高考数学总复习 第八章 立体几何 8.2 空间几何体的表面积与体积课件 理 新人教A版
- 格式:ppt
- 大小:2.84 MB
- 文档页数:33
☆注:请用Microsoft Word2016以上版本打开文件进行编辑,.第八章立体几何与空间向量8.1 空间几何体的结构、表面积和体积立体几何问题既是高考的必考点,也是考查的难点,其在高考中的命题形式较为稳定,保持“一小一大”或“两小一大”的格局.多以选择题或者填空题的形式考查空间内点线面的关系为主,空间几何体的体积或表面积的计算.题型一.空间几何体的结构与直观图1.(2019•新课标Ⅱ)中国有悠久的金石文化,印信是金石文化的代表之一.印信的形状多为长方体、正方体或圆柱体,但南北朝时期的官员独孤信的印信形状是“半正多面体”(图1).半正多面体是由两种或两种以上的正多边形围成的多面体.半正多面体体现了数学的对称美.图2是一个棱数为48的半正多面体,它的所有顶点都在同一个正方体的表面上,且此正方体的棱长为1.则该半正多面体共有26个面,其棱长为√2−1.【解答】解:该半正多面体共有8+8+8+2=26个面,设其棱长为x,则x+√22x+√22x=1,解得x=√2−1.故答案为:26,√2−1.2.(2021•全国模拟)如图是一个正方体的平面展开图,则在该正方体中()A.AE∥CD B.CH∥BE C.DG⊥BH D.BG⊥DE【解答】解:还原正方体直观图如图,可知AE 与CD 为异面直线,故选项A 不正确; 由EH ∥=BC ,可得CH ∥BE ,故选项B 正确;正方形中易得DG ⊥平面BCH ,所以有DG ⊥BH ,故选项C 正确; 因为BG ∥AH ,且DE ⊥AH ,所以BG ⊥DE ,故选项D 正确. 故选:BCD .3.(2018•新课标Ⅱ)已知正方体的棱长为1,每条棱所在直线与平面α所成的角都相等,则α截此正方体所得截面面积的最大值为( ) A .3√34B .2√33C .3√24D .√32【解答】解:正方体的所有棱中,实际上是3组平行的棱,每条棱所在直线与平面α所成的角都相等,如图:所示的正六边形平行的平面,并且正六边形时,α截此正方体所得截面面积的最大, 此时正六边形的边长√22, α截此正方体所得截面最大值为:6×√34×(√22)2=3√34. 故选:A .4.(2020•新课标Ⅱ)埃及胡夫金字塔是古代世界建筑奇迹之一,它的形状可视为一个正四棱锥.以该四棱锥的高为边长的正方形面积等于该四棱锥一个侧面三角形的面积,则其侧面三角形底边上的高与底面正方形的边长的比值为( )A .√5−14B .√5−12C .√5+14D .√5+12【解答】解:设正四棱锥的高为h ,底面边长为a ,侧面三角形底边上的高为h ′,则依题意有:{ℎ2=12aℎ′ℎ2=ℎ′2−(a 2)2, 因此有h ′2﹣(a2)2=12ah ′⇒4(ℎ′a)2﹣2(ℎ′a)﹣1=0⇒ℎ′a=√5+14(负值−√5+14舍去); 故选:C .5.(2020•山东)已知直四棱柱ABCD ﹣A 1B 1C 1D 1的棱长均为2,∠BAD =60°.以D 1为球心,√5为半径的球面与侧面BCC 1B 1的交线长为√2π2. 【解答】解:由题意直四棱柱ABCD ﹣A 1B 1C 1D 1的棱长均为2,∠BAD =60°.可知:D 1B 1=2,上下底面是菱形,建立如图所示的平面直角坐标系,设P (x ,y )为半径√5的球面上的点,过P 作PE 垂直B 1C 1的垂直,E 为垂足,则D 1E 2=D 1B 12+x 2﹣2•D 1B 1•x cos60°=x 2+4﹣2x . 由题意可知D 1P =√5. 可得:5=x 2+4﹣2x +(2﹣y )2. 即(x ﹣1)2+(y ﹣2)2=2,所以P 在侧面BCC 1B 1的轨迹是以B 1C 1的中点为圆心,半径为√2的圆弧.以D 1为球心,√5为半径的球面与侧面BCC 1B 1的交线长为:14×2√2π=√2π2.故答案为:√2π2.题型二.空间几何体的表面积与体积1.(2018•新课标Ⅱ)已知圆柱的上、下底面的中心分别为O 1,O 2,过直线O 1O 2的平面截该圆柱所得的截面是面积为8的正方形,则该圆柱的表面积为( ) A .12√2πB .12πC .8√2πD .10π【解答】解:设圆柱的底面直径为2R ,则高为2R , 圆柱的上、下底面的中心分别为O 1,O 2,过直线O 1O 2的平面截该圆柱所得的截面是面积为8的正方形, 可得:4R 2=8,解得R =√2,则该圆柱的表面积为:π⋅(√2)2×2+2√2π×2√2=12π. 故选:B .2.(2021•新高考Ⅱ)已知圆锥的底面半径为√2,其侧面展开图为一个半圆,则该圆锥的母线长为( ) A .2B .2√2C .4D .4√2【解答】解:由题意,设母线长为l ,因为圆锥底面周长即为侧面展开图半圆的弧长,圆锥的母线长即为侧面展开图半圆的半径,则有2π⋅√2=π⋅l ,解得l =2√2, 所以该圆锥的母线长为2√2. 故选:B .3.(2018•新课标Ⅱ)已知圆锥的顶点为S ,母线SA ,SB 所成角的余弦值为78,SA 与圆锥底面所成角为45°,若△SAB 的面积为5√15,则该圆锥的侧面积为 40√2π .【解答】解:圆锥的顶点为S ,母线SA ,SB 所成角的余弦值为78,可得sin ∠ASB =√1−(78)2=√158.△SAB 的面积为5√15,可得12SA 2sin ∠ASB =5√15,即12SA 2×√158=5√15,即SA =4√5. SA 与圆锥底面所成角为45°,可得圆锥的底面半径为:√22×4√5=2√10.则该圆锥的侧面积:12×4√10π×4√5=40√2π.故答案为:40√2π.4.(2018•新课标Ⅱ)在长方体ABCD ﹣A 1B 1C 1D 1中,AB =BC =2,AC 1与平面BB 1C 1C 所成的角为30°,则该长方体的体积为( ) A .8B .6√2C .8√2D .8√3【解答】解:长方体ABCD ﹣A 1B 1C 1D 1中,AB =BC =2, AC 1与平面BB 1C 1C 所成的角为30°, 即∠AC 1B =30°,可得BC 1=ABtan30°=2√3.可得BB 1=√(2√3)2−22=2√2.所以该长方体的体积为:2×2×2√2=8√2. 故选:C .4.(2021•新高考Ⅱ)正四棱台的上、下底面的边长分别为2,4,侧棱长为2,则其体积为( ) A .20+12√3B .28√2C .563D .28√23【解答】解:如图ABCD ﹣A 1B 1C 1D 1为正四棱台,AB =2,A 1B 1=4,AA 1=2. 在等腰梯形A 1B 1BA 中,过A 作AE ⊥A 1B 1,可得A 1E =4−22=1, AE =√AA 12−A 1E 2=√4−1=√3. 连接AC ,A 1C 1,AC =√4+4=2√2,A 1C 1=√16+16=4√2, 过A 作AG ⊥A 1C 1,A 1G =4√2−2√22=√2, AG =√AA 12−A 1G 2=√4−2=√2, ∴正四棱台的体积为:V =S上+S 下+√S 上⋅S 下3×ℎ=22+42+√22×423×√2 =28√23.故选:D .5.(2019•天津)已知四棱锥的底面是边长为√2的正方形,侧棱长均为√5.若圆柱的一个底面的圆周经过四棱锥四条侧棱的中点,另一个底面的圆心为四棱锥底面的中心,则该圆柱的体积为 π4.【解答】解:由题作图可知,四棱锥底面正方形的对角线长为2,且垂直相交平分, 由勾股定理得:正四棱锥的高为2,由于圆柱的一个底面的圆周经过四棱锥四条侧棱的中点,有圆柱的上底面直径为底面正方形对角线的一半等于1,即半径等于12;由相似比可得圆柱的高为正四棱锥高的一半1,则该圆柱的体积为:v =sh =π(12)2×1=π4;故答案为:π47.(2019•新课标Ⅱ)学生到工厂劳动实践,利用3D 打印技术制作模型.如图,该模型为长方体ABCD ﹣A 1B 1C 1D 1挖去四棱锥O ﹣EFGH 后所得的几何体,其中O 为长方体的中心,E ,F ,G ,H 分别为所在棱的中点,AB =BC =6cm ,AA 1=4cm .3D 打印所用原料密度为0.9g /cm 3.不考虑打印损耗,制作该模型所需原料的质量为 118.8 g .【解答】解:该模型为长方体ABCD ﹣A 1B 1C 1D 1,挖去四棱锥O ﹣EFGH 后所得的几何体,其中O 为长方体的中心,E ,F ,G ,H ,分别为所在棱的中点,AB =BC =6cm ,AA 1=4cm , ∴该模型体积为:V ABCD−A 1B 1C 1D 1−V O ﹣EFGH =6×6×4−13×(4×6−4×12×3×2)×3 =144﹣12=132(cm 3),∵3D 打印所用原料密度为0.9g /cm 3,不考虑打印损耗, ∴制作该模型所需原料的质量为:132×0.9=118.8(g ). 故答案为:118.8.8.(2021•新高考Ⅱ)北斗三号全球卫星导航系统是我国航天事业的重要成果.在卫星导航系统中,地球静止同步轨道卫星的轨道位于地球赤道所在平面,轨道高度为36000km (轨道高度是指卫星到地球表面的距离).将地球看作是一个球心为O ,半径r 为6400km 的球,其上点A 的纬度是指OA 与赤道平面所成角的度数.地球表面上能直接观测到的一颗地球静止同步轨道卫星点的纬度最大值为α,该卫星信号覆盖地球表面的表面积S =2πr 2(1﹣cosα)(单位:km 2),则S 占地球表面积的百分比约为( ) A .26%B .34%C .42%D .50%【解答】解:由题意,作出地球静止同步卫星轨道的左右两端的竖直截面图,则OP =36000+6400=424000,那么cosα=640042400=853; 卫星信号覆盖的地球表面面积S =2πr 2(1﹣cosα), 那么,S 占地球表面积的百分比为2πr 2(1−cosα)4πr 2=45106≈42%.故选:C .题型三.外接球与内切球1.(2017•天津)已知一个正方体的所有顶点在一个球面上,若这个正方体的表面积为18,则这个球的体积为9π2.【解答】解:设正方体的棱长为a , ∵这个正方体的表面积为18, ∴6a 2=18,则a 2=3,即a =√3,∵一个正方体的所有顶点在一个球面上, ∴正方体的体对角线等于球的直径, 即√3a =2R , 即R =32,则球的体积V =43π•(32)3=9π2;故答案为:9π2.2.(2017•新课标Ⅱ)已知圆柱的高为1,它的两个底面的圆周在直径为2的同一个球的球面上,则该圆柱的体积为( ) A .πB .3π4C .π2D .π4【解答】解:∵圆柱的高为1,它的两个底面的圆周在直径为2的同一个球的球面上, ∴该圆柱底面圆周半径r =√12−(12)2=√32, ∴该圆柱的体积:V =Sh =π×(√32)2×1=3π4.故选:B .3.(2021•甲卷)已知A ,B ,C 是半径为1的球O 的球面上的三个点,且AC ⊥BC ,AC =BC =1,则三棱锥O ﹣ABC 的体积为( ) A .√212B .√312C .√24D .√34【解答】解:因为AC ⊥BC ,AC =BC =1, 所以底面ABC 为等腰直角三角形,所以△ABC 所在的截面圆的圆心O 1为斜边AB 的中点, 所以OO 1⊥平面ABC ,在Rt △ABC 中,AB =√AC 2+BC 2=√2,则AO 1=√22, 在Rt △AOO 1中,OO 1=√OA 2−AO 12=√22,故三棱锥O ﹣ABC 的体积为V =13⋅S △ABC ⋅OO 1=13×12×1×1×√22=√212. 故选:A .4.(2020•新课标Ⅱ)已知△ABC 是面积为9√34的等边三角形,且其顶点都在球O 的球面上.若球O 的表面积为16π,则O 到平面ABC 的距离为( ) A .√3B .32C .1D .√32【解答】解:由题意可知图形如图:△ABC 是面积为9√34的等边三角形,可得√34AB 2=9√34, ∴AB =BC =AC =3,可得:AO 1=23×√32×3=√3, 球O 的表面积为16π,外接球的半径为:R ;所以4πR 2=16π,解得R =2,所以O 到平面ABC 的距离为:√4−3=1. 故选:C .5.(2015•新课标Ⅱ)已知A ,B 是球O 的球面上两点,∠AOB =90°,C 为该球面上的动点,若三棱锥O ﹣ABC 体积的最大值为36,则球O 的表面积为( ) A .36πB .64πC .144πD .256π【解答】解:如图所示,当点C 位于垂直于面AOB 的直径端点时,三棱锥O ﹣ABC 的体积最大,设球O 的半径为R ,此时V O ﹣ABC =V C ﹣AOB =13×12×R 2×R =16R 3=36,故R =6,则球O 的表面积为4πR 2=144π, 故选:C .6.(2017•新课标Ⅱ)已知三棱锥S ﹣ABC 的所有顶点都在球O 的球面上,SC 是球O 的直径.若平面SCA ⊥平面SCB ,SA =AC ,SB =BC ,三棱锥S ﹣ABC 的体积为9,则球O 的表面积为 36π .【解答】解:三棱锥S ﹣ABC 的所有顶点都在球O 的球面上,SC 是球O 的直径,若平面SCA ⊥平面SCB ,SA =AC ,SB =BC ,三棱锥S ﹣ABC 的体积为9,可知三角形SBC 与三角形SAC 都是等腰直角三角形,设球的半径为r , 可得13×12×2r ×r ×r =9,解得r =3.球O 的表面积为:4πr 2=36π. 故答案为:36π.7.(2019•新课标Ⅱ)已知三棱锥P ﹣ABC 的四个顶点在球O 的球面上,P A =PB =PC ,△ABC 是边长为2的正三角形,E ,F 分别是P A ,AB 的中点,∠CEF =90°,则球O 的体积为( ) A .8√6πB .4√6πC .2√6πD .√6π【解答】解:如图,由P A =PB =PC ,△ABC 是边长为2的正三角形,可知三棱锥P ﹣ABC 为正三棱锥, 则顶点P 在底面的射影O 1为底面三角形的中心,连接BO 1 并延长,交AC 于G , 则AC ⊥BG ,又PO 1⊥AC ,PO 1∩BG =O 1,可得AC ⊥平面PBG ,则PB ⊥AC , ∵E ,F 分别是P A ,AB 的中点,∴EF ∥PB ,又∠CEF =90°,即EF ⊥CE ,∴PB ⊥CE ,得PB ⊥平面P AC , ∴正三棱锥P ﹣ABC 的三条侧棱两两互相垂直,把三棱锥补形为正方体,则正方体外接球即为三棱锥的外接球,其直径为D =√PA 2+PB 2+PC 2=√12(PA 2+PB 2+PB 2+PC 2+PA 2+PC 2) =√12(AB 2+BC 2+AC 2)=√12(22+22+22)=√6. 半径为√62,则球O 的体积为43π×(√62)3=√6π.故选:D .8.(2020•新课标Ⅱ)已知圆锥的底面半径为1,母线长为3,则该圆锥内半径最大的球的体积为 √23π . 【解答】解:因为圆锥内半径最大的球应该为该圆锥的内切球, 如图,圆锥母线BS =3,底面半径BC =1, 则其高SC =√BS 2−BC 2=2√2, 不妨设该内切球与母线BS 切于点D , 令OD =OC =r ,由△SOD ∽△SBC ,则OD OS=BC BS,即2√2−r =13,解得r =√22,V =43πr 3=√23π,故答案为:√23π.题型四.空间几何体中的最值问题1.(2018•新课标Ⅱ)设A ,B ,C ,D 是同一个半径为4的球的球面上四点,△ABC 为等边三角形且面积为9√3,则三棱锥D ﹣ABC 体积的最大值为( ) A .12√3B .18√3C .24√3D .54√3【解答】解:△ABC 为等边三角形且面积为9√3,可得√34×AB 2=9√3,解得AB =6, 球心为O ,三角形ABC 的外心为O ′,显然D 在O ′O 的延长线与球的交点如图: O ′C =23×√32×6=2√3,OO ′=√42−(2√3)2=2, 则三棱锥D ﹣ABC 高的最大值为:6,则三棱锥D ﹣ABC 体积的最大值为:13×√34×63=18√3.故选:B .2.(2016•新课标Ⅱ)在封闭的直三棱柱ABC ﹣A 1B 1C 1内有一个体积为V 的球,若AB ⊥BC ,AB =6,BC =8,AA 1=3,则V 的最大值是( ) A .4πB .9π2C .6πD .32π3【解答】解:∵AB ⊥BC ,AB =6,BC =8, ∴AC =10.故三角形ABC 的内切圆半径r =6+8−102=2, 又由AA 1=3,故直三棱柱ABC ﹣A 1B 1C 1的内切球半径为32, 此时V 的最大值43π⋅(32)3=9π2,故选:B .3.(2017•新课标Ⅱ)如图,圆形纸片的圆心为O ,半径为5cm ,该纸片上的等边三角形ABC 的中心为O .D 、E 、F 为圆O 上的点,△DBC ,△ECA ,△F AB 分别是以BC ,CA ,AB 为底边的等腰三角形.沿虚线剪开后,分别以BC ,CA ,AB 为折痕折起△DBC ,△ECA ,△F AB ,使得D 、E 、F 重合,得到三棱锥.当△ABC 的边长变化时,所得三棱锥体积(单位:cm 3)的最大值为 4√15cm 3 .【解答】解法一:由题意,连接OD ,交BC 于点G ,由题意得OD ⊥BC ,OG =√36BC , 即OG 的长度与BC 的长度成正比, 设OG =x ,则BC =2√3x ,DG =5﹣x ,三棱锥的高h =√DG 2−OG 2=√25−10x +x 2−x 2=√25−10x , S △ABC =12×√32×(2√3x)2=3√3x 2, 则V =13S △ABC ×ℎ=√3x 2×√25−10x =√3⋅√25x 4−10x 5, 令f (x )=25x 4﹣10x 5,x ∈(0,52),f ′(x )=100x 3﹣50x 4,令f ′(x )≥0,即x 4﹣2x 3≤0,解得x ≤2, 则f (x )≤f (2)=80,∴V ≤√3×√80=4√15cm 3,∴体积最大值为4√15cm 3. 故答案为:4√15cm 3.解法二:连接OD ,交BC 于H ,如图,设BC =2x ,则0<2x <5√3,OH =x √3,DH =5x√3, ∴V =13×√34×(2x)2×√(5−x √3)2−(x √3)2=√33×x 2×√25−10x√3=√33×√x ⋅x ⋅x ⋅x 10√3(5√32−x) =√33⋅√x ⋅x ⋅x ⋅x ⋅52√3√3−4x) ≤√33⋅√52√3(10√35)5=4√15,当x =2√3时,取“=”. ∴体积最大值为4√15cm 3. 故答案为:4√15cm 3.一.单选题(共8小题)1.(2020•云南模拟)已知正△ABC 的顶点都在球O 的球面上,正△ABC 的边长为2√3.若球心O 到△ABC 所在平面的距离为√5,则球O 的表面积为( ) A .36πB .32πC .36√3πD .32√3π【解答】解;设正△ABC 的外接圆半径r ,由正弦定理可得,2√3sin60°=2r ,故r =2,由球的性质可知,R 2=r 2+d 2=4+5=9, 所以球的表面积S =4π×9=36π. 故选:A .2.(2020•全国一模)如图,四边形ABCD 是边长为2的正方形,ED ⊥平面ABCD ,FC ⊥平面ABCD ,ED =2FC =2,则四面体A ﹣BEF 的体积为( )A .13B .23C .1D .43【解答】解:∵四边形ABCD 是边长为2的正方形,ED ⊥平面ABCD ,FC ⊥平面ABCD ,ED =2FC =2, ∴以D 为原点,DA 为x 轴,DC 为y 轴,DE 为z 轴,建立空间直角坐标系, A (2,0,0),B (2,2,0),E (0,0,2),F (0,2,1), BA →=(0,﹣2,0),BF →=(﹣2,0,1),BE →=(﹣2,﹣2,2), BA →⋅BF →=0,∴S △ABF =12×|BA →|×|BF →|=12×2×√5=√5,设平面ABF 的法向量n →=(x ,y ,z ),则{n →⋅BA →=−2y =0n →⋅BF →=−2x +z =0,取x =1,得n →=(1,0,2), ∴E 到平面ABF 的距离d =|n →⋅BE →||n →|=2√5,∴四面体A ﹣BEF 的体积为: V A ﹣BEF =V E ﹣ABF =13×S △ABF ×d =13×√52√5=23. 故选:B .3.(2015•山东)在梯形ABCD 中,∠ABC =π2,AD ∥BC ,BC =2AD =2AB =2,将梯形ABCD 绕AD 所在的直线旋转一周而形成的曲面所围成的几何体的体积为( ) A .2π3B .4π3C .5π3D .2π【解答】解:由题意可知几何体的直观图如图:旋转体是底面半径为1,高为2的圆柱,挖去一个相同底面高为1的倒圆锥,几何体的体积为:12π⋅2−13×12π×1=5π3. 故选:C .4.(2021•泗县校级模拟)将半径为3,圆心角为2π3的扇形围成一个圆锥,则该圆锥的内切球的体积为( )A .√2π3B .√3π3C .4π3D .2π【解答】解:设圆锥的底面半径为r ,高为h ,则2πr =2π3×3, ∴r =1,h =√32−1=2√2, 设内切球的半径为R ,则2√2−R=13,∴R =√22,V =43πR 3=43π(√22)3=√23π,故选:A .5.我国古代名著《张丘建算经》中记载:“今有方锥下方二丈,高三丈,欲斩末为方亭,令上方六尺,问:斩高几何?”大致意思是:有一个正四棱锥下底边长为二丈,高三丈,现从上面截去一段,使之成为正四棱台,且正四棱台的上底边长为六尺,则截去的正四棱锥的高是多少?如果我们把求截去的正四棱锥的高改为求剩下的正四棱台的体积,则该正四棱台的体积是( )(注:1丈=10尺) A .1946立方尺 B .3892立方尺 C .7784立方尺D .11676立方尺【解答】解:如图所示,正四棱锥P ﹣ABCD 的下底边长为二丈,即AB =20尺, 高三丈,即PO =30尺;截去一段后,得正四棱台ABCD ﹣A ′B ′C ′D ′,且上底边长为A ′B ′=6尺, 则有PO′PO=PO′30=620,∴PO ′=9可得OO ′=21,所以该正四棱台的体积是V =13×21×(202+20×6+62)=3892(立方尺). 故选:B .6.(2019•濮阳一模)已知正△ABC 三个顶点都在半径为2的球面上,球心O 到平面ABC 的距离为1,点E 是线段AB 的中点,过点E 作球O 的截面,则截面面积的最小值是( )A .74πB .2πC .94πD .3π【解答】解:设正△ABC 的中心为O 1,连结O 1A ∵O 1是正△ABC 的中心,A 、B 、C 三点都在球面上,∴O 1O ⊥平面ABC ,∵球的半径R =2,球心O 到平面ABC 的距离为1,得O 1O =1, ∴Rt △O 1OA 中,O 1A =√OA 2−OO 12=√3.又∵E 为AB 的中点,△ABC 是等边三角形,∴AE =AO 1cos30°=32. ∵过E 作球O 的截面,当截面与OE 垂直时,截面圆的半径最小, ∴当截面与OE 垂直时,截面圆的面积有最小值. 此时截面圆的半径r =32, 可得截面面积为S =πr 2=9π4. 故选:C .7.(2014•陈仓区校级一模)如图,在四棱锥P ﹣ABCD 中,底面ABCD 是边长为m 的正方形,PD ⊥底面ABCD ,且PD =m ,P A =PC =√2m ,若在这个四棱锥内放一个球,则此球的最大半径是 (1−√22)m .【解答】解:根据题意,球的最大半径是四棱锥P ﹣ABCD 的内切球半径,设这个半径为r ∵PD ⊥底面ABCD ,且PD =m ,底面ABCD 是边长为m 的正方形, ∴△P AD 和△PCD 都是直角边长为m 的等腰直角三角形, 可得S △P AD =S △PCD =12m 2∵Rt △P AB 中,P A =√2m ,AB =m ,∴S △P AB =12P A •AB =√22m 2,同理可得S △PBC =√22m 2 又∵S ABCD =m 2,∴四棱锥P ﹣ABCD 的表面积为S 表=S △P AD +S △PCD +S △P AB +S △PBC +S ABCD =(2+√2)m 2 因此,四棱锥P ﹣ABCD 的体积V =13×S 表×r =13(2+√2)m 2r ∵PD ⊥底面ABCD ,且PD =m ,底面ABCD 是边长为m 的正方形, ∴四棱锥P ﹣ABCD 的体积V =13×S ABCD ×PD =13m 3, 由此可得13(2+√2)m 2r =13m 3,解之得r =12+√2m =(1−√22)m 因此,在四棱锥P ﹣ABCD 内放一个球,该球的最大半径是(1−√22)m . 故答案为:(1−√22)m8.(2019秋•中原区校级月考)在长方体ABCD ﹣A 1B 1C 1D 1中,AD =DD 1=1,AB =√3,E ,F ,G 分别是AB ,BC ,CC 1的中点,P 是底面ABCD 内一个动点,若直线D 1P 与平面EFG 平行,则△BB 1P 面积的最小值为( )A .√34B .1C .√32D .12【解答】解:如图,补全截面EFG 为截面EFGHQR ,易知平面ACD 1∥平面EFGHQR ,设BR ⊥AC 于点R , ∵直线D 1P ∥平面EFG ,∴P ∈AC ,且当P 与R 重合时,BP =BR 最短,此时△PBB 1的面积最小, 由等积法:12BR ×AC =12BA ×BC 得BR =√32,又BB 1⊥平面ABCD ,∴BB 1⊥BP ,△PBB 1为直角三角形, 故S△BB 1P=12BB 1×BP =√34,故选:A .二.多选题(共4小题)9.如图,正方体ABCD ﹣A 1B 1C 1D 1的棱长为1,E 、F 分别是棱AA 1、CC 1的中点,过点E 、F 的平面分别与棱BB 1、DD 1交于点G 、H ,以下四个结论正确的是( )A .正方体外接球的表面积为3πB .平面EGFH 与平面ABCD 所成角的最大值π4C .四棱锥C 1﹣EGFH 的体积为定值D .点B 1到平面EGFH 的距离的最大值为√63【解答】解:对于A ,因为正方体ABCD ﹣A 1B 1C 1D 1的棱长为1, 所以正方体的体对角线为√1+1+1=√3, 故正方体外接球的直径2R =√3, 所以正方体外接球的表面积为4πR 2=3π, 故选项A 正确;对于B ,设平面EGFH 与平面ABCD 所成的角为θ, 由面面平行的性质定理可得,EG ∥FH ,EH ∥GF , 则四边形EGFH 为平行四边形,又直角梯形CBGF 和直角梯形ABGE 全等, 则EG =FG ,所以四边形EGFH 为菱形,且GH ⊥EF ,因为平面EGFH 在底面上的射影为四边形ABCD , 所以由面积射影公式可得cosθ=SABCD S EGFH=112×√2⋅GH=√2GH , 因为√2≤GH ≤√3, 所以√63≤cosθ≤1, 则平面EGFH 与平面ABCD 所成角的最大值不是π4, 故选项B 错误;对于C ,四棱锥C 1﹣EGFH 的体积为V =2V C 1−EFG =2V E−GFC 1=2×13×12×12=16, 故选项C 正确;对于D ,设BG =x ,x ∈[0,1],V B 1−EFG =V E−B 1FG =13×12×1×(1−x)×1, 设点B 1到平面EGFH 的距离为d ,则V B 1−EFG =13⋅d ×12×√2×1+(12−x)2−(√22)2, 故d =√2×√12+(12−x)2,令t =1﹣x ,则t ∈[0,1], 所以d =−t+34=1√2×√34⋅1t 2−1t+1,故当t =1,即x =0时,d 取得最大值√63, 所以点B 1到平面EGFH 的距离的最大值为√63, 故选项D 正确. 故选:ACD .10.棱长为2的正方体ABCD ﹣A 1B 1C 1D 1中,E 、F 分别为棱AD 、DD 1的中点,G 为面对角线B 1C 上一个动点,则( )A .三棱锥A 1﹣EFG 的体积为定值B .线段B 1C 上存在点G ,使平面EFG ∥平面A 1BC 1C .当CG →=34CB 1→时,直线EG 与BC 1所成角的余弦值为√1313D .当G 为B 1C 的中点时,三棱锥A 1﹣EFG 的外接球半径为54 【解答】解:对于A ,由于△A 1EF 的面积为定值,G 到平面ADD 1A 1,即点D 到平面A 1EF 的距离为定值, 所以三棱锥A 1﹣EFG 的体积为定值,故选项A 正确;对于B ,以点D 为坐标原点,建立如图所示的空间直角坐系,则A 1(2,0,2),B (2,2,0),C 1(0,2,2),C (0,2,0),E (1,0,0),F (0,0,1),B 1(2,2,2),所以A 1B →=(0,2,−2),A 1C 1→=(−2,2,0),设平面A 1BC 1的法向量为n →=(x ,y ,z),故{n →⋅A 1B →=2y −2z =0n →⋅A 1C 1→=−2x +2y =0,令x =1,则y =z =1,故n →=(1,1,1),设CG →=tCB 1→=t(2,0,2)=(2t ,0,2t),0≤t ≤1,则DG →=DC →+CG →=(0,2,0)+(2t ,0,2t)=(2t ,2,2t ),所以EF →=(−1,0,1),EG →=(2t −1,2,2t),设平面EFG 的法向量为m →=(a ,b ,c),则{m →⋅EF →=−a +c =0m →⋅EG →=(2t −1)a +2b +2tc =0, 令a =1,则c =1,b =1−4t 2, 若平面EFG ∥平面A 1BC 1,则11=1−4t 21=11,4t =﹣1,故t 无解, 故选项B 错误;对于C ,当CG →=34CB 1→时,t =34,G(32,2,32),所以EG →=(12,2,32),BC 1→=(−2,0,2),设直线EG 与BC 1所成的角为θ,则cosθ=|cos <EG →,BC 1→>|=|EG →⋅BC 1→||EG →||BC 1→|=√264×2√2=√1313, 所以直线EG 与BC 1所成角的余弦值为√1313,故选项C 正确;对于D ,G 为B 1C 的中点时,A 1(2,0,2),E (1,0,0),F (0,0,1),G (1,2,1),设三棱锥A 1﹣EFG 的外接球的球心为O (x ,y ,z ),半径为r ,则{ r 2=(x −2)2+y 2+(z −2)2r 2=(x −1)2+y 2+z 2r 2=x 2+y 2+(z −1)2r 2=(x −1)2+(y −2)2+(z −1)2,解得r 2=116≠(54)2,故选项D 错误.故选:AC .11.在正方体ABCB ﹣A 1B 1C 1D 1中,P ,Q 分别为棱BC 和棱CC 1的中点,则下列说法正确的是()A .异面直线QP 与A 1C 1所成的角为45°B .A 1D ⊥平面AQPC .平面APQ 截正方体所得截面为等腰梯形D .点M 在线段BC 1上运动,则三棱锥A ﹣MPQ 的体积不变【解答】解:对于A ,连接A 1B 、BC 1,如图1所示:因为P ,Q 分别为棱BC 和棱CC 1的中点,所以PQ ∥BC 1,所以∠A 1C 1B 是异面直线QP 与A 1C 1所成的角,又A 1C 1=A 1B =BC 1,所以∠A 1C 1B =60°,即异面直线QP 与A 1C 1所成的角为60°,选项A 错误; 对于B ,建立空间直角坐标系,如图2所示:设正方体的棱长为1,则D (0,0,0),A (1,0,0),P (12,1,0),A 1(1,0,1), 所以DA 1→=(1,0,1),AP →=(−12,1,0),所以DA 1→•AP →=−12,所以DA 1→与AP →不垂直,即DA 1与AP 不垂直, 所以A 1D 与平面AQP 不垂直,选项B 错误;对于C ,连接AD 1、D 1Q ,则四边形APQD 1是平面APQ 截正方体所得的截面,如图3所示:连接BC 1,则BC 1∥AD 1,且BC 1=AD 1,又PQ ∥BC 1,且PQ =12BC 1,所以PQ ∥AD 1,且PQ =12AD 1,所以四边形APQD 1是梯形,又AP =D 1Q ,所以四边形APQD 1是等腰梯形,选项C 正确;对于D ,如图4所示,设正方体的棱长为a ,因为PQ ∥BC 1,所以点M 到PQ 的距离为√24a ,PQ =√22a ,点A 到平面MPQ 的距离为a ,所以三棱锥A ﹣MPQ 的体积为V =13×12×√22a ×√24a ×a =a 324,是定值,选项D 正确. 故选:CD .12.如图,正方形ABCD 与正方形DEFC 边长均为1,平面ABCD 与平面DEFC 互相垂直,P 是AE 上的一个动点,则( )A .CP 的最小值为√32B .当P 在直线AE 上运动时,三棱锥D ﹣BPF 的体积不变C .PD +PF 的最小值为√2−√2D .三棱锥A ﹣DCE 的外接球表面积为3π【解答】解:对于A ,连接DP ,CP ,易得CP =√DP 2+CD 2=√DP 2+1≥√12+1=√62,故A 错误;对于B ,P 在直线AE 上运动时,△PBF 的面积不变,D 到平面PBF 的距离也不变,故三棱锥D ﹣BPF 的体积不变,故B 正确;对于C ,如图,将△ADE 翻折到与平面ABFE 共面,则当D 、P 、F 三点共线时,PD +PF 取得最小值(√22)2+(√22+1)2=√2+√2,故C 错误;对于D ,将该几何体补成正方体,则外接球半径为√32,外接球表面积为3π,故D 正确. 故选:BD .。
2024年高考数学总复习第八章《立体几何与空间向量》§8.2空间点、直线、平面之间的位置关系最新考纲 1.借助长方体模型,在直观认识和理解空间点、线、面的位置关系的基础上,抽象出空间线、面位置关系的定义.2.了解可以作为推理依据的公理和定理.3.能运用公理、定理和已获得的结论证明一些空间位置关系的简单命题.1.四个公理公理1:如果一条直线上的两点在一个平面内,那么这条直线在此平面内.公理2:过不在一条直线上的三点,有且只有一个平面.公理3:如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线.公理4:平行于同一条直线的两条直线互相平行.2.直线与直线的位置关系(1)位置关系的分类异面直线:不同在任何一个平面内,没有公共点(2)异面直线所成的角①定义:设a,b是两条异面直线,经过空间任一点O作直线a′∥a,b′∥b,把a′与b′所成的锐角(或直角)叫做异面直线a与b所成的角(或夹角).,π2.3.直线与平面的位置关系有直线在平面内、直线与平面相交、直线与平面平行三种情况.4.平面与平面的位置关系有平行、相交两种情况.5.等角定理空间中如果两个角的两边分别对应平行,那么这两个角相等或互补.概念方法微思考1.分别在两个不同平面内的两条直线为异面直线吗?提示不一定.因为异面直线不同在任何一个平面内.分别在两个不同平面内的两条直线可能平行或相交.2.空间中如果两个角的两边分别对应平行,那么这两个角一定相等吗?提示不一定.如果这两个角开口方向一致,则它们相等,若反向则互补.题组一思考辨析1.判断下列结论是否正确(请在括号中打“√”或“×”)(1)如果两个不重合的平面α,β有一条公共直线a,就说平面α,β相交,并记作α∩β=a.(√)(2)两个平面α,β有一个公共点A,就说α,β相交于过A点的任意一条直线.(×)(3)如果两个平面有三个公共点,则这两个平面重合.(×)(4)经过两条相交直线,有且只有一个平面.(√)(5)没有公共点的两条直线是异面直线.(×)(6)若a,b是两条直线,α,β是两个平面,且a⊂α,b⊂β,则a,b是异面直线.(×)题组二教材改编2.如图所示,在正方体ABCD—A1B1C1D1中,E,F分别是AB,AD的中点,则异面直线B1C与EF所成角的大小为()A.30°B.45°C.60°D.90°答案C解析连接B1D1,D1C,则B1D1∥EF,故∠D1B1C即为所求的角.又B1D1=B1C=D1C,∴△B1D1C为等边三角形,∴∠D1B1C=60°.3.如图,在三棱锥A—BCD中,E,F,G,H分别是棱AB,BC,CD,DA的中点,则(1)当AC,BD满足条件________时,四边形EFGH为菱形;(2)当AC,BD满足条件________时,四边形EFGH为正方形.答案(1)AC=BD(2)AC=BD且AC⊥BD解析(1)∵四边形EFGH为菱形,∴EF=EH,∴AC=BD.(2)∵四边形EFGH为正方形,∴EF=EH且EF⊥EH,∵EF∥AC,EH∥BD,且EF=12AC,EH=12BD,∴AC=BD且AC⊥BD.题组三易错自纠4.α是一个平面,m,n是两条直线,A是一个点,若m⊄α,n⊂α,且A∈m,A∈α,则m,n的位置关系不可能是()A.垂直B.相交C.异面D.平行答案D解析依题意,m∩α=A,n⊂α,∴m与n可能异面、相交(垂直是相交的特例),一定不平行.5.如图,α∩β=l,A,B∈α,C∈β,且C∉l,直线AB∩l=M,过A,B,C三点的平面记作γ,则γ与β的交线必通过()A.点AB.点BC.点C但不过点MD.点C和点M答案D解析∵AB⊂γ,M∈AB,∴M∈γ.又α∩β=l,M∈l,∴M∈β.根据公理3可知,M在γ与β的交线上.同理可知,点C也在γ与β的交线上.6.如图为正方体表面的一种展开图,则图中的四条线段AB,CD,EF,GH在原正方体中互为异面的对数为______.答案3解析平面图形的翻折应注意翻折前后相对位置的变化,则AB,CD,EF和GH在原正方体中,显然AB与CD,EF与GH,AB与GH都是异面直线,而AB与EF相交,CD与GH 相交,CD与EF平行.故互为异面的直线有且只有3对.题型一平面基本性质的应用例1如图所示,在正方体ABCD—A1B1C1D1中,E,F分别是AB和AA1的中点.求证:(1)E,C,D1,F四点共面;(2)CE,D1F,DA三线共点.证明(1)如图,连接EF,CD1,A1B.∵E,F分别是AB,AA1的中点,∴EF∥BA1.又A1B∥D1C,∴EF∥CD1,∴E,C,D1,F四点共面.(2)∵EF∥CD1,EF<CD1,∴CE与D1F必相交,设交点为P,如图所示.则由P∈CE,CE⊂平面ABCD,得P∈平面ABCD.同理P∈平面ADD1A1.又平面ABCD∩平面ADD1A1=DA,∴P∈直线DA,∴CE,D1F,DA三线共点.思维升华共面、共线、共点问题的证明(1)证明共面的方法:①先确定一个平面,然后再证其余的线(或点)在这个平面内;②证两平面重合.(2)证明共线的方法:①先由两点确定一条直线,再证其他各点都在这条直线上;②直接证明这些点都在同一条特定直线上.(3)证明线共点问题的常用方法是:先证其中两条直线交于一点,再证其他直线经过该点.跟踪训练1如图,在空间四边形ABCD 中,E ,F 分别是AB ,AD 的中点,G ,H 分别在BC ,CD 上,且BG ∶GC =DH ∶HC =1∶2.(1)求证:E ,F ,G ,H 四点共面;(2)设EG 与FH 交于点P ,求证:P ,A ,C 三点共线.证明(1)∵E ,F 分别为AB ,AD 的中点,∴EF ∥BD .∵在△BCD 中,BG GC =DH HC =12,∴GH ∥BD ,∴EF ∥GH .∴E ,F ,G ,H 四点共面.(2)∵EG ∩FH =P ,P ∈EG ,EG ⊂平面ABC ,∴P ∈平面ABC .同理P ∈平面ADC .∴P 为平面ABC 与平面ADC 的公共点.又平面ABC ∩平面ADC =AC ,∴P ∈AC ,∴P ,A ,C 三点共线.题型二判断空间两直线的位置关系例2(1)若直线l 1和l 2是异面直线,l 1在平面α内,l 2在平面β内,l 是平面α与平面β的交线,则下列命题正确的是()A .l 与l 1,l 2都不相交B .l 与l 1,l 2都相交C .l 至多与l 1,l 2中的一条相交D .l 至少与l 1,l 2中的一条相交答案D 解析由直线l 1和l 2是异面直线可知l 1与l 2不平行,故l 1,l 2中至少有一条与l 相交.故选D.(2)如图,在正方体ABCD -A 1B 1C 1D 1中,点E ,F 分别在A 1D ,AC 上,且A 1E =2ED ,CF =2FA ,则EF 与BD 1的位置关系是()A.相交但不垂直B.相交且垂直C.异面D.平行答案D解析连接D1E并延长,与AD交于点M,由A1E=2ED,可得M为AD的中点,连接BF并延长,交AD于点N,因为CF=2FA,可得N为AD的中点,所以M,N重合,所以EF和BD1共面,且MEED1=12,MFBF=12,所以MEED1=MFBF,所以EF∥BD1.思维升华空间中两直线位置关系的判定,主要是异面、平行和垂直的判定.异面直线可采用直接法或反证法;平行直线可利用三角形(梯形)中位线的性质、公理4及线面平行与面面平行的性质定理;垂直关系往往利用线面垂直或面面垂直的性质来解决.跟踪训练2(1)已知直线a,b分别在两个不同的平面α,β内,则“直线a和直线b相交”是“平面α和平面β相交”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件答案A解析若直线a和直线b相交,则平面α和平面β相交;若平面α和平面β相交,那么直线a 和直线b可能平行或异面或相交,故选A.(2)如图所示,正方体ABCD-A1B1C1D1中,M,N分别为棱C1D1,C1C的中点,有以下四个结论:①直线AM 与CC 1是相交直线;②直线AM 与BN 是平行直线;③直线BN 与MB 1是异面直线;④直线AM 与DD 1是异面直线.其中正确的结论为________.(注:把你认为正确的结论序号都填上)答案③④解析因为点A 在平面CDD 1C 1外,点M 在平面CDD 1C 1内,直线CC 1在平面CDD 1C 1内,CC 1不过点M ,所以AM 与CC 1是异面直线,故①错;取DD 1中点E ,连接AE ,则BN ∥AE ,但AE 与AM 相交,故②错;因为B 1与BN 都在平面BCC 1B 1内,M 在平面BCC 1B 1外,BN 不过点B 1,所以BN 与MB 1是异面直线,故③正确;同理④正确,故填③④.题型三求两条异面直线所成的角例3(2019·青岛模拟)如图,在底面为正方形,侧棱垂直于底面的四棱柱ABCD —A 1B 1C 1D 1中,AA 1=2AB =2,则异面直线A 1B 与AD 1所成角的余弦值为()A.15B.25C.35D.45答案D 解析连接BC 1,易证BC 1∥AD 1,则∠A 1BC 1即为异面直线A 1B 与AD 1所成的角.连接A 1C 1,由AB =1,AA 1=2,易得A 1C 1=2,A 1B =BC 1=5,故cos ∠A 1BC 1=A 1B 2+BC 21-A 1C 212×A 1B ×BC 1=45,即异面直线A 1B 与AD 1所成角的余弦值为45.引申探究将上例条件“AA 1=2AB =2”改为“AB =1,若异面直线A 1B 与AD 1所成角的余弦值为910”,试求AA 1AB 的值.解设AA 1AB=t (t >0),则AA 1=tAB .∵AB =1,∴AA 1=t .∵A 1C 1=2,A 1B =t 2+1=BC 1,∴cos ∠A 1BC 1=A 1B 2+BC 21-A 1C 212×A 1B ×BC 1=t 2+1+t 2+1-22×t 2+1×t 2+1=910.∴t =3,即AA 1AB =3.思维升华用平移法求异面直线所成的角的三个步骤(1)一作:根据定义作平行线,作出异面直线所成的角;(2)二证:证明作出的角是异面直线所成的角;(3)三求:解三角形,求出所作的角.跟踪训练3(2018·全国Ⅱ)在正方体ABCD -A 1B 1C 1D 1中,E 为棱CC 1的中点,则异面直线AE 与CD 所成角的正切值为()A.22 B.32 C.52 D.72答案C 解析如图,因为AB ∥CD ,所以AE 与CD 所成角为∠EAB .在Rt △ABE 中,设AB =2,则BE =5,则tan ∠EAB =BE AB =52,所以异面直线AE 与CD 所成角的正切值为52.立体几何中的线面位置关系直观想象是指借助几何直观和空间想象感知事物的形态与变化,利用空间形式特别是图形,理解和解决数学问题.例如图所示,四边形ABEF 和ABCD 都是梯形,BC ∥AD 且BC =12AD ,BE ∥FA 且BE =12FA ,G ,H 分别为FA ,FD 的中点.(1)证明:四边形BCHG 是平行四边形;(2)C ,D ,F ,E 四点是否共面?为什么?(1)证明由已知FG =GA ,FH =HD ,可得GH ∥AD 且GH =12AD .又BC ∥AD 且BC =12AD ,∴GH ∥BC 且GH =BC ,∴四边形BCHG 为平行四边形.(2)解∵BE ∥AF 且BE =12AF ,G 为FA 的中点,∴BE ∥FG 且BE =FG ,∴四边形BEFG 为平行四边形,∴EF ∥BG .由(1)知BG ∥CH .∴EF ∥CH ,∴EF 与CH 共面.又D ∈FH ,∴C ,D ,F ,E 四点共面.素养提升平面几何和立体几何在点线面的位置关系中有很多的不同,借助确定的几何模型,利用直观想象讨论点线面关系在平面和空间中的差异.1.四条线段顺次首尾相连,它们最多可确定的平面个数为()A .4B .3C .2D .1答案A 解析首尾相连的四条线段每相邻两条确定一个平面,所以最多可以确定四个平面.2.a ,b ,c 是两两不同的三条直线,下面四个命题中,真命题是()A.若直线a,b异面,b,c异面,则a,c异面B.若直线a,b相交,b,c相交,则a,c相交C.若a∥b,则a,b与c所成的角相等D.若a⊥b,b⊥c,则a∥c答案C解析若直线a,b异面,b,c异面,则a,c相交、平行或异面;若a,b相交,b,c相交,则a,c相交、平行或异面;若a⊥b,b⊥c,则a,c相交、平行或异面;由异面直线所成的角的定义知C正确.故选C.3.如图所示,平面α∩平面β=l,A∈α,B∈α,AB∩l=D,C∈β,C∉l,则平面ABC与平面β的交线是()A.直线ACB.直线ABC.直线CDD.直线BC答案C解析由题意知,D∈l,l⊂β,所以D∈β,又因为D∈AB,所以D∈平面ABC,所以点D在平面ABC与平面β的交线上.又因为C∈平面ABC,C∈β,所以点C在平面β与平面ABC的交线上,所以平面ABC∩平面β=CD.4.如图所示,ABCD-A1B1C1D1是长方体,O是B1D1的中点,直线A1C交平面AB1D1于点M,则下列结论正确是()A.A,M,O三点共线B.A,M,O,A1不共面C.A,M,C,O不共面D.B,B1,O,M共面答案A 解析连接A 1C 1,AC ,则A 1C 1∥AC ,∴A 1,C 1,A ,C 四点共面,∴A 1C ⊂平面ACC 1A 1,∵M ∈A 1C ,∴M ∈平面ACC 1A 1,又M ∈平面AB 1D 1,∴M 在平面ACC 1A 1与平面AB 1D 1的交线上,同理A ,O 在平面ACC 1A 1与平面AB 1D 1的交线上.∴A ,M ,O 三点共线.5.(2017·全国Ⅱ)已知直三棱柱ABCA 1B 1C 1中,∠ABC =120°,AB =2,BC =CC 1=1,则异面直线AB 1与BC 1所成角的余弦值为()A.32 B.155 C.105 D.33答案C解析方法一将直三棱柱ABC -A 1B 1C 1补形为直四棱柱ABCD -A 1B 1C 1D 1,如图①所示,连接AD 1,B 1D 1,BD .图①由题意知∠ABC =120°,AB =2,BC =CC 1=1,所以AD 1=BC 1=2,AB 1=5,∠DAB =60°.在△ABD 中,由余弦定理知BD 2=AB 2+AD 2-2×AB ×AD ×cos ∠DAB =22+12-2×2×1×cos 60°=3,所以BD =3,所以B 1D 1=3.又AB 1与AD 1所成的角即为AB 1与BC 1所成的角θ,所以cos θ=AB 21+AD 21-B 1D 212×AB 1×AD 1=5+2-32×5×2=105.故选C.方法二以B 1为坐标原点,B 1C 1所在的直线为x 轴,垂直于B 1C 1的直线为y 轴,BB 1所在的直线为z 轴建立空间直角坐标系,如图②所示.图②由已知条件知B 1(0,0,0),B (0,0,1),C 1(1,0,0),A (-1,3,1),则BC 1→=(1,0,-1),AB 1→=(1,-3,-1).所以cos 〈AB 1→,BC 1→〉=AB 1,→·BC 1→|AB 1→||BC 1→|=25×2=105.所以异面直线AB 1与BC 1所成角的余弦值为105.故选C.6.正方体AC 1中,与面ABCD 的对角线AC 异面的棱有________条.答案6解析如图,在正方体AC 1中,与面ABCD 的对角线AC 异面的棱有BB 1,DD 1,A 1B 1,A 1D 1,D 1C 1,B 1C 1,共6条.7.(2019·东北三省三校模拟)若直线l ⊥平面β,平面α⊥平面β,则直线l 与平面α的位置关系为________.答案l ∥α或l ⊂α解析∵直线l ⊥平面β,平面α⊥平面β,∴直线l ∥平面α,或者直线l ⊂平面α.8.在三棱锥S -ABC 中,G 1,G 2分别是△SAB 和△SAC 的重心,则直线G 1G 2与BC 的位置关系是________.答案平行解析如图所示,连接SG 1并延长交AB 于M ,连接SG 2并延长交AC 于N ,连接MN .由题意知SM为△SAB的中线,且SG1=23SM,SN为△SAC的中线,且SG2=23SN,∴在△SMN中,SG1SM=SG2SN,∴G1G2∥MN,易知MN是△ABC的中位线,∴MN∥BC,∴G1G2∥BC.9.如图,已知圆柱的轴截面ABB1A1是正方形,C是圆柱下底面弧AB的中点,C1是圆柱上底面弧A1B1的中点,那么异面直线AC1与BC所成角的正切值为________.答案2解析取圆柱下底面弧AB的另一中点D,连接C1D,AD,因为C是圆柱下底面弧AB的中点,所以AD∥BC,所以直线AC1与AD所成的角即为异面直线AC1与BC所成的角,因为C1是圆柱上底面弧A1B1的中点,所以C1D垂直于圆柱下底面,所以C1D⊥AD.因为圆柱的轴截面ABB1A1是正方形,所以C1D=2AD,所以直线AC1与AD所成角的正切值为2,所以异面直线AC1与BC所成角的正切值为2.10.如图是正四面体的平面展开图,G,H,M,N分别为DE,BE,EF,EC的中点,在这个正四面体中,①GH与EF平行;②BD与MN为异面直线;③GH与MN成60°角;④DE与MN垂直.以上四个命题中,正确命题的序号是________.答案②③④解析还原成正四面体A -DEF ,其中H 与N 重合,A ,B ,C 三点重合.易知GH 与EF 异面,BD 与MN 异面.连接GM ,∵△GMH 为等边三角形,∴GH 与MN 成60°角,易证DE ⊥AF ,又MN ∥AF ,∴MN ⊥DE .因此正确命题的序号是②③④.11.如图所示,A 是△BCD 所在平面外的一点,E ,F 分别是BC ,AD 的中点.(1)求证:直线EF 与BD 是异面直线;(2)若AC ⊥BD ,AC =BD ,求EF 与BD 所成的角.(1)证明假设EF 与BD 不是异面直线,则EF 与BD 共面,从而DF 与BE 共面,即AD 与BC 共面,所以A ,B ,C ,D 在同一平面内,这与A 是△BCD 所在平面外的一点相矛盾.故直线EF 与BD 是异面直线.(2)解取CD 的中点G ,连接EG ,FG ,则AC ∥FG ,EG ∥BD ,所以相交直线EF 与EG 所成的角,即为异面直线EF 与BD 所成的角.又因为AC ⊥BD ,则FG ⊥EG .在Rt △EGF 中,由EG =FG=12AC ,求得∠FEG =45°,即异面直线EF 与BD 所成的角为45°.12.如图,在三棱锥P -ABC 中,PA ⊥底面ABC ,D 是PC 的中点.已知∠BAC =π2,AB =2,AC =23,PA =2.求:(1)三棱锥P -ABC 的体积;(2)异面直线BC 与AD 所成角的余弦值.解(1)S △ABC =12×2×23=23,三棱锥P -ABC 的体积为V =13S △ABC ·PA =13×23×2=433.(2)如图,取PB 的中点E ,连接DE ,AE ,则ED ∥BC ,所以∠ADE (或其补角)是异面直线BC 与AD 所成的角.在△ADE 中,DE =2,AE =2,AD =2,cos ∠ADE =AD 2+DE 2-AE 22×AD ×DE =22+22-22×2×2=34.故异面直线BC 与AD 所成角的余弦值为34.13.平面α过正方体ABCD -A 1B 1C 1D 1的顶点A ,α∥平面CB 1D 1,α∩平面ABCD =m ,α∩平面ABB 1A 1=n ,则m ,n 所成角的正弦值为()A.32 B.22 C.33 D.13答案A解析如图所示,设平面CB 1D 1∩平面ABCD =m 1,∵α∥平面CB 1D 1,则m 1∥m ,又∵平面ABCD ∥平面A 1B 1C 1D 1,平面CB 1D 1∩平面A 1B 1C 1D 1=B 1D 1,∴B 1D 1∥m 1,∴B 1D 1∥m ,同理可得CD 1∥n .故m ,n 所成角的大小与B 1D 1,CD 1所成角的大小相等,即∠CD 1B 1的大小.又∵B 1C =B 1D 1=CD 1(均为面对角线),∴∠CD 1B 1=π3,得sin ∠CD 1B 1=32,故选A.14.一个正方体纸盒展开后如图所示,在原正方体纸盒中有如下结论:①AB ⊥EF ;②AB 与CM 所成的角为60°;③EF 与MN 是异面直线;④MN ∥CD .以上四个命题中,正确命题的序号是________.答案①③解析如图,①AB ⊥EF ,正确;②显然AB ∥CM ,所以不正确;③EF 与MN 是异面直线,所以正确;④MN 与CD 异面,并且垂直,所以不正确,则正确的是①③.15.如图,正方形ACDE 与等腰直角三角形ACB 所在的平面互相垂直,且AC =BC =4,∠ACB =90°,F ,G 分别是线段AE ,BC 的中点,则AD 与GF 所成的角的余弦值为________.答案36解析取DE 的中点H ,连接HF ,GH .由题设,HF ∥AD 且HF =12AD ,∴∠GFH 为异面直线AD 与GF 所成的角(或其补角).在△GHF 中,可求HF =22,GF =GH =26,∴cos ∠GFH =HF 2+GF 2-GH 22×HF ×GF =(22)2+(26)2-(26)22×22×26=36.16.如图所示,三棱柱ABC -A 1B 1C 1的底面是边长为2的正三角形,侧棱A 1A ⊥底面ABC ,点E ,F 分别是棱CC 1,BB 1上的点,点M 是线段AC 上的动点,EC =2FB =2.(1)当点M 在何位置时,BM ∥平面AEF?(2)若BM ∥平面AEF ,判断BM 与EF 的位置关系,说明理由;并求BM 与EF 所成的角的余弦值.解(1)方法一如图所示,取AE 的中点O ,连接OF ,过点O 作OM ⊥AC 于点M .因为EC ⊥AC ,OM ,EC ⊂平面ACC 1A 1,所以OM ∥EC .又因为EC =2FB =2,EC ∥FB ,所以OM ∥FB 且OM =12EC =FB ,所以四边形OMBF 为矩形,BM ∥OF .因为OF ⊂平面AEF ,BM ⊄平面AEF ,故BM ∥平面AEF ,此时点M 为AC 的中点.方法二如图所示,取EC 的中点P ,AC 的中点Q ,连接PQ ,PB ,BQ .因为EC =2FB =2,所以PE ∥BF 且PE =BF ,所以PB ∥EF ,PQ ∥AE ,又AE ,EF ⊂平面AEF ,PQ ,PB ⊄平面AEF ,所以PQ ∥平面AFE ,PB ∥平面AEF ,因为PB ∩PQ =P ,PB ,PQ ⊂平面PBQ ,所以平面PBQ ∥平面AEF .又因为BQ ⊂平面PBQ ,所以BQ ∥平面AEF .故点Q 即为所求的点M ,此时点M 为AC 的中点.(2)由(1)知,BM 与EF 异面,∠OFE (或∠MBP )就是异面直线BM 与EF 所成的角或其补角.易求AF =EF =5,MB =OF =3,OF ⊥AE ,所以cos ∠OFE =OF EF =35=155,所以BM 与EF 所成的角的余弦值为155.。