基于栅格模型机器人路径规划的改进蚁群算法
- 格式:pdf
- 大小:1.50 MB
- 文档页数:4
c law enforcement. Therefore, c congestion was ciency of the improved algorithm with the Dijkstra algorithm. Thus, it could simulate the optimal driving path with better performance, which was targeted and innovative.关键词:蚁群算法;实际路况;最优路径Key words :ant colony optimization; actual road conditions; optimal path文/张俊豪蚁群算法在最优路径选择中的改进及应用0 引言在国务院发布的《国家中长期科学和技术发展规划纲要(2006-2020年)》中,将交通拥堵问题列为发展现代综合交通体系亟待解决的“三大热点问题”之一。
智能交通系统作为“互联网+交通”的产物,利用先进的科学技术对车、路、人、物进行统一的管控、调配,成为了当下各国缓解交通拥堵的一个重要途径。
路径寻优是智能交通系统的一个核心研究内容,可以有效的提升交通运输效率,减少事故发生频率,降低对城市空气的污染以及提升交通警察的执法效率等。
最著名的路径规划算法是Dijkstra算法和Floyd算法,Dijkstra算法能够在有向加权网络中计算得到某一节点到其他任何节点的最短路径;Floyd算法也称查点法,该算法和Dijkstra算法相似,主要利用的是动态规划思想,寻找加权图中多源节点的最短路径。
近些年,最优路径的研究主要集中以下几个方面:(1)基于A*算法的路径寻优。
A*算法作为一种重要的路径寻优算法,其在诸多领域内都得到了应用。
随着科技的发展,A*算法主要运用于人工智能领域,特别是游戏行业,在游戏中,A*算法旨在找到一条代价(燃料、时间、距离、装备、金钱等)最小化的路径,A*算法通过启发式函数引导自己,具体的搜索过程由函数值来决定。
蚁群算法综述摘要:群集智能作为一种新兴的演化计算技术已成为越来越多研究者的关注焦点, 其理论和应用得到了很大的发展。
作为群集智能的代表方法之一,蚁群算法ACO (Ant Colony Optimization, 简称ACO) 以其实现简单、正反馈、分布式的优点得到广泛的应用。
蚁群算法是由意大利学者M. Dorigo 提出的一种仿生学算法。
本文主要讨论了蚁群算法的改进及其应用。
在第一章里介绍了蚁群算法的思想起源及研究现状。
第二章详细的介绍了基本蚁群算法的原理及模型建立,并简要介绍了几种改进的蚁群优化算法。
第三章讨论了蚁群算法的最新进展和发展趋势展望。
关键词:群集智能,蚁群算法,优化问题1 引言1.1 概述人类的知识都来自于对自然界的理解和感悟,如天上的闪电,流淌的河流,挺拔的高山,汪洋的大海,人们从中学会了生存,学会了征服自然和利用自然。
自然界中也存在着很多奇特的现象,水中的鱼儿在发现食物时总能成群结队,天上的鸟儿在迁徙时也是组成很多复杂的阵型,蚂蚁在发现食物时总能找到一条最短的路径。
无论鱼儿,飞鸟或是蜜蜂,蚂蚁他们都有一个共同的特点好像有一种无形的力量将群体中的每个个体组织起来,形成一个统一的整体。
看似庞杂的种群却又有着莫大的智慧,让他们能够完成一个个体所无法完成的使命。
整个群体好像一个社会,形成一个有机整体,这个整体对单个个体要求不高,诸多个体组合起来数量庞大,却极具协调性和统一性,这就是群智能。
群智能算法是利用其个体数量上的优势来弥补单个个体的功能缺陷,使整个群体看起来拥有了个体所无法企及的能力和智慧。
单个个体在探索过程的开始都是处于一种盲目的杂乱的工作状态,因此这些个体所能找到的最优解,对于群体而言却并非是最优的而且这些解也都是无规则的,随着越来越多的个体不断探索,单个个体受到其他成员的影响,大量的个体却逐渐趋向于一个或一条最优的路线,原本杂乱的群体渐渐呈现一种一致性,这样整个群体就具有了寻找最优解的能力。
matlab-蚁群算法-机器人路径优化问题4.1问题描述移动机器人路径规划是机器人学的一个重要研究领域。
它要求机器人依据某个或某些优化原则(如最小能量消耗,最短行走路线,最短行走时间等),在其工作空间中找到一条从起始状态到目标状态的能避开障碍物的最优路径。
机器人路径规划问题可以建模为一个有约束的优化问题,都要完成路径规划、定位和避障等任务。
4.2算法理论蚁群算法(AntColonyAlgorithm,ACA),最初是由意大利学者DorigoM.博士于1991年首次提出,其本质是一个复杂的智能系统,且具有较强的鲁棒性,优良的分布式计算机制等优点。
该算法经过十多年的发展,已被广大的科学研究人员应用于各种问题的研究,如旅行商问题,二次规划问题,生产调度问题等。
但是算法本身性能的评价等算法理论研究方面进展较慢。
Dorigo提出了精英蚁群模型(EAS),在这一模型中信息素更新按照得到当前最优解的蚂蚁所构造的解来进行,但这样的策略往往使进化变得缓慢,并不能取得较好的效果。
次年Dorigo博士在文献[30]中给出改进模型(ACS),文中改进了转移概率模型,并且应用了全局搜索与局部搜索策略,来得进行深度搜索。
Stützle与Hoo给出了最大-最小蚂蚁系统(MA某-MINAS),所谓最大-最小即是为信息素设定上限与下限,设定上限避免搜索陷入局部最优,设定下限鼓励深度搜索。
蚂蚁作为一个生物个体其自身的能力是十分有限的,比如蚂蚁个体是没有视觉的,蚂蚁自身体积又是那么渺小,但是由这些能力有限的蚂蚁组成的蚁群却可以做出超越个体蚂蚁能力的超常行为。
蚂蚁没有视觉却可以寻觅食物,蚂蚁体积渺小而蚁群却可以搬运比它们个体大十倍甚至百倍的昆虫。
这些都说明蚂蚁群体内部的某种机制使得它们具有了群体智能,可以做到蚂蚁个体无法实现的事情。
经过生物学家的长时间观察发现,蚂蚁是通过分泌于空间中的信息素进行信息交流,进而实现群体行为的。
基于蚁群算法的机器人路径规划摘要当前机器人朝着智能化的方向发展着,已经能够解决一些人类自身难以完成的任务。
机器人的研究方向分为好多个分支,其中机器人路径规划就是热点问题之一。
主要用于解决机器人在复杂环境下做出路径选择,完成相应任务的问题。
典型的路径规划问题是指在有障碍物的工作环境中,按照一定的评价标准(行走路线最短、所用时间最少等)为机器人寻找一条从起点到终点的运动路径,让机器人在运动过程中能安全、无碰撞地通过所有的障碍物。
基于蚁群算法的机器人路径规划的研究,利用仿真学的基本思想,根据生物蚂蚁协作和觅食的原理,建立人工蚁群系统。
本文介绍了使用基本蚁群算法和改进蚁群算法在机器人路径规划中的应用,以栅格法作为路径规划的环境模型建立方法。
其中改进蚁群算法依据最大最小蚂蚁系统原理和信息素奖励思想,还增加了其它启发信息来指导路径的搜索。
本文中介绍的基本蚁群算法应用蚁周模型对找到的路径进行信息素的更新,而在改进蚁群算法中,则综合使用了局部信息素更新原则和全局信息素更新原则。
另外在本文中介绍的改进蚁群算法使用了回退策略和落入陷阱时的信息素惩罚机制,帮助处理了蚂蚁在寻找路径过程中,落入陷阱后的问题。
不过改进后的蚁群算法的及时寻找到最优解的特性仍然有待于进一步的提高。
关键词:路径规划,蚁群算法,改进Path Planning for Robot Based on Ant ColonyAlgorithmAbstractNow robots are developing in the direction of intelligent, they have been able to solve some hard task as human beings do. Robot research has divide into the direction of large number of branches, where the robot path planning is one of hot issues. it is mainly used to solve the robot path in a complex environment to make choices, to complete the task. A typical path planning problem is that there are obstacles in the work environment, according to certain evaluation criteria (the shortest walking route, the minimum time spent, etc.) to find a robot's movement from origin to destination path, let the robot in motion of safe, collision-free through all the obstacles.Robot path planning research based on ant colony algorithm, is according to the simulation research, use the biological ant principles of feeding and cooperation and the establishment of artificial ant colony system. This article describes the use of basic ant colony algorithm and improved ant colony algorithm in robot path planning applications with using the grid method to establish the environment model of path planning. Improved ant colony algorithm is based on the maximum and minimum ant system theory and pheromone reward ideas. It has added other enlightening information to guide the path research. The basic ant colony algorithm described in this article uses the ant-cycle model to update the pheromone for the found path, in the improved ant colony algorithm, uses both the local pheromone updating principles and global pheromone updating the principles. Improved ant colony algorithm in this paper uses the fallback strategy, and the pheromone punishment mechanism when falling into trap to help deal with the ants in the process of finding a path falling into the trap. But the improved ant colony algorithm to find the optimal solution remains to be further improved in the optimal properties.Keywords: path planning, ant colony algorithm, improvedII目录第1章引言 (1)1.1问题的提出 (1)1.1.1研究的背景 (1)1.1.2研究的意义 (2)1.2本文研究路线 (3)1.2.1主要工作内容 (3)1.2.2目标 (3)1.3论文的主要内容 (3)第2章蚁群算法与机器人路径规划研究概述 (5)2.1蚁群算法和机器人路径规划的发展历史,现状,前景 (5)2.1.1蚁群算法的发展历史,现状,前景 (5)2.1.2移动机器人路径规划的发展历史,现状,前景 (6)2.2蚁群算法的特点 (7)2.2.1并行性 (7)2.2.2健壮性 (7)2.2.3 正反馈 (8)2.2.4局部收敛 (8)2.3基于蚁群算法的机器人路径规划实现的开发方式 (8)2.3.1开发语言的选择 (8)2.3.2开发工具的选择 (8)2.4蚁群算法介绍 (9)2.4.1 基本蚁群算法 (9)2.4.2 基本蚁群算法改进方案简介 (11)2.5机器人路径规划的环境模型建立 (11)2.5.1 栅格法 (11)2.6使用matlab仿真 (12)2.6.1 matlab仿真介绍 (12)2.7本章小结 (12)第3章基于蚁群算法的机器人路径规划分析与设计 (13)3.1基于蚁群算法的机器人路径规划需求设计 (13)3.2基于蚁群算法的机器人路径规划的要求 (13)3.3 主要的数据结构 (13)3.4基本蚁群算法实现机器人路径规划功能模块 (14)3.4.1程序入口模块 (14)3.4.2 算法运行的主体函数模块 (14)3.4.3 程序运行的清理模块 (15)3.4.4 下一步选择模块 (15)3.4.5 随机性选择模块 (16)3.4.6 路径处理和信息记录模块 (17)3.5 基本蚁群算法实现机器人路径规划整体逻辑设计 (17)3.5.1基本蚁群算法实现机器人路径规划整体结构图 (17)3.5.2基本蚁群算法实现机器人路径规划逻辑结构图 (19)3.6改进蚁群算法实现机器人路径规划功能模块 (20)3.6.1 程序运行环境处理修改部分 (20)3.6.2 下一步选择的修改部分 (20)3.6.3信息素更新和路径处理修改部分 (21)3.7 改进蚁群算法实现机器人路径规划整体逻辑设计 (22)3.7.1改进蚁群算法实现机器人路径规划整体结构图 (22)3.7.2改进蚁群算法实现机器人路径规划逻辑结构图 (23)3.8系统开发环境介绍 (24)3.8.1开发环境 (24)3.8.2调试环境 (24)3.8.3测试环境 (24)第4章基于蚁群算法的机器人路径规划的实现 (25)4.1基于基本蚁群算法的实现 (25)4.1.1算法运行的主体函数模块 (25)4.1.2 下一步选择模块 (26)4.2基于改进蚁群算法的实现 (27)4.2.1下一步选择模块 (28)4.2.2随机性选择模块 (29)4.3本章小结 (31)第5章基于蚁群算法实现机器人路径规划的仿真实验 (32)5.1运行环境 (32)5.2基于基本蚁群算法实现机器人路径规划仿真实验 (32)5.2.1 仿真步骤 (32)5.2.2 使用地图模型为5-1的仿真 (32)5.2.3 使用基本蚁群算法仿真结果 (33)IV5.2.4基于改进蚁群算法的仿真 (35)5.3 多次重复仿真实验记录 (36)5.4 本章小结 (37)第6章结论 (38)致谢 (39)参考文献 (40)基于蚁群算法的机器人路径规划第1章引言1.1问题的提出1.1.1研究的背景蚁群算法(ant colony optimization, ACO),又称蚂蚁算法,是一种用来在图中寻找优化路径的机率型算法。
2021576海洋资源已经成为人类开发的重点,但复杂的海洋环境对人类水下作业有着极大的限制,水下机器人正在成为海洋作业的主角,自主式水下机器人(Autono-mous Underwater Vehicle,AUV)依靠自身携带的能源进行水下作业。
由于在整个过程中无法补充能源,因此利用路径规划与安全避障技术对AUV导航控制,是其能否精确、安全和完整地完成水下作业的关键。
AUV 路径规划问题已经成为了一个研究热点[1],主要涉及两方面问题:一是对海洋环境进行三维建模;二是选取合适的算法进行全局路径规划。
海洋环境建模主要有两类方法:一类是规则地形模型,主要利用正方形、矩形等规则形状进行组合来表示海底表面;另一类是不规则地形模型,将三角形、多边形等不规则形状作为模型单元的基础[2]。
文献[3]使用Voronoi图法简化三维水下环境,生成全局路线图;文献[4]将Delaunay三角模型应用于被测地标,建立拓扑模型。
文献[5]利用八叉树模型来反映AUV工作环境,但主要应用于较大障碍物之间的路径规划,不适合存在许多小障碍物的环境;文献[6-7]不考虑水深,将三维空间简化为二维栅格模型,节省了空间,但却丢失了环境信息;文献[8-9]将三维空间划分为若干平面,然后利用二维栅格模型将每个平面栅格化,有效实现三维栅格建融合粒子群与改进蚁群算法的AUV路径规划算法朱佳莹,高茂庭上海海事大学信息工程学院,上海201306摘要:针对传统蚁群算法在处理自主式水下机器人AUV(Autonomous Underwater Vehicle)三维路径规划问题时存在初期寻径能力弱、算法收敛速度慢等问题,提出一种融合粒子群与改进蚁群算法的AUV路径规划算法PSO-ACO(Particle Swarm Optimization-improved Ant Colony Optimization)。
基于空间分层思想建立三维栅格模型实现水下环境建模;综合考虑路径长度、崎岖性、危险性等因素建立路径评价模型;先使用粒子群算法预搜索路径来优化蚁群算法的初始信息素;再对蚁群算法改进状态转移规则、信息素更新方式并加入奖惩机制实现全局路径规划。
机器人路径规划算法的研究与改进近年来,随着技术的快速发展,人工智能领域的研究也日益深入。
机器人成为了众多领域中不可或缺的一部分,其中路径规划算法就扮演着关键的角色。
路径规划算法的研究与改进不仅对机器人的移动效率和安全性具有重要意义,也对人们生活中的智能交通、自动化仓储等方面产生了积极的影响。
传统的路径规划算法主要有A*(A-star)、Dijkstra和最小生成树等。
A*算法是基于图搜索的启发式算法,通过在每一步选择离目标位置最近的路径,避免了无谓的搜索,提高了搜索效率。
Dijkstra算法则是一种单源最短路径算法,适用于具有正权边的图结构。
而最小生成树算法主要解决连通图中选择最小边的问题。
然而,这些传统算法在应对复杂的实时环境时往往效果并不理想。
因此,近年来研究者们开展了大量的机器人路径规划算法的改进工作,以提高算法的性能。
一方面,使用优化算法和机器学习技术对路径规划算法进行改进,另一方面则探索新的路径规划算法,如遗传算法、模拟退火算法等。
优化算法和机器学习技术在路径规划算法中的应用,可以大大提高算法的效率和准确性。
例如,采用遗传算法优化路径规划中的权重参数,可以根据不同的实时环境,自动调整权重以适应不同的需求。
此外,机器学习技术可以通过对大量历史数据的学习,提高算法的智能性和适应性。
除了优化算法和机器学习技术,新的路径规划算法也成为了研究热点。
例如,蚁群算法模拟了蚂蚁在寻找食物时的行为,通过蚁群信息素的传递和留下的轨迹,快速找到最优路径。
又如,模拟退火算法则通过模拟固体在退火过程中的结晶过程来寻找全局最优解。
在路径规划算法的研究与改进过程中,还需要考虑到实际应用场景的特殊性。
例如,在自动化仓储中,机器人需要考虑货物的存放位置、重量和大小等信息,避开障碍物并进行高效的路径规划。
在智能交通领域,机器人需要根据实时的车流量、交通信号等信息选择最佳路径。
因此,算法的改进必须兼顾理论与实践的结合,才能更好地满足实际需求。
蚁群算法在路径规划中的应用概述:在现实世界中,路径规划是一个非常重要的问题。
无论是导航系统、交通规划还是物流调度,都需要找到最优的路径来解决问题。
蚁群算法作为一种模拟蚂蚁寻找食物的行为的优化算法,被广泛应用于路径规划问题中。
本文将介绍蚁群算法的原理和几种常见的应用。
蚁群算法的原理:蚁群算法源于观察到蚂蚁在寻找食物时留下的信息素行为。
当蚁群中的一只蚂蚁找到食物之后,它会沿着返回的路径释放信息素。
这些信息素将吸引其他蚂蚁沿着该路径行动,随着时间的推移,更多的蚂蚁会选择这条路径,从而形成更强的信息素效应。
蚁群算法通过模拟这种信息素行为来找到最优解。
蚁群算法的应用:1. 路径规划:蚁群算法在路径规划中的应用是最常见的。
蚂蚁在搜索食物时,会选择性地释放信息素来引导其他蚂蚁寻路。
类似地,蚁群算法可以模拟蚂蚁行为来搜索最短路径或最优路径。
例如,在导航系统中,蚁群算法可以通过模拟蚂蚁在地图上搜索路径的行为,帮助用户找到最短路径。
2. 物流调度:物流调度是一个复杂的问题,涉及到多个因素,如货物的运输时间、成本、路径等。
蚁群算法可以应用于物流调度中,通过模拟蚂蚁在搜索食物的行为,帮助选择最优的路径和调度策略。
这可以有效减少成本,并提高物流的效率。
3. 机器人导航:在机器人导航中,蚁群算法可以帮助机器人找到最优的路径和规避障碍物。
类似于蚂蚁寻找食物的行为,机器人可以释放“信息素”来引导其他机器人选择合适的路径。
这种算法可以帮助机器人自主探索未知环境,并找到最短路径。
4. 电子游戏中的敌人行为:在电子游戏中,敌人的行为通常是通过编程来实现的。
蚁群算法可以用于模拟敌人的智能行为,使其更加具有逼真的表现。
通过使用蚁群算法,敌人可以模拟蚂蚁的寻找食物行为,从而更加灵活地寻找玩家并采取相应的行动。
总结:蚁群算法在路径规划中的应用能够有效解决复杂的问题,如寻找最短路径、物流调度、机器人导航和电子游戏的敌人行为。
通过模拟蚂蚁寻找食物的行为,蚁群算法可以帮助我们找到最优的解决方案。
改进的蚁群遗传优化算法及其应用作者:刘传领来源:《计算机应用》2013年第11期摘要:针对当前移动机器人的一些路径规划算法存在的局限性,提出了一种基于改进蚁群优化和遗传优化的融合算法。
利用改进的信息素更新技术和路径节点选择技术使算法尽快找到优化路径,来形成融合算法的初始种群,机器人每前进一步,蚂蚁就对局部路径重新搜索,并处理随机出现的障碍物;然后利用遗传算法(GA)对种群个体进行全局优化,从而能使机器人沿一条全局优化的路径到达终点。
仿真结果表明了该融合算法的可行性和有效性。
关键词:蚁群优化;遗传算法;移动机器人;路径规划;信息素0引言移动机器人的路径规划问题是移动机器人研究领域的热点问题。
移动机器人路径规划技术的研究起始于20 世纪70 年代,斯坦福研究院的Nils Nilssen和Charles Rosen等,在1966年至1972年研制出了取名Shakey的自主移动机器人[1-6],在20世纪80年代中期,设计和制造机器人的浪潮席卷全世界[5-7]。
根据以往的研究,从机器人对环境感知的角度,将移动机器人路径规划方法分为三类[7-10]:基于环境模型的全局路径规划方法、基于传感器信息的局部路径规划方法和基于行为的路径规划方法。
目前,已有的局部路径规划算法有人工势场法、模糊逻辑法等[2,5],已有的全局路径规划算法有A*方法、可视图法、遗传算法、蚁群算法等[11-17]。
本文提出了一种基于蚁群优化算法(Ant Colony Optimization, ACO)和遗传算法(Genetic Algorithm, GA)的移动机器人路径规划融合算法(ACO+GA),该算法克服了遗传算法在初始可行解的有效构造以及针对复杂环境设计相应的遗传算子等方面的困难,特别是在遇到非规则障碍物的复杂环境下使用蚁群采用最近邻居搜索策略完成机器人局部最优路径的搜索。
在遇到非规则障碍物的复杂环境下使用蚁群算法采用最近邻搜索策略完成机器人局部最优路径的搜索。
基于智能蚁群算法的路径规划与优化研究智能蚁群算法是一种基于自然界中蚂蚁寻路行为的优化算法。
它模拟了蚂蚁在寻找食物时的规律和策略,通过大量的蚁群个体之间的交流和协作,不断寻找最优路径。
在路径规划和优化领域,智能蚁群算法已经被广泛应用,并且在很多问题中获得了非常良好的效果。
优化问题是人类在计算机科学、工程学、生物学等众多领域中面临的问题之一。
在这些领域中,优化的问题通常都可以被看做是寻找最优解的问题。
不过,由于优化问题的复杂度非常高,特别是在实际应用中,通常会面临着大量的约束条件、未知的参数和非线性问题等复杂情况。
这时候,智能蚁群算法优化算法就起到了重要作用。
通过模拟蚂蚁在寻找食物时的行为和策略,智能蚁群算法能够有效的解决一些复杂的优化问题。
相比于传统的优化算法,智能蚁群算法具有以下的优点。
首先,智能蚁群算法具有较好的鲁棒性。
由于该算法模拟自然界中的动物寻路行为,蚁群个体之间输入输出非常简单,因此算法具有很高的兼容性和鲁棒性。
即使在某个蚁群个体出现失效的情况下,整个算法系统也不会因此而崩溃。
其次,智能蚁群算法能够自适应。
蚂蚁在寻找食物时,会根据周围环境的变化来自适应调整自己的行为和策略。
在智能蚁群算法中,每个蚂蚁节点也会根据自身的数据来调整自己的路径搜索策略,达到更优的效果。
最后,智能蚁群算法聚类效果良好。
在寻找食物时,蚂蚁节点会通过一个简单的信息传递机制来寻找最优食物位置。
在计算机算法中,智能蚁群算法也会通过这种信息传播方式来避免重复搜索,并且提高搜索效率。
在路径规划和优化问题中,智能蚁群算法也被广泛应用。
对于一个定位的问题场景来说,智能蚁群算法可以有效的寻找到最短路径。
在蚁群行动过程中,逐渐建立了路径信息素分布模型,已经过的路径留下的信息仍会影响后续的选择,从而获得更加优秀的解。
在实际应用中,智能蚁群算法可以用于非常多的应用场景。
例如,在交通出行中,可以利用智能蚁群算法来进行路径规划和优化;在机器人路径规划中,也可以利用智能蚁群算法来确定最优路径;在电力系统中,可以利用智能蚁群算法来优化发电和输电效率。
基于改进蚁群算法的移动机器人路径规划研究基于改进蚁群算法的移动机器人路径规划研究摘要:随着移动机器人的快速发展和广泛应用,路径规划成为了一个研究热点。
蚁群算法是一种仿生算法,由于其具有优秀的全局搜索能力而被广泛应用于路径规划问题中。
然而,传统的蚁群算法存在着收敛速度慢、易陷入局部最优等问题。
为了提高路径规划算法的性能,本文针对蚁群算法的不足之处进行了改进,结合局部信息和全局信息,提出了一种改进蚁群算法,并在移动机器人路径规划问题中进行了实验与分析。
关键词:移动机器人;路径规划;蚁群算法;全局搜索;局部信息1. 引言近年来,移动机器人的应用范围不断拓展,如自主导航、物流配送、环境监测等领域。
而移动机器人的路径规划是其中的关键问题之一。
路径规划算法要求机器人能够找到一条安全、高效的路径,以达到目标位置。
2. 蚁群算法简介蚁群算法是一种仿生算法,灵感来源于蚂蚁在觅食过程中的行为。
蚁群算法通过模拟蚂蚁的觅食行为,以信息素作为信息交流媒介,实现了全局搜索和局部搜索相结合的优化过程。
蚁群算法具有全局搜索能力强、鲁棒性好等优点,适用于解决复杂的路径规划问题。
3. 蚁群算法改进但是传统的蚁群算法在解决路径规划问题时存在一些不足之处,如收敛速度慢、易陷入局部最优等。
为了提升算法的性能,本文提出了一种改进的蚁群算法。
该算法在原有的蚁群算法基础上,引入了局部信息和全局信息,并优化了信息素更新策略。
具体步骤如下:首先,根据机器人的起始和目标位置,生成初始化的蚁群。
蚂蚁根据当前位置和信息素浓度决定下一步的移动方向。
其次,蚂蚁根据当前位置和目标位置之间的距离信息,在局部范围内引入启发式信息。
启发式信息可使蚂蚁更快地向目标位置靠近,有利于减少路径长度。
然后,蚂蚁根据局部信息和全局信息的综合评估,确定下一步移动的方向。
综合评估考虑了当前位置附近的信息素浓度和离目标位置的距离。
此举有助于克服传统蚁群算法易陷入局部最优的问题。
最后,蚂蚁根据选择的移动方向更新信息素,并通过信息素挥发策略控制信息素的衰减。
基于改进蚁群算法的移动机器人路径规划
吴帅;魏文红;张宇辉;叶梓菁
【期刊名称】《东莞理工学院学报》
【年(卷),期】2023(30)1
【摘要】针对传统蚁群算法在移动机器人最短路径规划方面存在的不足,如算法前期盲目性搜索、收敛速度慢、消耗时间长及转弯次数多,提出了一种改进的蚁群算法。
该算法根据正态分布模型,将栅格环境划分不同区域,进行信息素差异化处理,减少蚂蚁初期搜索时间;同时基于A*搜索算法的估价函数思想改进启发函数,引入自适应启发信息因子,增强其目标导向性,提高算法收敛速度,平衡算法全局搜索能力。
仿真结果表明,改进的蚁群算法能够规划出收敛速度较快、转弯次数较少以及平滑度更高的路径。
【总页数】11页(P24-34)
【作者】吴帅;魏文红;张宇辉;叶梓菁
【作者单位】东莞理工学院计算机科学与技术学院
【正文语种】中文
【中图分类】TP18
【相关文献】
1.基于改进蚁群算法的移动机器人全局路径规划
2.基于改进蚁群算法的移动机器人全局路径规划
3.基于改进蚁群算法的移动机器人路径规划
4.基于遗传机制改进蚁
群算法的室内移动机器人路径规划研究5.基于改进蚁群算法的移动机器人路径规划
因版权原因,仅展示原文概要,查看原文内容请购买。