概率统计习题及答案
- 格式:doc
- 大小:675.00 KB
- 文档页数:13
九年级数学概率统计练习题及答案一、选择题1. 下列各项中,属于概率的是:A. 李明抽到红球的可能性是10%B. 今天下雨的可能性是80%C. 买彩票中奖的可能性是1/1000000D. 扔一次骰子掷出的点数是4的可能性是1/62. 某班级有30个学生,其中有18个男生和12个女生。
从班级中随机选取一个学生,男生和女生被选到的概率相等。
那么,被选到的学生是男生的概率是多少?A. 2/3B. 1/3C. 3/5D. 1/23. 一副扑克牌中有52张牌,其中红心牌有13张。
从扑克牌中随机抽一张牌,抽到红心牌的概率是多少?A. 1/4B. 1/2C. 1/13D. 1/52二、填空题1. 从数字1、2、3、4、5中任意抽取一个数,抽到奇数的概率是_________。
2. 一组数据:10、12、14、16、18中,大于15的数的概率是_________。
3. 一枚硬币抛掷,正面向上的概率是_________。
三、计算题1. 某班级有40个学生,其中有18个男生和22个女生。
从班级中随机选取两个学生,分别计算:a) 选出的两个学生都是男生的概率是多少?b) 选出的两个学生一个是男生一个是女生的概率是多少?2. 一副扑克牌中有52张牌,其中黑色牌有26张。
从扑克牌中随机抽取两张牌,并将它们放回,再抽取一张牌。
计算:a) 三次抽取都是黑色牌的概率是多少?b) 三次抽取中至少有一张黑色牌的概率是多少?四、解答题1. 一组数据:5、7、9、11、13,从中随机抽取一个数。
计算抽取奇数的概率。
答案解析:一、选择题1. D2. A3. A二、填空题1. 3/52. 3/53. 1/2三、计算题1.a) 18/40 × 17/39 = 9/20 × 17/39 = 153/780b) 18/40 × 22/39 + 22/40 × 18/39 = 396/780 = 2/5 2.a) 26/52 × 26/52 × 26/52 = 27/64b) 1 - (26/52 × 26/52 × 26/52) = 37/64四、解答题1. 3/5通过以上习题,希望能够帮助同学们加深对数学概率统计的理解和掌握。
概率与统计题目精选及答案1. 某人忘记了电话号码的最后一个数字,因而他随意地拨号,假设拨过了的号码不再重复,试求下列事件的概率:(1)第3次拨号才接通电话; (2)拨号不超过3次而接通电话.解:设A 1={第i 次拨号接通电话},i =1,2,3.(1)第3次才接通电话可表示为321A A A 于是所求概率为;1018198109)(321=⨯⨯=A A A P (2)拨号不超过3次而接通电话可表示为:A 1+32121A A A A A +于是所求概率为P (A 1+32121A A A A A +)=P (A 1)+P (21A A )+P (321A A A )=.103819810991109101=⨯⨯+⨯+2. 一出租车司机从饭店到火车站途中有六个交通岗,假设他在各交通岗到红灯这一事件是相互独立的,并且概率都是.31(1)求这位司机遇到红灯前,已经通过了两个交通岗的概率;(2)求这位司机在途中遇到红灯数ξ的期望和方差解:(1)因为这位司机第一、二个交通岗未遇到红灯,在第三个交通岗遇到红灯,所以 P =.27431311311(=⨯-- (2)易知).31,6(~B ξ ∴.2316=⨯=ξE .34311(316=-⨯⨯=ξD 3. (理科)摇奖器有10个小球,其中8个小球上标有数字2,2个小球上标有数字5,现摇出3个小球,规定所得奖金(元)为这3个小球上记号之和,求此次摇奖获得奖金数额的数学期望解:设此次摇奖的奖金数额为ξ元,当摇出的3个小球均标有数字2时,ξ=6;当摇出的3个小球中有2个标有数字2,1个标有数字5时,ξ=9;当摇出的3个小球有1个标有数字2,2个标有数字5时,ξ=12所以,157)6(31038===C C P ξ 157)9(3101228===C C C P ξ 151)12(3102218===C C C P ξ……9分 E ξ=6×539151121579157=⨯+⨯+(元)答:此次摇奖获得奖金数额的数字期望是539元 ……………………12分 4. 某学生语、数、英三科考试成绩,在一次考试中排名全班第一的概率:语文为0.9,数学为0.8,英语为0.85,问一次考试中(Ⅰ)三科成绩均未获得第一名的概率是多少?(Ⅱ)恰有一科成绩未获得第一名的概率是多少解:分别记该生语、数、英考试成绩排名全班第一的事件为A 、B 、C ,则P (A )=0.9 P (B )=0.8,P (C )=0.85 …………………………2分(Ⅰ))()()()(C P B P A P C B A P ⋅⋅=⋅⋅=[1-P (A )]·[1-P (B )]·[1-P (C )]=(1-0.9)×(1-0.8)×(1-0.85)=0.003答:三科成绩均未获得第一名的概率是0.003………………6分(Ⅱ)P (C B A C B A C B A ⋅⋅+⋅⋅+⋅⋅)= P ()()()C B A p C B A P C B A ⋅⋅+⋅⋅+⋅⋅=)()()()()()()()()(C P B P A P C P B P A P C P B P A P ⋅⋅+⋅⋅+⋅⋅=[1-P (A )]·P (B )·P (C )+P (A )·[1-P (B )]·P (C )+P (A )·P (B )·[1-P (C )]=(1-0.9)×0.8×0.85+0.9×(1-0.8)×0.85+0.9×0.8×(1-0.85)=0.329答:恰有一科成绩未获得第一名的概率是0.329……………………12分5. 如图,A 、B 两点之间有6条网线并联,它们能通过的最大信息量分别为1,1,2,2,3,4.现从中任取三条网线且使每条网线通过最大的信息量.(I )设选取的三条网线由A 到B 可通过的信息总量为x ,当x ≥6时,则保证信息畅通.求线路信息畅通的概率;(I I )求选取的三条网线可通过信息总量的数学期望.解:(I )411)6(,6321411361212=⋅+==∴=++=++C C C x P )6(431012034141)6()4(101202)9(,9432203)8(,842243141205)7(,7322421分分=+++=≥∴===∴=++==∴=++=++===∴=++=++x P x P x P x P (I I ))8(203)5(,5221311,101)4(,4211分===++=++===++x P x P ∴线路通过信息量的数学期望5.61019203841741620351014=⨯+⨯+⨯+⨯+⨯+⨯= (11分)答:(I )线路信息畅通的概率是43. (I I )线路通过信息量的数学期望是6.5.(12分) 6. 三个元件T 1、T 2、T 3正常工作的概率分别为,43,43,21将它们中某两个元件并联后再和第三元件串联接入电路.(Ⅰ)在如图的电路中,电路不发生故障的概率是多少?(Ⅱ)三个元件连成怎样的电路,才能使电路中不发生故障的概率最大?请画出此时电路图,并说明理由.解:记“三个元件T 1、T 2、T 3正常工作”分别为事件A 1、A 2、A 3,则.43)(,43)(,21)(321===A P A P A P (Ⅰ)不发生故障的事件为(A 2+A 3)A 1.(2分)∴不发生故障的概率为32152141411[)()]()(1[)4)(()(])[(1321311321=⨯⨯-=⋅⋅-=⋅+=+=A P A P A P A P A A P A A A P P 分(Ⅱ)如图,此时不发生故障的概率最大.证明如下:图1中发生故障事件为(A 1+A 2)·A 3∴不发生故障概率为 3221)()]()(1[)()(])[(3213213212=⋅-=⋅+=+=A P A P A P A P A A P A A A P P )11(12分P P >∴ 图2不发生故障事件为(A 1+A 3)·A 2,同理不发生故障概率为P 3=P 2>P 1(12分)说明:漏掉图1或图2中之一扣1分7. 要制造一种机器零件,甲机床废品率为0.05,而乙机床废品率为0.1,而它们 的生产是独立的,从它们制造的产品中,分别任意抽取一件,求:(1)其中至少有一件废品的概率;(2)其中至多有一件废品的概率.解:设事件A =“从甲机床抽得的一件是废品”;B =“从乙机床抽得的一件是废品”. 则P (A )=0.05, P (B )=0.1,(1)至少有一件废品的概率)7(145.090.095.01)()(1)2)((1)(分分=⨯-=⋅-=+-=+B P A P B A P B A P(2)至多有一件废品的概率)12(995.09.095.01.095.09.005.0)(分=⨯+⨯+⨯=⋅+⋅+⋅=B A B A B A P P8. (理科)甲乙两人独立解某一道数学题,已知该题被甲独立解出的概率为0.6,被甲或乙解出的概率为0.92.(1)求该题被乙独立解出的概率;(2)求解出该题的人数ξ的数学期望和方差 解:(1)记甲、乙分别解出此题的事件记为A 、B .设甲独立解出此题的概率为P 1,乙为P 2.(2分)则P (A )=P 1=0.6,P (B )=P 2:48.08.06.0)()()2(44.08.04.02.06.0)()()()()1(08.02.04.0)()()0()2()7(8.032.04.092.06.06.092.0)1)(1(1)(1)(2222212121的概率分布为分即则ξξξξ=⨯=⋅===⨯+⨯=+===⨯=⋅=====-+∴=-+=---=⋅-=+B P A P P B P A P B P A P P B P A P P P P P P P P P P P P B A P B A P)12(4.096.136.2)()(4.01728.00704.01568.048.0)4.12(44.0)4.11(08.0)4.10(4.196.044.048.0244.0108.0022222分或利用=-=-==++=⋅-+⋅-+⋅-==+=⨯+⨯+⨯=ξξξξξE E D D E 9. (理科考生做) 某保险公司新开设了一项保险业务,若在一年内事件E 发生,该公司要赔偿a 元.设在一年内E 发生的概率为p ,为使公司收益的期望值等于a 的百分之十,公司应要求顾客交多少保险金?解:设保险公司要求顾客交x 元保险金,若以ξ 表示公司每年的收益额,则ξ是一个随机变量,其分布列为:6分因此,公司每年收益的期望值为E ξ =x (1-p )+(x -a )·p =x -a p .8分为使公司收益的期望值等于a 的百分之十,只需E ξ =0.1a ,即x -a p =0.1a , 故可得x =(0.1+p )a . 10分即顾客交的保险金为 (0.1+p )a 时,可使公司期望获益10%a . 12分10. 有一批食品出厂前要进行五项指标检验,如果有两项指标不合格,则这批食品不能出厂.已知每项指标抽检是相互独立的,且每项抽检出现不合格的概率都是0.2.(1)求这批产品不能出厂的概率(保留三位有效数字);(2)求直至五项指标全部验完毕,才能确定该批食品是否出厂的概率(保留三位有效数字).解:(1)这批食品不能出厂的概率是: P =1-0.85-15C ×0.84×0.2≈0.263. 4分 (2)五项指标全部检验完毕,这批食品可以出厂的概率是:P 1=14C ×0.2×0.833×0.8 8分五项指标全部检验完毕,这批食品不能出厂的概率是:P 2=14C ×0.2×0.83×0.2 10分由互斥事件有一个发生的概率加法可知,五项指标全部检验完毕,才能确定这批产品是否出厂的概率是:P =P 1+P 2=14C ×0.2×0.83=0.4096. 12分11. 高三(1)班、高三(2)班每班已选出3名学生组成代表队,进行乒乓球对抗赛. 比赛规则是:①按“单打、双打、单打”顺序进行三盘比赛;②代表队中每名队员至少参加一盘比赛,不得参加两盘单打比赛.已知每盘比赛双方胜出的概率均为.21(Ⅰ)根据比赛规则,高三(1)班代表队共可排出多少种不同的出场阵容? (Ⅱ)高三(1)班代表队连胜两盘的概率是多少?解:(I )参加单打的队员有23A 种方法. 参加双打的队员有12C 种方法.……………………………………………………2分所以,高三(1)班出场阵容共有121223=⋅C A (种)………………………5分 (I I )高三(1)班代表队连胜两盘,可分为第一盘、第二盘胜或第一盘负,其余两盘胜,………………………………………………………………………7分所以,连胜两盘的概率为.832121212121=⨯⨯+⨯………………………………10分 12. 袋中有大小相同的5个白球和3个黑球,从中任意摸出4个,求下列事件发生的概率.(1)摸出2个或3个白球 (2)至少摸出一个黑球.解: (Ⅰ)设摸出的4个球中有2个白球、3个白球分别为事件A 、B ,则73)(,73)(481325482325=⋅==⋅=C C C B P C C C A P ∵A 、B 为两个互斥事件 ∴P (A +B )=P (A )+P (B )=76即摸出的4个球中有2个或3个白球的概率为76…………6分 (Ⅱ)设摸出的4个球中全是白球为事件C ,则 P (C )=1414845=C C 至少摸出一个黑球为事件C 的对立事件 其概率为14131411=-………………12分 13. 一名学生骑自行车上学,从他的家到学校的途中有6个交通岗,假设他在各交通岗遇到红灯的事件是独立的,并且概率都是31.(I )求这名学生首次遇到红灯前,已经过了两个交通岗的概率;(I I )求这名学生在途中遇到红灯数ξ的期望与方差.解:(I )27431311311(=--=P …………………………………………4分 (I I )依题意ξ~31,6(B ……………………………………………………7分 2316=⋅=∴ξE ……………………………………………………………9分 34)311(316=-⋅⋅=ξD ……………………………………………………12分 14. 一出租车司机从饭店到火车站途中有六个交通岗,假设他在各交通岗到红灯这一事件是相互独立的,并且概率都是.31(1)求这位司机遇到红灯前,已经通过了两个交通岗的概率;(2)求这位司机在途中遇到红灯数ξ的期望和方差解:(1)因为这位司机第一、二个交通岗未遇到红灯,在第三个交通岗遇到红灯,所以 P =.27431311311(=⨯-- (2)易知31,6(~B ξ ∴.2316=⨯=ξE .34)311(316=-⨯⨯=ξD。
概率论与数理统计习题及题解沈志军 盛子宁第一章 概率论的基本概念1.设事件B A ,及B A 的概率分别为q p ,及r ,试求)(),(),(B A P B A P AB P 及)(AB P2.若C B A ,,相互独立,试证明:C B A ,,亦必相互独立。
3.试验E 为掷2颗骰子观察出现的点数。
每种结果以),(21x x 记之,其中21,x x 分别表示第一颗、第二颗骰子的点数。
设事件}10|),{(2121=+=x x x x A , 事件}|),{(2121x x x x B >=。
试求)|(A B P 和)|(B A P4.某人有5把钥匙,但忘了开房门的是哪一把,只得逐把试开。
问:(1)恰好第三次打开房门锁的概率?(2)三次内打开的概率?(3)如果5把里有2把房门钥匙,则在三次内打开的概率又是多少?5.设有甲、乙两袋,甲袋中装有n 个白球、m 个红球,乙袋中装有N 个白球、M 个红球。
今从甲袋中任意取一个放入乙袋中,再从乙袋中任意取一个,问取到白球的概率是多少?6.在时间间隔5分钟内的任何时刻,两信号等可能地进入同一收音机,如果两信号进入收音机的间隔小于30秒,则收音机受到干扰。
试求收音机不受干扰的概率?7.甲、乙两船欲停靠同一码头,它们在一昼夜内独立地到达码头的时间是等可能的,各自在码头上停留的时间依次是1小时和2小时。
试求一船要等待空出码头的概率?8.某仓库同时装有甲、乙两种警报系统,每个系统单独使用的有效率分别为0.92,0.93,在甲系统失灵的条件下乙系统也失灵的概率为0.15。
试求下列事件的概率:(1)仓库发生意外时能及时发出警报;(2)乙系统失灵的条件下甲系统亦失灵?9.设B A ,为两随机变量,试求解下列问题:(1) 已知6/1)|(,3/1)()(===B A P B P A P 。
求:)|(B A P ; (2) 已知2/1)|(,3/1)|(,4/1)(===B A P A B P A P 。
高中数学概率统计专题练习题及答案一、选择题1. 掷一枚骰子,结果为奇数的概率是多少?A. 1/2B. 1/6C. 2/3D. 1/32. 从1至20这20个数字中随机选出一个数,选出的数是素数的概率是多少?A. 1/5B. 1/4C. 1/2D. 2/53. 一只盒子中有5张红牌和3张蓝牌,从中随机抽取2张牌,同时放回,再随机抽取2张牌,求两次抽取都是红牌的概率是多少?A. 1/16B. 3/8C. 1/4D. 1/8二、计算题1. 一次考试中,甲乙丙三位同学都有70%的概率通过考试。
求三位同学中至少有一位通过考试的概率。
答案:1 - (1 - 0.7)^3 = 0.9732. 从1至100这100个数字中随机选出一个数,选出的数是2的倍数且小于等于50的概率是多少?答案:50/100 = 0.53. 有A、B两个车站,A车站开往B车站的列车间隔是15分钟,B车站开往A车站的列车间隔是10分钟。
现在一个人随机到达A车站,请问他至少要等待几分钟才能搭乘到开往B车站的列车?答案:最小公倍数(15, 10) = 30分钟三、应用题1. 每个学生参加一次足球比赛的概率是0.4,问一个班级20个同学中至少有10个学生参加比赛的概率是多少?答案:利用二项分布公式,计算P(X≥10),其中n=20,p=0.4,k≥10。
答案约为0.599。
2. 一批产品有10%的次品率,现从中随机抽取20个产品,求其中恰好有3个次品的概率。
答案:利用二项分布公式,计算P(X=3),其中n=20,p=0.1,k=3。
答案约为0.201。
3. 一支篮球队最近10场比赛中获胜的概率是0.8,在下一场比赛中,求该队至少获胜8次的概率。
答案:利用二项分布公式,计算P(X≥8),其中n=10,p=0.8,k≥8。
答案约为0.967。
以上为高中数学概率统计专题练习题及答案。
希望对您的学习有所帮助!。
《概率论与数理统计》作业集及答案第1章 概率论的基本概念§1 .1 随机试验及随机事件1. (1) 一枚硬币连丢3次,观察正面H ﹑反面T 出现的情形. 样本空间是:S= ;(2) 一枚硬币连丢3次,观察出现正面的次数. 样本空间是:S= ; 2.(1) 丢一颗骰子. A :出现奇数点,则A= ;B :数点大于2,则B= . (2) 一枚硬币连丢2次, A :第一次出现正面,则A= ;B :两次出现同一面,则= ;C :至少有一次出现正面,则C= .§1 .2 随机事件的运算1. 设A 、B 、C 为三事件,用A 、B 、C 的运算关系表示下列各事件:(1)A 、B 、C 都不发生表示为: .(2)A 与B 都发生,而C 不发生表示为: . (3)A 与B 都不发生,而C 发生表示为: .(4)A 、B 、C 中最多二个发生表示为: . (5)A 、B 、C 中至少二个发生表示为: .(6)A 、B 、C 中不多于一个发生表示为: . 2. 设}42:{},31:{},50:{≤<=≤<=≤≤=x B x x A x x S :则(1)=⋃B A ,(2)=AB ,(3)=B A , (4)B A ⋃= ,(5)B A = 。
§1 .3 概率的定义和性质1. 已知6.0)(,5.0)(,8.0)(===⋃B P A P B A P ,则(1) =)(AB P , (2)()(B A P )= , (3))(B A P ⋃= . 2. 已知,3.0)(,7.0)(==AB P A P 则)(B A P = .§1 .4 古典概型1. 某班有30个同学,其中8个女同学, 随机地选10个,求:(1)正好有2个女同学的概率,(2)最多有2个女同学的概率,(3) 至少有2个女同学的概率.2. 将3个不同的球随机地投入到4个盒子中,求有三个盒子各一球的概率.§1 .5 条件概率与乘法公式1.丢甲、乙两颗均匀的骰子,已知点数之和为7, 则其中一颗为1的概率是 。
概率论与数理统计习题及题解沈志军 盛子宁第一章 概率论的基本概念1.设事件B A ,及B A 的概率分别为q p ,及r ,试求)(),(),(B A P B A P AB P 及)(AB P2.若C B A ,,相互独立,试证明:C B A ,,亦必相互独立。
3.试验E 为掷2颗骰子观察出现的点数。
每种结果以),(21x x 记之,其中21,x x 分别表示第一颗、第二颗骰子的点数。
设事件}10|),{(2121=+=x x x x A , 事件}|),{(2121x x x x B >=。
试求)|(A B P 和)|(B A P4.某人有5把钥匙,但忘了开房门的是哪一把,只得逐把试开。
问:(1)恰好第三次打开房门锁的概率?(2)三次内打开的概率?(3)如果5把里有2把房门钥匙,则在三次内打开的概率又是多少?5.设有甲、乙两袋,甲袋中装有n 个白球、m 个红球,乙袋中装有N 个白球、M 个红球。
今从甲袋中任意取一个放入乙袋中,再从乙袋中任意取一个,问取到白球的概率是多少?6.在时间间隔5分钟内的任何时刻,两信号等可能地进入同一收音机,如果两信号进入收音机的间隔小于30秒,则收音机受到干扰。
试求收音机不受干扰的概率?7.甲、乙两船欲停靠同一码头,它们在一昼夜内独立地到达码头的时间是等可能的,各自在码头上停留的时间依次是1小时和2小时。
试求一船要等待空出码头的概率?8.某仓库同时装有甲、乙两种警报系统,每个系统单独使用的有效率分别为0.92,0.93,在甲系统失灵的条件下乙系统也失灵的概率为0.15。
试求下列事件的概率:(1)仓库发生意外时能及时发出警报;(2)乙系统失灵的条件下甲系统亦失灵?9.设B A ,为两随机变量,试求解下列问题:(1) 已知6/1)|(,3/1)()(===B A P B P A P 。
求:)|(B A P ; (2) 已知2/1)|(,3/1)|(,4/1)(===B A P A B P A P 。
概率统计练习题答案一、选择题1.答案:B2.答案:C3.答案:A4.答案:D5.答案:C6.答案:A7.答案:B8.答案:D9.答案:C10.答案:B11.答案:A12.答案:C13.答案:B14.答案:D15.答案:A二、填空题1.答案:0.252.答案:0.93.答案:0.154.答案:25.答案:0.046.答案:137.答案:0.3338.答案:0.849.答案:0.62510.答案:0.8三、解答题1.答案:设事件A为随机抽取的球为红球,事件B为随机抽取的球为蓝球。
根据条件概率公式,P(A|B) = P(AB)/P(B)。
已知P(A) = 0.6,P(B) = 0.4,P(AB) = 0.24,代入公式可得P(A|B) = 0.24/0.4 = 0.6。
所以,答案为0.6。
2.答案:设事件A为选手射中靶心,事件B为选手准确报告靶心位置。
根据全概率公式,P(A) = P(A|B1)P(B1) + P(A|B2)P(B2) +P(A|B3)P(B3)。
已知P(A|B1) = 0.8,P(A|B2) = 0.6,P(A|B3) = 0.4,P(B1) = 0.3,P(B2) = 0.4,P(B3) = 0.3,代入公式可得P(A) = 0.8*0.3 + 0.6*0.4 + 0.4*0.3 = 0.62。
所以,答案为0.62。
3.答案:设事件A为选手拿到奖品,事件B为选手答对问题。
根据条件概率公式,P(A|B) = P(AB)/P(B)。
已知P(A) = 0.4,P(B) = 0.6,P(AB) = 0.24,代入公式可得P(A|B) = 0.24/0.6 = 0.4。
所以,答案为0.4。
4.答案:设事件A为抽取的学生是男生,事件B为抽取的学生是高中生。
根据全概率公式,P(A) = P(A|B1)P(B1) + P(A|B2)P(B2)。
已知P(A|B1) = 0.6,P(A|B2) = 0.4,P(B1) = 0.7,P(B2) = 0.3,代入公式可得P(A) = 0.6*0.7 + 0.4*0.3 = 0.54。
习题一 (A )1.写出下列随机试验的样本空间: (1)一枚硬币连抛三次;(2)两枚骰子的点数和;(3)100粒种子的出苗数;(4)一只灯泡的寿命。
2. 记三事件为C B A ,,。
试表示下列事件:(1)C B A ,,都发生或都不发生;(2)C B A ,,中不多于一个发生;(3)C B A ,,中只有一个发生;(4)C B A ,,中至少有一个发生; (5)C B A ,,中不多于两个发生;(6)C B A ,,中恰有两个发生;(7)C B A ,,中至少有两个发生。
3.指出下列事件A 与B 之间的关系:(1)检查两件产品,事件A =“至少有一件合格品”,B =“两件都是合格品”; (2)设T 表示某电子管的寿命,事件A ={T >2000h },B ={T >2500h }。
4.请叙述下列事件的互逆事件:(1)A =“抛掷一枚骰子两次,点数之和大于7”; (2)B =“数学考试中全班至少有3名同学没通过”; (3)C =“射击三次,至少中一次”;(4)D =“加工四个零件,至少有两个合格品”。
5.从一批由47件正品,3件次品组成的产品中,任取一件产品,求取得正品的概率。
6.电话号码由7个数字组成,每个数字可以是9,,1,0 中的任一个,求:(1)电话号码由完全不相同的数字组成的概率;(2)电话号码中不含数字0和2的概率;(3)电话号码中4至少出现两次的概率。
7.从0,1,2,3这四个数字中任取三个进行排列,求“取得的三个数字排成的数是三位数且是偶数”的概率。
8.从一箱装有40个合格品,10个次品的苹果中任意抽取10个,试求:(1)所抽取的10个苹果中恰有2个次品的概率;(2)所抽取的10个苹果中没有次品的概率。
9.设A ,B 为任意二事件,且知4.0)()(==B p A p ,28.0)(=B A p ,求)(B A p ⋃;)(A B p 。
10.已知41)(=A p ,31)(=AB p ,21)(=B A p ,求)(B A p ⋃。
高中数学概率与统计概率分布练习题及答案1. 离散型随机变量问题1一次买彩票,抽奖号码是从1到30的整数,每个号码中奖的概率是相等的。
求以下事件的概率:a) 中奖号码小于等于10b) 中奖号码是偶数c) 中奖号码是质数解答1a) 中奖号码小于等于10的概率为10/30,即1/3。
b) 中奖号码是偶数的概率为15/30,即1/2。
c) 中奖号码是质数的概率为8/30,即4/15。
问题2某商品的销售量每天可以是0、1、2或3箱,各箱销售的概率分别为0.1、0.3、0.4和0.2。
求销售量的概率分布表。
解答2销售量的概率分布表如下:销售量 | 0 | 1 | 2 | 3--- | --- | --- | --- | ---概率 | 0.1 | 0.3 | 0.4 | 0.22. 连续型随机变量问题3某地每天的气温符合正态分布,均值为20摄氏度,标准差为3摄氏度。
求以下事件的概率:a) 气温大于等于15摄氏度b) 气温在15摄氏度到25摄氏度之间解答3a) 气温大于等于15摄氏度的概率可以通过计算标准正态分布的累积概率得到,约为0.8413。
b) 气温在15摄氏度到25摄氏度之间的概率可以通过计算标准正态分布的累积概率得到,约为0.6827。
问题4某工厂生产的铆钉的长度符合正态分布,均值为5毫米,标准差为0.2毫米。
若从工厂中随机抽取一只铆钉,求其长度在5.2毫米到5.5毫米之间的概率。
解答4将问题转化为标准正态分布,得到长度在1到2.5之间的概率约为0.3944。
以上是高中数学概率与统计概率分布的练习题及答案。
概率统计高二练习题及答案一、选择题1. 设随机试验S的样本空间Ω={1, 2, 3, 4, 5, 6},事件A={2, 4, 6},事件B={3, 4, 5},则事件A∪B的元素个数是:A. 2B. 3C. 4D. 5答案:C2. 将两个硬币抛掷,它们的结果可以分别是正面(正)、反面(反)。
S表示随机试验“抛掷两个硬币,观察正反面”,事件A表示“至少有一个正面朝上”,则事件A的对立事件是:A. 两个硬币都是反面朝上B. 两个硬币都是正面朝上C. 两个硬币正反面朝上D. 至少有一个反面朝上答案:A3. 设随机试验S的样本空间Ω={1, 2, 3, 4, 5},事件A={1, 2},事件B={1, 3, 4},则事件A∩B的元素个数是:A. 0B. 1C. 2D. 3答案:14. 设随机试验S的样本空间Ω={1, 2, 3, 4, 5},事件A={1, 2},事件B={3, 4},则事件A∪B的元素个数是:A. 4B. 5C. 6D. 7答案:45. 在某次抽查中,2人中至少有1人精通英语的概率为0.8,两人都不精通英语的概率为0.1,则恰有1人精通英语的概率为:A. 0.1B. 0.2C. 0.3D. 0.4答案:C二、填空题1. 样本空间为Ω={1, 2, 3, 4, 5}的随机试验,以P表示概率函数,则P(Ω)=____。
答案:12. 设随机试验S可有n个结果,而其样本空间的元素个数为m个,则事件A发生的可能性大小为 ________。
答案:m/n3. 在某乡村学校的学生中,男生占40%,女生占60%,男生与女生都占的概率是______。
答案:04. 把两颗骰子分别投掷一次,事件A表示两颗骰子的点数和为8,则事件A发生的概率为________。
答案:5/365. 在两人赛马中,甲、乙、丙三匹马参赛,任一马获胜的概率均为1/3,则甲、乙、丙三匹马同时获胜的概率为______。
答案:0三、计算题1. 有n个袜子,有黑、白两种颜色,从中任取3只,问至少有1只黑袜子的概率是多少?答案:1 - (C(n, 3)/C(n, 3 - 0))*(C(n - 2, 3)/C(n, 3))2. 某商场推出一种新产品,调查发现客户购买此产品的概率为0.25,连续3个客户中至少有一个购买此产品的概率是多少?答案:1 - (1 - 0.25)^33. 一批零件中有5个次品,从中任取4个进行抽样,假设各个零件取得的概率相同,计算抽到至少1个次品的概率。
《概率论与数理统计》练习题(含答案)一、单项选择题1.设,,A B C 为三个事件,且,A B 相互独立,则以下结论中不正确的是( ) (A )若()1P C =,则AC 与BC 也独立. (B )若()1P C =,则A C 与B 也独立. (C )若()0P C =,则A C 与B 也独立. (D )若C B ⊂,则A 与C 也独立.答案:(D ).解答:因为概率为1的事件和概率为0的事件与任何事件独立,所以(A ),(B ),(C )都是正确的,只能选(D ).事实上由图 可见A 与C 不独立.2.设随机变量~(0,1),X N X 的分布函数为()x Φ,则(||2)P X >的值为( ) (A )2[1(2)]-Φ. (B )2(2)1Φ-. (C )2(2)-Φ. (D )12(2)-Φ.答案:(A )解答: ~(0,1)X N 所以(||2)1(||2)1(22)P X P X P X >=-≤=--<≤ 1(2)(2)1[2(2)1]2[1(2)]=-Φ+Φ-=-Φ-=-Φ 应选(A ).3.设随机变量X 和Y 不相关,则下列结论中正确的是( ) (A )X 与Y 独立. (B )()D X Y DX DY -=+. (C )()D X Y DX DY -=-. (D )()D XY DXDY =.SABC答案:(B )解答:由不相关的等价条件知,0y x cov 0xy =⇒=),(ρ ()+2cov x y D X Y DX DY -=+(,) 应选(B ).4.设离散型随机变量X 和Y 的联合概率分布为(,)(1,1)(1,2)(1,3)(2,1)(2,2)(2,3)111169183X Y P αβ若,X Y 独立,则,αβ的值为( )(A )21,99αβ==. (A )12,99αβ==.(C ) 11,66αβ== (D )51,1818αβ==.答案:(A )解答: 若,X Y 独立则有(2,2)(2)(2)P X Y P X P Y α======1121()()()3939αβαα=+++=+∴29α=, 19β=故应选(A ).5.设总体X 的数学期望为12,,,,n X X X μ为来自X 的样本,则下列结论中正确的是( )(A )1X 是μ的无偏估计量. (B )1X 是μ的极大似然估计量. (C )1X 是μ的相合(一致)估计量. (D )1X 不是μ的估计量. 答案:(A ) 解答:1EX μ=,所以1X 是μ的无偏估计,应选(A ).6. 设A 、B 、C 为三个事件,()0P AB >且(|)1P C AB =,则有( )Y X(A )()()() 1.P C P A P B ≤+- (B )()().P C P A B ≤ (C )()()() 1.P C P A P B ≥+- (D )()().P C P A B ≥答案:C 解答:由(|)1P C AB =知()()P ABC P AB =,故()()P C P AB ≥ ()()()()()()()1P C P AB P A P B P A B P A P B ≥=+-≥+- 应选C.7. 设随机变量X 的概率密度为2(2)4(),x f x x +-=-∞<<∞, 且~(0,1)Y aX b N =+,则在下列各组数中应取( ) (A )1/2, 1.a b == (B)2,a b ==(C )1/2,1a b ==-. (D)2,a b == 答案:B 解答:22(2)4()x f x +-==即~(2,)X N - 故当a b ===时 ~(0,1)Y aX b N =+ 应选B.8. 设随机变量X 与Y 相互独立,其概率分布分别为010.40.6X P010.40.6Y P则有( )(A )()0.P X Y == (B )()0.5.P X Y ==(C )()0.52.P X Y == (D )() 1.P X Y == 答案:C解答:()(0,0)(1,1)P X Y P X Y P X Y ====+== 0.40.40.60.60.52=⨯+⨯= 应选C.9. 对任意随机变量X ,若EX 存在,则[()]E E EX 等于( )(A )0. (B ).X (C ).EX (D )3().EX 答案:C 解答:[()]E E EX EX = 应选C.10. 设12,,,n x x x 为正态总体(,4)N μ的一个样本,x 表示样本均值,则μ的置信度为1α-的置信区间为( ) (A )/2/2(x u x u αα-+ (B )1/2/2(x u x u αα--+ (C )(x u x uαα-+ (D )/2/2(x u x u αα-+ 答案:D 解答:因为方差已知,所以μ的置信区间为/2/2(X u X u αα-+应选D. 11、设为总体的一个样本,为样本均值,则下),,,(21n X X X )2,1(2N X列结论中正确的是( D )。
第一章 随机事件及其概率一、选择题:1.设A 、B 、C 是三个事件,与事件A 互斥的事件是: ( )A .AB AC + B .()A B C + C .ABCD .A B C ++2.设B A ⊂ 则 ( )A .()P AB =1-P (A ) B .()()()P B A P B A -=-C . P(B|A) = P(B)D .(|)()P AB P A =3.设A 、B 是两个事件,P (A )> 0,P (B )> 0,当下面的条件( )成立时,A 与B 一定独立A .()()()P AB P A P B = B .P (A|B )=0C .P (A|B )= P (B )D .P (A|B )= ()P A4.设P (A )= a ,P (B )= b, P (A+B )= c, 则 ()P AB 为: ( )A .a-bB .c-bC .a(1-b)D .b-a5.设事件A 与B 的概率大于零,且A 与B 为对立事件,则不成立的是 ( )A .A 与B 互不相容 B .A 与B 相互独立C .A 与B 互不独立D .A 与B 互不相容6.设A 与B 为两个事件,P (A )≠P (B )> 0,且A B ⊃,则一定成立的关系式是( )A .P (A|B )=1 B .P(B|A)=1C .(|A)1p B =D .(A|)1p B =7.设A 、B 为任意两个事件,则下列关系式成立的是 ( )A .()AB B A -= B .()A B B A -⊃C .()A B B A -⊂D .()A B B A -=8.设事件A 与B 互不相容,则有 ( )A .P (AB )=p (A )P (B ) B .P (AB )=0C .A 与B 互不相容D .A+B 是必然事件9.设事件A 与B 独立,则有 ( )A .P (AB )=p (A )P (B ) B .P (A+B )=P (A )+P (B )C .P (AB )=0D .P (A+B )=110.对任意两事件A 与B ,一定成立的等式是 ( )A .P (AB )=p (A )P (B ) B .P (A+B )=P (A )+P (B )C .P (A|B )=P (A )D .P (AB )=P (A )P (B|A )11.若A 、B 是两个任意事件,且P (AB )=0,则 ( )A .A 与B 互斥 B .AB 是不可能事件C .P (A )=0或P (B )=0D .AB 未必是不可能事件12.若事件A 、B 满足A B ⊂,则 ( )A .A 与B 同时发生 B .A 发生时则B 必发生C .B 发生时则A 必发生D .A 不发生则B 总不发生13.设A 、B 为任意两个事件,则P (A-B )等于 ( )A . ()()PB P AB - B .()()()P A P B P AB -+C .()()P A P AB -D .()()()P A P B P AB --14.设A 、B 、C 为三事件,则AB BC AC 表示 ( )A .A 、B 、C 至少发生一个 B .A 、B 、C 至少发生两个C .A 、B 、C 至多发生两个D .A 、B 、C 至多发生一个15.设0 < P (A) < 1. 0 < P (B) < 1. P(|B)+P(A B A )=1. 则下列各式正确的是( )A .A 与B 互不相容 B .A 与B 相互独立C .A 与B 相互对立D .A 与B 互不独立16.设随机实际A 、B 、C 两两互斥,且P (A )=0.2,P (B )=0.3,P (C )=0.4,则PA B C -= ()( ). A .0.5 B .0.1 C .0.44 D .0.317掷两枚均匀硬币,出现一正一反的概率为 ( )A .1/2B .1/3C .1/4D .3/418.一种零件的加工由两道工序组成,第一道工序的废品率为 1p ,第二道工序的废品率为2p ,则该零件加工的成品率为 ( )A .121p p --B .121p p -C .12121p p p p --+D .122p p --19.每次试验的成功率为)10(<<p p ,则在3次重复试验中至少失败一次概率为( )。
《概率统计》试题(一) 一、填空题1.设 A 、B 、C 是三个随机事件。
试用 A 、B 、C 分别表示事件 1)A 、B 、C 至少有一个发生 2)A 、B 、C 中恰有一个发生3)A 、B 、C 不多于一个发生2.设 A 、B 为随机事件, P (A)=0.5,P(B)=0.6,P(B A)=0.8。
则P(B )A =3.若事件A 和事件B 相互独立, P()=,A αP(B)=0.3,P(AB)=0.7,则α=4. 将C,C,E,E,I,N,S 等7个字母随机的排成一行,那末恰好排成英文单词SCIENCE 的概率为5. 甲、乙两人独立的对同一目标射击一次,其命中率分别为0.6和0.5,现已知目标被命中,则它是甲射中的概率为 二、选择题1. 设A,B 为两随机事件,且B A ⊂,则下列式子正确的是 (A )P (A+B) = P (A); (B )()P(A);P AB =(C )(|A)P(B);P B = (D )(A)P B -=()P(A)P B -2. 以A 表示事件“甲种产品畅销,乙种产品滞销”,则其对立事件A 为 (A )“甲种产品滞销,乙种产品畅销”; (B )“甲、乙两种产品均畅销” (C )“甲种产品滞销”; (D )“甲种产品滞销或乙种产品畅销”。
3. 袋中有50个乒乓球,其中20个黄的,30个白的,现在两个人不放回地依次从袋中随机各取一球。
则第二人取到黄球的概率是(A )1/5 (B )2/5 (C )3/5 (D )4/5 4. 对于事件A ,B ,下列命题正确的是 (A )若A ,B 互不相容,则A 与B 也互不相容。
(B )若A ,B 相容,那么A 与B 也相容。
(C )若A ,B 互不相容,且概率都大于零,则A ,B 也相互独立。
(D )若A ,B 相互独立,那么A 与B 也相互独立。
5. 若()1P B A =,那么下列命题中正确的是(A )A B ⊂ (B )B A ⊂ (C )A B -=∅ (D )()0P A B -= 三、计算题1. 10把钥匙中有3把能打开门,今任意取两把,求能打开门的概率。
概率统计精选练习题及答案练题一- 问题:有一袋子里面装有5个红球和3个蓝球,从袋子里随机取两个球,求取出的两个球颜色相同的概率。
- 解答:首先,我们计算取两个红球的概率。
从5个红球中取出2个红球的组合数为C(5, 2) = 10。
总的取球组合数为C(8, 2) = 28。
所以,取两个红球的概率为10/28。
同理,取两个蓝球的概率为C(3, 2)/C(8, 2) = 3/28。
因为取球的过程是相互独立的,所以取出的两个球颜色相同的概率等于取两个红球的概率加上取两个蓝球的概率,即(10/28) + (3/28) = 13/28。
练题二- 问题:某商场每天的顾客数量服从均值为100,标准差为20的正态分布。
求该商场下一个月(30天)的总顾客数量的期望值和标准差。
- 解答:下一个月的总顾客数量等于每天顾客数量的总和。
因为每天的顾客数量服从正态分布,所以总顾客数量也服从正态分布。
总顾客数量的期望值等于每天顾客数量的期望值的总和,即30 * 100 = 3000。
标准差等于每天顾客数量的标准差的总和,即sqrt(30) * 20 ≈ 109.544。
练题三- 问题:某城市的交通事故发生率为每年100起。
求在下一个月内该城市发生至少一起交通事故的概率。
- 解答:在下一个月内,发生至少一起交通事故的概率等于1减去没有发生交通事故的概率。
没有发生交通事故的概率可以用泊松分布来计算。
假设一个月内发生交通事故的平均次数为100/12 ≈ 8.333,那么没有发生交通事故的概率为P(X = 0),其中X服从参数为8.333的泊松分布。
计算得到P(X = 0) ≈ 0.。
所以,在下一个月内该城市发生至少一起交通事故的概率为1 - P(X = 0) ≈ 0.。
以上是概率统计的精选练习题及答案,希望能对您的学习有所帮助。
概率论与数理统计 第一部份 习题第一章 概率论基本概念一、填空题1、设A ,B ,C 为3事件,则这3事件中恰有2个事件发生可表示为 。
2、设3.0)(,1.0)(=⋃=B A P A P ,且A 与B 互不相容,则=)(B P 。
3、口袋中有4只白球,2只红球,从中随机抽取3只,则取得2只白球,1只红球的概率为 。
4、某人射击的命中率为0.7,现独立地重复射击5次,则恰有2次命中的概率为 。
5、某市有50%的住户订晚报,有60%的住户订日报,有80%的住户订这两种报纸中的一种,则同时订这两种报纸的百分比为 。
6、设A ,B 为两事件,3.0)(,7.0)(==B A P A P ,则=)(B A P Y 。
7、同时抛掷3枚均匀硬币,恰有1个正面的概率为 。
8、设A ,B 为两事件,2.0)(,5.0)(=-=B A P A P ,则=)(AB P 。
9、10个球中只有1个为红球,不放回地取球,每次1个,则第5次才取得红球的概率为 。
10、将一骰子独立地抛掷2次,以X 和Y 分别表示先后掷出的点数,{}10=+=Y X A {}Y X B >=,则=)|(A B P 。
11、设B A ,是两事件,则B A ,的差事件为 。
12、设C B A ,,构成一完备事件组,且,7.0)(,5.0)(==B P A P 则=)(C P ,=)(AB P 。
13、设A 与B 为互不相容的两事件,,0)(>B P 则=)|(B A P 。
14、设A 与B 为相互独立的两事件,且4.0)(,7.0)(==B P A P ,则=)(AB P 。
15、设B A ,是两事件,,36.0)(,9.0)(==AB P A P 则=)(B A P 。
16、设B A ,是两个相互独立的事件,,4.0)(,2.0)(==B P A P 则=)(B A P Y 。
17、设B A ,是两事件,如果B A ⊃,且2.0)(,7.0)(==B P A P ,则=)|(B A P 。
《概率论与数理统计》考试练习题及参考答案一、单选题1. 设X~N(2,9),Y~N(2,1),E(XY)=6,则D(X-Y)之值为A 、14B 、6C 、12D 、4答案:B2. 设X,Y的方差存在,且不等于0,则D(X+Y)=DX+DY是X,YA 、不相关的充分条件,但不是必要条件B 、独立的必要条件,但不是充分条件C 、不相关的必要条件,但不是充分条件D 、独立的充分必要条件答案:B3. 已知P(A)=0.3 ,P(B)=0.5 ,P(A∪B)=0.6,则P(AB)=A 、0.2B 、0.1C 、0.3D 、0.4答案:A4. 已知随机变量X服从二项分布,且EX=2.4,DX=1.44,则二项分布中的参数n,p的值分别为A 、n=4 ,p=0.6B 、n=6 ,p=0.4C 、n=8 ,p=0.3D 、n=24 ,p=0.1答案:B5. 若随机变量X与Y的方差D(X), D(Y)都大于零,且E(XY)=E(X)E(Y),则有A 、X与Y一定相互独立B 、X与Y一定不相关C 、D(XY)=D(X)D(Y)D 、D(X-Y)=D(X)-D(Y)答案:B6. 同时抛掷3枚硬币,则至多有1枚硬币正面向上的概率是A 、1/8B 、1/6C 、1/4D 、1/2答案:D7. 将长度为1的木棒随机地截成两段,则两段长度的相关系数为A 、1B 、1/2C 、2D 、-1答案:D8. 假设一批产品中一、二、三等品各占60% 、30% 、10%,今从中随机取一件产品,结果不是三等品,则它是二等品的概率为A 、1/3B 、1/2C 、2/3D 、1/4答案:A9. 袋中有50个乒乓球,其中20个黄球,30个白球,甲、乙两人依次各取一球,取后不放回,甲先取,则乙取得黄球的概率为A 、2/5B 、3/5C 、1/5D 、4/5答案:A10. 设随机变量X服从正态分布N(1 ,4) ,Y服从[0 ,4]上的均匀分布,则E(2X+Y )=A 、1B 、2C 、3D 、4答案:D11. 某电路由元件A 、B 、C串联而成,三个元件相互独立,已知各元件不正常的概率分别为:P(A)=0.1 ,P(B)=0.2 ,P(C)=0.3,求电路不正常的概率A 、0.496B 、0.7C 、0.25D 、0.8答案:A12. 一套五卷选集随机地放到书架上,则从左到右或从右到左卷号恰为1 ,2 ,3 ,4 ,5顺序的概率为A 、1/120B 、1/60C 、1/5D 、1/2答案:B13. 设随机变量X与Y独立同分布,记随机变量U=X+Y ,V=X-Y,且协方差Cov(U.V)存在,则U和V必然A 、不相关B 、相互独立C 、不独立D 、无法判断答案:A14. 设P(A)>0,P(B)>0,则下列各式中正确的是A 、P(A-B)=P(A)-P(B)B 、P(AB)=P(A)P(B)C 、P(A+B)=P(A)+P(B)D 、P(A+B)=P(A)+P(B)-P(AB)答案:D15. 随机变量X的所有可能取值为0和x ,且P{X=0}=0.3,E(X)=1,则x=A 、10/7B 、4/5C 、1D 、0答案:A16. 已知人的血型为O 、A 、B 、AB的概率分别是0.4;0.3;0.2;0.1。
4、概率公式的题目1、已知 P (瓦)= 0.3, P(B ) = 0.4, P(A@ )=0.5,求P(BA J B)LP(B A 「B 戶 P (AB」=_P(A)丁(AB ) _P(AuB) P (A)+P(B )-P(AB)2、已知 P(A)=0.7,P(B )=0.4, P(AB )=0.2,求 P(AA'J B)Le3、已知随机变量 X : P(1),即卩X 有概率分布律 P 1X =k(k=0,1,2…),k!并记事件 A ={X ^2}, B = {X <d}。
求:( 1)P (A u B ); ( 2) P (A —B ); ( 3) P ( B A )。
解:(1)P A B =1 - P A _ B =1 —P(AB) =1 - P 〈X : 2,X _ 1 =1 - P 〈X =1丄 1 — e ,;(2) P A-B 二 P(AB)二 P^X _2,X _1 ; = P 「X _2 ;=1 - P^X =0^ -P":X =1 ; = 1-2e‘;” P (BA ) p {x <1,X v 2} p {x =。
} e -1 1 (3) P (B A ) = ---------- = ------------- ! -------- = -------------------------------- = -------= 一P (A ) P {X <2} P {X =0} + p {x =1} 2e 」24、甲、乙两人独立地对同一目标射击一次,其命中率分别为 0.6和0.5,现已知目标被命中,它是甲射中的概率是多少?解:P(A A'」B )=P(AB )P A P B -P A B0.2 20.7 0.2 一 9解:0.7-0.5 0.7 0.6-0.5P(A A B)=P(A 侨(A 旦)= P(A B)=5、为了防止意外,在矿内同时设两种报警系统A, B,每种系统单独使用时,其有效的概率系统A为0.92 ,解:设A= “甲射击一次命中目标” ,B= “乙射击一次命中目标”,亠—= 匹=§=0.75P(A) + P(B)- P(AB) 0.6+ 0.5- 0.6 0.5 8系统B为0.93,在A失灵的条件下,B有效的概率为0.85,求:(1)发生意外时,这两个报警系统至少有一个有效的概率;(2)B失灵的条件下,A有效的概率。
1、已知P(A)=0.7, P(B)=0.8,则下列判断正确的是( D )。
A. A,B 互不相容B. A,B 相互独立C.A BD. A,B 相容⊂2、将一颗塞子抛掷两次,用X 表示两次点数之和,则X =3的概率为( C )A. 1/2B. 1/12C. 1/18D. 1/93、某人进行射击,设射击的命中率为0.2,独立射击100次,则至少击中9次的概率为( B )A. B.919910098.02.0Cii i i C-=∑100100910098.02.0C.D.ii i iC-=∑1001001010098.02.0ii i i C-=∑-100910098.02.014、设,则B)3,2,1(39)(=-=i i X E i )()31253(321=++X X X E A. 0 B. 25.5 C. 26.5 D. 95、设样本来自N (0,1),常数c 为以下何值时,统计量521,,,X X X 服从t 分布。
( C )25242321XX X X X c +++⋅A. 0B. 1C.D. -1266、设~,则其概率密度为( A )X )3,14(N A.B.6)14(261--x eπ32)14(261--x eπC.D.6)14(2321--x eπ23)14(261--x eπ7、为总体的样本, 下列哪一项是的无偏估计( A ) 321,,X X X ),(2σμN μ A.B.3212110351X X X ++321416131X X X ++ C. D. 3211252131X X X ++321613131X X X ++8 、设离散型随机变量X 的分布列为X 123PC 1/41/8则常数C 为(C)(A )0 (B )3/8 (C )5/8 (D )-3/89、设随机变量X ~N(4,25), X1、X2、X3…Xn 是来自总体X 的一个样本,则样本均值近似的服从( B )X (A ) N (4,25) (B )N (4,25/n ) (C ) N (0,1) (D )N (0,25/n )10、对正态总体的数学期望进行假设检验,如果在显著水平a=0.05下,拒绝假设,则在显著水平a=0.01下,( B )00μμ=:H A. 必接受 B. 可能接受,也可能拒绝0H 0H C. 必拒绝 D. 不接受,也不拒绝0H 0H 二、填空题(每空1.5分,共15分)1、A, B, C 为任意三个事件,则A ,B ,C 至少有一个事件发生表示为:__AUBUC_______;2、甲乙两人各自去破译密码,设它们各自能破译的概率为0.8,0.6,则密码能被破译的概率为_____0.92____;3、已知分布函数F(x)= A + Barctgx ,则)(+∞<<-∞x A =_1/2__,B =_1/3.14___;4、随机变量X 的分布律为,k =1,2,3,则C=__27/13_____;kC x X P )31()(==5、设X ~b (n,p )。
1、已知P(A)=0.7, P(B)=0.8,则下列判断正确的是( D )。
A. A,B 互不相容B. A,B 相互独立C.A ⊂BD. A,B 相容 2、将一颗塞子抛掷两次,用X 表示两次点数之和,则X =3的概率为( C )A. 1/2B. 1/12C. 1/18D. 1/93、某人进行射击,设射击的命中率为0.2,独立射击100次,则至少击中9次的概率为( B )A.919910098.02.0CB.i i i iC -=∑100100910098.02.0 C.ii i i C-=∑1001001010098.02.0 D.i i i i C-=∑-100910098.02.014、设)3,2,1(39)(=-=i i X E i ,则)()31253(321=++X X X E BA. 0B. 25.5C. 26.5D. 95、设样本521,,,X X X 来自N (0,1),常数c 为以下何值时,统计量25242321XX X X X c +++⋅服从t 分布。
( C )A. 0B. 1C.26D. -16、设X ~)3,14(N ,则其概率密度为( A )A.6)14(261--x eπB.32)14(261--x eπC.6)14(2321--x eπD.23)14(261--x eπ7、321,,X X X 为总体),(2σμN 的样本, 下列哪一项是μ的无偏估计( A )A.3212110351X X X ++ B. 321416131X X X ++ C. 3211252131X X X ++ D. 321613131X X X ++ 8 、设离散型随机变量X 的分布列为则常数C 为( C )(A )0 (B )3/8 (C )5/8 (D )-3/89 、设随机变量X ~N(4,25), X1、X2、X3…Xn 是来自总体X 的一个样本,则样本均值X 近似的服从( B )(A ) N (4,25) (B )N (4,25/n ) (C ) N (0,1) (D )N (0,25/n ) 10、对正态总体的数学期望进行假设检验,如果在显著水平a=0.05下,拒绝假设00μμ=:H ,则在显著水平a=0.01下,( B )A. 必接受0HB. 可能接受,也可能拒绝0HC. 必拒绝0HD. 不接受,也不拒绝0H二、填空题(每空1.5分,共15分)1、A, B, C 为任意三个事件,则A ,B ,C 至少有一个事件发生表示为:__AUBUC_______;2、甲乙两人各自去破译密码,设它们各自能破译的概率为0.8,0.6,则密码能被破译的概率为_____0.92____;3、已知分布函数F(x)= A + Barctgx )(+∞<<-∞x ,则A =_1/2__,B =_1/3.14___;4、随机变量X 的分布律为kC x X P )31()(==,k =1,2,3, 则C=__27/13_____; 5、设X ~b (n,p )。
若EX=4,DX=2.4,则n=____10_____,p= ____0.4_____。
6、X 为连续型随机变量,1 , 0<x<1f (x )= ,则P(X ≤1) = ____1___。
0 , 其他7、在总体均值的所有线性无偏估计中,___样本均值____是总体均值的无偏估计量。
8、当原假设H0为假而接受H0时,假设检验所犯的错误称为___第II 类错误____。
99.0)33.2(,9032.0)30.1(,9474.0)62.1(,926.0)45.1(=Φ=Φ=Φ=Φ 0150.2)5(,1318.2)4(,5706.2)5(,7764.2)4(05.005.0025.0025.0====t t t t711.0)4(,488.9)4(,484.0)4(,143.11)4(295.0205.02975.02025.0====χχχχ一.选择题(15分,每题3分)1. 如果 1)()(>+B P A P ,则 事件A 与B 必定 (C ))(A 独立; )(B 不独立; )(C 相容; )(D 不相容.2. 已知人的血型为 O 、A 、B 、AB 的概率分别是0.4; 0.3;0.2;0.1。
现任选4人,则4人血型全不相同的概率为: ( A ))(A 0.0024; )(B 40024.0; )(C 0. 24; )(D 224.0.3. 设~),(Y X ⎩⎨⎧<+=.,0,1,/1),(22他其y x y x f π 则X 与Y 为 ( C ))(A 独立同分布的随机变量; )(B 独立不同分布的随机变量; )(C 不独立同分布的随机变量; )(D 不独立也不同分布的随机变量.4. 某人射击直到中靶为止,已知每次射击中靶的概率为0.75. 则射击次数的数学期望与方差分别为 (A ))(A 4934与; )(B 16934与; )(C 4941与; (D) 9434与. 5. 设321,,X X X 是取自N (,)μ1的样本,以下μ的四个估计量中最有效的是(D ))(A 32112110351ˆX X X ++=μ; )(B 3212949231ˆX X X ++=μ; )(C 3213216131ˆX X X ++=μ; )(D 32141254131ˆX X X ++=μ. 二. 填空题(18分,每题3分)1. 已知事件A ,B 有概率4.0)(=A P ,5.0)(=B P ,条件概率3.0)|(=A B P ,则=⋃)(B A P 62.0 .2. 设随机变量X 的分布律为⎪⎪⎭⎫ ⎝⎛-+c b a 4.01.02.04321,则常数c b a ,,应满足的条件 为 0,4.0,1.0,3.0≥≤-≥=+-c b a c b a 且 . 3. 已知二维随机变量),(Y X 的联合分布函数为),(y x F ,试用),(y x F 表示概率=>>),(b Y a X P),(),(),(1b F a F b a F +∞-∞+-+; .4. 设随机变量)2,2(~-U X ,Y 表示作独立重复m 次试验中事件)0(>X 发生的次数,则=)(Y E m/2 ,=)(Y D m/4 .5.设),,,(21n X X X 是从正态总体),(~2σμN X 中抽取的样本,则 概率 =≤-≤∑=)76.1)(37.0(222012012σσX XP ii 985.0 .6.设n X X X ,,,21 为正态总体),(2σμN (2σ未知)的一个样本,则μ的置信度为1α-的单侧置信区间的下限为)1(--n t nS X α. .2、设二维随机变量(X,Y )的联合密度函数为1,02,max{0,1}min{1,}(,)0,x x y x f x y otherwise ≤≤-≤≤⎧=⎨⎩求:边缘密度函数(),()X Y f x f y .3、已知随机变量X 与Z 相互独立,且)1,0(~U X ,)2.0,0(~U Z ,Z X Y += 试求:(),(),XY E Y D Y ρ.4、 学校食堂出售盒饭,共有三种价格4元,4.5元,5元。
出售哪一种盒饭是随机的,售出三种价格盒饭的概率分别为0.3,0.2,0.5。
已知某天共售出200盒,试用中心极限定理求这天收入在910元至930元之间的概率。
概率论与数理统计B一.单项选择题(每小题3分,共15分) 1.设事件A 和B 的概率为12(),()23P A P B == 则()P AB 可能为() (A) 0; (B) 1; (C) 0.6; (D) 1/62. 从1、2、3、4、5 这五个数字中等可能地、有放回地接连抽取两个数字,则这两个数字不相同的概率为()(A)12; (B) 225; (C) 425; (D)以上都不对 3.投掷两个均匀的骰子,已知点数之和是偶数,则点数之和为6的概率为( )(A)518; (B) 13; (C) 12; (D)以上都不对 4.某一随机变量的分布函数为()3xxa be F x e +=+,(a=0,b=1)则F (0)的值为( )(A) 0.1; (B) 0.5; (C) 0.25; (D)以上都不对5.一口袋中有3个红球和2个白球,某人从该口袋中随机摸出一球,摸得红球得5分,摸得白球得2分,则他所得分数的数学期望为( )(A) 2.5; (B) 3.5; (C) 3.8; (D)以上都不对二.填空题(每小题3分,共15分)1.设A 、B 是相互独立的随机事件,P (A )=0.5, P (B )=0.7, 则()P A B = .2.设随机变量~(,), ()3, () 1.2B n p E D ξξξ==,则n =______.3.随机变量ξ的期望为()5E ξ=,标准差为()2σξ=,则2()E ξ=_______.4.甲、乙两射手射击一个目标,他们射中目标的概率分别是0.7和0.8.先由甲射击,若甲未射中再由乙射击。
设两人的射击是相互独立的,则目标被射中的概率为_________. 5.设连续型随机变量ξ的概率分布密度为2()22af x x x =++,a 为常数,则P (ξ≥0)=_______.三.(本题10分)将4个球随机地放在5个盒子里,求下列事件的概率 (1) 4个球全在一个盒子里; (2) 恰有一个盒子有2个球.四.(本题10分) 设随机变量ξ的分布密度为, 03()10, x<0x>3Ax f x x⎧⎪=+⎨⎪⎩当≤≤当或 (1) 求常数A ; (2) 求P (ξ<1); (3) 求ξ的数学期望.五.(本题10分)(1) ξ与η是否相互独立? (2) 求ξη⋅的分布及()E ξη⋅;六.(本题10分)有10盒种子,其中1盒发芽率为90%,其他9盒为20%.随机选取其中1盒,从中取出1粒种子,该种子能发芽的概率为多少?若该种子能发芽,则它来自发芽率高的1盒的概率是多少?七.(本题12分) 某射手参加一种游戏,他有4次机会射击一个目标.每射击一次须付费10元. 若他射中目标,则得奖金100元,且游戏停止. 若4次都未射中目标,则游戏停止且他要付罚款100元. 若他每次击中目标的概率为0.3,求他在此游戏中的收益的期望.八.(本题12分)某工厂生产的零件废品率为5%,某人要采购一批零件,他希望以95%的概率保证其中有2000个合格品.问他至少应购买多少零件? (注:(1.28)0.90Φ=,(1.65)0.95Φ=)九.(本题6分)设事件A 、B 、C 相互独立,试证明AB 与C 相互独立.十.测量某冶炼炉内的温度,重复测量5次,数据如下(单位:℃):1820,1834,1831,1816,1824假定重复测量所得温度2~(,)N ξμσ.估计10σ=,求总体温度真值μ的0.95的置信区间. (注:(1.96)0.975Φ=,(1.65)0.95Φ=)一.一箱产品,A ,B 两厂生产分别个占60%,40%,其次品率分别为1%,2%。