2017北京市西城区初三数学一模试题
- 格式:doc
- 大小:2.09 MB
- 文档页数:17
北京市西城区2018年九年级统一测试数学试卷2018 ・4一、选择题(本题共16分,每小题2分)第1-8题均有四个选项,符合题意的选项只有一个.1在国家大数据战略的引领下,我国在人工智能领域取得显著成就,自主研发的人工智能绝艺”获得全球最前沿的人工智能赛事冠军,这得益于所建立的大数据中心的规模和数据存储量,它们决定着人工智能深度学习的质量和速度,其中的一个大数据中心能存储58000000000本书籍,将58000000000用科学记数法表示应为()•A • 5.8 1010B • 5.8 1011C • 58 109D • 0.58 1011【答案】A2•在中国集邮总公司设计的2017年纪特邮票首日纪念戳图案中,可以看作中心对称图形的是().B.千里江山图京津冀协同发展【答案】C3•将b3 -4b分解因式,所得结果正确的是(2 2A • b(b -4)B • b(b—4))•2C • b(b—2)D • b(b 2)(b—2)【答案】DA .三棱柱B .圆柱C .六棱柱D •圆锥俯视图5•若实数a ,b ,c ,d 在数轴上的对应点的位置如图所示,则正确的结论是().ab |c d-5 -4 -3 -2 -1 0 1 2 3 4 5【答案】D6•如果一个正多边形的内角和等于720,那么该正多边形的一个外角等于( ).A . 45B . 60C . 72D . 90【答案】B7•空气质量指数(简称为 AQI )是定量描述空气质量状况的指数,它的类别如下表所示.AQI 数据 0 ~50 51~100 101 ~150 151 ~200 201 ~300 301以上AQI 类别优 良 轻度污染 中度污染 重度污染 严重污染某同学查阅资料,制作了近五年月份北京市 各类别天数的统计图如下图所示.2014年2015年2016年2017年2018年时间1月 1月 1月 1月 1月根据以上信息,下列推断不合理的是A . AQI 类别为 优”的天数最多的是2018年月A . a ::: -5B .b 亠 d ::: 0 C . a -c :::0D .c ::: . d4.如图是某个几何体的三视图,该几何体是()•主视图左视图优 - 良 — 轻度污染 —中度污染 7-重度污染严重污染B • AQI数据在0〜100之间的天数最少的是2014年月C •这五年的月里,6个AQI类别中,类别优”的天数波动最大D • 2018年月的AQI数据的月均值会达到中度污染”类别【答案】D&将A , B两位篮球运动员在一段时间内的投篮情况记录如下:①投篮30次时,两位运动员都投中23次,所以他们投中的概率都是0.767 .②随着投篮次数的增加,A运动员投中频率总在0.750附近摆动,显示出一定的稳定性,可以估计A运动员投中的概率是0.750 .③投篮达到200次时,B运动员投中次数一定为160次. 其中合理的是().A .①B .②C .①③D .②③【答案】B二、填空题(本题共16分,每小题2分)x -19 .若代数式的值为°,则实数x的值为______________ .x +1【答案】X =110. _____________________________________ 化简:(a +4)(a —2)—a(a +1) = .【答案】a -8S A DEC 4 M”11. 如图,在△ ABC中,DE// AB, DE分别与AC , BC交于D , E两点.若~ 9,AC = 3,则S A ABC 9 DC =【答案】216.阅读下面材料:12.从杭州东站到北京南站, 原来最快的一趟高铁 G20次约用5h 到达.从2018年4月10日起,全国铁路开始实施新的列车运行图,并启用了 杭京高铁复兴号”它的运行速度比原来的 G20次的运行速度快35km/h ,约用4.5h 到达。
2017年北京市西城区中考一模数学试卷(word版含答案)2017年北京市西城区中考一模数学试卷一、选择题(本题共30分,每小题3分)下面各题均有四个选项,其中只有一个..是.符合题意的.1.春节假期,北京市推出了庙会休闲娱乐、传统文化展演、游园赏景赏花、冰雪项目体验等精品文化活动,共接待旅游总人数9 608 000人次,将9 608 000用科学记数法表示为(A)3960810⨯(B)4960.810⨯(C)596.0810⨯(D)69.60810⨯2.在数轴上,实数a,b对应的点的位置如图所示,且这两个点关于原点对称,下列结论中,正确的是(A)0a b+=(B)0a b-=(C 3.如图,AB∥CD,DA⊥CE于点A.若∠EAB=55°,则∠D的度数为(A)25°(B)35°(C)45°(D)55°A BE4.右图是某几何体的三视图,该几何体是(A)三棱柱(B)长方体(C)圆锥(D)圆柱5.若正多边形的一个外角是40°,则这个正多边形是(A)正七边形(B)正八边形(C)正九边形(D)正十边形6.用配方法解一元二次方程2650x x--=,此方程可化为(A)()234x-=(B)()2314x-=(C)()294x-=(D)()2914x-=7.如图,小明在地面上放了一个平面镜,选择合适的位置,刚好在平面镜中看到旗杆的顶部,此时小明与平面镜的水平距离为2 m,旗杆底部与平面镜的水平距离为16 m.若小明的眼睛与地面距离为1.5 m,则旗杆的高度为(单位:m)(A)163(B)9 (C)12 (D)6438.某商店举行促销活动,其促销的方式是“消费超过100元时,所购买的商品按原价打8折后,再减少20元” .若某商品的原价为x 元(x >100),则购买该商品实际付款的金额(单位:元)是(A )80%20x - (B )()80%20x -(C )20%20x - (D )()20%20x -9.某校合唱团有30名成员,下表是合唱团成员的年龄分布统计表: 年龄(单位:岁)13 14 15 16频数(单位:名) 5 15 x 10-x 对于不同的x ,下列关于年龄的统计量不会发生改变的是(A )平均数、中位数 (B )平均数、方差 (C )众数、中位数 (D )众数、方差10.汽车的“燃油效率”是指汽车每消耗1升汽油行驶的里程数.“燃油效率”越高表示汽车每消耗1升汽油行驶的里程数越多;“燃油效率”越低表示汽车每消耗1升汽油行驶的里程数越少.右下图描述了甲、乙、丙三辆汽车在不同速度下的燃油效率情况,下列说法中,正确的是(A)以相同速度行驶相同路程,三辆车中,甲车消耗汽油最多(B)以低于80km/h的速度行驶时,行驶相同路程,三辆车中,乙车消耗汽油最少(C)以高于80km/h的速度行驶时,行驶相同路程,丙车比乙车省油(D)以80km/h的速度行驶时,行驶100公里,甲车消耗的汽油量约为10升二、填空题(本题共18分,每小题3分)11.分解因式:ax2 2ax+a=________.12.若函数的图像经过点A(1,2),点B(2,1),写出一个符合条件的函数表达式_________.13.下表记录了一名球员在罚球线上罚篮的结果:投篮次数n100 150 300 500 800 1000 投中次数m 58 96 174 302 484 601投中频率m n0.580 0.640 0.580 0.604 0.605 0.601 这名球员投篮一次,投中的概率约是 .14.如图,四边形ABCD 是⊙O 内接四边形,若∠BAC =30°,∠CBD =80°,则∠BCD 的度数为_________________.15.在平面直角坐标系xOy 中,以原点O 为旋转中心,将△AOB 顺时针旋转90°得到△A'OB',其中点A'与点A 对应,点B'与点B 对应.若点A (-3,0),B (-1,2),则点A'的坐标为_______________,点B'的坐标为________________.16.下面是“经过已知直线外一点作这条直线的平行线”的尺规作图过程.DB OAxy –4–3–2–11234–4–3–2–11234O B A已知:如图1,直线l 和直线l 外一点P . 求作:直线l 的平行直线,使它经过点P . 作法:如图2.(1) 过点P 作直线m 与直线l 交于点O ;(2) 在直线m 上取一点A (OA <OP ),以点O 为圆心,OA 长为半径画弧,与直线l 交于点B ;(3) 以点P 为圆心,OA 长为半径画弧,交直线m 于点C ,以点C 为圆心,AB 长为半径画弧,两弧交于点D ;(4) 作直线PD .所以直线PD 就是所求作的平行线.请回答:该作图的依据是 .l图1Plm图2DC B P O A三、解答题(本题共72分,第17-26题,每小题5分,第27题7分,第28题7分,第29题8分)解答应写出文字说明、演算步骤或证明过程.17.计算: (10O 1232sin60322-⎛⎫-- ⎪⎝⎭18.解不等式组: 52<3+4722x x x x -⎧⎪⎨+≥⎪⎩19.已知x=2y ,求代数式222112x xy y y x x y ⎛⎫-+-÷ ⎪⎝⎭的值.20. 如图,在△ABC 中,BC 的垂直平分线交BC 于点D ,交AB 延长线于点E ,连接CE .求证:∠BCE =∠A +∠ACB .D21.某科研小组计划对某一品种的西瓜采用两种种植技术种植.在选择种植技术时,该科研小组主要关心的问题是:西瓜的产量和产量的稳定性,以及西瓜的优等品率. 为了解这两种种植技术种出的西瓜的质量情况,科研小组在两块自然条件相同的试验田进行对比试验,并从这两块实验田中各随机抽取20个西瓜,分别称重后,将称重的结果记录如下:表1 甲种种植技术种出的西瓜质量统计表编号 1 2 3 4 5 6 7 8 9 1西瓜质量.(单位:kg)3.54.85.44.94.25.4.94.85.84.8编号11 12131415161718192西瓜质量.(单位:kg)5.4.85.24.95.15.4.86.5.75.表2 乙种种植技术种出的西瓜质量统计表编号 1 2 3 4 5 6 7 8 9 1西瓜质量.(单位:kg)4.44.94.84.15.25.15.4.54.74.9编号11 12131415161718192西瓜质量.(单位:kg)5.45.54.5.34.85.65.25.75.5.3回答下列问题:(1)若将质量为4.5~5.5(单位:kg)的西瓜记为优等品,完成下表:优等品西瓜个数平均数方差甲种种植技术种出的西瓜质量4.98 0.27 乙种种植技术种15 4.97 0.21出的西瓜质量(2)根据以上数据,你认为该科研小组应选择哪种种植技术,并请说明理由.22.在平面直角坐标系x O y,直线y=x-1与y轴交于点交于点B(m,2).A,与双曲线=k yx(1)求点B的坐标及k的值;(2)将直线AB平移,使它与x轴交于点C,与y轴交于点D,若△ABC的面积为6,求直线CD的表达式.23.如图,在□ABCD中,对角线BD平分∠ABC,过点A作AE//BD,交CD的延长线于点E,过点E作EF ⊥BC,交BC延长线于点F.(1)求证:四边形ABCD是菱形;(2)若∠ABC=45°,BC=2,求EF的长.ADB24. 汽车保有量是指一个地区拥有车辆的数量,一般是指在当地登记的车辆.进入21世纪以来,我国汽车保有量逐年增长.下图是根据中国产业信息网上的有关数据整理的统计图.2007—2015年全国汽车保有量及增速统计图根据以上信息,回答下列问题:(1)2016年汽车保有量净增2200万辆,为历史最高水平,2016年汽车的保有量为万辆,与2015年相比,2016年的增长率约为%;(2)从2008年到2015年,年全国汽车保有量增速最快;(3)预估2020年我国汽车保有量将达到万辆,预估理由是25.如图,AB为⊙O的直径,C为⊙O上一点,过点C作⊙O的切线,交BA的延长线交于点D,过点B作BE ⊥BA,交DC延长线于点E,连接OE,交⊙O于点F,交BC于点H,连接AC.(1)求证:∠ECB=∠EBC;(2)连接BF,CF,若CF=6,sin∠FCB=3,求AC的5长.26.阅读下列材料:某种型号的温控水箱的工作过程是:接通电源后,在初始温度20℃下加热水箱中的水;当水温达到设定温度80℃时,加热停止;此后水箱中的水温开始逐渐下降,当下降到20℃时,再次自动加热水箱中的水至80℃时,加热停止;当水箱中的水温下降到20℃时,再次自动加热,……,按照以上方式不断循环.小明根据学习函数的经验,对该型号温控水箱中的水温随时间变化的规律进行了探究.发现水温y是时间x的函数,其中y(单位:℃)表示水箱中水的温度.x(单位:min)表示接通电源后的时间.下面是小明的探究过程,请补充完整:(1)下表记录了32min内14个时间点的温控水箱中水的温度y随时间x的变化情况接通电源后的时间x (单位:min)0 1 2 3 4 5 8116182212432…水箱中水的温度y (单位:℃)2355658644322m86442…m的值为;(2)①当0≤x≤4时,写出一个符合表中数据的函数解析式;当4<x≤16时,写出一个符合表中数据的函数解析式;②如图,在平面直角坐标系xOy中,描出了上表中部分数据对应的点,根据描出的点,画出当0≤x≤32时,温度y随时间x变化的函数图象:x y10080604020246810121416182022242628303234O(3) 如果水温y 随时间x 的变化规律不变,预测水温第8次达到40℃时,距离接通电源 min .27.在平面直角坐标系xOy 中,二次函数y =mx 2 -(2m +1)x + m -5的图象与x 轴有两个公共点.(1)求m 的取值范围;(2)若m 取满足条件的最小的整数,①写出这个二次函数的解析式;②当n ≤ x ≤ 1时,函数值y 的取值范围是-6 ≤ y ≤ 4-n ,求n 的值;③将此二次函数平移,使平移后的图象经过原点O .设平移后的图象对应的函数表达式为y =a (x -h )2 + k ,当x < 2时,y 随x 的增大而减小,求k 的取值范围.28.在△ABC 中,AB =BC ,BD ⊥AC 于点D .(1)如图1,当∠ABC =90°时,若CE 平分∠ACB ,交AB 于点E ,交BD 于点F .①求证:△BEF 是等腰三角形;②求证:BD =12(BC + BF ); (2)点E 在AB 边上,连接CE .若BD =12(BC + BE ),在图2中补全图形,判断∠ACE 与∠ABC 之间的数量关系,写出你的结论,并写出求解∠ACE 与∠ABC 关系的思路.图2图1FEC A A29.在平面直角坐标系xOy 中,若点P 和点P 1关于y 轴对称,点P 1和点P 2关于直线l 对称,则称点P 2是点P 关于y 轴,直线l 的二次对称点.(1)如图1,点A (-1 , 0).①若点B 是点A 关于y 轴,直线l 1: x =2的二次对称点,则点B 的坐标为 ;②若点C (-5 , 0)是点A 关于y 轴,直线l 2:x =a 的二次对称点,则a 的值为 ;③若点D (2 , 1)是点A 关于y 轴,直线l 3的二次对称点,则直线l 3的表达式为 ;(2)如图2,⊙O 的半径为1.若⊙O 上存在点M ,使得点M '是点M 关于y 轴,直线l 4:x =b 的二次对称点,且点M '在射线3(0)y x x =≥上,b 的取值范围是 ; (3)E (t ,0)是x 轴上的动点,⊙E 的半径为2,若⊙E 上存在点N ,使得点N '是点N 关于y 轴,直线l 5:31y x =+的二次对称点,且点N '在y 轴上,求t 的取值范围.x x y y 图1图2–5–4–3–2–112345–3–2–11234–5–4–3–2–112345–3–2–11234O O A。
北京市西城区2017届九年级数4月统一测试(一模)学试题一、选择题(本题共30分,每小题3分)下面各题均有四个选项,其中只有一个..是.符合题意的. 1.春节假期,北京市推出了庙会休闲娱乐、传统文化展演、游园赏景赏花、冰雪项目体验等精品文化活动,共接待旅游总人数9 608 000人次,将9 608 000用科学记数法表示为 (A )3960810⨯ (B )4960.810⨯ (C )596.0810⨯ (D )69.60810⨯2.在数轴上,实数a ,b 对应的点的位置如图所示,且这两个点关于原点对称,下列结论中,正确的是(A )0a b += (B )0a b -=(C )a b <(D )0ab >3.如图,AB ∥CD ,DA ⊥CE 于点A .若∠EAB =55°,则∠D 的度数为 (A )25°(B )35° (C )45° (D )55°CABE第3题图 第4题图4.右图是某几何体的三视图,该几何体是 (A )三棱柱(B )长方体(C )圆锥(D )圆柱5.若正多边形的一个外角是40°,则这个正多边形是 (A )正七边形 (B )正八边形(C )正九边形(D )正十边形6.用配方法解一元二次方程2650x x --=,此方程可化为(A )()234x -= (B )()2314x -= (C )()294x -=(D )()2914x -=7.如图,小明在地面上放了一个平面镜,选择合适的位置,刚好在平面镜中看到旗杆的顶部,此时小明与平面镜的水平距离为2m ,旗杆底部与平面镜的水平距离为16m .若小明的眼睛与地面距离为1.5m ,则旗杆的高度为(单位:m )(A )163(B )9 (C )12 (D )6438.某商店举行促销活动,其促销的方式是“消费超过100元时,所购买的商品按原价打8折后,再减少20元” .若某商品的原价为x 元(x >100),则购买该商品实际付款的金额(单位:元)是(A )80%20x - (B )()80%20x - (C )20%20x - (D )()20%20x -9.某校合唱团有30名成员,下表是合唱团成员的年龄分布统计表: 年龄(单位:岁) 13 14 1516 频数(单位:名)515x10-x(A )平均数、中位数 (B )平均数、方差 (C )众数、中位数(D )众数、方差10.汽车的“燃油效率”是指汽车每消耗1升汽油行驶的里程数.“燃油效率”越高表示汽车每消耗1升汽油行驶的里程数越多;“燃油效率”越低表示汽车每消耗1升汽油行驶的里程数越少.右下图描述了甲、乙、丙三辆汽车在不同速度下的燃油效率情况,下列说法中,正确的是(A )以相同速度行驶相同路程,三辆车中,甲车消耗汽油最多(B )以低于80km /h 的速度行驶时,行驶相同路程,三辆车中,乙车消耗汽油最少 (C )以高于80km /h 的速度行驶时,行驶相同路程,丙车比乙车省油 (D )以80km /h 的速度行驶时,行驶100公里,甲车消耗的汽油量约为10升二、填空题(本题共18分,每小题3分) 11.分解因式:ax 2-2ax +a =________.12.若函数的图像经过点A (1,2),点B (2,1),写出一个符合条件的函数表达式_________. 13.下表记录了一名球员在罚球线上罚篮的结果:这名球员投篮一次,投中的概率约是 .14.如图,四边形ABCD 是⊙O 内接四边形,若∠BAC =30°,∠CBD =80°,则∠BCD 的度数为_________________.第15题15.在平面直角坐标系xOy 中,以原点O 为旋转中心,将△AOB 顺时针旋转90°得到△A'OB',其中点A'与点A 对应,点B'与点B 对应.若点A (-3,0),B (-1,2),则点A'的坐标为_______________,点B'的坐标为________________. 16.下面是“经过已知直线外一点作这条直线的平行线”的尺规作图过程. 请回答:该作图的依据是 .三、解答题(本题共72分,第17-26题,每小题5分,第27题7分,第28题7分,第29题8分)解答应写出文字说明、演算步骤或证明过程.17.计算: (10O 123260322sin -⎛⎫-- ⎪⎝⎭18.解不等式组: 52<3+4722x x x x -⎧⎪⎨+≥⎪⎩19.已知x=2y ,求代数式222112x xy y y x x y ⎛⎫-+-÷ ⎪⎝⎭的值.20. 如图,在△ABC 中,BC 的垂直平分线交BC 于点D ,交AB 延长线于点E ,连接CE . 求证:∠BCE =∠A +∠ACB .D21.某科研小组计划对某一品种的西瓜采用两种种植技术种植.在选择种植技术时,该科研小组主要关心的问题是:西瓜的产量和产量的稳定性,以及西瓜的优等品率. 为了解这两种种植技术种出的西瓜的质量情况,科研小组在两块自然条件相同的试验田进行对比试验,并从这两块实验田中各随机抽取20个西瓜,分别称重后,将称重的结果记录如下:表1 甲种种植技术种出的西瓜质量统计表编号 1 2 3 4 5 6 7 8 910西瓜质量.(单位:kg) 3.5 4.85.44.94.25.4.94.85.84.8编号11 12 13 14 15 16 17 18 19 20西瓜质量.(单位:kg) 5.0 4.85.24.95.15.4.86.5.75.表2 乙种种植技术种出的西瓜质量统计表编号 1 2 3 4 5 6 7 8 9 10西瓜质量.(单位:kg) 4.4 4.94.84.15.25.15.4.54.74.9编号11 12 13 14 15 16 17 18 19 20西瓜质量.(单位:kg) 5.4 5.54.5.34.85.65.25.75.5.3回答下列问题:(1)若将质量为4.5~5.5(单位:kg)的西瓜记为优等品,完成下表:优等品西瓜个数平均数方差甲种种植技术种出的西瓜质量 4.98 0.27 乙种种植技术种出的西瓜质量15 4.97 0.21(2)根据以上数据,你认为该科研小组应选择哪种种植技术,并请说明理由.22.在平面直角坐标系x O y,直线y=x-1与y轴交于点A,与双曲线=kyx交于点B(m,2). (1)求点B的坐标及k的值;(2)将直线AB平移,使它与x轴交于点C,与y轴交于点D,若△ABC的面积为6,求直线CD的表达式.23.如图,在□ABCD中,对角线BD平分∠ABC,过点A作AE//BD,交CD的延长线于点E,过点E作EF⊥BC,交BC延长线于点F.(1)求证:四边形ABCD是菱形;(2)若∠ABC=45°,BC=2,求EF的长.ADB24. 汽车保有量是指一个地区拥有车辆的数量,一般是指在当地登记的车辆.进入21世纪以来,我国汽车保有量逐年增长.下图是根据中国产业信息网上的有关数据整理的统计图.2007—2015年全国汽车保有量及增速统计图根据以上信息,回答下列问题:(1)2016年汽车保有量净增2200万辆,为历史最高水平,2016年汽车的保有量为万辆,与2015年相比,2016年的增长率约为 %;(2)从2008年到2015年,年全国汽车保有量增速最快;(3)预估2020年我国汽车保有量将达到万辆,预估理由是25.如图,AB为⊙O的直径,C为⊙O上一点,过点C作⊙O的切线,交BA的延长线交于点D,过点B作BE⊥BA,交DC延长线于点E,连接OE,交⊙O于点F,交BC于点H,连接AC.(1)求证:∠ECB=∠EBC;(2)连接BF,CF,若CF=6,sin∠FCB=35,求AC的长.HFD A O BC26.阅读下列材料:某种型号的温控水箱的工作过程是:接通电源后,在初始温度20℃下加热水箱中的水;当水温达到设定温度80℃时,加热停止;此后水箱中的水温开始逐渐下降,当下降到20℃时,再次自动加热水箱中的水至80℃时,加热停止;当水箱中的水温下降到20℃时,再次自动加热,……,按照以上方式不断循环.小明根据学习函数的经验,对该型号温控水箱中的水温随时间变化的规律进行了探究.发现水温y是时间x的函数,其中y(单位:℃)表示水箱中水的温度.x(单位:min)表示接通电源后的时间.下面是小明的探究过程,请补充完整:(1)下表记录了32min内14个时间点的温控水箱中水的温度y随时间x的变化情况接通电源后的时间x0 1 2 3 4 5 8 10 16 18 20 21 24 32 …(单位:min)水箱中水的温度y20 35 50 65 80 64 40 32 20 m80 64 40 20 …(单位:℃)m的值为;(2)①当0≤x≤4时,写出一个符合表中数据的函数解析式;当4<x≤16时,写出一个符合表中数据的函数解析式;②如图,在平面直角坐标系xOy中,描出了上表中部分数据对应的点,根据描出的点,画出当0≤x≤32时,温度y随时间x变化的函数图象:(3)如果水温y随时间x的变化规律不变,预测水温第8次达到40℃时,距离接通电源min.27.在平面直角坐标系xOy中,二次函数y=mx2 -(2m + 1)x + m-5的图象与x轴有两个公共点.(1)求m的取值范围;(2)若m取满足条件的最小的整数,①写出这个二次函数的解析式;②当n ≤ x ≤ 1时,函数值y的取值范围是-6 ≤ y ≤ 4-n,求n的值;③将此二次函数平移,使平移后的图象经过原点O.设平移后的图象对应的函数表达式为y=a(x-h)2 + k,当x < 2时,y随x的增大而减小,求k的取值范围.28.在△ABC中,AB=BC,BD⊥AC于点D.(1)如图1,当∠ABC=90°时,若CE平分∠ACB,交AB于点E,交BD于点F.①求证:△BEF是等腰三角形;②求证:BD=12(BC + BF);(2)点E在AB边上,连接CE.若BD=12(BC + BE),在图2中补全图形,判断∠ACE与∠ABC之间的数量关系,写出你的结论,并写出求解∠ACE与∠ABC关系的思路.图2图1D FECB AACB29.在平面直角坐标系xOy 中,若点P 和点P 1关于y 轴对称,点P 1和点P 2关于直线l 对称,则称点P 2是点P 关于y 轴,直线l 的二次对称点. (1)如图1,点A (-1 , 0).①若点B 是点A 关于y 轴,直线l 1: x =2的二次对称点,则点B 的坐标为 ; ②若点C (-5 , 0)是点A 关于y 轴,直线l 2:x =a 的二次对称点,则a 的值为 ;③若点D (2 , 1)是点A 关于y 轴,直线l 3的二次对称点,则直线l 3的表达式为 ;(2)如图2,⊙O的半径为1.若⊙O上存在点M,使得点M'是点M关于y轴,直线l4:x=b的二次对称点,且点M'在射线(y x x=≥(3)E(t,0)是x轴上的动点,⊙E的半径为2,若⊙E上存在点N,使得点N'是点N关于y轴,直线l5:1y=+的二次对称点,且点N'在y轴上,求t的取值范围.图1图2。
33北京市西城区2016—2017 学年度第一学期期末试卷九年级数学参考答案2017.1一、选择题(本题共30 分,每小题3 分)题号 1 2 3 4 5 6 7 8 9 10 答案 A C A D B C D C B B 二、填空题(本题共18 分,每小题3 分)11.112.本题答案不唯一,如:EF ∥ BC .13.3 314.0 ≤x ≤315.5016.本题作法不唯一,如:(1)如图所示,点O 即为所求作的圆心.(2)作图的依据:线段垂直平分线的点与这条线段两个端点的距离相等;不在同一条直线上的三个点确定一个圆.三、解答题(本题共72 分,第17﹣26 题,每小题5 分,第27 题7 分,第28 题7 分,第29 题8 分)17.解:原式= 4 ⨯3- 3⨯+ 2 ⨯2⨯24 分2 2 2=1 -. 5 分18.(1)证明:∵等边△ABC ,∴∠BAC = 60︒,AB =AC .∵线段AD 绕点A 顺时针旋转60︒,得到线段AE ,∴ ∠DAE = 60︒ , AE = AD .∴ ∠BAD + ∠EAB = ∠BAD + ∠DAC . ∴ ∠EAB = ∠DAC . ∴ △EAB ≌△DAC . ∴ ∠AEB = ∠ADC . 3 分(2)解:∵ ∠DAE = 60︒ , AE = AD ,∴ △EAD 为等边三角形. ∴ ∠AED = 60︒ ,又∵ ∠AEB = ∠ADC = 105︒ . ∴ ∠BED = 45︒ . 5 分 19.解:(1) y = x 2 + 4x + 3= x 2 + 4x + 22 - 22 + 3= (x + 2)2-12 分(2)列表:x … -4 -3 -2 -1 0 … y (3)0 -1 03…(3)本题答案不唯一,如:当 x < -2 时, y 随 x 的增大而减小,当 x > -2 时, y 随 x 的 增大而增大.5 分20.(1)证明:∵ CE = CD ,∴ ∠CDE = ∠CED .∴ ∠ADB = ∠CEA . ∵ ∠DAC = ∠B ,∴ △ABD ∽△CAE .3 分(2)解:由(1) △ABD ∽△CAE ,∴ AB = BD . AC AE∵ AB = 6 , AC = 9, BD = 2 ,2∴ AE =3. 5 分221.解:设剪掉的正方形纸片的边工为x cm . 1 分由题意,得(30 - 2x)(20 - 2x)= 264 . 3 分整理,得x2- 25x + 84 = 0 .解方程,得x1=4,x2= 21(不符合题意,舍去). 4 分答:剪掉的正方形纸片的边长为4 cm . 5 分22.解:本题答案不唯一,如:(1)以AB 所在直线为x 轴,以抛物线的对称轴为y 轴建立如图所示的平面直角坐标系xOy ,则A(-4,0), B (4,0), C (0,6).设这条抛物线的表达式为y =a (x - 4)(x + 4).∵抛物线经过点C ,∴-16a = 6 .∴a =-3 .8∴这条抛物线表示的二次函数表达式为y =-3x2 + 6 . 4 分8(2)当x = 1时,y =45.8∵4.4 + 0.5 = 4.9 <45,8∴这辆货车能安全通过这条隧道. 5 分23.(1)证明:连接OC.∴AB 是O 的直径,∴ ∠ACB = 90︒,即∠1 +∠3 = 90︒.∵O A =OC ,∴ ∠1 = ∠2 .∴ ∠BCD = ∠CAB = ∠1. ∴ ∠BCD + ∠3 = 90︒ . ∴ OC ⊥ DC 于点C . ∴ DC 是 O 的切线.3 分(2)解:在Rt △OCD 中, OC = 3 , sin D = 3,5∴ OD = 5 , AD = 8 ,∵ CE = CB , ∴ ∠2 = ∠4 . ∴ ∠1 = ∠4 . ∴ OC ∥ AF . ∴ △DOC ∽△DAF .∴ OC = OD . AF AD∴ AF = 24. 5 分524.本题答案不唯一,如:(1)测量工具有:简单测角仪,测量尺等; 1 分 (2)设CD 表示祈年殿的高度,测量过程的几何图形如图所示. 需要测量的几何量如下:①在点 A ,点 B 处用测角仪分别测出仰角α , β ;②测出 A , B 两点之间的距离 s m . 3 分(3)求解思路:a .设CD 为 x m .在Rt △DBC 中,由∠DBC = β ,可得 BC = x;tan β同理,在Rt △DAC 中,可得 AC =x.tan α b .由 AB = AC - BC 得 s = x tan α- xtan β ,x 可求.5 分25.(1)证明:∵直径 DE ⊥ AB 于点 F ,∴ AF = BF . ∴ AM = BM . 2 分 (2)解:连接 AO , BO ,如图.3 6 2∵ DE ⊥ AB ,AO = BO , ∴ ∠AOF = ∠BOF = 1∠AOB .2由(1)可得 AM = BM , ∵ AM ⊥ BM ,∴ ∠MAF = ∠MBF = 45︒ . ∴ ∠CMN = ∠BMF = 45︒ . ∵ ∠N = 15︒ ,∴ ∠ACM = ∠CMN + ∠N = 60︒ ,即∠ACB = 60︒ .∵ ∠ACB = 1∠AOB ,2∴ ∠AOF = ∠ACB = 60︒ . ∵ D E = 8 , ∴ AO = 4 .在Rt △AOF 中,由sin ∠AOF = AF,得 AF = 2 .AO在Rt △AMF 中, AM = BM = 2AF = 2 . 在Rt △ACM 中,由tan ∠ACM = AM ,得CM = 2 2 .CM∴ BC = CM + BM = 2 + 2 26.解:(1)补全表格如下:. 5 分方 程 两 根 的 情 况对应的二次函数的大致图象 a , b , c 满足的条件方 程 有 一 个 负实 根 和 一 个 正 实根⎧a > 0 ⎪∆ = b 2 - 4ac > 0 ⎪ ⎨- b> 0⎪ 2a ⎪ ⎪⎩c > 06⎪⎩ 3 分(2)解:设一元二次方程x2-(2m + 3)x - 4m = 0 对应的二次函数为:y =x2-(2m + 3)x - 4m ,∴一元二次方程x2-(2m +3)x-4m = 0 有一个负实根和一个正实根,且负实根大于-1,⎧⎪-4m < 0∴⎨(-1)2 -(2m + 3)⋅(-1)- 4m > 0.。
北京市西城区2017年九年级统一测试数学试卷 2017.4一、选择题(本题共30分,每小题3分)下面各题均有四个选项,其中只有一个..是.符合题意的. 1.春节假期,北京市推出了庙会休闲娱乐、传统文化展演、游园赏景赏花、冰雪项目体验等精品文化活动,共接待旅游总人数9 608 000人次,将9 608 000用科学记数法表示为 (A )3960810⨯ (B )4960.810⨯ (C )596.0810⨯ (D )69.60810⨯2.在数轴上,实数a ,b 对应的点的位置如图所示,且这两个点关于原点对称,下列结论中,正确的是0ab1(A )0a b += (B )0a b -=(C )a b <(D )0ab >3.如图,AB ∥CD ,DA ⊥CE 于点A .若∠EAB = 55°,则∠D 的度数为 (A )25°(B )35° (C )45° (D )55°DCABE第3题图 第4题图4.右图是某几何体的三视图,该几何体是(A )三棱柱 (B )长方体 (C )圆锥(D )圆柱5.若正多边形的一个外角是40°,则这个正多边形是 (A )正七边形 (B )正八边形(C )正九边形(D )正十边形6.用配方法解一元二次方程2650x x --=,此方程可化为(A )()234x -= (B )()2314x -= (C )()294x -=(D )()2914x -=7.如图,小明在地面上放了一个平面镜,选择合适的位置,刚好在平面镜中看到旗杆的顶部,此时小明与平面镜的水平距离为2m ,旗杆底部与平面镜的水平距离为16m .若小明的眼睛与地面距离为1.5m ,则旗杆的高度为(单位:m )(A )163(B )9 (C )12 (D )6438.某商店举行促销活动,其促销的方式是“消费超过100元时,所购买的商品按原价打8折后,再减少20元” .若某商品的原价为x 元(x >100),则购买该商品实际付款的金额(单位:元)是 (A )80%20x - (B )()80%20x - (C )20%20x -(D )()20%20x -9.某校合唱团有30名成员,下表是合唱团成员的年龄分布统计表:年龄(单位:岁) 13 14 15 16 频数(单位:名)515x10-x对于不同的x ,下列关于年龄的统计量不会发生改变的是 (A )平均数、中位数 (B )平均数、方差 (C )众数、中位数(D )众数、方差10.汽车的“燃油效率”是指汽车每消耗1升汽油行驶的里程数.“燃油效率”越高表示汽车每消耗1升汽油行驶的里程数越多;“燃油效率”越低表示汽车每消耗1升汽油行驶的里程数越少.右下图描述了甲、乙、丙三辆汽车在不同速度下的燃油效率情况,下列说法中,正确的是(A )以相同速度行驶相同路程,三辆车中,甲车消耗汽油最多(B )以低于80km /h 的速度行驶时,行驶相同路程,三辆车中,乙车消耗汽油最少 (C )以高于80km /h 的速度行驶时,行驶相同路程,丙车比乙车省油 (D )以80km /h 的速度行驶时,行驶100公里,甲车消耗的汽油量约为10升二、填空题(本题共18分,每小题3分)11.分解因式:ax2-2ax+a=________.12.若函数的图像经过点A(1,2),点B(2,1),写出一个符合条件的函数表达式_________.13.下表记录了一名球员在罚球线上罚篮的结果:投篮次数n100 150 300 500 800 1000投中次数m58 96 174 302 484 601投中频率mn0.580 0.640 0.580 0.604 0.605 0.601这名球员投篮一次,投中的概率约是.4.如图,四边形ABCD是⊙O内接四边形,若∠BAC=30°,∠CBD=80°,则∠BCD的度数为____________.第14题图第15题15.在平面直角坐标系xOy中,以原点O为旋转中心,将△AOB顺时针旋转90°得到△A'OB',其中点A'与点A对应,点B'与点B对应.若点A(-3,0),B(-1,2),则点A'的坐标为_______________,点B'的坐标为________________.16.下面是“经过已知直线外一点作这条直线的平行线”的尺规作图过程.已知:如图1,直线l 和直线l 外一点P . 求作:直线l 的平行直线,使它经过点P .作法:如图2.(1) 过点P 作直线m 与直线l 交于点O ;(2) 在直线m 上取一点A (OA <OP ),以点O 为圆心,OA 长为半径画弧,与直线l 交于点B ; (3) 以点P 为圆心,OA 长为半径画弧,交直线m 于点C ,以点C 为圆心,AB 长为半径画弧,两弧交于点D ;(4) 作直线PD .所以直线PD 就是所求作的平行线.请回答:该作图的依据是 .三、解答题(本题共72分,第17-26题,每小题5分,第27题7分,第28题7分,第29题8分)解答应写出文字说明、演算步骤或证明过程.17.计算: ()10O123260+322sin -⎛⎫---- ⎪⎝⎭18.解不等式组: 52<3+4722x x x x -⎧⎪⎨+≥⎪⎩19.已知x=2y ,求代数式222112x xy y y x x y ⎛⎫-+-÷ ⎪⎝⎭的值.20. 如图,在△ABC 中,BC 的垂直平分线交BC 于点D ,交AB 延长线于点E ,连接CE . 求证:∠BCE =∠A +∠ACB .EDABC21.某科研小组计划对某一品种的西瓜采用两种种植技术种植.在选择种植技术时,该科研小组主要关心的问题是:西瓜的产量和产量的稳定性,以及西瓜的优等品率. 为了解这两种种植技术种出的西瓜的质量情况,科研小组在两块自然条件相同的试验田进行对比试验,并从这两块实验田中各随机抽取20个西瓜,分别称重后,将称重的结果记录如下:表1 甲种种植技术种出的西瓜质量统计表编号 1 2 3 4 5 6 7 8 9 10 西瓜质量.(单位:kg) 3.5 4.8 5.4 4.9 4.2 5.0 4.9 4.8 5.8 4.8编号11 12 13 14 15 16 17 18 19 20 西瓜质量.(单位:kg) 5.0 4.8 5.2 4.9 5.1 5.0 4.8 6.0 5.7 5.0表2 乙种种植技术种出的西瓜质量统计表编号 1 2 3 4 5 6 7 8 9 10 西瓜质量.(单位:kg) 4.4 4.9 4.8 4.1 5.2 5.1 5.0 4.5 4.7 4.9编号11 12 13 14 15 16 17 18 19 20 西瓜质量.(单位:kg) 5.4 5.5 4.0 5.3 4.8 5.6 5.2 5.7 5.0 5.3回答下列问题:(1)若将质量为4.5~5.5(单位:kg)的西瓜记为优等品,完成下表:优等品西瓜个数平均数方差甲种种植技术种出的西瓜质量 4.98 0.27乙种种植技术种出的西瓜质量15 4.97 0.21(2)根据以上数据,你认为该科研小组应选择哪种种植技术,并请说明理由.22. 在平面直角坐标系x O y ,直线y =x -1与y 轴交于点A ,与双曲线=ky x交于点B (m ,2). (1)求点B 的坐标及k 的值;(2)将直线AB 平移,使它与x 轴交于点C ,与y 轴交于点D ,若△ABC 的面积为6,求直线CD 的表达式.23.如图,在□ABCD 中,对角线BD 平分∠ABC ,过点A 作AE //BD ,交CD 的延长线于点E ,过点E 作EF ⊥BC ,交BC 延长线于点F . (1)求证:四边形ABCD 是菱形; (2)若∠ABC =45°,BC =2,求EF 的长.DFEBAC24. 汽车保有量是指一个地区拥有车辆的数量,一般是指在当地登记的车辆.进入21世纪以来,我国汽车保有量逐年增长.下图是根据中国产业信息网上的有关数据整理的统计图.2007—2015年全国汽车保有量及增速统计图根据以上信息,回答下列问题:(1)2016年汽车保有量净增2200万辆,为历史最高水平,2016年汽车的保有量为万辆,与2015年相比,2016年的增长率约为%;(2)从2008年到2015年,年全国汽车保有量增速最快;(3)预估2020年我国汽车保有量将达到万辆,预估理由是25.如图,AB为⊙O的直径,C为⊙O上一点,过点C作⊙O的切线,交BA的延长线交于点D,过点B 作BE⊥BA,交DC延长线于点E,连接OE,交⊙O于点F,交BC于点H,连接AC.(1)求证:∠ECB =∠EBC;(2)连接BF,CF,若CF =6,sin∠FCB =35,求AC的长.HFDEA O BC26.阅读下列材料:某种型号的温控水箱的工作过程是:接通电源后,在初始温度20℃下加热水箱中的水;当水温达到设定温度80℃时,加热停止;此后水箱中的水温开始逐渐下降,当下降到20℃时,再次自动加热水箱中的水至80℃时,加热停止;当水箱中的水温下降到20℃时,再次自动加热,……,按照以上方式不断循环.小明根据学习函数的经验,对该型号温控水箱中的水温随时间变化的规律进行了探究.发现水温y 是时间x的函数,其中y(单位:℃)表示水箱中水的温度.x(单位:min)表示接通电源后的时间.下面是小明的探究过程,请补充完整:(1)下表记录了32min内14个时间点的温控水箱中水的温度y随时间x的变化情况接通电源后的时间x0 1 2 3 4 5 8 10 16 18 20 21 24 32 …(单位:min)水箱中水的温度y20 35 50 65 80 64 40 32 20 m80 64 40 20 …(单位:℃)m的值为;(2)①当0 ≤x ≤ 4时,写出一个符合表中数据的函数解析式;当4<x ≤ 16时,写出一个符合表中数据的函数解析式;②如图,在平面直角坐标系xOy中,描出了上表中部分数据对应的点,根据描出的点,画出当0≤x≤32时,温度y随时间x变化的函数图象:xy 10080604020246810121416182022242628303234O(3) 如果水温y 随时间x 的变化规律不变,预测水温第8次达到40℃时,距离接通电源 min .27.在平面直角坐标系xOy 中,二次函数y =mx 2 -(2m + 1)x + m -5的图象与x 轴有两个公共点. (1)求m 的取值范围;(2)若m 取满足条件的最小的整数, ①写出这个二次函数的解析式;②当n ≤ x ≤ 1时,函数值y 的取值范围是-6 ≤ y ≤ 4-n ,求n 的值;③将此二次函数平移,使平移后的图象经过原点O .设平移后的图象对应的函数表达式为y =a (x -h )2 + k ,当x < 2时,y 随x 的增大而减小,求k 的取值范围.28.在△ABC 中,AB = BC ,BD ⊥AC 于点D .(1)如图1,当∠ABC = 90°时,若CE 平分∠ACB ,交AB 于点E ,交BD 于点F .①求证:△BEF 是等腰三角形; ②求证:BD =12(BC + BF ); (2)点E 在AB 边上,连接CE .若BD =12(BC + BE ),在图2中补全图形,判断∠ACE 与∠ABC 之间的数量关系,写出你的结论,并写出求解∠ACE 与∠ABC 关系的思路.图2图1D FEDCB AACB29.在平面直角坐标系xOy 中,若点P 和点P 1关于y 轴对称,点P 1和点P 2关于直线l 对称,则称点P 2是点P 关于y 轴,直线l 的二次对称点. (1)如图1,点A (-1 , 0).①若点B 是点A 关于y 轴,直线l 1: x =2的二次对称点,则点B 的坐标为 ; ②若点C (-5 , 0)是点A 关于y 轴,直线l 2: x = a 的二次对称点,则a 的值为 ; ③若点D (2 , 1)是点A 关于y 轴,直线l 3的二次对称点,则直线l 3的表达式为 ; (2)如图2,⊙O 的半径为1.若⊙O 上存在点M ,使得点M '是点M 关于y 轴,直线l 4: x = b 的二次对称点,且点M '在射线3(0)3y x x =≥上,b 的取值范围是 ; (3)E (t ,0)是x 轴上的动点,⊙E 的半径为2,若⊙E 上存在点N ,使得点N '是点N 关于y 轴,直线l 5:31y x =+的二次对称点,且点N '在y 轴上,求t 的取值范围.xxy y 图1图2–5–4–3–2–112345–3–2–11234–5–4–3–2–112345–3–2–11234OOA。
北京市西城区2017-2018学年九年级数学统一测试4月(一模)试卷一、选择题(本题共16分,每小题2分)第1-8题均有四个选项,符合题意的选项只有一个.1.在国家大数据战略的引领下,我国在人工智能领域取得显著成就,自主研发的人工智能“绝艺”获得全球最前沿的人工智能赛事冠军,这得益于所建立的大数据中心的规模和数据存储量,它们决定着人工智能深度学习的质量和速度,其中的一个大数据中心能存储58000000000本书籍,将58000000000用科学记数法表示应为().A.10⨯C.95.810⨯B.115.8100.5810⨯⨯D.115810【答案】A【解析】用科学记数法表示为105.810⨯.2.在中国集邮总公司设计的2017年纪特邮票首日纪念戳图案中,可以看作中心对称图形的是().A.B.C.D.【答案】C【解析】中心对称绕中心转180︒与自身重合.3.将34-分解因式,所得结果正确的是().b bA .2(4)b b -B .2(4)b b -C .2(2)b b -D .(2)(2)b b b +-【答案】D【解析】324(4)(2)(2)b b b b b b b -=-=+-.4.如图是某个几何体的三视图,该几何体是( ). A .三棱柱 B .圆柱 C .六棱柱 D .圆锥【答案】C【解析】由俯视图可知有六个棱,再由主视图即左视图分析可知为六棱柱.5.若实数a ,b ,c ,d 在数轴上的对应点的位置如图所示,则正确的结论是( ). A .5a <- B .0b d +< C .0a c -< D.c【答案】D【解析】①5a >-,故A 错. ②0b d +>,故B 错. ③0a c ->,故C 错.④01c <<2==,故选D .6.如果一个正多边形的内角和等于720︒,那么该正多边形的一个外角等于( ). A .45︒ B .60︒C .72︒D .90︒【答案】B【解析】多边形内角和(2)180720n -⨯︒=︒,∴6n =. 正多边形的一个外角360360606n ︒︒===︒.俯视图左视图主视图7.空气质量指数(简称为AQI )是定量描述空气质量状况的指数,它的类别如下表所示.根据以上信息,下列推断不合理的是A .AQI 类别为“优”的天数最多的是2018年月B .AQI 数据在0~100之间的天数最少的是2014年月C .这五年的月里,6个AQI 类别中,类别“优”的天数波动最大D .2018年月的AQI 数据的月均值会达到“中度污染”类别【答案】D【解析】①AQI 为“优”最多的天数是14天,对应为2018年月,故A 对. ②AQI 在0~100③观察折线图,类别为“优”的波动最大,故①对.④2018年月的AQI 在“中度污染”的天数为天,其他天AQI 均在“中度污染”之上,因此D 推断不合理.8.将A ,B 两位篮球运动员在一段时间内的投篮情况记录如下:优良轻度污染中度污染重度污染严重污染1月1月1月1月1月①投篮30次时,两位运动员都投中23次,所以他们投中的概率都是0.767.②随着投篮次数的增加,A 运动员投中频率总在0.750附近摆动,显示出一定的稳定性,可以估计A 运动员投中的概率是0.750.④投篮达到200次时,B 运动员投中次数一定为160次. 其中合理的是( ). A .① B .②C .①③D .②③【答案】B【解析】①在大量重复试验时,随着试验次数的增加,可以用一个事件出现的概率估计它的概率,投篮30次,次数太少,不可用于估计概率,故①推断不合理.②随着投篮次数增加,A 运动员投中的概率显示出稳定性,因此可以用于估计概率,故②推断合理. ③频率用于估计概率,但并不是准确的概率,因此投篮次时,只能估计投中200次数,而不能确定一定是160次,故③不合理.二、填空题(本题共16分,每小题2分) 9.若代数式11x x -+的值为0,则实数x 的值为__________.【答案】1x = 【解析】101x x -=+,10x -=,1x =.10.化简:()()42(1)a a a a +--+=__________.【答案】8a -【解析】22421288()()()a a a a a a a a a +--+=+---=-.11.如图,在ABC △中,DE AB ∥,DE 分别与AC ,BC 交于D ,E 两点.若49DEC ABC S S =△△,3AC =,则DC =__________.【答案】2【解析】∵DE AB ∥, ∴249DEC ABC S CD S AC ⎛⎫== ⎪⎝⎭△△, ∴23CD AC =. ∵3AC =, ∴2CD =.12.从杭州东站到北京南站,原来最快的一趟高铁G20次约用5h 到达.从2018年4月10日起,全国铁路开始实施新的列车运行图,并启用了“杭京高铁复兴号”,它的运行速度比原来的G20次的运行速度快35km/h ,约用4.5h 到达。
2021年西城区初三数学一模试题一、选择题(本题共32分,每小题4分)下面各题均有四个选项,其中只有一个是符合题意的.1. 的绝对值是A. B. C. D.2.我国第六次全国人口普查数据显示,居住在城镇的人口总数达到666000000人.将666000000用科学记数法表示为A. B. C. D.3.从3个苹果和3个雪梨中,任选1个,则被选中苹果的概率是A. B. C. D.4.如图,已知的度数是A. B.C. D.5.如图,下列水平放置的几何体中,俯视图是三角形的是6.某中学书法兴趣小组12名成员的年龄情况如下:年龄(岁)1213141516人数14322则这个小组成员年龄的众数和中位数分别是A.15,16B.13,14C. 13,15D.14,147.如图,在△ABC中,点D,E分别在边AB,AC上,DE∥BC,已知AE=6,,则EC的长是A.4.5B.8C.10.5D.148. .如右图,MNPQ,垂足为点O,点A、C在直线MN上运动,点B、D在直线PQ上运动.顺次连结点A、B、C、D,围成四边形 ABCD。
当四边形ABCD的面积为6时,设AC长为x,BD长为y,则下图能表示y与x关系的图象是二、填空题(本题共16分,每小题4分)9.分解因式: .10.若分式的值为0,则的值为 .11.一个扇形的圆心角为60,它所对的弧长为2cm,则这个扇形的半径为 .12.如图,已知AOB=,在射线OA、OB上分别取点OA1=OB1,连接A1B1,在B1A1、B1B上分别取点A2、B2,使B1B2=B1A2,连接A2B2按此规律下去,记A2B1B2=1,A3B2B3=2,,An+1BnBn+1=n,则( 1)1= , (2)n= .三、解答题(本题共30分,每小题5分)13.计算:14.已知:如图,点,,在同一直线上,∥ ,,求证:15.解不等式组 .16.先化简,再求值:,其中x=6.17.如图,在方格纸中(小正方形的边长为1),反比例函数y= 与直线的交点A、B均在格点上,根据所给的直角坐标系(O是坐标原点),解答下列问题:(1)①分别写出点A、B的坐标后;②把直线AB向右平移 5个单位,再向上平移5个单位,求出平移后直线AB的解析式;(2)若点C在函数y= 的图象上,△ABC是以AB为底的等腰三角形,请写出点C的坐标.18.列方程或方程组解应用题:某酒店有三人间、双人间的客房,三人间每天每间150元,双人间每人每天140元,为了吸引游客,实行团体入住五折优惠措施,一个50人的旅游团优惠期间到该酒店入住,住了一些三人间和双人间客房,若每间客房正好住满且一天共花去住宿费1510元,则该旅行团住了三人间和双人间客房各多少间?。
2017年北京市西城一模考试 数学试卷一、选择题(本题共30分,每小题3分)下面各题均有四个选项,其中只有一个..是.符合题意的. 1.春节假期,北京市推出了庙会休闲娱乐、传统文化展演、游园赏景赏花、冰雪项目体验等精品文化活动,共接待旅游总人数9 608 000人次,将9 608 000用科学记数法表示为(A )3960810⨯ (B )4960.810⨯ (C )596.0810⨯ (D )69.60810⨯2.在数轴上,实数a ,b 对应的点的位置如图所示,且这两个点关于原点对称,下列结论中,正确的是(A )0a b += (B )0a b -=(C )a b <(D )0ab >3.如图,AB ∥CD ,DA ⊥CE 于点A .若∠EAB =55°,则∠D 的度数为 (A )25°(B )35° (C )45° (D )55°第3题图 第4题图4.右图是某几何体的三视图,该几何体是(A )三棱柱 (B )长方体 (C )圆锥(D )圆柱5.若正多边形的一个外角是40°,则这个正多边形是 (A )正七边形 (B )正八边形(C )正九边形(D )正十边形6.用配方法解一元二次方程2650x x --=,此方程可化为(A )()234x -=(B )()2314x -=(C )()294x -=(D )()2914x -=7.如图,小明在地面上放了一个平面镜,选择合适的位置,刚好在平面镜中看到旗杆的顶部,此时小明与平面镜的水平距离为2m ,旗杆底部与平面镜的水平距离为16m .若小明的眼睛与地面距离为1.5m ,则旗杆的高度为(单位:m )(A )163(B )9 (C )12 (D )6438.某商店举行促销活动,其促销的方式是“消费超过100元时,所购买的商品按原价打8折后,再减少20元” .若某商品的原价为x 元(x >100),则购买该商品实际付款的金额(单位:元)是 (A )80%20x - (B )()80%20x -(C )20%20x - (D )()20%20x -9.某校合唱团有30名成员,下表是合唱团成员的年龄分布统计表:对于不同的(A )平均数、中位数 (B )平均数、方差 (C )众数、中位数(D )众数、方差10.汽车的“燃油效率”是指汽车每消耗1升汽油行驶的里程数.“燃油效率”越高表示汽车每消耗1升汽油行驶的里程数越多;“燃油效率”越低表示汽车每消耗1升汽油行驶的里程数越少.右下图描述了甲、乙、丙三辆汽车在不同速度下的燃油效率情况,下列说法中,正确的是(A )以相同速度行驶相同路程,三辆车中,甲车消耗汽油最多(B )以低于80km /h 的速度行驶时,行驶相同路程,三辆车中,乙车消耗汽油最少 (C )以高于80km /h 的速度行驶时,行驶相同路程,丙车比乙车省油 (D )以80km /h 的速度行驶时,行驶100公里,甲车消耗的汽油量约为10升 二、填空题(本题共18分,每小题3分) 11.分解因式:ax 2-2ax +a =________.12.若函数的图像经过点A (1,2),点B (2,1),写出一个符合条件的函数表达式_________. 13.下表记录了一名球员在罚球线上罚篮的结果:这名球员投篮一次,投中的概率约是.14.如图,四边形ABCD是⊙O内接四边形,若∠BAC=30°,∠CBD=80°,则∠BCD的度数为_________________.15.在平面直角坐标系xOy中,以原点O为旋转中心,将△AOB顺时针旋转90°得到△A'OB',其中点A'与点A对应,点B'与点B对应.若点A(-3,0),B(-1,2),则点A'的坐标为_______________,点B'的坐标为________________.16.下面是“经过已知直线外一点作这条直线的平行线”的尺规作图过程.请回答:该作图的依据是.三、解答题(本题共72分,第17-26题,每小题5分,第27题7分,第28题7分,第29题8分)解答应写出文字说明、演算步骤或证明过程.17.计算:(1O1226022sin-⎛⎫--⎪⎝⎭18.解不等式组:52<3+47 22x xxx-⎧⎪⎨+≥⎪⎩19.已知x=2y,求代数式222112x xy yy x x y⎛⎫-+-÷⎪⎝⎭的值.20.如图,在△ABC中,BC的垂直平分线交BC于点D,交AB延长线于点E,连接CE.求证:∠BCE=∠A+∠ACB.21.某科研小组计划对某一品种的西瓜采用两种种植技术种植.在选择种植技术时,该科研小组主要关心的问题是:西瓜的产量和产量的稳定性,以及西瓜的优等品率. 为了解这两种种植技术种出的西瓜的质量情况,科研小组在两块自然条件相同的试验田进行对比试验,并从这两块实验田中各随机抽取20个西瓜,分别称重后,将称重的结果记录如下:表1 甲种种植技术种出的西瓜质量统计表回答下列问题:(1)若将质量为4.5~5.5(单位:kg)的西瓜记为优等品,完成下表:(2)根据以上数据,你认为该科研小组应选择哪种种植技术,并请说明理由.22.在平面直角坐标系x O y,直线y=x-1与y轴交于点A,与双曲线=kyx交于点B(m,2).(1)求点B的坐标及k的值;(2)将直线AB平移,使它与x轴交于点C,与y轴交于点D,若△ABC的面积为6,求直线CD的表达式.23.如图,在□ABCD中,对角线BD平分∠ABC,过点A作AE//BD,交CD的延长线于点E,过点E作EF⊥BC,交BC延长线于点F.(1)求证:四边形ABCD 是菱形; (2)若∠ABC =45°,BC =2,求EF 的长.B24.汽车保有量是指一个地区拥有车辆的数量,一般是指在当地登记的车辆.进入21世纪以来,我国汽车保有量逐年增长.下图是根据中国产业信息网上的有关数据整理的统计图.2007—2015年全国汽车保有量及增速统计图根据以上信息,回答下列问题:(1)2016年汽车保有量净增2200万辆,为历史最高水平,2016年汽车的保有量为 万辆,与2015年相比,2016年的增长率约为%;(2)从2008年到2015年,年全国汽车保有量增速最快;(3)预估2020年我国汽车保有量将达到万辆,预估理由是25.如图,AB为⊙O的直径,C为⊙O上一点,过点C作⊙O的切线,交BA的延长线交于点D,过点B作BE⊥BA,交DC延长线于点E,连接OE,交⊙O于点F,交BC于点H,连接AC.(1)求证:∠ECB=∠EBC;(2)连接BF,CF,若CF=6,sin∠FCB=35,求AC的长.D26.阅读下列材料:某种型号的温控水箱的工作过程是:接通电源后,在初始温度20℃下加热水箱中的水;当水温达到设定温度80℃时,加热停止;此后水箱中的水温开始逐渐下降,当下降到20℃时,再次自动加热水箱中的水至80℃时,加热停止;当水箱中的水温下降到20℃时,再次自动加热,……,按照以上方式不断循环.小明根据学习函数的经验,对该型号温控水箱中的水温随时间变化的规律进行了探究.发现水温y是时间x 的函数,其中y(单位:℃)表示水箱中水的温度.x(单位:min)表示接通电源后的时间.下面是小明的探究过程,请补充完整:(1)下表记录了32min内14个时间点的温控水箱中水的温度y随时间x的变化情况m的值为;(2)①当0≤x≤4时,写出一个符合表中数据的函数解析式;当4<x≤16时,写出一个符合表中数据的函数解析式;②如图,在平面直角坐标系xOy中,描出了上表中部分数据对应的点,根据描出的点,画出当0≤x≤32时,温度y随时间x变化的函数图象:(3)如果水温y随时间x的变化规律不变,预测水温第8次达到40℃时,距离接通电源min.27.在平面直角坐标系xOy中,二次函数y=mx2 -(2m + 1)x + m-5的图象与x轴有两个公共点.(1)求m的取值范围;(2)若m取满足条件的最小的整数,①写出这个二次函数的解析式;②当n ≤ x ≤ 1时,函数值y的取值范围是-6 ≤ y ≤ 4-n,求n的值;③将此二次函数平移,使平移后的图象经过原点O.设平移后的图象对应的函数表达式为y=a(x-h)2 + k,当x < 2时,y随x的增大而减小,求k的取值范围.28.在△ABC 中,AB =BC ,BD ⊥AC 于点D .(1)如图1,当∠ABC =90°时,若CE 平分∠ACB ,交AB 于点E ,交BD 于点F .①求证:△BEF 是等腰三角形; ②求证:BD =12(BC + BF ); (2)点E 在AB 边上,连接CE .若BD =12(BC + BE ),在图2中补全图形,判断∠ACE 与∠ABC 之间的数量关系,写出你的结论,并写出求解∠ACE 与∠ABC 关系的思路.图2图1D FEDCB AAB29.在平面直角坐标系xOy中,若点P和点P1关于y轴对称,点P1和点P2关于直线l对称,则称点P2是点P关于y轴,直线l的二次对称点.(1)如图1,点A(-1 , 0).①若点B是点A关于y轴,直线l1: x=2的二次对称点,则点B的坐标为;②若点C(-5 , 0)是点A关于y轴,直线l2:x=a的二次对称点,则a的值为;③若点D(2 , 1)是点A关于y轴,直线l3的二次对称点,则直线l3的表达式为;(2)如图2,⊙O的半径为1.若⊙O上存在点M,使得点M'是点M关于y轴,直线l4:x=b的二次对称点,且点M'在射线(y x x =≥(3)E(t,0)是x轴上的动点,⊙E的半径为2,若⊙E上存在点N,使得点N'是点N关于y轴,直线l5:1y=+的二次对称点,且点N'在y轴上,求t的取值范围.图1图2不用注册,免费下载!。
北京市西城区2016— 2017学年度第一学期期末试卷九年级数学 2017.1一、选择题(本题共30分,每小题3分)下面各题均有四个选项,其中只有一个..是符合题意的. 1.抛物线y = (x -1)2+2的对称轴为( ).A .直线x = 1B .直线x =﹣1C .直线x =2D .直线x =﹣2 2.我国民间流传着许多含有吉祥意义的文字图案,表示对幸福生活的向往,良辰佳节的祝贺.比如下列图案分别表示“福”、“禄”、“寿”、“喜”,其中是.轴对称图形,但不是..中心对称图形的是( ).A B C D3.如图,在Rt △ABC 中,∠C =90°,AC =4,tan A =21,则BCA .2B .8C .34D .544.将抛物线y =-3x 2平移,得到抛物线y =-3 (x -1)2-2,下列平移方式中,正确的是( ). A .先向左平移1个单位,再向上平移2个单位B .先向左平移1个单位,再向下平移2个单位C .先向右平移1个单位,再向上平移2个单位D .先向右平移1个单位,再向下平移2个单位5.如图,在平面直角坐标系xOy 中,以原点O 为位似中心,把线段 AB 放大后得到线段CD .若点A (1,2),B (2,0), D (5,0),则点A 的对应点C 的坐标是( ). A.(2,5) B.(52,5) C. (3,5) D.(3,6)6.如图,AB 是⊙O 的直径,C ,D 是圆上两点,连接AC ,BC ,AD , CD .若∠CAB =55°,则∠ADC 的度数为( ).A. 55°B. 45°C. 35°D. 25° 7.如图,AB 是⊙O 的一条弦,OD ⊥AB 于点C ,交⊙O 于点D ,连接 OA .若AB = 4,CD =1,则⊙O 的半径为( ).A .5 BC .3D .528.制造弯形管道时,经常要先按中心线计算“展直长度”,再下料.右图是一段弯形管道,其中∠O =∠O ’=90°,中心 线的两条弧的半径都是1000mm ,这段变形管道的展直长度约 为(π取3.14)( ).A .9280mmB .6280mmC .6140mmD .457mm9.当太阳光线与地面成40°角时,在地面上的一棵树的影长为10m ,树高h (单位:m )的范围是( ).A .3<h <5B .5<h <10C .10<h <15D .15<h <2010.在平面直角坐标系xOy 中,开口向下的抛物线y = ax 2+bx +c 的一部分如图所示,它与x 轴交于A (1,0),与y 轴交于点B (0,3),则a 的取值范围是().A .a <0B .-3<a <0C .a <32-D .92-<a <32- 二、填空题(本题共18分,每小题3分)11.二次函数22y x x m =-+的图象与x 轴只有一个公共点,则m 12.如图,在△ABC 中,点E ,F 分别在AB , AC 上,若△AEF ∽△ABC则需要增加的一个条件是 (写出一个即可).13.如图,⊙O 的半径为1,P A ,PB 是⊙O 的两条切线,切点分别为A ,B .连接OA ,OB ,AB ,OP ,若∠APB=60°,则△P AB 的 周长为 .14. 如图,在平面直角坐标系xOy 中,直线1(0)=+≠y kx m k 的抛物线22(0)=++≠y ax bx c a 交于点A (0,4),B (3,1),当 y 1≤y 2时,x 的取值范围是 .15. 如图,在△ABC 中,∠BAC =65°,将△ABC 绕点A 逆时针旋转,得到△AB 'C ',连接C 'C .若C 'C ∥AB ,则∠BA B '= °.16.考古学家发现了一块古代圆形残片如图所示,为了修复这块残片,需要找出圆心.(1)请利用尺规作图确定这块残片的圆心O ; (2)写出作图的依据: .三、解答题(本题共72分,第17~26题,每小题5分,第27题7分,第28题7分,第29题8分)解答应写出文字说明,演算步骤或证明过程. 17.计算:4cos303tan60+2sin45cos45⋅o o o o -.18.如图, D 是等边三角形ABC 内一点,将线段AD 绕点A顺时针旋转60°,得到线段AE , 连接CD , BE . (1)求证:∠AEB =∠ADC ;(2)连接DE ,若∠ADC =105°,求∠BED 的度数. 19.已知二次函数y =x 2 + 4x + 3.(1)用配方法将二次函数的表达式化为y = a (x -h )2 + k 的形式; (2)在平面直角坐标系xOy 中,画出这个二次函数的图象; (3)根据(2)中的图象,写出一条该二次函数的性质. 20.如图,在△ABC 中,点D 在BC 边上,∠DAC =∠B .点E 在AD 边上, CD =CE .(1)求证:△ABD ∽△CAE ;(2)若AE 的长.21.一张长为30cm ,宽20cm 的矩形纸片,如图1所示,将这张纸片的四个角各剪去一个边长相同的正方形后,把剩余部分折成一个无盖的长方体纸盒,如图1所示,如果折成的长方体纸盒的底面积...为264cm 2,求剪掉的正方形纸片的边长.22.一条单车道的抛物线形隧道如图所示.隧道中公路的宽度AB =8 m , 隧道的最高点C 到公路的距离为6 m .(1)建立适当的平面直角坐标系,求抛物线的表达式; (2)现有一辆货车的高度是4.4m ,货车的宽度是2 m ,为了保证安全,车顶距离隧道顶部至少0.5m ,通过计算说明这辆货车能否安全通过这条隧道.23.如图,AB 是⊙O 的直径,C 为⊙O 上一点,经过点C 的直线与AB 的延长线交于点D ,连接AC ,BC ,∠BCD =∠CAB .E 是⊙O 上一点,弧CB =弧CE ,连接AE 并延长与DC 的延长线交于点F .(1)求证:DC 是⊙O 的切线; (2)若⊙O 的半径为3,,求线段AF 的长.图1图224.测量建筑物的高度在《相似》和《锐角三角函数》的学习中,我们了解了借助太阳光线、利用标杆、平面镜等可以测量建筑物的高度.综合实践活动课上,数学王老师让同学制作了一种简单测角仪:把一根细线固定在量角器的圆心处,细线的另一端系一个重物(如图1);将量角器拿在眼前,使视线沿着量角器的直径刚好看到需测量物体的顶端,这样可以得出需测量物体的仰角α的度数(如图2,3).利用这种简单测角仪,也可以帮助我们测量一些建筑物的高度.天坛是世界上最大的祭天建筑群,1998年被确认为世界文化遗产.它以严谨的建筑分局,奇特的建筑构造和瑰丽的建筑装饰闻名于世.祈年殿是天坛主体建筑,又称祈谷殿(如图4).采用的是上殿下屋的构造形式,殿为圆形,象征天圆;瓦为蓝色,象征蓝天.祈年殿的殿座是圆形的祈谷坛.请你利用所学习的数学知识,设计一个测量方案,解决“测量天坛祈年殿的高度”的问题.要求: (1)写出所使用的测量工具;(2)画出测量过程中的几何图形,并说明需要测量的几何量; (3)写出求天坛祈年殿高度的思路.25.如图,△ABC 内接于⊙O ,直径DE ⊥AB 于点F ,交BC 于点 M ,DE 的延长线与AC 的延长线交于点N ,连接AM . (1)求证:AM =BM ;(2)若AM ⊥BM ,DE =8,∠N =15°,求BC 的长.图4图1图2 图326.有这样一个问题:关于x 的一元二次方程a x 2 + bx + c = 0(a >0)有两个不相等的且非零的实数根.探究a ,b ,c 满足的条件.小明根据学习函数的经验,认为可以从二次函数的角度看一元二次方程,下面是小明的探究过程:①设一元二次方程ax 2 +bx +c = 0(a >0)对应的二次函数为y = ax 2 +bx +c (a >0);②借助二次函数图象,可以得到相应的一元二次中a ,b ,c 满足的条件,列表如下:(1)请帮助小明将上述表格补充完整; (2)参考小明的做法,解决问题:若关于x 的一元二次方程()22340-+-=x m x m 有一个负实根和一个正实根,且负实根大于-1,求实数m 的取值范围.27.在平面直角坐标系xOy中,抛物线y =-x2+ mx +n与x轴交于点A,B(A在B的左侧).(1)抛物线的对称轴为直线x =-3,AB = 4.求抛物线的表达式;(2)平移(1)中的抛物线,使平移后的抛物线经过点O,且与x正半轴交于点C,记平移后的抛物线顶点为P,若△OCP是等腰直角三角形,求点P的坐标;(3)当m =4时,抛物线上有两点M(x1,,y1)和N(x2,,y2),若x1< 2,x2>2,x1+ x2 > 4,试判断y1与y2的大小,并说明理由.28.在Rt△ABC中,∠ACB=90°,AC=BC,C D为AB边上的中线.在Rt△AEF中,∠AEF=90°,AE=EF,AF < AC.连接BF,M,N分别为线段AF,BF的中点,连接MN.(1)如图1,点F在△ABC内,求证:CD = MN;(2)如图2,点F在△ABC外,依题意补全图2,连接CN,EN,判断CN与EN的数量关系与位置关系,并加以证明;(3)将图1中的△AEF绕点A旋转,若AC=a,AF=b(b<a),直接写出EN的最大值与最小值.图1 图2 备用图29.在平面直角坐标系xOy中,给出如下定义:对于⊙C及⊙C外一点P,M,N是⊙C上任意两点,当∠MPN最大时,称这个角为点.P.关于⊙C的“视角”.直线l与⊙C相离,点Q在直线l上运动,当点Q关于⊙C的“视角”最大时,称这个最大的“视角”为直线..l.关于⊙C的“视角”.(1)如图,⊙O的半径为1,①已知点A(1,1),直接写出点A关于⊙O的“视角”;已知直线y = 2,直接写出直线y = 2关于⊙O的“视角”;②若点B关于⊙O的“视角”为60°,直接写出一个符合条件的B点坐标;(2)⊙C的半径为1,①点C的坐标为(1,2),直线l: y=kx+b(k > 0)经过点D(1-,0),若直线l关于⊙C的“视角”为60°,求的值;②圆心C在x轴正半轴上运动,若直线y x C的“视角”大于120°,直接写出圆心C的横坐标x C的取值范围.备用图。
北京市西城区2017年九年级统一测试数学试卷一、选择题(本题共30分,每小题3分)1.春节假期,北京市推出了庙会休闲娱乐、传统文化展演、游园赏景赏花、冰雪项目体验等精品文化活动,共接待旅游总人数9608000人次,将9608000用科学记数法表示为( ).A .3960810⨯B .4960.810⨯C .596.0810⨯D .69.60810⨯2.在数轴上,实数a ,b 对应的点的位置如图所示,且这两个点关于原点对称,下列结论中,正确的是( ).b1aA .0a b +=B .0a b -=C .||||a b <D .0ab >3.如图,AB CD ∥,DA CE ⊥于点A .若55EAB ∠=︒,则D ∠的度数为( ).A .25︒B .35︒C .45︒D .55︒4.右图是某几何体的三视图,该几何体是( ).A .三棱柱B .长方体C .圆锥D .圆柱5.若正多边形的一个外角是40︒,则这个正多边形是( ).A .正七边形B .正八边形C .正九边形D .正十边形6.用配方法解一元二次方程2650x x --=,此方程可化为( ).A .2(3)4x -=B .2(3)14x -=C .2(9)4x -=D .2(9)14x -=7.如图,小明在地面上放了一个平面镜,选择合适的位置,刚好在平面镜中看到旗杆的顶部,此时小明与平面镜的水平距离为2m ,旗杆底部与平面镜的水平距离为16m .若小明的眼睛与地面的距离为1.5m ,则旗杆的高度为(单位:m )( ).A .163B .9C .12D .6438.某商店举行促销活动,其促销的方式是“消费超过100元时,所购买的商品按原价打8折后,再减少20 元”.若某商品的原价为x 元(100x >),则购买该商品实际付款式的金额(单位:元)是( ). A .80%20x - B .80%(20)x -- C .20%20x - D .20%(20)x -9.某校合唱团有30名成员,下表是合唱团成员的年龄分布统计表:A .平均数、中位数B .平均数、方差C .众数、中位数D .众数、方差10.汽车的“燃油效率”是指汽车每消耗1升汽油行驶的里程数.“燃油效率”越高表示汽车每消耗1升汽油行驶的里程数BAE越多;“燃油效率”越低表示汽车每消耗1升汽油行驶的里程数越少.右下图描述了甲、乙、丙三辆汽车在不同速度下的燃油效率情况,下列说法中,正确的是( ).A .以相同速度行驶相同路程,三辆车中,甲车消耗汽油最多B .以低于80km/h 的速度行驶时,行驶相同路程,三辆车中,乙车消耗汽油最少C .以高于80km/h 的速度行驶时,行驶相同路程,丙车比乙车省油D .以80km/h 的速度行驶时,行驶100公里,甲车消耗的汽油量约为10升 二.填空题(本题共18分,每小题3分) 11.分解因式:22ax ax a -+=__________.12.若函数的图象经过点(1,2)A ,点(2,1)B ,写出一个符合条件的函数表达式__________. 13.下表记录了一名球员在罚球线上罚篮的结果:14.如图,四边形ABCD 是⊙O 内接四边形,若30BAC ∠=︒,80CBD ∠=︒,则BCD ∠的度数为_______︒.15.在平面直角坐标系xOy 中,以原点O 为旋转中心,将AOB △顺时针旋转90︒得到A OB ''△,其中点A '与点A 对应,点B '与点B 对应.若点(3,0)A -,(1,2)B -,则点A '的坐标为__________,点B '的坐标为__________.16.下面是“经过已知直线外一点作这条直线的平行线”的尺规作图过程.已知:如图1,直线l 和直线l 外一点P .Plm求作:直线l 的平行直线,使它经过点P . 作法:如图2.(1)过点P 作直线m 与直线l 交于点O ;(2)在直线m 上取一点()A OA OP <,以点O 为圆心,OA 长为半径画弧,与直线l 交于点B ;(3)以点P 为圆心,OA 长为半径画弧,交直线m 于点C ,以点C 为圆心,AB 长为半径画弧,两弧交于点D ; (4)作直线PD .所以直线PD 就是所求作的平行线. 请回答:该作图的依据是______________.三、解答题(本题共72分,第17~26题,每小题5分,第27题7分,第28题7分,第29题8分) 解答应写出文字说明,演算步骤或证明过程. 17.计算:(1122sin 6022-⎛⎫---︒ ⎪⎝⎭.18.解不等式组:5234722x x x x <≥-+⎧⎪⎨+⎪⎩.19.已知2x y =,求代数式222112x xy y y x x y ⎛⎫-+-÷ ⎪⎝⎭的值.20.如图,在ABC △中,BC 的垂直平分线交BC 于点D ,交AB 延长线于点E ,连接CE .求证:BCE A ACB ∠=∠+∠.A B EDC21.某科研小组计划对某一品种的西瓜采用两种种植技术种植.在选择种植技术时,该科研小组主要关心的问题是:西瓜的产量和产量的稳定性,以及西瓜的优等品率.为了解这两种种植技术种出的西瓜的质量情况,科研小组在两块自然条件相同的试验田进行对比试验,并从这两块实验田中各随机抽取20个西瓜,分别称重后,将称重的结果记录如下:表1甲种种植技术种出的西瓜质量统计表回答下列问题::(单位:kg)的西瓜记为优等品,完成下表:(1)若将质量为4.5 5.5(222.在平面直角坐标系xOy 中,直线1y x =-与y 轴交于A ,与双曲线ky x-交于点(),2B m . (1)求点B 的坐标及k 的值;(2)将直线AB 平移,使它与x 轴交于点C ,与y 轴交于点D ,若ABC V 的面积为6,求直线CD 的表达式.23.如图,在平行四边形ABCD 中,对角线BD 平分ABC ∠,过点A 作AE BD ∥,交CD 的延长线于点E ,过点E 作EF BC ⊥,交BC 延长线于点F . (1)求证:四边形ABCD 是菱形;(2)若45ABC ∠=︒,2BC =,求EF 的长.B C FDEA24.汽车保有量是指一个地区拥有车辆的数量,一般是指在当地登记的车辆.进入21世纪以来,我国汽车保有量逐年增长.下图是根据中国产业信息网上的有关数据整理的统计图.20072015:年全国汽车保有量及增速统计图根据以上信息,回答下列问题:(1)2016年汽车保有量净增2200万辆,为历史最高水平,2016年汽车的保有量为_______________万辆,与2015年相比,2016年的增长率约为______________%;(2)从2008年到2015年,_______________年全国汽车保有量增速最快;(3)预估2020年我国汽车保有量将达到_____________万辆,预估理由是_________________.25.如图,AB 是⊙O 的直径,C 是⊙O 上一点,过点C 作⊙O 的切线,交BA 的延长线交于点D ,过点B 作BE BA ⊥,交DC 延长线于点E ,连接OE ,交⊙O 于点F ,交BC 于点H ,连接AC . (1)求证:ECB EBC ∠=∠;(2)连接BF ,CF ,若6CF =,3sin 5FCB ∠=,求AC 的长.O HEFC D AB26.阅读下列材料:某种型号的温控水箱的工作过程是:接通电源后,在初始温度20℃下加热水箱中的水;当水温达到设定温度80℃时,加热停止;此后水箱中的水温开始逐渐下降,当下降到20℃时,再次自动加热水箱中的水至80℃时,加热停止;当水箱中的水温下降到20℃时,再次自动加热,……,按照以上方式不断循环.小明根据学习函数的经验,对该型号温控水箱中的水温随时间变化的规律进行了探究,发现水温y 是时间x 的函数,其中y (单位:℃)表示水箱中水的温度,x (单位:min )表示接通电源后的时间. 下面是小明的探究过程,请补充完整:(1)下表记录了32min 内14个时间点的温控水箱中水有温度y 随时间x 的变化情况m (2)①当04x ≤≤时,写出一个符合表中数据的函数解析式______________;当416x <≤时,写出一个符合表中数据的函数解析式_________________;②如图,在平面直角坐标系xOy 中,描出了上表中部分数据对应的点,根据描出的点,画出当032x ≤≤时,温度y 随时间x 变化的函数图象;x(3)如果水温y 随时间x 的变化规律不变,预测水温第8次达到40℃时,距离接通电源___________min .27.在平面直角坐标系xOy 中,二次函数2(21)5y mx m x m =-++-的图象与x 轴有两个公共点. (1)求m 的取值范围;(2)若m 取满足条件的最小的整数,①写出这个二次函数的解析式;②当1n x ≤≤时,函数值y 的取值范围是64y n --≤≤,求n 的值;③将此二次函数图象平移,使平移后的图象经过原点O .设平移后的图象对应的函数表达式为2()y a x h k =-+,当2x <时,y 随x 的增大而减小,求k 的取值范围.28.在ABC △中,AB BC =,BD AC ⊥于点D .(1)如图1,当90ABC ∠=︒时,若CE 平分ACB ∠,交AB 于点E ,交BD 于点F .①求证:BEF △是等腰三角形;②求证:1()2BD BC BF =+;(2)点E 在AB 边上,连接CE .若1()2BD BC BE =+,在图2中补全图形,判断ACE ∠与ABC ∠之间的数量关系,写出你的结论,并写出求解ACE ∠与ABC ∠关系的思路.图1图2D CABFEAD CB29.在平面直角坐标系xOy 中,若点P 和点1P 关于y 轴对称,点1P 和点2P 关于直线l 对称,则称点2P 是点P 关于y 轴,直线l 的二次对称点.(1)如图1,点(1,0)A -.①若点B 是点A 关于y 轴,直线1:2l x =的二次对称点,则点B 的坐标为___________________; ②若点(5,0)C -是点A 关于y 轴,直线2:l x a =的二次对称点,则a 的值为___________________; ③若点(2,1)D 是点A 关于y 轴,直线3l 的二次对称点,则直线3l 的表达式为__________________;(2)如图2,⊙O 的半径为1.若⊙O 上存在点M ,使得点'M 是点M 关于y 轴,直线4:l x b =的二次对称点,且点'M在射线(0)y x =≥上,b 的取值范围是_____________________; (3)(,0)E t 是x 轴上的动点,⊙E 的半径为2,若⊙E 上存在点N ,使得点'N 是点N 关于y轴,直线5:1l y =+的二次对称点,且点'N 在y 轴上,求t 的取值范围.图2图1xx北京市西城区2017年九年级统一测试数学试卷答案及评分参考2017.4一、选择题(本题共30分,每小题3分)11.2(1)ax -12.答案不唯一,如:2y x= 13.0.601 14.7015.(0,3)A ',(2,1)B '16.三边分别相等的两个三角形全等;全等三角形的对应角相等;同位角相等两直线平行;两点确定一条直线. 三.解答题(本题共72分,第17~26题,每小题5分,第27题7分,第28题7分,第29题8分) 17.解:101(22sin 6022-⎛⎫--︒+⎪⎝⎭2122=--3=-18.解:解不等式组为5234722x x x x -+⎧⎪⎨+⎪⎩①②<≥ 解不等式①,得3x <.解不等式②,得73x ≥.∴原不等式组的解集为733x ≤<.19.解:原式22()x y x yxy x y -=⋅-x x y=- 当2x y =时,原式222yy y==- 20.证明:∵DE 垂直平分BC 于点D . ∴BE CE =. ∴BCE CBE ∠=. ∵CBE ACB A ∠=∠+∠. ∴BCE ACB A ∠=∠+∠.CDEB A21.解:(1)优等品西瓜个数 平均数 方差 甲种种植技术种出的西瓜质量 15乙种种植技术种出的西瓜质量(2量更稳定,大小更均匀,科研小组应选择乙种种植技术. 22.解:(1)∵点(,2)B m 在直线1y x =-上, ∴12m -=. 解得3m =. ∴点(3,2)B .又∵点(3,2)B 在双曲线ky x=上. ∴6k =.(2)设平移后的直线的表达式为y x b =+. 则它与y 轴交于点(0,)D b . ∵AB CD ∥. ∴ABD ABC S S =△△∴162ABD B S AD x =⋅=△. ∴4AD =.∴14b +=或14b --=. ∴3b =或5b =-.∴平移后的直线的表达式为3y x =+或5y x =-.23.(1)证明:在平行四边形ABCD 中,AB CD ∥. ∴ABD BDC ∠=∠. ∵BD 平分ABC ∠, ∴ABD DBC ∠=∠. ∴BDC DBC ∠=∠. ∴BC CD =.∴四边形ABCD 是菱形.(2)解:由(1)可得,AB CD ∥,2CD BC AB ===. ∴45ECF ABC ∠=∠=︒. ∵AE BD ∥.∴四边形ABDE 是平行四边形. ∴2DE AB ==. ∴4CE =.在Rt ECF △中,45ECF ∠=︒,4CE =.∴EF =B C FDEA24.(1)19400.13; (2)2010;(3)答案不唯一.如:2020年我国汽车保育量将达到28000万辆,预估理由合理,支撑预估的数据. 25.(1)证明:∵BE BA ⊥于点B , ∴BE 是⊙O 的切线.∵DE 是⊙O 的切线,C 为切点. ∴BE CE =. ∴ECB EBC ∠=∠. (2)解:连接AF . ∵AB 是⊙O 直径, ∴90AFB ACB ∠=∠=︒.BE 是⊙O 的切线,切点为B ,CE 是⊙O 的切线,切点为C . ∴BE CE =,EO 平分BED ∠. ∴EO BC ⊥,CH BH =.∴6BF CF ==,»»BFCF =,OH AC ∥. ∴FBC BAF FCB ∠=∠=∠.在Rt ABF △中,3sin 5BAF ∠=,6BF =.∴10AB =,5OF =.在Rt FCH △中,3sin 5FCB ∠=,6CF =.∴185FH =. ∴75OH OF FH =-=. ∴1425AC OH ==.O HEFC D AB26.解:(1)50;(2)①答案不唯一,如:当04x ≤≤时,1520y x =+; 当416x <≤时,320y x=; ②x(3)56.27.解:(1)∵二次函数2(21)5y mx m x m =-++-的图象与x 轴有两个公共点. ∴[]20(21)4(5)0m m m m ≠⎧⎪⎨-+--⎪⎩> 解得124m ->且0m ≠. ∴m 的取值范围是124m ->且0m ≠. (2)①m 取满足条件的最小的整数,由(1)可知1m =.∴二次函数的解析式为234y x x =--. ②图象的对称轴为直线32x =. 当时312n x ≤≤<,函数值y 随自变量x 的增大而减小.∵函数值y 的取值范围是64y n --≤≤, ∴当1x =时,函数值为6-. 当x n =时,函数值为4n -. ∴2346n n --=-.解得2n =-或4n =(不合题意,舍去). ∴n 的值为2-.③由①可知,1a =, 又函数图象经过原点, ∴2k h =-,∵当2x <时,y 随x 的增大而减小, ∴2h ≥, ∴4k -≤.28.证明:在ABC △中,AB BC =,BD AC ⊥于点D . ∴ABD CBD ∠=∠,AD BD =.(1)①∵90ABC ∠=︒,FEADCBM∴45ACB ∠=︒. ∵CE 平分ACB ∠∴22.5ECB ACE ∠=∠=︒, ∴67.5BEF CFD BFE ∠=∠=∠=︒, ∴BE BF =.∴BEF △是等腰三角形.②延长AB 至M ,使得BM AB =,连接CM .∴BD CM ∥,12BD CM =.∴45BCM DBC ABD BMC ∠=∠=∠=∠=︒,BFE MCE ∠=∠.∴BC BM =.由①可得,,BEF BFE BE BF ∠=∠=. ∴BFE MCE BEF ∠=∠=∠. ∴EM MC =.∴1()2BD BC BF =+.(2)14ACE ABC ∠=∠.FPBACDa .与(1)②同理可证BD PC ∥,12BD PC =,BP BC =; b .由1()2BD BC BF =+可知PEC △和BEF △分别是等腰三角形;c .由180BEF BFE EBF ∠+∠+∠=︒,90FCD DFC ∠+∠=︒,可知14ACE ABC ∠=∠.29.解:(1)①点B 的坐标为(3,0);②a 的值为2-.③直线3l 的表达式为2y x =-+.(2)112b -≤≤;(3)将点N 关于y 轴的对称点记为点P .∴点P 和点'N关于直线:1l y =+对称,∵直线1y =+和y轴关于直线:1l y =+对称. ∴点P在直线1y +上,∵直线1y =+和直线1y =+关于y 轴对称, ∴点N在直线1y =+上, ∴符合题意的点N是直线1y x =+与⊙E 的公共点. (i)当直线1y =+与⊙E 相离时,则不存在符合题意的点N . (ii)当直线1y x =+与⊙E 相切时,如图所示.则符合题意的点N是直线1y x =+与⊙E 相切时的切点,记直线1y =+与x轴交于点R , 若点E 在点R 的左侧,由112E N =,可得14RE =,14OE =-∴14t =-+ 若点E 在点R 的右侧,由222E N =,可得24RE =,24OE =+∴24t = (iii)当直线1y =+与⊙E 相交时,44t -<综上,t的取值范围是:44t -≤.。