起来,使问题得以解决。
典型例题例1、小明根据邻居家的故事写了一首小诗:“儿子学成今日返,老父早早到车站,儿子到后细端详,父子高兴把家还。
”如果用纵轴y 表示父亲与儿子进行中离家的距离,用横轴x 表示父亲离家的时间,那么下面的图像与上述诗的含义大致吻合的是()A B C D例2、已知二次函数y =ax 2+bx +c (a ≠0)的图象如图,则下列结论中正确的是( )A .a >0B .当x >1时,y 随x 的增大而增大C .c <0D .3是方程ax 2+bx +c =0的一个根【分析】从二次函数的图象可知,图象开口向下,a <0;当x >1时,y 随x 的增大而减小; x=0时,y =c >0;函数的对称轴为x=1,函数与x 轴的一个交点的横坐标为-1,函数与x 轴的另一个交点的横坐标为3。
例3、如图所示,点A 的坐标为(2,0),点B 在直线上运动,当线段AB 最短时,点B 的坐标为例4、如图,直线b x k y +=1与反比例函数xk y 2=的图象 交于A )6,1(,B )3,(a 两点. (1)求1k 、2k 的值; (2)直接写出021>-+xk b x k 时x 的取值范围; (3)如图,等腰梯形OBCD 中,BC //OD ,OB =CD ,OD 边在x 轴上,过点C 作CE ⊥OD 于点E ,CE 和反比例函数的图象交于点P ,当梯形OBCD 的面积为12时,请判断PC 和PE 的大小关系,并说明理由.OPE DCBAyx【分析】(1)略(2)021>-+xk b x k 的x 的范围,就是当y 1>y 2时,自变量的x 的范围,从图象上看:直线在双曲线上方,即x 的范围是在点A 、B 的横坐标之间,这是“以形助数” (3)要判断PC 和PE 的大小关系,只需要分别求出它们的长度,“以数助形”.设点P 的坐标为(m ,n ),易得C (m ,3),点的坐标转化成线段长度CE=3,BC=m-2,OD=m+2,利用梯形的面积是12列方程,可求得m 的值,从而求得点P 的坐标,根据线段的长度关系可知PC=PE .考 点 训 练一、填空题1、已知二次函数c bx ax y ++=2的图象如图所示,则0___42,0____,0___,0___ac b c b a -2、如图,抛物线y =-x 2+2x +m (m <0)与x 轴相交于点A (x 1,0)、B (x 2,0),点A 在点B 的左侧.当x =x 2-2时,y ______0(填“>”“=”或“<”号).3、如图所示,矩形AOCB 的两边OC 、OA 分别位于x 轴,y 轴上,点B 的坐标为B,D 是AB 边上的一点。
专题五:数形结合思想【知识梳理】 数形结合是把抽象的数学语言与直观的图形结合起来思索,使抽象思维和形象思维相结合,通过“以形助数”或“以数解形”可使复杂问题简单化,抽象的数学问题直观化、生动化,能够变抽象思维为形象思维,有助于把握数学问题的本质.另外,由于使用了数形结合的方法,很多问题便迎刃而解,且解法简捷,从而起到优化计算的目的.华罗庚先生曾指出:“数形本是相倚依,焉能分作两边飞;数缺形时少直觉,形少数时难入微;数形结合百般好,隔裂分家万事休.”这充分说明了数形结合数学学习中的重要性,是中考数学的一个最重要数学思想.【课前预习】1、实数a 、b 在数轴上的位置如图所示,a b -=_________.2、已知不等式组020x a x ->⎧⎨->⎩的整数解共有2个,则a 的取值范围是_______.3、如图,已知函数y=x+b 和y=a x+3的图象交点为P ,则不等式x+b>a x+3的解集为__________.4、如图,方程组211y x y x =-⎧⎨=--⎩的解是__________.5、如图,在矩形ABCD 中, AB =4,BC =6,当直角三角板MPN 的直角顶点P 在BC 边上移动时,直角边MP 始终经过点A ,设直角三角板的另一直角边PN 与CD 相交于点Q .BP =x ,CQ =y ,那么y 与x 之间的函数图象大致是( )【例题精讲】例1、当代数式12x x ++-取最小值时,相应的x 的取值范围是_________.例2、已知二次函数y=a x 2+bx+c 的图象如图所示,若关于x 的方程a x 2+bx+c-k=0有两个不相等的实数根,则k 的取值范围为 ( )A .k>3B .k=3C .k<3D .无法确定例3、如图,函数y 1=x 和y 2=13x +43的图象相交于(-1,1),(2,2)两点.当y 1>y 2时,x 的取值范围是 ( )A .x <-1B .-1<x <2C .x >2D .x <-1或x >2例4、如图,C 为BD 上的一动点,分别过点B 、D 作AB ⊥BD ,ED ⊥BD,连接AC,EC,AB=5,DE=1,BD=8,设CD=x .(1)用含x 的代数式表示AC+CE= .(2)当点C 满足时 时,AC+CE 的值最小;(3)根据(2)规律和结论,请构图求出代数式9)12(422+-++x x 的最小值.例4、如图,在平面直角坐标系xOy 中,AB 在x 轴上,AB =10,以AB 为直径的⊙O′与y 轴正半轴交于点C ,连接BC 、AC ,CD 是⊙O′的切线,AD⊥CD 于点D ,tan∠CAD=12,抛物线y =ax 2+bx +c 过A 、B 、C 三点. (1)求证:∠CAD=∠CAB;(2)①求抛物线的解析式;②判定抛物线的顶点E 是否在直线CD 上,并说明理由;(3)在抛物线上是否存在一点P ,使四边形PBCA 是直角梯形.若存在,直接写出点P 的坐标(不写求解过程);若不存在,请说明理由.【巩固练习】1、如图为二次函数y=a x 2+bx+c 的图象,在下列说法中:①a c<0 ②方程a x 2+bx+c=0的根是x 1=-1,x 2=3 ③a +b+c>0④当x>1时,y 随x 的增大而增大. 正确的说法有__________.2、如图,直线y =x +2与双曲线y =3m x-在第二象限有两个交点,那么m 的取值范围在数轴上表示为 ( )3、如图,在等腰AABC 中,∠ABC =90°,D 为AC 边上的中点,过点D 作DE ⊥DF ,交AB 于E ,交BC 于F ,若AE =4,FC =3,求EF 的长.【课后作业】 班级 姓名一、必做题:1、二次函数y =ax 2+bx +c 的图象如图所示,反比例函数y =a x与正比例函数y =bx 在同一坐标系内的大致图象是 ( )2、如图,AB 为半圆的直径,点P 为AB 上一动点,动点P 从点A 出发,沿AB 匀速运动到点B ,运动时间为t ,分别以AP 与PB 为直径作半圆,则图中阴影部分的面积S 与时间t 之间的函数图象大致为( )3、如图,抛物线y =x 2+1与双曲线y =k x的交点A 的横坐标是1,则关于x 的不等式k x+x 2+1<0的解集是 ( )A .x >1B .x <-1C .0<x <1D .-1<x <0 4、如图,在□AOBC 中,对角线AB 、OC 交于点E ,双曲线y =k x 经过A 、E 两点,若□AOBC 的面积为18,则k =_______.5、如图①,在底面积为100 cm 2,高为20 cm 的长方体水槽内放入一个圆柱形烧杯,以恒定不变的流量先向烧杯中注水,注满烧杯后,继续注水,直至注满水槽为止.此过程中,烧杯本身的质量、体积忽略不计,烧杯在大水槽中的位置始终不改变.水槽中水面上升的高度h(单位:cm)与注水时间t(单位:s)之间的函数关系如图②所示.(1)写出函数图象中点A 、点B 的实际意义;(2)求烧杯的底面积;(3)若烧杯的高为9cm ,求注水的速度及注满水槽所用的时间.6、如图,已知反比例函数y =k x (k ≠0)的图象经过点(12,8),直线y =-x +b 经过该反比例函数图象上的点Q(4,m).(1)求上述反比例函数和直线的函数表达式;(2)设该直线与x 轴、y 轴分别相交于A 、B 两点,与反比例函数图象的另—个交点为P ,连接O P 、CQ ,求△OPQ 的面积.二、选做题:7、如图,在Rt△ABC 中,∠C=90°,AC =8,BC =6,点P 在AB 上,AP =2.点E 、F 同时从点P 出发,分别沿PA 、PB 以每秒1个单位长度的速度向点A 、B 匀速运动,点E 到达点A 后立即以原速度沿AB 向点B 运动,点F 运动到点B 时停止,点E 也随之停止.在点E 、F 运动过程中,以EF 为边作正方形EFGH ,使它与△ABC 在线段AB 的同侧,设E 、F 运动的时间为t 秒(t >0),正方形EFGH 与△ABC 重叠部分面积为S.(1)当t =1时,正方形EFGH 的边长是__________;当t =3时,正方形EFGH 的边长是__________;(2)当0<t ≤2时,求S 与t 的函数关系式;(3)直接答出:在整个运动过程中.......,当t 为何值时,S 最大?最大面积是多少?8、已知二次函数y =-14x 2+32x 的图象如图. (1)求它的对称轴与x 轴交点D 的坐标;(2)将该抛物线沿它的对称轴向上平移,设平移后的抛物线与x 轴、y 轴的交点分别为A 、B 、C三点.若∠ACB =90°,求此时抛物线的解析式;(3)设(2)中平移后的抛物线的顶点为M ,以AB 为直径,D 为圆心作⊙D ,试判断直线CM 与⊙D 的位置关系,并说明理由.。
一、内容和内容解析1.内容“解直角三角形中的数形结合”专题复习课包括图1本节课为第1课时,以解直角三角形及其应用为载体,在综合运用相关知识解决问题的过程中,提炼运用数形结合思想方法解题的操作步骤、作用、注意要点等.2.内容解析(1)地位和作用.代数和几何是初中数学的主要研究对象.数形结合是通过数与形的相互转化达到认识和解决问题的一种思想和方法.通过“以形助数”和“以数解形”,准确把握数与形的关联点,可以使抽象的问题形象化、直观的问题精细化,从而快速获取解题思路,逻辑清晰地解决问题.运用数形结合思想解决问题的过程也是学生发展直观想象、数学运算、数学抽象、逻辑推理、数学建模等素养的过程.数形结合在数学学习和研究中占有重要地位,它不仅是一种重要思想,也是一种常用的解题策略与方法.本节课是运用数形结合思想解决相关问题的专题复习课,从具体的锐角三角函数问题的解决开始,总结提炼数形结合思想方法的作用、操作步骤和注意要点,并用于解决综合性问题.锐角三角函数是数形结合的产物,它的概念的产生和应用都与图形有着密切的联系,在历年中考试题中都占有一定的比重.因此,学好本节课的内容对中考备考有重要作用.(2)概念的解析.运用数形结合思想方法解决问题的操作步骤、注收稿日期:2021-01-16基金项目:河南省教育科学规划2020年度一般课题——基于“互联网+信息技术”的初中数学解题教学实践研究(2020YB0980).作者简介:赵智勇(1963—),男,中学高级教师,主要从事中学数学教育教学研究.——“解直角三角形中的数形结合”专题复习教学及反思赵智勇摘要:文章以锐角三角函数知识内容为载体,着眼于数形结合思想方法的深层感悟,实现数与形的双向沟通.通过“解直角三角形中的数形结合”专题复习课的教学,引导学生概括数形结合解决问题的基本思路,体会其作用,归纳其注意要点;引导学生应用概括出的数形结合思想的基本思路解决问题,实现数形结合思想的巩固和迁移;引导学生融合不同的思想方法解决综合性问题,实现思想方法的融合.关键词:数形结合;锐角三角函数;专题复习;教学研究感悟数形结合思想发展数学核心素养··47意要点、作用如下.操作步骤:分析问题结构—构想数形关联—实施数形转换—获得问题答案.注意要点:考虑数形结合解决问题的必要性、可行性和简洁性;解决几何证明题需要几何直观分析、代数抽象分析对应进行;代数性质与几何图形的对应互换.作用:运用数形结合思想方法解决问题能够使抽象的问题形象化,使复杂的关系得到直观、具体的表示,对理解题意、挖掘题目中的各种信息、发现蕴含的条件和关系、获得解题的灵感和方法等都具有重要意义.(3)思想方法.数形结合的实质是把抽象的数量关系与直观的图形表示结合起来,或把几何中的定性结论转化为可计算的定量结果,或以直观图形辅助抽象的代数运算与推理.(4)知识类型.本专题内容属于程序性知识,还是策略性知识,由知识类型所决定.在教学中,教师要注重以问题为引导,以学生活动为主,在独立思考、合作交流中,师生共同提炼数形结合思想方法的操作步骤和核心要点,进一步体会数形结合思想方法的作用;在应用中注重引导学生用数形结合思想方法去分析问题和解决问题.(5)教学重点.基于以上分析,确定本节课的教学重点为:提炼数形结合思想解题的一般步骤和注意要点.二、目标和目标解析1.目标(1)通过解直角三角形及其应用问题,了解数形结合思想的内涵和作用.(2)经历问题解决过程,能抽象概括出用数形结合思想解决问题的操作步骤、注意要点和作用.(3)能正确进行数形互化,运用数形结合思想解决有一定综合性的问题,形成解题策略.2.目标解析达成目标(1)的标志:知道数形结合研究数的精确与形的直观之间的转化,可使解题思路变得简单明了,从而化繁为简、化难为易.达成目标(2)的标志:明确运用数形结合解决问题一般需要经历“分析、构想、建立、求解”四个步骤.数与形的对应转换是运用数形结合解决问题的关键,明确以形助数、以数解形的具体操作步骤.知道在运用数形结合解决问题时,要考虑可行性等,不能用形的显然替代推理论证,既需要进行几何直观分析,又需要通过符号抽象、运算和推理进行量化研究.达成目标(3)的标志:在解决相关问题的过程中,能有意识借助形的几何直观性来阐述数之间的普遍关系和一般规律,借助数的精确性阐述形的某些属性和一般规律;能运用数形结合思想方法解决一些有一定难度的中考试题.三、教学问题诊断分析1.已具备的认知基础学生已经学习了直角三角形的两锐角互余、勾股定理、锐角三角函数等知识,并能运用直角三角形的性质解直角三角形;经历了数轴、坐标系、函数等概念的学习,对数形结合有一定的认识,对数与形的对应和转换有一定的模仿经验,具有一定的解决问题的能力,这为本节课的学习奠定了基础.2.与本课目标的差距分析(知识、能力)初中生运用数形结合解决问题,需要具备以下能力:敏锐的观察能力;准确的语言表达能力;灵活的思维能力;较强的综合应用能力.运用数形结合思想解决有一定难度的综合问题时,需要进一步培养学生敏锐的观察能力和灵活的思维能力.3.可能存在的问题运用数形结合思想解决综合性较强的题目时,纵横联系的知识点多,这对学生的数形结合能力提出了较高的要求.对于某些问题,学生有可能误用形的直观替代严谨的推理论证,也可能抓不住数的特征构建适当的形.4.应对策略本节课需要通过具体实例多次展现数形结合的具体操作步骤,使学生获取更多活动经验,提升学生对数形结合思想的认识和理解.首先,创设问题情境,引导学生利用数形结合思想解决问题;其次,引导学··48生对上述问题分解并进行反思总结,组织学生进行思想方法的交流和一般性思考;最后,通过对例题进行有针对性地指导,使学生经历数形结合解决问题的过程,既进行几何直观分析,又对应进行代数抽象探究,提升学生的认知加工水平和解题能力.基于以上分析,确定本节课的教学难点为:进行数与形的等价转化,并运用数形结合思想解决有一定难度的综合问题.四、教学支持条件分析利用希沃白板制作课件、互动授课;借助希沃授课助手拍照上传、进行投屏等,灵活展示和点评学生的学习成果,呈现课堂细节;结合GeoGebra 软件辅助构图操作,提升课堂效率.五、教学过程设计1.课前检测——针对强化,提升实效检测题1:△ABC 在正方形网格中的位置如图2所示,则sin α的值为().(A )34(B )43(C )35(D )45A BCαACB图3图2补测题:△ABC 在正方形网格中的位置如图3所示,则sin B 的值为.检测题2:如图4,已知在Rt△ABC 中,∠C =90°,tan ∠DBC =13,AD =3,AB =5,则cos A 的值为.A C D B图4DA BC图5补测题:如图5,在Rt△ABC 中,∠C =90°,∠BAC =30°,延长CA 至点D ,使AD =AB ,则tan D 的值为.【设计意图】通过课前检测题,了解学生对本节课的相关基础知识的掌握情况,可以根据检测的结果决定是否需要补测题,为后续提炼数形结合步骤和要点及进一步利用数形结合解决问题做好铺垫.2.解决问题——经历过程,感悟应用问题1:如图6,已知在△ABC中,AB =BC =5,tan∠ABC =43.(1)求AC 的长;(2)设边BC 的垂直平分线与边AB 的交点为点D ,求AD AB的值.师生活动:教师引导学生审清题意,从数与形两个方面的关联分析问题.第(1)小题中,作高构建数所对应的形,根据形所对应的数量关系确定求AC 的长的方法(设未知数,将求AC 的长转化为解方程问题求解).第(2)小题中,从图形特征关联图形对应的数量关系,确定求比值的方法.在引导学生审题和分析问题的过程中,教师结合学生的回答给出如表1所示的数形关联表,然后通过追问使学生理解“图形的形状确定,则图形中对应的数量关系也随之确定”.因此,求图形中两条线段的比值时,不必关注具体的数量,而把目光聚焦到图形中元素间的数量关系上,则求解过程更为简捷.表1追问1:你是如何使用“tan∠ABC =43”这个条件的?AB C图6··49追问2:条件“边BC的垂直平分线与边AB的交点为点D”对应的图形和数量关系表达式是什么?追问3:若将“AB=BC=5”改为“AB=BC”,你还能求出ADAB的值吗?为什么?【设计意图】通过解决第(1)小题,使学生经历以数解形的思考与解决问题的过程,将图形信息转换为具体的数量关系,借助图形的直观性,增加问题解决的准确性,使问题求解更加简明.通过解决第(2)小题,使学生经历以形助数的思考与解决问题的过程,让学生感悟借助图形的几何直观来解决数的问题,常常可以避免复杂的推理计算,使问题化难为易,使抽象的问题具体化.解决问题后,借助数形关联表,通过问题串促进学生对解决问题的过程进行反思总结,提炼运用数形结合解决问题的一般步骤、注意要点和作用,提升学生的思维能力.3.交流提炼——合作交流,提炼方法问题2:结合课前检测和问题1,你能总结一下利用数形结合思想解决问题的一般步骤和作用吗?师生活动:引导学生回顾课前检测题2的问题解决过程,师生共同建立如表2所示的数形关联表.表2结合问题1的解决过程和如表1、表2所示的数形关联表,师生共同归纳上述问题的解题思路和方法,总结提炼数形结合的一般操作步骤、作用和转化策略.作用:实现数与形的相互转化,使抽象思维与形象思维相结合,从而化繁为简、化难为易.一般操作步骤如下.(1)分析问题结构——审题,得到数的关系和形的特征.(2)构想数形关联——从数的角度想象和表示图形特征,从形的角度想象和描述数量关系,找到数与形的关联点,如几何度量(如距离、角度等)或坐标.(3)实施数形转换——构建数所对应的形,对形所对应的数量或数量关系进行符号抽象、运算和推理.(4)获得问题答案——有逻辑地表达解题过程.转化策略:关注具有显著特征的对象,基于基本的几何度量(距离和角度)找出数量关系与几何图形的关联点.【设计意图】概括数学思想方法,需要把数形结合思想的操作过程模型化、程序化、一般化.组织学生相互讨论交流,进一步挖掘数形结合思想的本质内涵,使学生对数形结合思想的认识从内隐转化为外显,实现运用数形结合思想解决问题操作策略的明朗化. 4.迁移应用——知识迁移,能力拓展问题3:如图7,我国两艘海监船A,B在南海海域巡航.某一时刻,两船同时收到指令,立即前往救援遇险抛锚的渔船C.此时,B船在A船的正南方向5海里处,A船测得渔船C在其南偏东45°方向,B船测得渔船C在其南偏东53°方向.已知A船的航速为30海里/时,B船的航速为25海里/时,问C船至少要等待多长时间才能得到救援?(参考数据:sin53°≈45,cos53°≈35,tan53°≈43,2≈1.41.)图7AB45°53°C师生活动:学生按以下步骤进行独立探索,并在学案上构建数形关联表,解决问题3.第一步:分析问题结构.过点C作AB所在直线的垂线,垂足为点D,由已知AD=DC,∠CBD=53°,··50AB=5.根据两艘船的速度,求等待时间,就要求AC 和BC的长.已知两角和一边,求另外两条边的长,这其实就是解直角三角形问题.第二步:构想数形关联.当已知角和边的条件时,利用锐角三角函数解决问题,通常要构建直角三角形.第三步:实施数形转换.设未知数,根据图形结构列出方程.第四步:获得问题答案.检验解的意义,得到实际问题的答案.教师在学生的分析、思考过程中,关注学生对数形结合解决问题一般步骤的操作表现,并利用希沃授课助手(手机APP结合电脑端)对学生完成的较规范的数形关联表和解题过程进行拍照上传、展示点评.结合学生的思考,师生共同构建如表3所示的数形关联表,解决问题3.表3【设计意图】通过对问题3的解决,进一步明确运用数形结合解决问题的思考步骤和注意要点,感知数与形之间的关联性,挖掘数与形之间的联系,促使学生自觉运用数形结合思想,提升分析问题和解决问题的能力.问题4:如图8,在△ABC中,AB=AC,AD是边BC上的高,E是AB的中点,F是边AC上一个动点,EF与AD相交于点G,AC=10,cos∠DAC=45.当△AGF为等腰三角形时,求EG的长.师生活动:首先,引导学生关注问题中的特殊元素,如两个中点E,D,连接ED构造△AGF∽△DGE;其次,解题需要关注主要构图对象,借助GeoGebra软件中的“复选框”功能简化图形,最终将问题转化为“在△DEG中,DE=5,cos∠EDG=45,当△DEG为等腰三角形时,求EG的长”.再运用GeoGebra软件中的“滑动条”控制动点F在边AC上移动,通过分类讨论,师生共同构建如表4所示的数形关联表,利用数形结合解决问题.代数关系式由BD=DC,BE=EA,得△AGF∽△DGE.由△AGF为等腰三角形,得△DGE为等腰三角形.得DE=5,cos∠EDG=45情况1:DE=EG;情况2:DE=DG;情况3:EG=DG对应的几何图形EDG(舍去)情况1EGDEGD(方法1)(方法2)情况2EGDEGD(方法1)(方法2)情况3AEFGDB CEGD5表4AEFGDB C图8··51追问1:此题还有其他解法吗?追问2:“EG=ED”这种情况不存在,我们还可以怎样说明?追问3:当EG=DG时,E G的长有限制吗?【设计意图】通过对问题4的解决,以数形结合、分类讨论思想为基础,引导学生在分析问题、规划思路时,将目光聚焦在特殊的视角和特殊的对象(等腰、中点、平行线)上,根据已有的数学活动经验合理寻求解决问题的突破口,体会利用数形结合进行推理得到的结论具有一般性,掌握目标导向的认知策略,使学生进一步感知数与形之间的关联性,挖掘数与形之间的必然联系,提升分析问题和解决问题的能力.追问4:结合以上问题,你能总结一下利用数形结合解决问题的注意要点和转化策略吗?注意要点如下.(1)代数性质与几何图形要对应互换.(2)考虑数形结合解决问题的必要性、可行性和简洁性.(3)不能用图形的直观代替严密的逻辑推理,既需要几何直观分析,又需要进行对应的代数抽象分析.5.反思总结——回顾思考,深化思维(1)数形结合的作用是什么?(2)运用数形结合解决问题可以分为哪些步骤?(3)运用数形结合解决问题的过程中最关键是哪一步?需要注意什么?(4)你还有哪些收获?师生共同总结出如图9所示的框图.数形结合作用实现数与形的相互转化,使抽象思维与形象思维相结合化繁为简,化难为易1.分析问题结构2.构想数形关联3.实施数形转换4.获得问题答案转化策略:找出数量关系与几何图形的关联点操作步骤注意要点1.考虑数形结合解决问题的必要性、可行性和简洁性2.几何证明题需几何直观分析、代数抽象分析对应进行3.代数性质与几何图形的对应互换图9【设计意图】回顾本节课的学习历程,并再次总结数形结合思想的解题思路、操作步骤、要点和作用,深化学生对数形结合思想的理解,强化目标导向的认知策略.六、目标检测——自我检测,巩固反馈1.新冠肺炎疫情期间,教育部号召各地各类学生居家学习.为支持小明学习,妈妈特意买了新台灯.图10(1)是放置在水平桌面上的台灯,图10(2)是其侧面示意图(台灯底座高度忽略不计),其中灯臂AC=40cm,灯罩CD=30cm,AC 可以绕点A上下调节一定的角度,CD可以绕点C上下调节一定的角度.使用时发现:当灯臂与底座构成的夹角∠CAB=53°,∠ACD=157°时,台灯光线最佳.求光线最佳时点D到桌面的距离为多少?(结果保留一位小数.参考数据:sin53°≈45,cos53°≈35.)A BCD(2)(1)图102.如图11,在Rt△ABC中,∠C=90°,sin B=45,AC=4.D是BC的延长线上的一个动点,∠EDA=∠B,AE∥BC.当△ADE为等腰三角形时,求AE的长.AB C DE图11【设计意图】巩固利用数形结合思想解决问题的过程与方法,对应知应会的核心知识进行检测,为下节课的解题课奠定基础.通过解决问题,进一步体现数形结合思想应用的广泛性和有效性,提高学生对数学思想的感悟层次,提升学生分析问题和解决问题的能力,感受数形结合的育人价值.··52七、教学反思教学设计是静态的,而课堂生成是动态的.通过对数形结合的设计和实施教学,笔者认为,在教学中,教师引导学生感悟数形结合思想方法,发展数学学科核心素养应注意以下几点.1.进行单元整体教学从整体上把握教学内容,整体构思单元各课时的教学内容,注重知识的前后联系,以及对后续学习的重要作用,体现数学知识的整体性、逻辑的连贯性、思想的一致性和方法的一般性.在相互联系中引导学生感悟其中蕴涵的数学思想方法,发展学生的数学素养,有利于深化学生对数形结合思想的理解,培养理性精神和探究精神,提升中考数学备考能力.2.发挥一般观念的引领作用本节课的教学设计和实施是在一般观念的指导下,以数学知识的内在逻辑构建自然而然的研究过程.以解直角三角形内容为载体,根据题目条件和数学知识的内在逻辑关系设计系列问题串,自然引出数形关联表,利用问题串和数形关联表引导学生概括总结问题的解决思路和方法,提炼数形结合的作用、一般操作步骤、转化策略,形成基本套路,提升教学的整体性和思想性,帮助学生体会数形结合思想方法,使学生透过现象看本质,从复杂问题中抓住关键要素,从而化繁为简,形成数学的思维方式,提升发现问题、提出问题、分析问题和解决问题的能力. 3.遵循数学思想方法教学的原理数学思想方法的学习要经历“解决问题—概括提炼—迁移应用—联系发展”这四个阶段.本节课以此为依据进行教学设计.首先,通过具体问题的解决,体会数形结合思想;其次,将如何分析问题结构、构想数形关联、实施数形转换这一操作过程显性化,明确其作用、操作步骤和要点,提炼和概括数形结合思想;最后,让学生用概括出来的数形结合思想解决新的问题,感悟利用数形结合解决问题的关键是从数的角度观察图形特征,从形的角度实现数量代换,找到数与形的关联点,使学生内化数形结合思想,形成数学活动的经验.例如,在回顾检测题2和问题1时,给表格加个题目“数形关联表”,在对照表格进行引导时用“数量关系关联的几何图形”和“几何图形关联的数量关系”等语言,可以促进学生使用“关联”进行概括.4.精选样例引导学生感悟数形结合思想方法,重要的是精选适当的题目,利用题目归纳操作流程.巩固操作流程可以利用相关的变式题目和拓展题目进行迁移训练,使学生在合作探究中内化数形结合的操作流程,在反思总结中形成有结构的知识经验.5.坚持以学为中心在以学生活动为主、以感悟数形结合思想为目标的复习教学中,教师需要注意鼓励学生积极思考、提出有价值的问题,关注学生是否能够用数学的思维方式观察、分析、解决问题,使学生感受数与形之间的相互转化,使抽象思维与形象思维相结合;合理运用信息技术手段,有利于增强学生的学习兴趣,提高课堂学习效果.教学时,若教师不揭示方法的本质,学生只会看到简单的数学操作,看不到问题的本质.数学思想是对数学知识的更高层次的概括与提炼,是培养学生的数学能力、发展数学学科核心素养的重要环节.数学思想方法的教学对解题教学具有十分重要的指导作用,有助于提升学生的解题能力和应用能力,发展学生的理性思维和科学精神,有效发挥数学学科的育人价值.参考文献:[1]中华人民共和国教育部制定.义务教育数学课程标准(2011年版)[M].北京:北京师范大学出版社,2012.[2]章建跃.章建跃数学教育随想录[M].杭州:浙江教育出版社,2017.[3]吴增生.科学用脑高效复习:初中数学总复习教学设计[M].杭州:浙江科技出版社,2018.[4]吴增生.整体建构核心素养导向下的总复习教学策略体系[J].中国数学教育(初中版),2019(7/8):3-11,37.[5]王华鹏.“四个理解”指导下的教学设计新思路:以“位似”教学设计为例[J].中国数学教育(初中版),2019(9):3-8,13.··53。
专题训练五 数形结合思想一、选择题1.已知在第二象限内,点P 到x 轴的距离是2,到y 轴的距离是3,则P 点的坐标是A.(2,3)B.(-2,3)C.(-3,2)D.(3,2)2.把不等式组⎩⎨⎧≤->+01,01x x 的解集表示在数轴上,正确的是图2-33.若M(-21,y 1)、N(-41,y 2)、P(21,y 3)三点都在函数y=xk (k <0)的图象上,则y 1、y 2、y 3的大小关系为A.y 2>y 3>y 1B.y 2>y 1>y 3C.y 3>y 1>y 2D.y 3>y 2>y 14.已知二次函数y=ax 2+bx+c 的图象如图2-4所示,则a 、b 、c 满足图2-4A.a <0,b <0,c >0B.a <0,b <0,c <0C.a <0,b >0,c >0D.a >0,b <0,c >05.已知二次函数y=x 2-2x-3,当_______________时,y 随x 的增大而增大;当_______________时,y 的值小于0A.x <1;-1<x <3B.x >1;x <-1或x >3C.x >1;-1<x <3D.x <-1;x <-1或x >3二、填空题6.实数a 、b 在数轴上的位置如图2-5所示,化简2a +∣a-b ∣=__________________.图2-57.若不等式组⎩⎨⎧->+<12,1m x m x 无解,则m 的取值范围是________________.8.青岛市是严重缺水地区,自来水公司为了鼓励市民节约用水,采取分段收费标准,若某户居民每月应交水费是用水量的函数,其图象如图2-6所示:观察函数图象,回答自来水公司采取的收费标准______________________________________ _______________________________________________________________________________ .图2-69.观察下面的点阵图和相应的等式,探究其中的规律:(1)在④和⑤后面的横线上分别写出相应的等式;图2-7(2)通过猜想写出与第n个点阵相对应的等式为___________________.10.如图2-8,在同一直角坐标系中,二次函数的图象与两坐标轴分别交于A(-1,0)、B(3,0)和C(0,-3),一次函数的图象与抛物线交于B、C两点.图2-8(1)二次函数的解析式为_______________________.(2)当自变量x_______________时,两函数的函数值都随x增大而增大.(3)当自变量_______________时,一次函数值大于二次函数值.(4)当自变量x_______________时,两函数的函数值的积小于0.三、解答题11.某广电局与长江证券公司联合推出广电宽带网业务,用户通过宽带网可以享受新闻点播、影视欣赏、股市大户室等项服务,用户交纳上网费的方式有:方式一,每月80元包干;方式二,每月上网时间x(小时)与上网费y(元)的函数关系用图2-9中的折线表示;方式三,以0小时为起点,每小时收费1.6元,月收费不超过120元.若设一用户每月上网x小时,月上网费为y元.图2-9(1)根据图2-9,写出方式二中y与x的函数关系式;(2)试写出方式三中y与x的函数关系式;(3)若此用户每月上网60小时,选用哪种方式上网费用最少?最少费用是多少?12.如图2-10,一位运动员在距篮下4米处跳起投篮,球运行的路线是抛物线,当球运行的水平距离为2.5米时,达到最大高度3.5米,然后准确落入篮圈.已知篮圈中心到地面的距离为3.05米.图2-10(1)建立如图所示的直角坐标系,求抛物线的解析式.(2)该运动员身高1.8米,在这次跳投中,球在头顶上方0.25米处出手,问:球出手时,它跳离地面的高度是多少?一、选择题1答案:C提示:点P到x轴的距离是2,所以y=2;到y轴的距离是3,所以x=3.2答案:B提示:不等式组的解集在数轴上表示,要注意实心点和空心点的区别.3答案:B提示:由k<0,反比例函数的图象过第二、四象限,由此可知y1、y2为正值,y3为负值;然后再根据增减性确定y1、y2的大小.4答案:A提示:二次函数y=ax 2+bx+c 图象中,a 决定抛物线的开口方向,c 决定抛物线与y 轴交于正半轴或负半轴,a 、b 同号对称轴为负,a 、b 异号对称轴为正.5答案:C提示:求出抛物线的对称轴,以及抛物线和x 轴的交点坐标,通过数形结合,得出答案.二、填空题6答案:b-2a提示:根据绝对值意义和二次根式化简.7答案:m ≥2提示:不等式组⎩⎨⎧->+<12,1m x m x 无解,即2m-1≥m+1.8答案:用水量不超过5吨时,每吨0.72元;当用水量超过5吨时,超过5吨的部分,每吨0.9元提示:5吨水花费3.6元,便可求出单价.超过5吨水后,每用3吨花费2.7元,便可求出水的单价.9答案:(1)1+3+5+7=42 1+3+5+7+9=52 (2)1+3+5+7+…+(2n-1)=n 2提示:点阵中点的总数实际上可以看作正方形的面积.10答案:(1)y=x 2-2x-3 (2)x >1 (3)0<x <3 (4)<-1提示:用待定系数法求出函数解析式,再由图象判断.11答案:(1)y=⎩⎨⎧>-≤≤.50,22.1,500,58x x x (2)y=⎩⎨⎧>≤≤.75,120,750,6.1x x x (3)第二种费用最少,最少费用为70元.提示:运用待定系数法求直线解析式.12答案:(1)y=-51x 2+3.5;(2)0.2米. 提示:把实际问题转化为数学问题:求抛物线上点的坐标.。
中考数学二轮复习题精选(第四辑参考答案)1、n2、C3、C4、C5、C6、5 7~9(略)10、(1)314;……3分(2)16.4;……8分(3)28.4>18,所以渔船A 不会进入海洋生物保护区. ……9分11、12、(1)∠A=∠B ,因为M 为直角三角形AOD 的斜边中点,所以OM=MA ,则∠A=∠MOA ,所以∠MOA=∠B ;又OE ⊥BC ,所以∠B+∠BOE=90°,所以∠MOA+∠BOE=90°,则OM ⊥OE ;(2)可以求得D (0,4),A (-3,0)所以OA=3,OD=4,AB=8,DC=2,所以B (5,0)、C (2,4),设过A 、B 、D 的抛物线为()()53-+=x x a y ,将点D 的坐标代入,求出a =154-,即()()53151-+-=x x y ,验证点C 也在此抛物线上,所以所求的抛物线为()()53151-+-=x x y ; (3)可以求出N (0.5,2),所以平行四边形MNCD 的面积为4,设P (m ,n ),又AB=8,所以4821=⨯n ,则1=n ,所以n =±1;当n=1时,()()531511-+-=x x ,所以x=0或2;当n=-1时,()()531511-+-=-x x ,所以x=311±;因此这样的点P 有四个,分别为(0,1)、(2,1)、(311+,-1)、(311-,-1)。
13、解:⑴据题意可得∠1=12ABO ∠,OB =BD 3,DE =OE ,∵Rt △AOB 中,∠BAO =30°,∴∠ABO =60°,OA =3,AB =3,∴∠1=30°。
Rt △EOB 中,∵OE tan 1=OB ∠ ∴33= ∴OE =1 ∴E点坐标为(1,0),过点D 作DG ⊥OA 于G ,Rt △ADG 中,AD =AB -BD =∠BAO =30°,∵sin DG BAO AD ∠=,cos AG BAO AD∠=∴DG =, 1.5AG =,∴3 1.5 1.5OG OA AF =-=-= 。
2009年中考数学专项讲解 数形结合思想知识梳理数形结合是把抽象的数学语言与直观的图形结合起来思索,使抽象思维和形象思维相结合,通过“以形助数”或“以数解形”可使复杂问题简单化,抽象的数学问题直观化、生动化,能够变抽象思维为形象思维,有助于把握数学问题的本质.另外,由于使用了数形结合的方法,很多问题便迎刃而解,且解法简捷,从而起到优化计算的目的.华罗庚先生曾指出:“数与形本是相倚依,焉能分作两边飞;数缺形时少直觉,形少数时难入微;数形结合百般好,隔裂分家万事休.”这充分说明了数形结合数学学习中的重要性,是中考数学的一个最重要数学思想.典型例题一、在数与式中的应用【例1】实数a 、b a b -=_________.【分析】 由数轴上a ,b 的位置可以得到a <0,b>0且a <b .∴a =-,a b b a -=-.【解】 ()2a b a b a a b -=-+-=-+ 【例2】 如下图是小明用火柴搭的1条、2条、3条“金鱼”……,则搭n 条“金鱼”需要火柴_________根.【分析】 由图形可知,搭1条金鱼需要8根火柴棒,后面每多一条就多6根火柴棒,所以搭n 条金鱼共需8+6(n -1)=(6n+2)根火柴棒.【解】6n+2二、在方程、不等式中的应用【例3】 (08聊城)已知关于x 的不等式组020x a x ->⎧⎨->⎩的整数解共有2个,则a 的取值范围是___________. 【分析】解不等式组得解集为2x a x >⎧⎨<⎩,我们可以将x<2标注在数轴上,要使得不等式组有2个整数解,由图象可知整数解为0,1,则a 应在-1~0之间,且可以等于-1,但不能为0,所以以的取值范围是-l ≤a <0.【解】 1≤n<0【例4】 (08南通)用图象法解某二元一次方程组时,在同一直角坐标系中作出相应的两个一次函数的图象(如图所示),则所解的二元一次方程组是 ( )A .203210x y x y +-=⎧⎨--=⎩B .2103210x y x y --=⎧⎨--=⎩C .2103250x y x y --=⎧⎨+-=⎩ D .20210x y x y +-=⎧⎨--=⎩ 【分析】 根据图象我们可以知道这个方程组的解为11x y =⎧⎨=⎩,只要将解进行代入检验即可. 【解】D【例5】 已知二次函数y=a x 2+bx+c 的图象如图所示,若关于x 的方程a x 2+bx+c -k=0有两个不相等的实数根,则k 的取值范围为 ( )A .k>3B .k=3C .k<3D .无法确定【分析】 如果根据b 2-4a c 的符号来判别解的情况,本题将无从入手,可将原方程变形为a x 2+bx+c=k ,从而理解成是两个函数的交点问题,即2y ax bx c y k ⎧=++⎨=⎩,由图象可知只要y=k<3就一定定与抛物线有两个不同的交点,所以答案选C .【解】C三、在函数中的应用【例6】 (08安徽)如图为二次函数y=a x 2+bx+c 的图象,在下列说法中:①a c<0 ②方程a x 2+bx+c=0的根是x 1=-1,x 2=3 ③a +b+c>0 ④当x>1时,y 随x 的增大而增大正确的说法有__________.(把正确的答案的序号都填在横线上)【分析】 由图象可知,开口向上,与x 轴交于-1和3两点,与y 轴交于负半轴,则a >0,c<0;由对称性知对称轴x=1,所以结论①②④正确.【解】①②④【例7】某跳水运动员进行10米跳台跳水训练时,身体(看成一点)在空中的运动路线如图所示,为经过原点O 的一条抛物线(图中标出的数据为已知条件).要跳某个规定动作时,正常情况下,该运动员在空中的最高处距水面2103米,入水处距池边的距离为4米,同时,运动员在距水面高度为5米以前,必须完成规定的翻腾动作,并调整好入水姿势,否则就会出现失误,(1)求这条抛物线的解析式;(2)在某次试跳中,测得运动员在空中运动路线是如图抛物线,且运动员在空中调整好入水姿势时,距池边的水平距离为3导米,问此次跳水会不会失误?并通过计算说明理由.【分析】(1)在给出的直角坐标系中,要确定抛物线的解析式,就要确定抛物线上三个点的坐标,如起跳点O(0,0),入水点(2,-10),最高点的纵点标为23. (2)求出抛物线的解析式后,要判断此次跳水会不会失误, 就是要看当该运动员在距池边水平距离为335米,3332155x =-=时, 该运动员距水面高度与5米的关系.【解】(1)在给定的直角坐标系下,设最高点为A ,入水点为B ,抛物线的解析式为y=a x 2+bx+c ,由图可知,O ,B 两点的坐标依次为(0,0)(2,-10),且顶点A 的纵坐标为23,则2042104243c a b c ac b a ⎧⎪=⎪⎪++=-⎨⎪-⎪=⎪⎩,解得2561030a b c ⎧=-⎪⎪⎪=⎨⎪=⎪⎪⎩或3220a b c ⎧=-⎪⎪=-⎨⎪=⎪⎩ 抛物线的对称轴在y 轴右侧,∴02b a ->.又抛物线开口向下,∴256a =-,103b =,c=0,∴2251063y x x =-+. (2)当运动员在空中距池边距离为335米时,即383255x =-=时,63y =-,∴此时运动员距水面高为16410533-=<.因此,试跳会出现失误. 四、在概率统计中的应用【例8】(05江西)某报社为了解读者对本社一种报纸四个版面的喜欢情况,对读者作了一次问卷调查,要求读者选出自己最喜欢的一个版面,将所得数据整理后绘制成了如图所示的条形统计图:(1)请写出从条形统计图中获得的一条信息;(2)请根据条形统计图中的数据补全扇形统计图,并说明这两幅统计图各有什么特点;(3)请你根据上述数据,对该报社提出一条合理的建议.【分析】 观察条形统计图可以计算出调查总人数,画扇形统计图需计算出第一版、第二版的百分比和圆心角,分别为15003601085000⨯︒=︒,500360365000⨯︒=︒,建议可从不足的方面提出.【解】(1)参加调查的人数为5000人;(2)如图所示:条形统计图能清楚地表示出喜欢各版面的读者人数.扇形统计图能清楚地表示出喜欢各版面的读者人数占所调查的总人数的百分比.(3)如:建议改进第二版的内容,提高文章质量,内容更贴近生活,形式更活泼些.综合训练1.“数轴上的点并不都表示有理数,如图中数轴上的点P ”,这种说明问题的方式体现的数学思想方法叫做 ( )A .代入法B .数形结合C .换元法D .分类讨论2.(08大连)如图,两温度计读数分别为我国某地今年2月份某天的最低气温与最高气温,那么这天的最高气温比最低气温高 ( )A .5℃B .7℃C .12℃D .-12℃3.某人从A 地向B 地打长途电话6分钟,按通话时间收费,3分钟以内收费2.4元,此后每加1分钟加收1元,则表示电话费y(元)与通话时间(分)之间的关系的图象正确的是( )4.若M 112y ⎛⎫- ⎪⎝⎭,,N 214y ⎛⎫- ⎪⎝⎭,,312y ⎛⎫ ⎪⎝⎭,三点都在函数k y x=(k<0)的图象上,则y 1,y 2,y 3的大小关系为 ( )A .y 2>y 3>y 1B .y 2>y 1>y 3C .y 3>y 1>y 2D .y 3>y 2>y 15.关于x 的一元二次方程x 2-x -n=0没有实数根,则抛物线y=x 2-x -n 的顶点在A .第一象限B .第二象限C .第三象限D .第四象限( )6.(08临沂)若不等式组302741x a x x +<⎧⎨+>-⎩的解集为x<0,则a 的取值范围为 ( )A .a >0B .a =0C .a >4D .a =47.(08镇江)福娃们在一起探讨研究下面的题目:函数y=x 2-x+m(m 为常数)的图象如图所示,如果x=a 时,y<0;那么x=a -1时,函数值 ( )A .y<0B .0<y<mC .y>mD .y=m下面是福娃们的讨论,请你解答该题.贝贝:我注意到当x=0时,y=m>0.晶晶:我发现图象的对称轴为x=12欢欢:我判断出x 1<a <x 2.迎迎:我认为关键要判断a -1的符号.妮妮:m 可以取一个特殊的值.8.如图,在平面直角坐标系中,∠AOB=150°,OA=OB=2,则点A 、B 的坐标分别是_________和_________.9.在边长为a 的正方形中,挖掉一个边长为b 的小正方形(a >b)如图1,把余下的部分剪拼成一个矩形如图2,通过计算两个图形(阴影部分)的面积,验证了一个等式,则这个等式是_______________.10.(08绍兴)如图,已知函数y=x+b 和y=a x+3的图象交点为P ,则不等式x+b>a x+3 的解集为__________.11.方程组211y x y x =-⎧⎨=--⎩的解是__________.12.(08广州)如图,为实数a 、b13.(02南京)(1)阅读下面材料:点A 、B 在数轴上分别表示实数a 、b ,A 、B 两点之间的距离表示为AB .当A 、B 两点中有一点在原点时, 不妨设点A 在原点,如图1,AB OB b a b ===-;当A 、B 两点都不在原点时,①如图2,点A 、B 都在原点的右边AB OB OA b a b a a b =-=-=-=-; ②如图3,点A 、B 都在原点的左边,()AB OB OA b a b a a b =-=-=---=-; ③如图4,点A 、B 在原点的两边,()AB OB OA a b a b a b =+=+=+-=-.(2)回答下列问题:①数轴上表示2和5的两点之间的距离是_______,数轴上表示-2和-5的两点之间的距离是_______,数轴上表示1和-3的两点之间的距离是________;②数轴上表示x 和-1的两点A 和B 之间的距离是_________,如果2AB =,那么x 为__________; ③当代数式12x x ++-取最小值时,相应的x 的取值范围是____________.14.(08苏州)某厂生产一种产品,图①是该厂第一季度三个月产量的统计图,图②是这三个月的产量与第一季度总产量的比例分布统计图,统计员在制作图①、图②时漏填了部分数据.根据上述信息,回答下列问题:(1)该厂第一季度_________月份的产量最高.(2)该厂一月份产量占第一季度总产量的___________%.(3)该厂质检科从第一季度的产品中随机抽样,抽检结果发现样品的合格率为98%.请你估计:该厂第一季度大约生产了多少件合格的产品?(写出解答过程)15.(08恩施)如图所示,C为线段BD上一动点,分别过点B、D作AB⊥BD,ED⊥BD,连接AC、EC.已知AB=5,DE=1,BD=8;设CD=x.(1)用含x的代数式表示AC+CE的长;(2)请问点C满足什么条件时,AC+CE的值最小?(3)根据(2)16.如图,已知抛物线与x轴交于A(-1,0)、B(3,0)两点,与y轴交于点C(0,3)。
数形结合平中见奇——析2009年安徽中考数学第20题
刘皖
【期刊名称】《中学数学教学》
【年(卷),期】2009(000)006
【摘要】@@ 笔者在研究2009年安徽省中考数学试卷时,被第20题强烈吸引住了,仔细琢磨,回味无穷.现不避粗陋,一吐为快.
【总页数】2页(P53-54)
【作者】刘皖
【作者单位】安徽省合肥市第47中学,230041
【正文语种】中文
【相关文献】
1.注重本质平中见奇——中考统计图考查分析 [J], 沈文汉
2.平中见奇格调清新——近年安徽省中考数学压轴题赏析 [J], 司擎天
3.老题新作平中见奇 [J], 梦阳
4.赏析安徽中考数学卷填空题压轴题——以安徽省近五年中考数学真题卷为例 [J], 李伟
5.立足课本渗透素养
——2021年安徽省数学中考第23题简析 [J], 刘清清
因版权原因,仅展示原文概要,查看原文内容请购买。
2009年中考数学二轮复习专题训练:数形结合
1.已知∠AOB =30 ,C 是射线OB 上的一点,且OC =4.若以C 为圆心,r 为半径的圆与射线OA 有两个不同的交点,则r 的取值范围是______________.
2.对于任意的有理数a ,满足a ≤x ≤a +10的整数x 的个数为_________.
3.用同样规格的黑白两种颜色的正方形瓷砖按下面方式铺地板,则第(3)个图形中有黑色瓷砖_______块,第n 个图形中需要黑色瓷砖_______块(用含n 的代数式表示).
4.在直角坐标系中,纵、横坐标都是整数的点,称为整点.设k 为整数,当一次函数y =x +2与y =kx -4的图象的交点为整点时,k 的值可以取 ( ) A .6个 B .7个 C .8个 D .9个
5.在一直线型航道上,某人乘船由A 地顺流而下到B 地,然后又逆流而上到C 地,共乘船4小时.已知船在静水中的速度为每小时7.5千米,水流速度为每小时2.5千米,若A 、C 两地的距离为10千米,则A 、B 两地间的距离为 ( )
A .20km
B .203 km
C .20km 或20
3 km D .以上都不正确
6.福娃们在一起探讨研究下面的题目:
贝贝:我注意到当x =0时,y =m >0. 晶晶:我发现图象的对称轴为x =1
2.
欢欢:我判断出x 1<a <x 2.
迎迎:我认为关键要判断a -1的符号.
妮妮:m 可以取一个特殊的值.
参考下面福娃们的讨论,请你解该题,你选择的答案是 ( )
(1) (2) (3)
……
7.在数学活动中,小明为了求12+122+123+124+…+1
2n ,的值(结果用n 表示),设计如图1所示的几何
图形.
(1)请你利用这个几何图形求12+122+123+124+…+1
2n 的值为
_______.
(2)请你利用图2,再设计一个能求12+122+123+124+…+1
2n 的
值的几何图形.
8.如图,在正△ABC 中,AF =CE =BD =1
3AB ,求证:BD 2+DF 2=FC 2.
9.探索研究:
如图,在直角坐标系xOy 中,点P 为函数y =1
4x 2在第一象限内的图象上的任一点,点A 的坐标为(0,
1),直线l 过B (0,-1)且与x 轴平行,过P 作y 轴的平行线分别交x 轴,l 于C ,Q ,连结AQ 交x 轴于H ,直线PH 交y 轴于R .
(1)求证:H 点为线段AQ 的中点; (2)求证:①四边形APQR 为平行四边形;
②平行四边形APQR 为菱形;
(3)除P 点外,直线PH 与抛物线y =1
4x 2有无其它公共点?并说明理由.
x
D
F
B
A
12
122 123 124
…
(图1) (图2)
10.小明早晨从家里出发匀速步行去上学.小明的妈妈在小明出发后10分钟,发现小明的数学课本没带,于是她带上课本立即匀速骑车按小明上学的路线追赶小明,结果与小明同时到达学校.已知小明在整个上学途中,他出发后t 分钟时,他所在的位置与家的距离为s 千米,且s 与t 之间函数关系的图像如图中的折线段OA —AB 所示.
(1)试求折线段OA —AB 所对应的函数关系式; (2)请解释图中线段AB 的实际意义;
(3)请在所给的图中画出小明的妈妈在追赶小明的过程中,她所在的位置与家的距离s (千米)与小明出发后的时间t (分钟)之间函数关系的图像.(友情提醒:请对画出的图像用数据作适当的标注)
答案:
1.2<r ≤4 2.10或11 3.10,3n +4 4.B 5.C 6.C 7.(1)1-1
2
n ;(2)答案不唯一,只要符合题意即可,略.
8.提示:由结论中的等式特征联想到勾股定理,于是证明△BDE 为直角三角形. 9.(1)、(2)略;(3)要判断直线PH 与抛物线y =1
4x 2有
无其它公共点,只要研究由直线PH 的解析式与抛物线的解析式组成的方程组是否有两组不同的解.
10.(1)线段OA 对应的函数关系式为:s =1
12t (0≤t ≤12);
线段AB 对应的函数关系式为:s =1(12<t ≤20).
(2)图中线段AB 的实际意义是:小明出发12分钟后,沿着以他家为圆心,1千米为半径的圆弧形道路上匀速步行了8分钟. (3)如图中折线段CD —DB .。