七年级数学下册 第六章 实数《6.3 实数(1)》导学案(无答案)(新版)新人教版
- 格式:doc
- 大小:112.00 KB
- 文档页数:3
实数【学习目标】1. 了解无理数和实数的概念2.会对实数按照一定的标准进行分类;知道实数和数轴上的点的关系.能估算无理数的大小3.了解实数范围内相反数和绝对值的意义【学习重点】正确理解实数的概念【学习难点】理解实数的概念; 体会数轴上的点与实数是一一对应的.【学习过程】【知识回顾】1、什么是有理数?如何分类?2是这样的数么?【合作交流,解读探究】【活动1】探究:使用计算器计算,把下列有理数写成小数的形式,你有什么发现?3 ,35-,478,911,119,59我们发现,上面的有理数都可以写成有限小数或者无限循环小数的形式,即3 3.0 =,30.65-=-,475.8758=,90.8111=,111.29=,50.59=归纳:任何一个有理数都可以写成有限小数或无限循环小数的形式。
反过来,任何有限小数或无限循环小数也都是有理数.(板书)?为什么?..定义:无限不循环小数又叫无理数, 3.14159265π=也是无理数结论:有理数和无理数统称为实数学生举例:有理数无理数整理:⎧⎧⎫⎨⎬⎪⎨⎩⎭⎪→⎩整数有理数有限小数或无限循环小数实数分数无理数无限不循环小数⎧⎧⎨⎪⎩⎪⎪⎨⎪⎧⎪⎨⎪⎩⎩正有理数正实数正无理数实数负有理数负实数负无理数试探练习,回授调节:1.填空: 在-19,3.878787…,π2,1.41467-,这些数中, 有理数是 ;无理数是 ;2.判断对错:对的画“√”,错的画“×”.(1)无理数都是无限小数. ( )(2)无限小数都是无理数. ( ). ( ). ( )(5)带根号的数都是无理数. ( )(6)有理数都是实数. ( )【活动2】我们知道,每个有理数都可以用数轴上的点来表示。
无理数是否也可以用数轴上的点来表示呢? 探究1.如图所示,直径为1个单位长度的圆从原点沿数轴向右滚动一周,圆上的一点由原点到达点O ′,点O ′的坐标是多少?2.总结:①事实上,每一个无理数都可以用数轴上的__________表示出来,这就是说,数轴上的点有些表示__________,有些表示__________当从有理数扩充到实数以后,实数与数轴上的点就是__________的,即每一个实数都可以用数轴上的__________来表示;反过来,数轴上的__________都是表示一个实数与有理数一样,对于数轴上的任意两个点,右边的点所表示的实数总比左边的点表示的实数______ 讨论: 当数从有理数扩充到实数以后,有理数关于相反数和绝对值的意义同样适合于实数吗?O O ’总结 数a 的相反数是______,这里a 表示任意____________。
6.3 实 数第1课时 实 数1.经历无理数的探究过程,理解无理数的概念,会判断一个数是否为无理数;(重点)2.进一步理解有理数和无理数的概念,会把实数进行分类;(重点)3.理解实数与数轴的关系,并进行相关运用.(难点)一、情境导入为了美化校园,学校打算建一个面积为225平方米的正方形植物园,这个正方形的边长应取多少?你能计算出来吗?如果把“225”改为其他数字,如“200”,这时怎样确定边长?二、合作探究探究点一:实数的相关概念及分类【类型一】 无理数的识别在下列实数中:157,3.14,0,9,π,5,0.1010010001…,无理数的个数有( ) A .1个 B .2个 C .3个 D .4个解析:根据无理数的定义可以知道,上述实数中是无理数的有:π,5,0.1010010001….故选C.方法总结:常见无理数有三种形式:第一类是开方开不尽的数;第二类是化简后含有π的数;第三类是无限不循环的小数.【类型二】 实数的分类把下列各数分别填到相应的集合内:-3.6,27,4,5,3-7,0,π2,-3125,227,3.14,0.10100…. (1)有理数集合{ …};(2)无理数集合{ …};(3)整数集合{ …};(4)负实数集合{ …}.解析:实数分为有理数和无理数两类,也可以分为正实数、0、负实数三类.而有理数分为整数和分数.解:(1)有理数集合{-3.6,4,5,0,-3125,227,3.14,…}; (2)无理数集合{27,3-7,π2,0.10100…,…};(3)整数集合{4,5,0,-3 125,…};(4)负实数集合{-3.6,3-7,-3125,…}.方法总结:正确理解实数和有理数的概念,做到分类不遗漏不重复.探究点二:实数与数轴上的点【类型一】求数轴上的点对应的实数如图所示,数轴上A,B两点表示的数分别是-1和3,点B关于点A的对称点为C,求点C所表示的实数.解析:首先结合数轴和已知条件可以求出线段AB的长度,然后利用对称的性质即可求出点C所表示的实数.解:∵数轴上A,B两点表示的数分别为-1和3,∴点B到点A的距离为1+ 3.则点C到点A的距离也为1+ 3.设点C表示的实数为x,则点A到点C的距离为-1-x,∴-1-x=1+3,∴x=-2- 3.∴点C所表示的实数为-2- 3.方法总结:本题主要考查了实数与数轴之间的对应关系,两点之间的距离为两数差的绝对值.【类型二】利用数轴进行估算如图所示,数轴上A,B两点表示的数分别是3和5.7,则A,B两点之间表示整数的点共有( )A.6个 B.5个 C.4个 D.3个解析:∵3≈1.732,∴3和5.7之间的整数有2,3,4,5,∴A,B两点之间表示整数的点共有4个.故选C.方法总结:要确定两点间的整数点的个数,也就是需要比较两个端点与邻近整点的大小,牢记数轴上右边的点表示的实数比左边的点表示的实数大.三、板书设计实数⎩⎪⎨⎪⎧实数的分类⎩⎪⎨⎪⎧有理数⎩⎪⎨⎪⎧整数分数无理数实数与数轴——实数与数轴上的点一一对应本节课学习了实数的有关概念和实数的分类,把我们所学过的数在有理数的基础上扩充到实数.在学习中,要求学生结合有理数理解实数的有关概念.本节课要注意的地方有两个:一是所有的分数都是有理数,如227;二是形如π2,π3等之类的含有π的数不是分数,而是无理数。
数学活动——求完全立方数的立方根一、导学1.导入课题:我国著名数学家华罗庚在一次出国访问途中,看到飞机上邻座的乘客阅读的杂志上一道智力题:一个数是59319,希望求它的立方根.华罗庚脱口而出:39.你知道华罗庚是怎样迅速准确地计算出来的吗?这节课我们就来研究这个问题.2.学习目标:(1)会求完全立方数的立方根.(2)勤于动脑,善于归纳,学习领会那些常见计算技巧,提高运算能力.3.学习重、难点:求完全立方数的立方根的方法和步骤.4.自学指导:(1)自学内容:课本P59活动2.(2)自学时间:8分钟.(3)自学要求:按课本中问题的指引,个个击破,然后归纳总结.(4)自学提纲:①∵103=1000,1003=1000000并且1000<59319<1000000,∴10<100,∴是两位数②13=1,23=8,33=27,43=64,53=125,63=216,73=343,83=512,93=729,103=1000,分析它们的个位数的特点,可知9.③把59319的后三位数319划去得59,∵27<59<64,∴确定出是3,即=39.④已知19683,110592都是完全立方数,按上面的方法求得:=27,=48⑤你能归纳出求完全立方数的立方根的一般步骤吗?⑥你能依照上面的方法求完全平方数1369,6724的算术平方根吗?答案:37;82.二、自学同学们可结合自学指导进行自主学习.三、助学1.师助生(1)明了学情:教师深入课堂,了解学生的自学进度和存在的问题.(2)差异指导:根据学情进行相应指导.2.生助生:小组内相互交流,订正纠错,互帮互学.四、强化1.各小组展示各自的学习成果,归纳出求完全立方数的立方根的一般步骤.2.如果a>b,那么.如求:∵13=1,23=8而1<5<8,∴1<<2.∵1.73=4.913,1.83=5.832而4.913<5<5.832,∴1.7< 1.8,∵1.703=4.913,1.713=5.000211而4.913<5<5.000211,∴1.70< 1.71.…如此进行下去,可以得到.五、评价1.学生的自我评价:回顾整个活动过程,反思自己有哪些收获和不足.2.教师对学生的评价:(1)表现性评价:教师根据本活动中学生的表现:是否积极参与活动,是否有独到的发现(利用这种方法能否求立方根是三位或三位以上的数,能否把这种方法迁移用来求完全平方数的平方根等),以及学习效果如何等予以评价.(2)纸笔评价:课堂评价检测.3.教师的自我评价(教学反思):在本节课教学过程中,通过教学活动2,调动了学生的积极性,引导学生观察思考,逐步质疑,逐渐由旧知归纳出新知,既培养学生的动手能力,又为实数学习打下基础.(时间:12分钟满分:100分)一、基础巩固(60分)1.(15分)已知4096,39304,140608都是完全立方数,不用计算器求4096=16,39304=34,140608=52.2.(15分)已知 4.12 1.603,41.23.454,4127.441,则0.412 0.7441,41200=34.54.3.(154.12=2.03041.2 6.4190.412=0.6419,41200 203.0.4.(15分)已知2304,7225,151292304=48,7225=85,15129=123.二、综合运用(20分)5.求100.01).解:∵23=8,33=27,而8<10<27,∴2<10∵2.13=9.261,2.23=10.648,而9.261<10<10.648,∴10∵2.153=9.938375,2.163=10.077696,而9.938375<10<10.077696,∴∵2.1543=9.993948,2.1553=10.007874,而2.1543更接近10.∴ 2.15.三、拓展延伸(20分)6.从图书、网络等方面搜集一些巧算立方根或平方根的资料,与同学们分享一下.。
6.3 实数导教案一.成功目标:1. 了解实数的概念,会对实数进行分类、会说出一个实数的相反数和绝对值与倒数;2. 了解实数和数数轴上的点的一一对应关系,初步感受数学中的对应和一一对应的关系.二.成功学习:自主预习教材,并独立完成下列问题.1. 有理数和无理数统称为 .2. 实数的两种分类:有理数 有限小数或无限不循环小数实数正无理数无理数 无限不循环小数正有理数正实数实数 零负有理数负实数3.实数与数轴上的点是 .4. 如果a 是实数,那么a 就是在数轴上表示数a 的点到 .5.直角坐标系中的每一个点都表示一个唯一的 ,因此所有的有序实数对与直角坐标系中所有点 .三.典型例题:例1.下列各数哪些是有理数?哪些是无理数?哪些是正数?哪些是负数?,0.27,0, 5.151151115π-gL (相邻两个5之间依次多1个1),220.101001,,73-g g练习:把下列各数写入相应的集合内:12-,0.26,7π,0.10,5.12,,0.1040040004…(相邻两个4之间0的个数逐次加1),(1)有理数集合:{…}; (2)无理数集合:{…}; (3)正实数集合:{…}; (4)负实数集合:{…}.例2. 求下列各数的相反数和绝对值:(1)2 (2-练习:写出下列各数的相反数与绝对值:.π-例3.自主完成例4.例5.四.课堂小结:本节课我的收获有哪些?五.成功检测:1.下列说法正确的是( ).①实数都是无理数;②无理数都是实数;③的点,右边的点表示的数总比左边的点表示的数大;⑤无理数的相反数仍然是无理数.A.①③⑤B.②④⑤C.②③④D.①③④2.下列各数327-,3π ,0,39,2-40,121,4,0.020020002 …(每两个2之间多一个0)中无理数有( ).A. 6个B. 5个C. 4个D.3个3.551在哪两个整数之间( ).A.1与2B.2与3C.3与4D.4与5327- ).A.3B.-3C.13D.-13 5.数轴上A ,B 两点表示的数分别为-13,点B 关于点A 的对称点为C ,则点C 所表示的数为( ). A. 23- B. 13-23-+ D. 13+6.-5的绝对值是______,2的相反数是______.7.若,a b 都是无理数,且2a b +=,则,a b 的值可以是______(填上一组满足条件值即可).8.已知,a b 是实数,且62+a +(b-2)2=0,则a =_____,b =______.9.求下列各数的相反数和绝对值:5.4,8,-5,37-,3.14π-,23 1.10.先化简,再求值: (44222++-+a a a a +a a a 22+)(a-a 4),其中a=2-3.11.在直角坐标系中描出下列各点A(1, 2) ; B(3,-1) ; C(-2,-3) .六. 布置作业:.。
第六章实数6.3实数(1)学案学习目标理解无理数和实数概念,学习重点掌握实数与数轴上的点的一一对应关系学习难点熟练运用无理数与有理数的性质一、 新知探究1.所有的数都可以写成有限小数或无限循环小数的形式吗? ......414.12= ;......14159265.3=π;1.010010001…(两个1之间依次多一个0)2.新知:无限不循环小数叫无理数。
归纳:①②③注意:带根号的数不一定是无理数有理数和无理数统称实数。
3.实数的分类:① 按定义分:有理数 0 有限小数或 无限循环小数实数正无理数无理数 负无理数②按大小分:实数负无理数是负无理数—是正无理数,如:373二、范例学习巩固练习巩固练习:13.142,,38-, 32, 0.3737737773, 0,2π0.205, 7-, 15--().有理数有( ) 无理数有( ) 正实数有( ) 负实数有( )三、巩固练习观察思考在实数范围内研究相反数、倒数、绝对值1.13的相反数是()倒数()是绝对值是()2.2-的相反数是()倒数()是绝对值是()3. a是一个实数,它的相反数是()绝对值是()如果0a≠,则它的倒数是()一个正实数的绝对值是(它本身)一个负实数的绝对值是(它的相反数)0的绝对值是 (0)巩固练习求下列各数的相反数、倒数、绝对值:33(1)7 (2) 5 (3) (4)27π+(5)3π-31(6)10-评价反思总结本节课主要学习内容:1.通过实际问题,使学生认识到数的扩充的必要性.2.掌握无理数、实数的定义,能对实数按要求进行分类.3. 会用所学定义正确判断所给数的属性.4.了解实数范围内,相反数、倒数、绝对值的意义.四、课堂小结课堂小结这节课我们学习了什么?1无理数:无限不循环小数。
2实数的分类:定义法和大小法。
3实数与数轴的关系:一一对应。
6.3 实数(第1课时)教学目标1.了解无理数和实数的概念.2.知道实数与数轴上的点一一对应,有序实数对与平面上的点一一对应.3.了解数的范围由有理数扩大到实数后,一些概念、运算等的一致性及其发展变化. 教学重点实数的运算.教学难点实数的运算教学内容一、导入新课使用计算器计算,把下列有理数写成小数的形式,你有什么发现?3,-53,847,119,911,95. 二、新课教学我们发现,上面的有理数都可以写成有限小数或者无限循环小数的形式,即3=3.0;-53=-0.6;847=5.875;119=0.81;911=1.2;95=0.5. 归纳:任何一个有理数都可以写成有限小数或无限循环小数的形式.反过来,任何有限小数或无限循环小数也都是有理数.无限不循环小数又叫无理数,π=3.1415926…也是无理数;有理数和无理数统称为实数.由于非0有理数和无理数都有正负之分,实数也有正负之分,所以实数还可以按大小分类如下:探究:如下图所示,直径为1个单位长度的圆从原点沿数轴向右滚动一周,圆上的一点由原点到达点O′,点O′对应的数是多少?从图中可以看出,OO′的长是这个圆的周长π,所以点O′的对应数是π.这样,无理数π可以用数轴上的点表示出来.事实上,每一个无理数都可以用数轴上的一个点表示出来,这就是说,数轴上的点有些表示有理数,有些表示无理数,当从有理数扩充到实数以后,实数与数轴上的点就是一一对应的,即每一个实数都可以用数轴上的一个点来表示;反过来,数轴上的每一个点都是表示一个实数与有理数一样,对于数轴上的任意两个点,右边的点所表示的实数总比左边的点表示的实数大.数a的相反数是-a,这里a表示任意一个实数.一个正实数的绝对值是本身;一个负实数的绝对值是它的相反数;0的绝对值是0.三、课堂练习四、课堂小结1.什么叫做无理数?2.什么叫做有理数?3.有理数和数轴上的点一一对应吗?4.无理数和数轴上的点一一对应吗?5.实数和数轴上的点一一对应吗?五、布置作业教学反思:6.3 实数(第2课时)教学内容实数的运算.一、导入新课1. 用字母来表示有理数的乘法交换律、乘法结合律、乘法分配律.2. 用字母表示有理数的加法交换律和结合律.3. 平方差公式、完全平方公式.4. 有理数的混合运算顺序.复习以前知识,导入新课的教学.二、实例探究1. 思考:(1)2的相反数是,-π的相反数是,0的相反数是 .(2)2=,-π=,0= .数A的相反数是-a,这里A表示任意一个实数.一个正实数的绝对值是它本身;一个负实数的绝对值是它的相反数;0的绝对值是0.即设A表示一个实数,则2. 例题例1 (1)分别写出-6,π-3.14的相反数;(2)指出-5,1-33各是什么数的相反数;-的绝对值;(3)求364(4)已知一个数的绝对值是3,求这个数.当数从有理数扩充到实数以后,实数之间不仅可以进行加、减、乘、除(除数不为0)、乘方运算,而且正数及0可以进行开方运算,任意一个实数可以进行开立方运算. 在进行实数的运算时,有理数的运算法则及运算性质等同样适用.例2 计算下列各式的值:(1);3+(2)33+23.(-2)2在实数运算中,当遇到无理数并且需要求出结果的近似值时,可以按照所要求的精确度用相应的近似的有限小数去代替无理数,再进行计算.三、课堂小结1. 实数的运算法则及运算律;2. 实数的相反数和绝对值的意义.四、布置作业教学反思:。
2019版七年级数学下册 6.3 实数(1)教案(新版)新人教版课题 6.3 实数(1)授课类型新授课标依据了解无理数和实数的概念,知道实数与数轴上的点一一对应,能求实数的相反数与绝对值。
教学目标知识与技能1.了解无理数和实数的概念;2.会对实数按照一定的标准进行分类;3.知道实数与数轴上的点具有一一对应的关系。
过程与方法在按不同标准给实数分类的过程中,培养学生的分类的能力;知道实数与数轴上的点是一一对应的关系,进一步掌握“数形结合”的思想方法。
情感态度与价值观1.通过了解数系扩充体会数系扩充的意义与作用;2.敢于面对数学活动中的困难,并能有意识地运用已有知识解决新问题。
教学重点难点教学重点了解无理数和实数的概念;知道实数与数轴上的点是一一对应的关系;对实数进行分类。
教学难点对无理数的认识。
教学媒体选择分析表知识点学习目标媒体类型教学作用使用方式所得结论占用时间媒体来源引入知识目标图片B B拓展知识2分钟自制讲解过程与方法图片E F建立表象5分钟下载观看过程与方法图片F C帮助理解8分钟下载理解情感态度价值观图片J E升华感情2分钟自制①媒体在教学中的作用分为:A.提供事实,建立经验;B.创设情境,引发动机;C.举例验证,建立概念;D.提供示范,正确操作;E.呈现过程,形成表象;F.演绎原理,启发思维;G.设难置疑,引起思辨;H.展示事例,开阔视野;I.欣赏审美,陶冶情操;J.归纳总结,复习巩固;K.其它。
②媒体的使用方式包括:A.设疑—播放—讲解;B.设疑—播放—讨论;C.讲解—播放—概括;D.讲解—播放—举例;E.播放—提问—讲解;F.播放—讨论—总结;G.边播放、边讲解;H.设疑_播放_概括.I讨论_交流_总结J.其他教学过程设计师生活动设计意图一、知识回顾请你把下列各数进行分类:二、探究新知问题1:把下列有理数写成小数的形式,你有什么发现?(可以使用计算器)3 ,35-,478,911,119,59我们发现,上面的有理数都可以写成有限小数或者无限循环小数的形式,即3 3.0=,30.65-=-,475.8758=,90.8111=,111.29=,50.59=(学生先动手完成,教师引导学生观察,得出结论。
第六章实数,无理.问题1:如何在数轴上表示一个无理数?问题2:,π这样的无理数对应的点吗?怎么找?例2.如图所示,数轴上A ,B 两点表示的数分别为-1,点B 关于点A 的对称点为C ,求点C 所表示的实数.方法总结:本题主要考查了实数与数轴之间的对应关系,其中利用了:当点C 为点B 关于点A 的对称点时,点C 到点A 的距离等于点B 到点A 的距离;两点之间的距离为两数差的绝对值.例3.如图所示,数轴上A ,B 两点表示的数分别为和5.1,则A ,B 两点之间表示整数的点共有( )A .6个B .5个C .4个D .3个探究点3:实数的大小比较知识要点:实数的大小比较与有理数规定的大小一样,数轴上右边的点表示的实数比左边的点表示的实数大. 例4.在数轴上表示下列各点,比较它们的大小,并用“<”连接它们.--例5.1位于( )1.下列说法正确的是( ) A.a 一定是正实数 B.2217是有理数 C.是有理数 D.数轴上任一点都对应一个有理数2.有一个数值转换器,原理如下,当输x=81时,输出的y 是 ( ) ±33.判断快枪手——看谁最快最准!(1)实数不是有理数就是无理数. ( ) (2)无理数都是无限不循环小数. ( ) (3)带根号的数都是无理数. ( ) (4)无理数都是无限小数. ( ) (5)无理数一定都带根号. ( ) 4.把下列各数填入相应的括号内: 有理数:{ }; 无理数:{ }; 整数:{ }; 负数:{ }; 分数:{ }; 实数:{ }.5. 6的大小.9-3564π∙6.043-39-313.0。
《6.3实数》导学案(1)【学习目标】1.了解实数的意义,能对实数按要求进行分类。
了解数轴上的点与实数一一对应,能用数轴上的点来表示无理数。
2.自主、合作、交流3.随着数的进一步扩充,使学生体会到数学的美妙【重点】理解实数的概念。
【难点】正确理解实数的概念【学习过程】一复习导入:(2分钟)(有理数的两种分类):使用计算器计算,把下列有理数写成小数的形式,你有什么发现?25,35-,427,911,119,二、自主学习内容、指导、检测:(15分钟)阅读教材p53,自主学习一下内容1、知道什么是有理数?2.知道什么是无理数?3.14159265π=L也是无理数3.实数包括由哪两部分组成?4.对实数进行的两种不同的分类。
5、数轴上的点与实数一一对应,能用数轴上的点来表示无理数。
与有理数一样,对于数轴上的任意两个点,右边的点所表示的实数总比左边的点表示的实数大。
6.当数从有理数扩充到实数以后,有理数关于相反数和绝对值的意义同样适合于实数吗?总结数a的相反数是______,这里a表示任意____________。
一个正实数的绝对值是______;一个负实数的绝对值是它的______;0的绝对值是______三、释疑点拨:(3分钟)实数的概念很抽象,对于学生来说很难理解,本节课重点突破有理数的概念及其两种分类方法,力求学生消化理解。
四、训练提升:(20分钟)例1、把下列各数分别填入相应的集合里:学法指导复习提问,巩固所学知识学生阅读教材,自主完成本内容学生独立完成,小组交流、讨论有理数整数分数332278,3, 3.141,,,,2,0.1010010001,1.414,0.020202,7378π-----L L 正有理数{ }负有理数{ } 正无理数{ } 负无理数{ }2、下列实数中是无理数的为( )A. 0 B. 3.5- C.2 D.93、 的相反数是 ,绝对值 。
4、绝对值等于 的数是 , 的平方是5、 6、求绝对值五、课堂小结:(2分钟)实数概念及其分类,会求实数的绝对值,相反数六、课后巩固:(3分钟) 课后3、5、6 题七、学习反思:小组交流、讨论、共同完成,实现生生互助的教学模式学生总结,互相补充,培养分析归纳能力【教学反思】。
6.3.1实数导学案【学习目标】1.能说出无理数和实数的概念,知道实数和数轴上的点一一对应;2. 能估算无理数的大小【教学重点】正确理解实数的概念.【教学难点】对“实数与数轴上的点一一对应关系”的理解.【教学过程】(一)【创设情境,引入课题】【问题1】:有理数的分类有哪几种?有理数 有理数(二)【探究新知,练习巩固】知识点1实数定义及划分活动【问题2】观察下列有理数写成小数的形式,你有什么发现?【归纳】: 任何一个有理数都可以写成_______小数或________小数的形式。
反过来,任何______小数或____________小数也都是有理数。
【问题3】观察通过前面的探讨和学习,我们知道,很多数的平方根根和立方根根都是_______小数, ____________小数又叫无理数,95 ,9011 ,119 ,847 ,53 ,3,3,3235等都是无理数,也是无理数。
【练习】(1)、π2、103,0.101001000......中,无理数有________(2)下列说法:①无限小数都是无理数;②无理数都是无限小数;③带根号的数都是无理数;④两个无理数的和还是无理数,其中错误的是________.注意:无理数一般有三种情况:(1)一些含有π的数(2)(2)开方开不尽的数(3)(3)有一定的规律,但无限不循环的小数。
知识点二:实数的分类______数和________数统称为实数。
(1)实数(2)实数知识点三:在数轴上表示无理数探究:如下图所示,直径为1个单位长度的圆从原点沿数轴向右滚动3.14159265π=一周,圆上的一点由原点到达点O′,点O′对应的数是多少?【归纳】:1、_________与数轴上的点就是一一对应的。
即没一个实数都可以用数轴上的点来表示;反过来,数轴上的每一个点都表示一个实数。
2、对于数轴上的任意两个点,__边的点所表示的实数总比___边的点表示的实数大例如:比较下列各组数的大小:①4______②π______3.1416③1.4______2④1.7______3(三)【合作探究,尝试求解】1.把下列各数分别填入相应的集合里:无理数{ }正有理数{ }负有理数{ }正无理数{ } 负无理数{ }(四)【概括提炼,课堂小结】1、无理数的定义注意:无理数有三种情况:(1)圆周率π及一些含有π的数,(2)开方开不尽的数(3)有一定的规律,但无限不循环的小数。
《6.3实数(1)》
班级 小组 姓名 评价
一、学习目标
1.了解无理数和实数的概念,知道实数和数轴上的点一一对应,能估算无理数的大小;
2.了解实数的运算法则及运算律,会进行实数的运算,会用计算器进行实数的运算;
3.积极投入,激情展示,做最佳自己。
二、自主学习
1.观察下列有理数写成小数的形式,你有什么发现?
任何有理数都能写成有限小数和无限循环小数吗?
即3 3.0= ,30.65-=- ,47 5.8758= ,90.8111= ,11 1.29= ,50.59= 事实上,所有的有理数都可以像上面的数一样:写成有限小数或者无限循环小数的形式。
归纳:任何一个有理数都可以写成 ____________的形式。
反过来,任何有限小数或无限循环小数也都是______________.
2.
和
写成小数的形式,你有什么发现?像这样的数 我们把它叫什么数? 归纳: 叫做无理数.
注意:无理数一般有三种情况:(1)圆周率π及一些含有π的数,(2)开方开不尽 的数,(3)有一定的规律,但无限不循环的小数。
3.实数的概念与分类:______数和________数统称为无理数。
分类1: ⎧⎨⎩有理数无理数 分类2:0⎧⎧⎨⎪⎩⎪⎪⎨⎪⎧⎪⎨⎪⎩⎩
正有理数正实数正有理数负有理数负实数负无理数 4.在数轴上表示无理数:每个有理数都可以用数轴上的点表示,那么无理数是否也可以
用数轴上的点表示出来吗?你能在数轴上找到表示π 总结:(1)每一个无理数都可以用数轴上的一个点表示出来,这就是说,数轴上的点有 些表示有理数,有些表示无理数,当从有理数扩充到实数以后,实数与数轴 上的点就是一一对应的,即每一个实数都可以用数轴上的一个点来表示;反 过来,数轴上的每一个点都是表示一个实数。
(2)与有理数一样,对于数轴上的任意两个点,右边的点所表示的实数总比左边 的点表示的实数大。
5.自学检测:
1.数轴上的点和______是一一对应: A.有理数 B.整数 C.无理数 D.实数
2.边长为2的正方形的对角线长是_____:A.有理数 B.分数 C.无理数 D.实数
3.下列说法正确的是_______:
A.带根号的数是无理数
B.不能在数轴上表示的数是无理数
C.无限小数是无理数
D.不能写成分数形式的数是无理数
三、合作探究
1.把下列各数分别填入相应的集合里:
2273.141,,,,,1.414,0.020202,7378π---- 正有理数{ } 负有理数{ } 正无理数{ } 负无理数{ }
2.判断下列说法是否正确
(1).实数不是有理数就是无理数( ) (2).无限小数都是无理数( )
(3).无理数都是无限小数( ) (4).带根号的数都是无理数( )
(5).两个无理数之和一定是无理数( ) (6).4不是无理数 ( )
(6).所有的有理数都可以在数轴上表示,同时,数轴上所有的点都表示有理数( )
3.若实数a 满足1a
a =-,则_______:
A.0a >
B.0a <
C.0a ≥
D.0a ≤
4.下列说法正确的有_______:
(1)不存在绝对值最小的无理数 (2)不存在绝对值最小的实数
(3)不存在与本身的算术平方根相等的数 (4)比正实数小的数都是负实数
(5)非负实数中最小的数是0
A.2个
B.3个
C.4个
D.5个
5.在“22,(1)a y a +-”中,一定是正实数的有_______:
A.1个
B.2个
C.3个
D.4个
四、达标检测
1.下列各数中,是无理数的是_____:A. 1.732- B.1.414 3.14
2.下列说法正确的是________:
A. 无理数都是无限小数
B. 无限小数都是无理数
C. 有理数都是有限小数
D. 有些分数是无理数
3.a _______:
A.有理数
B.正无理数
C.正实数
D.正有理数
4.a b 、0b =,解关于x 的方程:2(2) 1.a x b a ++=-。