新版高中数学北师大版必修1习题:第三章指数函数和对数函数3-4-1-1
- 格式:docx
- 大小:40.57 KB
- 文档页数:6
3.4.1 对数及其运算
学情分析
对数及其运算是北师大版普通高中数学课程标准实验教科书《数学1(必修)》第三章第四单元第一节,是在系统学习研究函数的一般方法、指数的概念及运算性质,基本掌握指数函数的概念及性质的基础上引入的,既是指数有关知识的承接和延续,又是后续研究对数函数、探讨函数应用的基础,本节共两课时,本课是第一课时,重点研究对数的概念及其性质,教材以2000年国民经济生产总值增幅为背景,引入对数概念,在使学生认识引进对数必要性的同时,强化学生的数学应用意识,“思考交流”旨在引导学生进一步厘清指数式与对指数式之间的关系,明确1和底数对数的特点,深化真数取值范围的理解,为对数函数学习打下伏笔。
常用对数及自然对数是对数的特例,教材将其安排在对数性质之后,旨在引领学生经历“特殊——一般——特殊”的过程,进一步发展学生的理性思维。
因此,本节内容无论是只是传承,还是数学思想方法的强化渗透,都具有非常重要的奠基作用。
经历了义务教育阶段学习的高一学生,思维正处于由经验型向理论型过渡与转型期,思维的发散性与聚敛性基本成型,已具有研究函数和从事简单数学活动的能力,加之指数及指数函数等知识铺垫,对于本单元学习奠定了必要的知识和经验基础。
高一数学必修1第三章《指数函数、对数函数和幂函数》测练题(满分:150分;考试时间:100分钟)一、选择题(本大题共10小题. 每小题5分,共50分.在每小题给出的四个选项中,只有一个项是符合题目要求的) 1.指数函数y=a x 的图像经过点(2,16)则a 的值是 ( )A .41 B .21C .2D .4 2.化简)31()3)((656131212132b a b a b a ÷-的结果 ( )A .a 6B .a -C .a 9-D .29a3.在区间),0(+∞上不是增函数的是 ( )A.2x y =B.x y log 2=C.xy 2= D.122++=x x y 4.式子82log 9log 3的值为 ( ) A .23 B .32C .2D .3 5.已知0ab >,下面四个等式中:①lg()lg lg ab a b =+; ②lg lg lg a a b b=-;③b ab a lg )lg(212= ;④1lg()log 10ab ab =.其中正确命题的个数为 ( )A .0B .1C .2D .36.已知2log 0.3a =,0.32b =,0.20.3c =,则c b a ,,三者的大小关系是( ) A .a c b >> B .c a b >> C .c b a >> D .a b c >> 7.已知函数)(x f y =的反函数)21(log )(211-=-x x f,则方程1)(=x f 的解集是( )A .{1}B .{2}C .{3}D .{4} 8.图中曲线分别表示l g a y o x =,l g b y o x =,l g c y o x =, l g d y o x =的图象,,,,a b c d 的关系是( )A. 0<a <b <1<d<cB. 0<b<a <1<c<dC. 0<d<c<1<a<bD. 0<c<d <1<a<b9.函数y= | lg (x-1)| 的图象是 ( )xyOy=log a xy=log x y=log c x y=log d x110.给出幂函数①f (x )=x ;②f (x )=x 2;③f (x )=x 3;④f (x )=;⑤f (x )=1x .其中满意条件f 12()2x x + >12()()2f x f x + (x 1>x 2>0)的函数的个数是 ( )A .1个B .2个C .3个D .4个二、填空题(.每小题5分,共20分) 11.函数21()log (2)f x x =-的定义域是 .12.当a >0且a ≠1时,函数f (x )=a x -2-3必过定点 .13.函数)x 2x (log y 221-=的单调递减区间是_________________.14.关于函数21()lg (0,R)||x f x x x x +=≠∈有下列命题:①函数()y f x =的图象关于y 轴对称;②在区 间(,0)-∞上,函数()y f x =是减函数;③函数()y f x =的最小值为lg 2;④在区间(1,)+∞上,函 数()y f x =是增函数.其中正确命题序号为_______________. 三、解答题(6小题,共80分)15.(本小题满分12分)4160.250321648200549-+---)()()16. (本小题满分12分)设函数421()log 1x x f x x x -⎧<=⎨>⎩,求满意()f x =41的x 的值.C17.(本小题满分14分)已知()2xf x =,()g x 是一次函数,并且点(2,2)在函数[()]f g x 的图象上,点(2,5)在函数[()]g f x 的图象上,求()g x 的解析式.18.(本小题满分14分)若0≤x ≤2,求函数y=523421+⨯--x x 的最大值和最小值.19.(本小题满分14分)光线通过一块玻璃,其强度要损失10%,把几块这样的玻璃重叠起来,设光线原来的强度为x 块玻璃后强度为y .(1)写出y 关于x 的函数关系式;(2)通过多少块玻璃后,光线强度减弱到原来的13以下? ( lg30.4771)≈20.(本小题满分14分)已知定义域为R 的函数12()22x x bf x +-+=+是奇函数.(1)求b 的值;(2)推断函数()f x 的单调性;(3)若对随意的R t ∈,不等式22(2)(2)0f t t f t k -+-<恒成立,求k 的取值范围.高一数学必修1第三章《指数函数、对数函数和幂函数》测练题参考答案及解析一、选择题1.D 解析:由a 2=16且a >0得a =42.C 解析:原式a ab ba9990653121612132-=-=-=-+-+3.C 解析:依据反比例函数的性质4.A 解析:因log 89=22232log 32log 3log 23=,故原式=23 5.B 解析:ab >0,故a 、b 同号;当a 、b 同小于0时,①②不成立;当ab =1时,④不成立,故只有③对。
精选全文完整版可编辑修改高中数学北师大版必修1 全册 知识点总结第一章集合与函数概念【1.1.1】集合的含义与表示(1)集合的概念把某些特定的对象集在一起就叫做集合. (2)常用数集及其记法N 表示自然数集;N *或N +表示正整数集;Z 表示整数集;Q 表示有理数集;R 表示实数集. (3)集合与元素间的关系对象a 与集合M 的关系是a M ∈;或者a M ∉;两者必居其一. (4)集合的表示法①自然语言法:用文字叙述的形式来描述集合.②列举法:把集合中的元素一一列举出来;写在大括号内表示集合. ③描述法:{x |x 具有的性质};其中x 为集合的代表元素. ④图示法:用数轴或韦恩图来表示集合. (5)集合的分类①含有有限个元素的集合叫做有限集.②含有无限个元素的集合叫做无限集.③不含有任何元素的集合叫做空集(∅).【1.1.2】集合间的基本关系(6)子集、真子集、集合相等(7)已知集合A 有(1)n n ≥个元素;则它有2n 个子集;它有21n-个真子集;它有21n -个非空子集;它有22n-非空真子集.【1.1.3】集合的基本运算(8)交集、并集、补集Bx ∈A A=∅=∅A B A⊆B B ⊆ B{|x x x ∈A A =A ∅=⑼ 集合的运算律:交换律:.;A B B A A B B A ==结合律:)()();()(C B A C B A C B A C B A ==分配律:)()()();()()(C A B A C B A C A B A C B A == 0-1律:,,,A A A UA A UA U Φ=ΦΦ===等幂律:.,A A A A A A == 求补律:A ∩ A ∪=U反演律:(A ∩B)=(A)∪(B) (A ∪B)=(A)∩(B)第二章函数§1函数的概念及其表示一、映射1.映射:设A 、B 是两个集合;如果按照某种对应关系f ;对于集合A 中的 元素;在集合B 中都有 元素和它对应;这样的对应叫做 到 的映射;记作 .2.象与原象:如果f :A →B 是一个A 到B 的映射;那么和A 中的元素a 对应的 叫做象; 叫做原象.二、函数1.定义:设A 、B 是 ;f :A →B 是从A 到B 的一个映射;则映射f :A →B 叫做A 到B 的 ;记作 .2.函数的三要素为 、 、 ;两个函数当且仅当 分别相(3)A B A ⊇A B B⊇补集{|,}x x U x A ∈∉且%1 (%1%1%1 %1同时;二者才能称为同一函数.3.函数的表示法有 、 、 .§2函数的定义域和值域一、定义域:1.函数的定义域就是使函数式 的集合. 2.常见的三种题型确定定义域:① 已知函数的解析式;就是 .② 复合函数f [g(x )]的有关定义域;就要保证内函数g(x )的 域是外函数f (x )的 域.③实际应用问题的定义域;就是要使得 有意义的自变量的取值集合. 二、值域:1.函数y =f (x )中;与自变量x 的值 的集合.2.常见函数的值域求法;就是优先考虑 ;取决于 ;常用的方法有:①观察法;②配方法;③反函数法;④不等式法;⑤单调性法;⑥数形法;⑦判别式法;⑧有界性法;⑨换元法(又分为 法和 法)例如:① 形如y =221x +;可采用 法;② y =)32(2312-≠++x x x ;可采用法或 法;③ y =a [f (x )]2+bf (x )+c ;可采用 法;④ y =x -x-1;可采用 法;⑤ y =x -21x -;可采用 法;⑥ y =xx cos 2sin -可采用 法等.§3函数的单调性一、单调性1.定义:如果函数y =f (x )对于属于定义域I 内某个区间上的任意两个自变量的值x 1、、x 2;当x 1、<x 2时;①都有 ;则称f (x )在这个区间上是增函数;而这个区间称函数的一个 ;②都有 ;则称f (x )在这个区间上是减函数;而这个区间称函数的一个 .若函数f (x )在整个定义域l 内只有唯一的一个单调区间;则f (x )称为 .2.判断单调性的方法:(1) 定义法;其步骤为:① ;② ;③ .(2) 导数法;若函数y =f (x )在定义域内的某个区间上可导;①若 ;则f (x )在这个区间上是增函数;②若 ;则f (x )在这个区间上是减函数. 二、单调性的有关结论1.若f (x ), g (x )均为增(减)函数;则f (x )+g (x ) 函数; 2.若f (x )为增(减)函数;则-f (x )为 ; 3.互为反函数的两个函数有 的单调性;4.复合函数y =f [g(x )]是定义在M 上的函数;若f (x )与g(x )的单调相同;则f [g(x )]为 ;若 f (x ), g(x )的单调性相反;则f [g(x )]为 .5.奇函数在其对称区间上的单调性 ;偶函数在其对称区间上的单调性 .§4函数的奇偶性1.奇偶性:① 定义:如果对于函数f (x )定义域内的任意x 都有 ;则称f (x )为奇函数;若 ;则称f (x )为偶函数. 如果函数f (x )不具有上述性质;则f (x )不具有 . 如果函数同时具有上述两条性质;则f (x ) . ② 简单性质:1) 图象的对称性质:一个函数是奇函数的充要条件是它的图象关于 对称;一个函数是偶函数的充要条件是它的图象关于 对称. 2) 函数f (x )具有奇偶性的必要条件是其定义域关于 对称. 2.与函数周期有关的结论:①已知条件中如果出现)()(x f a x f -=+、或m x f a x f =+)()((a 、m 均为非零常数;0>a );都可以得出)(x f 的周期为 ;②)(x f y =的图象关于点)0,(),0,(b a 中心对称或)(x f y =的图象关于直线b x a x ==,轴对称;均可以得到)(x f 周期第三章 指数函数和对数函数§1 正整数指数函数 §2 指数扩充及其运算性质1.正整数指数函数函数y =a x (a>0;a≠1;x ∈N +)叫作________指数函数;形如y =ka x (k ∈R ;a >0;且a ≠1)的函数称为________函数. 2.分数指数幂(1)分数指数幂的定义:给定正实数a ;对于任意给定的整数m ;n (m ;n 互素);存在唯一的正实数b ;使得b n =a m ;我们把b 叫作a 的mn 次幂;记作b=m na ;(2)正分数指数幂写成根式形式:m na =nam(a >0); (3)规定正数的负分数指数幂的意义是:m na-=__________________(a >0;m 、n ∈N +;且n >1);(4)0的正分数指数幂等于____;0的负分数指数幂__________. 3.有理数指数幂的运算性质 (1)a m a n =________(a >0); (2)(a m )n =________(a >0); (3)(ab )n=________(a >0;b >0).§3 指数函数(一)1.指数函数的概念一般地;________________叫做指数函数;其中x 是自变量;函数的定义域是____.2.指数函数y =a x (a >0;且a ≠1)的图像和性质§4 对数(二)1.对数的运算性质如果a >0;且a ≠1;M >0;N >0;则: (1)log a (MN )=________________; (2)log a MN=________;(3)log a M n =__________(n ∈R ). 2.对数换底公式 log b N =logaNlogab(a ;b >0;a ;b ≠1;N >0); 特别地:log a b ·log b a =____(a >0;且a ≠1;b >0;且b ≠1).a >10<a <1图像定义域 R 值域(0;+∞) 性 质过定点过点______;即x =____时;y =____ 函数值 的变化 当x >0时;______; 当x <0时;________ 当x >0时;________; 当x <0时;________ 单调性是R 上的________是R 上的________§5 对数函数(一)1.对数函数的定义:一般地;我们把______________________________叫做对数函数;其中x 是自变量;函数的定义域是________.________为常用对数函数;y =________为自然对数函数. 2.对数函数的图像与性质 对数函数y =log a x (a >0且a ≠1)和指数函数____________________互为反函数.第四章 函数应用 §1 函数与方程1.1 利用函数性质判定方程解的存在2.函数y =f (x )的零点就是方程f (x )=0的实数根;也就是函数y =f (x )的图像与x 轴的交点的横坐标.定义 y =log a x (a >0;且a ≠1) 底数 a >1 0<a <1 图像定义域 ______ 值域 ______单调性 在(0;+∞)上是增函数 在(0;+∞)上是减函数共点性 图像过点______;即log a 1=0函数值 特点 x ∈(0,1)时; y ∈______; x ∈[1;+∞)时;y ∈______.x ∈(0,1)时; y ∈______; x ∈[1;+∞)时; y ∈______.对称性函数y =log a x 与y =1log a x 的图像关于______对称3.方程f(x)=0有实数根⇔函数y=f(x)的图像与x轴有________⇔函数y=f(x)有________.4.函数零点的存在性的判定方法如果函数y=f(x)在闭区间[a;b]上的图像是连续曲线;并且在区间端点的函数值符号相反;即f(a)·f(b)____0;则在区间(a;b)内;函数y=f(x)至少有一个零点;即相应的方程f(x)=0在区间(a;b)内至少有一个实数解.1.2 利用二分法求方程的近似解1.二分法的概念每次取区间的中点;将区间__________;再经比较;按需要留下其中一个小区间的方法称为二分法.由函数的零点与相应方程根的关系;可用二分法来_________________________________________________________________.2.用二分法求函数f(x)零点近似值的步骤(给定精确度ε)(1)确定区间[a;b];使____________.(2)求区间(a;b)的中点;x1=__________.(3)计算f(x1).①若f(x1)=0;则________________;②若f(a)·f(x1)<0;则令b=x1(此时零点x0∈(a;x1));③若f(x1)·f(b)<0;则令a=x1(此时零点x0∈(x1;b)).(4)继续实施上述步骤;直到区间[a n;b n];函数的零点总位于区间[a n;b n]上;当a n和b n按照给定的精确度所取的近似值相同时;这个相同的近似值就是函数y=f(x)的近似零点;计算终止.这时函数y=f(x)的近似零点满足给定的精确度.。
教学设计§4对数整体设计教学分析我们在前面的学习过程中,已了解了指数函数的概念和性质,它是后续学习的基础,从本节开始我们学习对数及其运算.使学生认识引进对数的必要性,理解对数的概念及其运算性质,了解对数换底公式及其简单应用,能将一般对数转化为常用对数或自然对数,通过阅读材料,了解对数的发现历史及其对简化运算的作用.教材注重从现实生活的事例中引出对数概念,所举例子比较全面,有利于培养学生的思想素质和激发学生学习数学的兴趣和欲望.教学中要充分发挥课本的这些材料的作用,并尽可能联系一些熟悉的事例,以丰富教学的情境创设.教师要尽量发挥电脑绘图的教学功能,教材安排了“阅读与思考”的内容,有利于加强数学文化的教育,应指导学生认真研读.根据本节内容的特点,教学中要注意发挥信息技术的力量,使学生进一步体会到信息技术在数学学习中的作用,尽量利用计算器和计算机创设教学情境,为学生的数学探究与数学思维提供支持.三维目标1.理解对数的概念,了解对数与指数的关系;理解和掌握对数的性质;掌握对数式与指数式的关系;通过实例推导对数的运算性质,准确地运用对数运算性质进行运算,并掌握化简求值的技能;运用对数运算性质解决有关问题.培养学生分析、综合解决问题的能力;培养学生数学应用的意识和科学分析问题的精神和态度.2.通过与指数式的比较,引出对数的定义与性质;让学生经历并推理出对数的运算性质;让学生归纳整理本节所学的知识.3.学会对数式与指数式的互化,从而培养学生的类比、分析、归纳能力;通过对数的运算法则的学习,培养学生严谨的思维品质;在学习过程中培养学生探究的意识;让学生感受对数运算性质的重要性,增加学生的成功感,增强学习的积极性.重点难点教学重点:对数式与指数式的互化及对数的性质,对数运算的性质与对数知识的应用.教学难点:对数概念的理解,对数运算性质的推导及应用.课时安排3课时教学过程4.1对数及其运算(1)导入新课思路1.1.庄子:一尺之棰,日取其半,万世不竭.(1)取4次,还有多长?(2)取多少次,还有0.125尺?2.假设2002年我国国民生产总值为a 亿元,如果每年平均增长8%,那么经过多少年国民生产总值是2002年的2倍?抽象出:1.⎝⎛⎭⎫124=?⎝⎛⎭⎫12x =0.125⇒x =? 2.(1+8%)x =2⇒x =?都是已知底数和幂的值,求指数.你能看得出来吗?怎样求呢?像上面的式子,已知底数和幂的值,求指数,这就是我们这节课所要学习的对数〔引出对数的概念,教师板书课题〕.思路2.我们前面学习了指数函数及其性质,同时也会利用性质解决问题,但仅仅有指数函数还不够,为了解决某些实际问题,还要学习对数函数,为此我们先学习对数〔引出对数的概念,教师板书课题〕.推进新课新知探究提出问题①利用计算机作出函数y =13×1.01x 的图像.②从图像上看,哪一年的人口数要达到18亿、20亿、30亿……?③如果不利用图像该如何解决?说出你的见解.即1813=1.01x ,2013=1.01x ,3013=1.01x ,在这几个式子中,x 分别等于多少?④你能否给出一个一般性的结论?活动:学生讨论并作图,教师适时提示、点拨. 对问题①,回忆计算机作函数图像的方法,抓住关键点.对问题②,图像类似于人的照片,从照片上能看出人的特点,当然从函数图像上就能看出函数的某些点的坐标.对问题③,定义一种新的运算. 对问题④,借助③,类比到一般的情形. 讨论结果:①如图1.图1②在所作的图像上,取点P ,测出点P 的坐标,移动点P ,使其纵坐标分别接近18,20,30,观察这时的横坐标,大约分别为32.72,43.29,84.04,这就是说,如果保持年增长率为1个百分点,那么大约经过33年、43年、84年,我国人口分别约为18亿、20亿、30亿.③1813=1.01x ,2013=1.01x ,3013=1.01x ,在这几个式子中,要求x 分别等于多少,目前我们没学这种运算,可以定义一种新运算,即若1813=1.01x ,则x 称作以1.01为底的1813的对数.其他的可类似得到,这种运算叫作对数运算.④一般性的结论就是对数的定义:一般地,如果a (a >0,a ≠1)的x 次幂等于N ,就是a x =N ,那么数x 叫作以a 为底N 的对数(logarithm),记作x =log a N ,其中a 叫作对数的底数,N 叫作真数.有了对数的定义,前面问题的x 就可表示了:x =log 1.011813,x =log 1.012013,x =log 1.013013.由此得到对数和指数幂之间的关系:例如:42=16⇔2=log 416;102=100⇔2=log 10100;412=2⇔12=log 42;10-2=0.01⇔-2=log 100.01.提出问题①为什么在对数定义中规定a >0,a ≠1? ②根据对数定义求log a 1和log a a (a >0,a ≠1)的值. ③负数与零有没有对数?④a log a N =N 与log a a b =b (a >0,a ≠1)是否成立?讨论结果:①这是因为若a <0,则N 为某些值时,b 不存在,如log (-2)12;若a =0,N 不为0时,b 不存在,如log 03,N 为0时,b 可为任意正数,是不唯一的,即log 00有无数个值;若a =1,N 不为1时,b 不存在,如log 12,N 为1时,b 可为任意数,是不唯一的,即log 11有无数个值.综之,就规定了a >0且a ≠1.②log a 1=0,log a a =1.因为对任意a >0且a ≠1,都有a 0=1,所以log a 1=0. 同样易知:log a a =1.即1的对数等于0,底的对数等于1.③因为底数a >0且a ≠1,由指数函数的性质可知,对任意的b ∈R ,a b >0恒成立,即只有正数才有对数,零和负数没有对数.④因为a b =N ,所以b =log a N ,a b =a log a N =N ,即a log a N =N .因为a b =a b ,所以log a a b =b .故两个式子都成立.(a log a N =N 叫对数恒等式) 思考我们对对数的概念和一些特殊的式子已经有了一定的了解,但还有两类特殊的对数对科学研究和了解自然起了巨大的作用,你们知道是哪两类吗?活动:同学们阅读课本的内容,教师引导,板书.解答:①常用对数:我们通常将以10为底的对数叫作常用对数.为了简便,N 的常用对数log 10N 简记作lg N .例如:log 105简记作lg 5;log 103.5简记作lg 3.5.②自然对数:在科学技术中常常使用以无理数e =2.718 28…为底的对数,以e 为底的对数叫作自然对数,为了简便,N 的自然对数log e N 简记作ln N .例如:log e 3简记作ln 3;log e 10简记作ln 10.应用示例思路11将下列指数式写成对数式:(1)54=625;(2)3-3=127;(3)438=16;(4)5a =15.活动:学生阅读题目,独立解题,把自己解题的过程展示在屏幕上,教师评价学生,强调注意的问题.对(1)根据指数式与对数式的关系,4在指数位置上,4是以5为底625的对数. 对(2)根据指数式与对数式的关系,-3在指数位置上,-3是以3为底127的对数.对(3)根据指数式与对数式的关系, 43在指数位置上,43是以8为底16的对数.对(4)根据指数式与对数式的关系,a 在指数位置上,a 是以5为底15的对数. 解:(1)log 5625=4;(2)log 3127=-3;(3)log 816=43;(4)a =log 515.思考指数式与对数式的互化应注意哪些问题?活动:学生考虑指数式与对数式互化的依据,回想对数概念的引出过程,理清对数与指数幂的关系,特别是位置的对照.解答:若是指数式化为对数式,关键要看清指数是几,再写成对数式.若是对数式化为指数式,则要看清真数是几,再写成幂的形式.最关键的是搞清N 与b 在指数式与对数式中的位置,千万不可大意,其中对数的定义是指数式与对数式互化的依据.例2 求下列各式的值:(1)log 525;(2)13log 32;(3)3log 310;(4)ln 1;(5)log 2.52.5.活动:学生独立解题,教师同时展示学生的做题情况,要求学生说明解答的依据,利用指数式与对数式的关系,转化为指数式求解.解:(1)因为52=25,所以log 525=2. (2)因为⎝⎛⎭⎫12-5=32,所以13log 32=-5.(3)设3log 310=N ,则log 3N =log 310,所以N =10,即3log 310=10. (4)因为e 0=1,所以ln 1=0. (5)因为2.51=2.5,所以log 2.52.5=1.点评:本题要注意方根的运算,同时也可借助对数恒等式来解. 例3 将下列对数式写成指数式. (1)12log 16=-4;(2)log 3243=5;(3)131log 27=3;(4)lg 0.1=-1. 活动:学生阅读题目,独立解题,发表自己的见解,把结果用多媒体显示在屏幕上. 解:根据指数式与对数式的关系,得(1)⎝⎛⎭⎫12-4=16;(2)35=243;(3)⎝⎛⎭⎫133=127;(4)10-1=0.1.点评:对数的定义是指数式与对数式互化的根据.思路2例1 以下四个命题中,属于真命题的是( ). (1)若log 5x =3,则x =15 (2)若log 25x =12,则x =5(3)若log x 5=0,则x = 5 (4)若log 5x =-3,则x =1125A .(2)(3)B .(1)(3)C .(2)(4)D .(3)(4)活动:学生观察,教师引导学生考虑对数的定义. 对数式化为指数式,根据指数幂的运算性质算出结果. 对于(1),因为log 5x =3,所以x =53=125,错误;对于(2),因为log 25x =12,所以x =1225=5,正确;对于(3),因为log x 5=0,所以x 0=5,无解,错误; 对于(4),因为log 5x =-3,所以x =5-3=1125,正确.总之(2)(4)正确. 答案:C点评:对数的定义是对数形式和指数形式互化的依据. 例2 对于a >0,a ≠1,下列结论正确的是( ).(1)若M =N ,则log a M =log a N (2)若log a M =log a N ,则M =N (3)若log a M 2=log a N 2,则M =N (4)若M =N ,则log a M 2=log a N 2 A .(1)(3) B .(2)(4) C .(2)D .(1)(2)(4)活动:学生思考,讨论,交流,回答,教师及时评价. 回想对数的有关规定.对(1)若M =N ,当M 为0或负数时log a M ≠log a N ,因此错误; 对(2)根据对数的定义,若log a M =log a N ,则M =N ,正确; 对(3)若log a M 2=log a N 2,则M =±N ,因此错误;对(4)若M =N =0时,则log a M 2与log a N 2都不存在,因此错误. 综上,(2)正确. 答案:C点评:0和负数没有对数,一个正数的平方根有两个. 例3 计算: (1)log 927;(2)log ;(3)log (2+3)(2-3);(4)log 354625.活动:教师引导,学生回忆,教师提问,学生回答,积极交流,学生展示自己的解题过程,教师及时评价学生.利用对数的定义或对数恒等式来解.求式子的值,首先设成对数式,再转化成指数式或指数方程求解.另外利用对数恒等式可直接求解,所以有两种解法.解法一:(1)设x =log 927,则9x =27,32x =33,所以x =32.(2)设x =,则(43)x =81,43x =34,所以x =16.(3)令x =log (2+3)(2-3)=log (2+3)(2+3)-1,所以(2+3)x =(2+3)-1,x =-1. (4)令x =625,所以(354)x =625,435x =54,x =3.解法二:(1)log 927=log 933=329log 9=32.(2)=)16=16. (3)log (2+3)(2-3)=log (2+3)(2+3)-1=-1.(4)625=(354)3=3.点评:首先将其转化为指数式,进一步根据指数幂的运算性质算出结果,对数的定义是转化和对数恒等式的依据.知能训练1.把下列各题的指数式写成对数式:(1)42=16;(2)30=1;(3)4x =2;(4)2x =0.5;(5)54=625;(6)3-2=19;(7)⎝⎛⎭⎫14-2=16. 解:(1)2=log 416;(2)0=log 31;(3)x =log 42;(4)x =log 20.5;(5)4=log 5625;(6)-2=log 319;(7)-2=14log 16.2.把下列各题的对数式写成指数式:(1)x =log 527;(2)x =log 87;(3)x =log 43;(4)x =log 713;(5)log 216=4;(6)13log 27=-3;(7)log3x =6;(8)log x 64=-6;(9)log 2128=7;(10)log 327=a .解:(1)5x =27;(2)8x =7;(3)4x =3;(4)7x =13;(5)24=16;(6)⎝⎛⎭⎫13-3=27;(7)(3)6=x ;(8)x -6=64;(9)27=128;(10)3a =27.3.求下列各式中x 的值:(1)log 8x =-23;(2)log x 27=34;(3)log 2(log 5x )=1;(4)log 3(lg x )=0.解:(1)因为log 8x =-23,所以x =238-=233(2)-=2332⎛⎫⨯- ⎪⎝⎭=2-2=14;(2)因为log x 27=34,所以34x =27=33,即x =433(3)=34=81; (3)因为log 2(log 5x )=1, 所以log 5x =2,x =52=25; (4)因为log 3(lg x )=0, 所以lg x =1,即x =101=10. 4.(1)求log 84的值;(2)已知log a 2=m ,log a 3=n ,求a 2m+n的值.解:(1)设log 84=x ,根据对数的定义有8x =4,即23x =22, 所以x =23,即log 84=23;(2)因为log a 2=m ,log a 3=n ,根据对数的定义有a m =2,a n =3, 所以a 2m +n =(a m )2·a n =(2)2·3=4×3=12.点评:此题不仅是简单的指数与对数的互化,还涉及到常见的幂的运算法则的应用.拓展提升请你阅读课本,搜集有关对数发展的材料,以及有关数学家关于对数的材料,通过网络查寻关于对数换底公式的材料,为下一步学习打下基础.课堂小结(1)对数引入的必要性;(2)对数的定义;(3)几种特殊数的对数;(4)负数与零没有对数;(5)对数恒等式;(6)两种特殊的对数.作业1.将下列指数式与对数式互化,有x 的求出x 的值. (1)125-=15;(2)log 24=x ;(3)3x=127; (4)⎝⎛⎭⎫14x=64;(5)lg 0.000 1=x ;(6)ln e 5=x . 解:(1)125-=15化为对数式是log 515=-12;(2)x =log 24化为指数式是(2)x =4,即22x =22,x2=2,x =4;(3)3x =127化为对数式是x =log 3127,因为3x =⎝⎛⎭⎫133=3-3,所以x =-3;(4)⎝⎛⎭⎫14x =64化为对数式是x =14log 64,因为⎝⎛⎭⎫14x=64=43,所以x =-3; (5)lg 0.000 1=x 化为指数式是10x =0.000 1, 因为10x =0.000 1=10-4,所以x =-4; (6)ln e 5=x 化为指数式是e x =e 5, 因为e x =e 5,所以x =5.2.计算log 3315的值.解:设x =log 315,则3x =15,(312)x =(15)12,所以x =log315.所以log 3+315=5=5+15=655.3.计算a log a b ·log b c ·log c N (a >0,b >0,c >0,N >0). 解:a log a b ·log b c ·log c N =b log b c ·log c N =c log c N =N . 设计感想本节课在前面研究了指数函数及其性质的基础上,为了运算的方便,引进了对数的概念,使学生感受到对数的现实背景,它有着丰富的内涵,和我们的实际生活联系密切,也是以后学习对数函数的基础,鉴于这种情况,安排教学时,无论是导入还是概念得出的过程,都比较详细,通俗易懂,要反复练习,要紧紧抓住它与指数概念之间的联系与区别,结合指数式理解对数式,强化对数是一种运算,并注意对数运算符号的理解和记忆,多运用信息化的教学手段,顺利完成本堂课的任务,为下一节课作准备.(设计者:路致芳)。
第三章检测(时间:120分钟满分:150分)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1函数f(x)=√2x-1的定义域是()A.(-∞,0]B.[0,+∞)C.(-∞,0)D.(-∞,+∞)解析:要使f(x)=√2x-1有意义,需2x-1≥0,故x∈[0,+∞).答案:B2若a>1,b<-1,则函数y=a x+b的图像必不经过()A.第一象限B.第二象限C.第三象限D.第四象限解析:y=a x+b(a>1,b<-1)的图像如图.故选B.答案:B3设集合M={y |y =(12)x,x ∈[0,+∞)},N={y|y=log 2x ,x ∈(0,1]},则集合M ∪N 等于( )A.(-∞,0)∪[1,+∞)B.[0,+∞)C.(-∞,1]D.(-∞,0)∪(0,1) 答案:C4下列函数中,既不是奇函数,也不是偶函数的是( ) A.y=√1+x 2 B.y=x+1x C.y=2x +12xD.y=x+e x解析:根据函数奇偶性的定义,易知函数y=√1+x 2,y=2x +12x 为偶函数,y=x+1x 为奇函数,所以排除选项A,B,C.故选D. 答案:D5函数y=log 2(1-x )的图像是( )解析:∵1-x>0,∴x<1.这样可排除选项A,D .∵y=log 2(1-x )在定义域上是减函数, ∴B 选项正确. 答案:B6log 89log 23的值为( )A.23B.32C.2D.3解析:log 89log 23=lg9lg8·lg2lg3=2lg33lg2·lg2lg3=23. 答案:A7设函数f (x )={1+log 2(2-x ),x <1,2x -1, x ≥1,则f (-2)+f (log 212)=( )A.3B.6C.9D.12解析:∵f (-2)=1+log 24=3,f (log 212)=2log 212-1=2log 21221=122=6,∴f (-2)+f (log 212)=9.答案:C8已知函数f (x )=log a x (a>0,a ≠1),若f (x 1)-f (x 2)=1,则f (x 12)-f (x 22)等于( )A.2B.1C.12D.log a 2解析:f (x 12)-f (x 22)=log a x 12-log a x 22=2log a x 1-2log a x 2=2[f (x 1)-f (x 2)]=2. 答案:A9某工厂去年总产值为a,计划今后5年内每年比前一年增长10%,则这5年的最后一年该厂的总产值是()A.1.14aB.1.15aC.1.16aD.(1+1.15)a答案:B10给出下列三个等式:f(xy)=f(x)+f(y);f(x+y)=f(x)f(y);f(x+y)=f(x)+f(y).下列函数中其中不满足任何一个等式的是()A.f(x)=3xB.f(x)=log2xC.f(x)=xα(α≠1)D.f(x)=kx(k≠0)解析:利用指数函数和对数函数的运算性质可知,选项A满足第二个关系式;选项B满足第一个关系式;选项D满足第三个关系式.答案:C11函数f(x)=a x+log a(x+1)在[0,1]上的最大值与最小值之和为a,则a的值为()A.14B.12C.2D.4解析:函数f(x)=a x+log a(x+1),令y1=a x,y2=log a(x+1),显然在[0,1]上,y1=a x与y2=log a(x+1)同增或同减.因而[f(x)]max+[f(x)]min=f(1)+f(0)=a+log a2+1+0=a,解得a=12.答案:B12设偶函数f (x )=log a |x+b|在(0,+∞)上具有单调性,则f (b-2)与f (a+1)的大小关系为( )A.f (b-2)=f (a+1)B.f (b-2)>f (a+1)C.f (b-2)<f (a+1)D.不能确定 解析:∵函数f (x )是偶函数,∴b=0,此时f (x )=log a |x|.当a>1时,函数f (x )=log a |x|在(0,+∞)上是增加的,∴f (a+1)>f (2)=f (b-2);当0<a<1时,函数f (x )=log a |x|在(0,+∞)上是减少的,∴f (a+1)>f (2)=f (b-2). 综上可知,f (b-2)<f (a+1). 答案:C二、填空题(本大题共4小题,每小题5分,共20分.把答案:填在题中的横线上) 13lg 52+2lg 2-(12)-1= .解析:根据对数的运算法则知,lg 52+2lg 2-(12)-1=lg 5-lg 2+2lg 2-2=lg 5+lg 2-2=lg 10-2=-1. 答案:-114若函数f (x )=x ln(x+√a +x 2)为偶函数,则a= . 解析:∵f (x )是偶函数,∴f (-1)=f (1).又f (-1)=-ln(-1+√a +1)=ln√a+1+1a ,f (1)=ln(1+√a +1),因此ln(√a +1+1)-ln a=ln(√a +1+1), 于是ln a=0,∴a=1. 答案:115若a=log 43,则2a +2-a = .解析:由a=log 43,知2a +2-a=2log 43+2-log 43=2log 2√3+2log 2√33=√3+√33=4√33. 答案:4√3316设函数f (x )=log a x (a>0,a ≠1),若f (x 1x 2…x 2 018)=8,则f (x 12)+f (x 22)+…+f (x 2 0182)的值等于 . 答案:16三、解答题(本大题共6小题,共70分.解答时应写出文字说明、证明过程或演算步骤) 17(10分)化简求值:(1)2(√23×√3)6+(√2√2)43-4(1649)-12−√24×80.25+(-2 016)0;(2)lg5·lg8 000+(lg2√3)2lg600-12lg0.36.解(1)原式=2(213×312)6+(212×214)43-4×74−214×234+1=2×22×33+2-7-2+1=210.(2)∵lg 5·lg 8 000+(lg 2√3)2=lg 5(3+3lg 2)+3(lg 2)2=3lg 5+3lg 2(lg 5+lg 2)=3, lg 600-12lg 0.36=(lg 6+2)-lg √36100=lg 6+2-lg 610=3,∴原式=33=1.18(12分)已知函数f (x )=14x -1-a.(1)求函数f (x )的定义域; (2)若f (x )为奇函数,求a 的值. 解(1)∵4x -1≠0,∴4x ≠1.∴x ≠0.∴f (x )的定义域为(-∞,0)∪(0,+∞). (2)∵f (x )为奇函数,∴f (-x )=-f (x ). ∴14-x -1-a=-14x -1+a. ∴2a=4x1-4x +14x -1=1-4x4x -1=-1. ∴a=-12.19(12分)(1)已知x+x -1=3(x>0),求x 32+x -32的值; (2)已知log 4(3x-1)=log 4(x-1)+log 4(3+x ),求实数x 的值. 解(1)∵(x 12+x -12)2=x+x -1+2=5,∴x 12+x -12=√5.∴x 32+x -32=(x 12+x -12)(x+x -1-1) =√5(3-1)=2√5.(2)∵log 4(3x-1)=log 4(x-1)+log 4(3+x ),∴log 4(3x-1)=log 4[(x-1)(3+x )]. ∴3x-1=(x-1)(3+x ),且x>1.∴x=2.20(12分)已知函数f (x )={(12)x -1,x >1,x 2,x ≤1.(1)画出函数f (x )的图像,并根据图像写出该函数的递减区间; (2)求不等式f (x )>14的解集. 解(1)作函数f (x )的图像如下,函数的递减区间为(-∞,0],[1,+∞). (2)令f (x )=14,解得x=±12或x=3, 结合图像可知,f (x )>14的解集为 {x |x <-12或12<x <3}.21(12分)某家庭进行理财投资,根据长期收益率市场预测,投资债券等稳健型产品的收益与投资额成正比,投资股票等风险型产品的收益与投资额的算术平方根成正比.已知投资1万元时两类产品的收益分别为0.125万元和0.5万元(如图). (1)分别写出这两种产品的收益与投资额的函数关系.(2)该家庭现有20万元资金,全部用于理财投资,问:怎么分配资金能使投资获得最大收益?其最大收益是多少万元?解(1)设投资债券等稳健型产品的收益f (x )(万元)与投资额x (万元)的函数关系为f (x )=k 1x (k 1≠0,x ≥0),投资股票等风险型产品的收益g (x )(万元)与投资额x (万元)的函数关系为g (x )=k 2√x (k 2≠0,x ≥0),则f (1)=0.125=k 1,g (1)=0.5=k 2, 则k 1=0.125=18,k 2=0.5=12, 故f (x )=18x (x ≥0),g (x )=12√x (x ≥0).(2)设投资债券类产品x 万元,则投资股票类产品(20-x )万元,依题意得,获得的总收益y=f (x )+g (20-x )=x8+12√20-x (0≤x ≤20).令t=√20-x (0≤t ≤2√5),则y=20-t 28+12t=-18(t-2)2+3,当t=2时,y max =3,故当x=16万元时,y max =3万元.所以投资债券类产品16万元,投资股票类产品4万元时,能使投资获得最大收益3万元.22(12分)已知函数f (x )=a x -1a x +1(a>1). (1)判断函数的奇偶性; (2)求该函数的值域; (3)证明:f (x )是R 上的增函数. (1)解函数的定义域为R ,f (-x )+f (x )=a -x -1a -x +1+a x -1a x +1 =1-a x1+a x +a x -1a x +1=0,∴函数f (x )为奇函数. (2)解∵f (x )=a x -1a x +1=1-2a x +1(a>1),设t=a x,则t>0,y=1-2t+1的值域为(-1,1), ∴该函数的值域为(-1,1).(3)证明任取x1,x2∈R,且x1<x2,则f(x1)-f(x2)=a x1-1a x1+1−a x2-1a x2+1=2(a x1-a x2)(a x1+1)(a x2+1).∵a>1,x1,x2∈R,且x1<x2,∴a x1−a x2<0,a x1+1>0,a x2+1>0.∴2(a x1-a x2)(a x1+1)(a x2+1)<0,即f(x1)-f(x2)<0,f(x1)<f(x2).∴f(x)是R上的增函数.。
新课标北师大版高中数学教材目录及课时安排必修1(36节)第一章集合(5)§1 集合的含义与表示 1 §2 集合的基本关系1§3 集合的基本运算 2 阅读材料康托与集合论小结与复习1第二章函数(9)§1 生活中的变量关系1 §2 对函数的进一步认识3§3 函数的单调性 1 §4 二次函数性质的再研究2§5 简单的幂函数 1 阅读材料函数概念的发展小结与复习1第三章指数函数和对数函数(14)§1 正整数指数函数 1 §2 指数概念的扩充3§3 指数函数 3 §4 对数 2§5 对数函数3§6 指数函数、幂函数、对数函数增长的比较1第四章函数应用7§1 函数与方程 2 §2 实际问题的函数建模4小结与复习1必修2(36)第一章立体几何初步(18节)§1 简单几何体 1 §2 直观图 1§3 三视图 3 §4 空间图形的基本关系与公理 2§5 平行关系 3 §6 垂直关系 4§7 简单几何体的面积和体积2第二章解析几何初步(18节)§1 直线与直线的方程8 §2 圆与圆的方程 5§3 空间直角坐标系3必修3全书目录第一章统计(16)§1 统计活动:随机选取数字§2 从普查到抽样§3 抽样方法§4 统计图表§5 数据的数字特征§6 用样本估计总体§7 统计活动:结婚年龄的变化§8 相关性§9 最小二乘法第二章算法初步(12)§1 算法的基本思想§2 算法的基本结构及设计§3 排序问题§4 几种基本语句第三章概率(8)§1 随机事件的概率§2 古典概型§3模拟方法――概率的应用必修4第一章三角函数(16)§1 周期现象与周期函数§2 角的概念的推广§3 弧度制§4 正弦函数§5 余弦函数§6 正切函数§7 函数的图像§8 同角三角函数的基本关系阅读材料数学与音乐第二章平面向量(12)§1 从位移、速度、力到向量§2 从位移的合成到向量的加法§3 从速度的倍数到数乘向量§4 平面向量的坐标§5 从力做的功到向量的数量积§6 平面向量数量积的坐标表示§7 向量应用举例阅读材料向量与中学数学第三章三角恒等变形(8)§1 两角和与差的三角函数§2 二倍角的正弦、余弦和正切§3 半角的三角函数§4 三角函数的和差化积与积化和差§5 三角函数的简单应用必修5第一章数列(12)§1数列1.1数列的概念 1.2数列的函数特性§2等差数列2.1等差数列 2.2等差数列的前n项和§3等比数列3.1等比数列 3.2等比数列的前n项和§4书雷在日常经济生活中的应用第二章解三角形(8)§1正弦定理与余弦定理1.1正弦定理 1.2余弦定理§2三角形中的几何计算§3解三角形的实际应用举例第三章不等式(16)§1不等关系——2 1.1不等关系 1.2比较大小§2一元二次不等式——52.1一元二次不等式的解法 2.2一元二次不等式的应用§3基本不等式——— 33.1基本不等式 3.2基本不等式与最大(小)值§4简单线性规划——54.1二元一次不等式(组)与平面区域4.2简单线性规划 4.3简单线性规划的应用。
§4对数知识点一对数的有关概念[填一填](1)一般地,如果a b=N(a>0,且a≠1),那么数b叫作以a为底N的对数,记作log a N=b,其中a叫作对数的底数,N叫作真数.(2)以10为底的对数叫作常用对数,N的常用对数记作lg N.(3)以e为底的对数叫作自然对数,N的自然对数记作ln N.[答一答]1.对数概念的理解?提示:(1)对数是一种数,对数式log a N可看作一记号,表示关于x的方程a x=N(a>0,且a≠1)的解;也可以看作一种运算,即已知底为a(a>0,且a≠1)幂为N,求幂指数的运算,因此,对数式log a N又可看作幂运算的逆运算.(2)对数符号log a N只有在a>0,a≠1,且N>0时才有意义,而对数值b=log a N,可以为任意的实数.知识点二对数的运算性质[填一填]如果a>0,a≠1,M>0,N>0,则(1)log a(MN)=log a M+log a N;(2)log a MN=log a M-log a N;(3)log a M n=n·log a M(n∈R).[答一答]2.如何正确运用对数的运算法则? 提示:(1)运算中常见的错误有: log a (MN )=log a M ·log a N . log a M N =log a M log a N .log a N n =(log a N )n .log a M ±log a N =log a (M ±N ).(2)注意前提条件:a >0,a ≠1,M >0,N >0,尤其是M ,N 都是正数这一条件,否则M ,N 中有一个小于或等于0,就导致log a M 或log a N 无意义,另外还要注意,M >0,N >0与M ·N >0并不等价.(3)要注意运算法则的逆用. 知识点三 换底公式[填一填]log b N =log a N log a b(a 、b >0,a 、b ≠1,N >0).[答一答]3.如何准确的应用换底公式?提示:(1)在使用换底公式时,底数的取值不唯一,应根据实际情况选择. (2)换底公式的意义就在于把对数式的底数改变,把不同底问题转化为同底问题. 如:在化简求值过程中,出现不同底数的对数不能运用运算法则时,可统一化成以同一个实数为底的对数,再根据运算法则进行化简与求值.(3)要注意换底公式的两个重要推论的应用. ①log a b =1log b a ,②log am b n =nmlog a b .1.对数log a N 中规定a >0,a ≠1的原因2.对对数的三点说明(1)对数式是指数式的另一种表现形式,是求指数式中幂指数的一种运算方式,因此指数式和对数式之间可以互相转化,即a b =N ⇔b =log a N .(2)对数通过符号log a N 表达,log a N 是一个整体,不是表示log a 和N 的乘积,字母a 和N 都有相应的意义和范围要求.(3)对数表示的是一个可正、可负也可为零的实数.类型一 对数式与指数式的互化【例1】 将下列指数式化为对数式,对数式化为指数式: (1)3-2=19; (2)⎝⎛⎭⎫14-2=16;【解】 (1)log 319=-2.规律方法 指数运算与对数运算是一对互逆运算,在对数式log a N =x 与指数式a x =N (a >0,且a ≠1)的互化过程中,要特别注意a ,x ,N 的对应位置.将下列对数式化成指数式或将指数式化成对数式. (1)54=625; (2);(3)3a =27; (4)log 101 000=3. 解:(1)∵54=625,∴log 5625=4.(2)∵,∴⎝⎛⎭⎫12-3=8.(3)∵3a =27,∴log 327=a . (4)∵log 101 000=3,∴103=1 000. 类型二 利用对数的运算法则进行计算【例2】 计算:(1)log 535-2log 573+log 57-log 51.8;(2)2(lg 2)2+lg 2·lg5+(lg 2)2-lg2+1; (3)(lg5)2+lg2·lg50.【思路探究】 (1)对数的运算实质是把积、商、幂的对数运算分别转化为对数的加、减、乘的运算;(2)对于含有对数式的多项式运算问题:①可以将式中真数的积、商、幂、方根运用运算性质化为对数的和、差、积,然后化简求值;②可以将式中的对数的和、差、积化为真数的积、商、幂、方根,然后化简求值.【解】 (1)原式=log 5(5×7)-2(log 57-log 53)+log 57-log 595=log 55+log 57-2log 57+2log 53+log 57-2log 53+log 55=2log 55=2.(2)原式=lg 2(2lg 2+lg5)+(lg 2-1)2=lg2(lg2+lg5)+1-lg 2=lg2+1-lg2=1.(3)原式=(lg5)2+lg2·(lg2+2lg5)=(lg5)2+2lg5·lg2+(lg2)2=1.规律方法(1)在应用对数运算性质时应注意保证每个对数式都有意义,应避免出现lg(-5)2=2lg(-5)等形式的错误,同时应注意对数性质的逆用在解题中的应用.譬如在常用对数中,lg2=1-lg5,lg5=1-lg2的运用.(2)对于底数相同的对数式的化简,常用的方法是:①“收”,将同底的两对数的和(差)收成积(商)的对数;②“拆”,将积(商)的对数拆成对数的和(差).(3)对数的化简求值一般是正用或逆用公式,对真数进行处理,选哪种策略化简,取决于问题的实际情况,一般本着便于真数化简的原则进行.解:类型三换底公式的应用【例3】已知log189=a,18b=5,求log3645的值.(用含a,b的式子表示)【思路探究】(1)利用换底公式可以把题目中不同底数的对数化成同底数的对数,应用对数性质进行计算;(2)题目中有指数式和对数式时,要注意指数式与对数式的互化.【解】 解法1:因为18b =5,所以log 185=b , 所以log 3645=log 1845log 1836=log 18(9×5)log 18(18×2)=log 189+log 1851+log 182=a +b 1+log 18189=a +b 2-a .解法2:因为log 189=a ,所以18a =9.又因为18b =5, 所以45=5×9=18b ·18a =18a +b .令log 3645=x , 则36x =45=18a +b ,即36x =(183×183)x =18a +b ,所以(1829)x =18a +b,所以x log 181829=a +b ,所以x =a +b log 18182-log 189=a +b 2-a. 规律方法 用已知对数表示未知对数,就是把表示的对数的真数分解成已知对数的真数的积、商、幂的形式,然后用对数的运算性质,但应注意运用性质只有在同底的情况下才能运算.(1)log 916·log 881的值为( C ) A .18 B.118 C.83D.38解析:原式=log 3224·log 2334=2log 32·43log 23=83.解析:=lg2lg3+lg5lg3=1lg3=log 310. (3)计算:(log 32+log 92)·(log 43+log 83). 解:(log 32+log 92)·(log 43+log 83) =⎝⎛⎭⎫log 32+log 32log 39·⎝⎛⎭⎫log 23log 24+log 23log 28=⎝⎛⎭⎫log 32+12log 32·⎝⎛⎭⎫12log 23+13log 23 =32log 32×56log 23=54. 类型四 对数方程的解法 【例4】 解下列方程: (1)log 2(x +1)-log 4(x +4)=1; (2)3lg x -2-3lg x +4=0;【思路探究】 根据对数方程的特点,将对数方程化为一般代数方程并求解. 【解】 (1)由原方程得log 2(x +1)=log 4(x +4)+1, ∴log 2(x +1)2=log 2[4(x +4)],∴(x +1)2=4(x +4),解得x =5或x =-3, 经检验x =-3为增根,应舍去. 故原方程的解为x =5. (2)设3lg x -2=y ,则原方程可化为y -y 2+2=0,解得y =-1或y =2. ∵3lg x -2≥0,因此,y =-1为增根,应舍去. 由3lg x -2=2,得lg x =2,∴x =100.经检验,x =100为原方程的解.(3)等式两边取常用对数得[(lg x )3-2lg x ]lg x =lg0.1,(lg x )4-2(lg x )2+1=0,∴[(lg x )2-1]2=0,(lg x )2=1,lg x =±1, ∴x =10或x =110.规律方法 解对数方程就是将其转化成同底的对数式,或利用换元法将其转化成一元二次方程求解,在转化或化归的过程中,不是同解变形的,必须把所求的解代入原方程进行检验.对数方程的题型与解法: 名称 题型解法基本型 log a f (x )=b 将对数式转化为指数式f (x )=a b 同底数型 log a f (x )=log a φ(x ) 转化为f (x )=φ(x )(必须验根)需代换型F (log a x )=0换元,令t =log a x 转化为关于t 的代数方程解下列关于x 的方程: (1)log 2(2x +1)=log 2(3x ); (2)12(lg x -lg3)=lg5-12lg(x -10); 解:(1)由log 2(2x +1)=log 2(3x )得2x +1=3x , 解得x =1.检验:当x =1时,2x +1>0,3x >0.故x =1. (2)原方程可化为lgx3=lg 5x -10, ∴x 3=5x -10,即x 2-10x -75=0, 解得x =15或x =-5,检验:当x =-5时,x3<0,x -10<0,此时根式无意义,舍去;当x =15时,满足题意,故x =15.——易错误区—— 因忽略真数的范围致误【错解】 0或4或2【正解】 4 由已知得lg(xy )=lg(x -2y )2, 从而有xy =(x -2y )2整理得x 2-5xy +4y 2=0, 即(x -y )(x -4y )=0,所以x =y 或x =4y . 但由x >0,y >0,x -2y >0① 得x >2y >0.所以x =y 应舍去,故xy =4.【错因分析】 1.在①处忽略对数式本身的限制条件导致得到增解0. 2.在②处,计算时因对数的运算法则不熟导致运算错误. 【防范措施】 1.注意对数运算法则的适用条件对数运算法则的适用条件是同底且真数均大于零,如本例中真数“x -2y >0”,隐含着x >2y .2.熟练掌握对数的运算法则已知2log 3x -y 2=log 3(xy )(x >y >0),则xy=3+2 2. 解析:由题意有x >y ,xy >0且(x -y2)2=xy .所以x 2-6xy +y 2=0,所以(x y )2-6(x y )+1=0.所以xy =3±2 2.因为x >y >0,所以x y >1,所以xy=3+2 2.一、选择题1.当a >0,a ≠1时,下列结论正确的是( C ) ①若M =N ,则log a M =log a N ; ②若log a M =log a N ,则M =N ; ③若log a M 2=log a N 2,则M =N ; ④若M =N ,则log a M 2=log a N 2. A .①② B .②④ C .②D .①②③④解析:①M ≤0时不对;②正确;③应为M =±N ;④M =0时不对. 2.已知x ,y 为正实数,则( D )解析:10ln x -ln y =10ln x 10ln y 故A 错,B 、C 公式不对,D 项10ln x y =10ln x -ln y =10ln x 10ln y .选D.3.已知a =log 32,那么log 38-2log 36用a 表示是( A ) A .a -2 B .5a -2 C .3a -(1+a )2D .3a -a 2-1解析:log 38-2log 36=log 323-2(log 32+log 33)=3log 32-2(log 32+1)=3a -2(a +1)=a -2.故选A.二、填空题4.2log 525+3log 264-8ln1=22.解析:原式=2×2+3log 226-8·ln1=4+3×6-0=22. 5.log 6[log 4(log 381)]=0.解析:log 6[log 4(log 381)]=log 6[log 4(log 334)]=log 6(log 44)=log 61=0.三、解答题6.求下列各式的值.(1)log 1627·log 8132; (2)log 52·log 79log 513·log 734+log 2(3+5-3-5). 解:(1)原式=lg27lg16·lg32lg81=lg33lg24·lg25lg34=3lg34lg2·5lg24lg3=1516.。
6 指数函数、幂函数、对数函数增长的比较1.指数函数、幂函数、对数函数增长的比较(1)指数函数、对数函数、幂函数为增函数的前提条件当a>1时,指数函数y=a x是增函数,并且当a越大时,其函数值的增长就越快.当a>1时,对数函数y=log a x是增函数,并且当a越小时,其函数值的增长就越快.当x>0,n>0时,幂函数y=x n显然也是增函数,并且当x>1时,n越大其函数值的增长就越快.(2)具体的指数函数、幂函数、对数函数增长的比较(只考虑x>0的情况)在同一直角坐标系内利用几何画板软件作出函数y=2x,y=x2,y=log2x的图像(如图).从图中可以观察出,y=2x与y=x2有两个交点:(2,4)和(4,16),当0<x<2时,2x>x2;当2<x<4时,2x<x2;当x>4时,2x>x2恒成立,即y=2x比y=x2增长得快;而在(0,+∞)上,总有x2>log2x,即y=x2比y=log2x增长得快.由此可见,在(0,2)和(4,+∞)上,总有2x>x2>log2x,即y=2x增长得最快;在(2,4)上,总有x2>2x>log2x,即y=x2增长得最快.(3)一般的指数函数、幂函数、对数函数增长的比较改变指数函数、对数函数的底数和幂函数的指数,重新作图,观察图像会发现这三种函数的增长情况具有一定的规律性.一般地,对于指数函数y=a x(a>1)和幂函数y=x n(n>0),通过探索可以发现,在区间(0,+∞)上,无论a比n小多少,尽管在x的一定范围内,a x会小于x n,但由于a x的增长快于x n的增长,因此总存在一个x0,当x>x0时,就会有a x>x n;同样的,对于对数函数y=log a x(a>1)和幂函数y=x n(n>0),随着x的增大,log a x增长得越来越慢,图像就像是渐渐地与x轴平行一样,尽管在x的一定区间内,log a x可能会大于x n,但由于log a x的增长慢于x n的增长,因此总存在一个x0,当x>x0时,就会有log a x<x n.综上所述,尽管函数y=a x(a>1),y=log a x(a>1)和y=x n(n>0)都是增函数,但它们的增长速度不同,而且不在同一个“档次”上,随着x的增大,y=a x(a>1)的增长速度越来越快,会超过并远远大于y=x n(x>0)的增长速度,而y=log a x(a>1)的增长速度则会越来越慢,因此,总会存在一个x0,当x>x0时,就会有log a x<x n<a x.由于指数函数值增长非常快,人们常称这种现象为“指数爆炸”.析规律三种函数模型的性质x 0510********y15130505 1 130 2 005 3 130 4 505y2594.478 1 785.233 733 6.37×105 1.2×107 2.28×108y35305580105130155y45 2.310 7 1.429 5 1.140 7 1.046 1 1.015 1 1.005.解析:根据表格中数据可以看出,四个变量y1,y2,y3,y4均是从5开始变化,其中变量y4的值随变量x的增长越来越小,故变量y4不关于x呈指数函数增长,变量y1,y2,y3的值都随变量x的增长越来越大,其中变量y2的值增长速度最快,所以变量y2关于x呈指数型函数增长.答案:y2析规律函数值的增加量在指数函数、幂函数、对数函数三种增加的函数中,当自变量增加相同的量时,指数函数的函数值增加量最大.【例1-2】在给出的四个函数y=3x,y=x3,y=3x,y=log3x中,当x∈(3,+∞)时,其中增长速度最快的函数是( ).A.y=3x B.y=3xC.y=x3 D.y=log3x解析:随着x的增大,函数y=a x(a>1)的增速会远远超过y=x n(n>0)的增速,而函数y =log a x(a>1)的增长速度最慢.故选B.答案:B2.增长型函数模型在实际问题中的应用根据题意,选用合适的增长型函数模型,进行一些简单的应用是本节重点,其选择的标准是:指数函数增长模型适合于描述增长速度快的变化规律;对数函数增长模型适合于描述增长速度平缓的变化规律;而幂函数增长模型介于两者之间,适合于描述增长速度一般的变化规律.我们要熟悉指数函数、对数函数和幂函数的图像及性质,对题目的具体要求进行抽象概括,灵活地选取和建立数学模型.例如,根据统计资料,我国能源生产自1986年以来发展很快,下面是我国能源生产总量(折合亿吨标准煤)的几个统计数据:1986年8.6亿吨,5年后的1991年10.4亿吨,10年后的1996年12.9亿吨.有关专家预测,到2011年我国能源生产总量将达到25.6亿吨,则专家是选择下列哪一种类型函数作为模型进行预测的( ).A.一次函数B.二次函数C.指数函数 D.对数函数解答:本题不需要写出函数解析式,只需根据函数值的变化规律作出判断即可.从1986年起第一个五年增长了1.8亿吨,第二个五年增长了2.5亿吨,每五年的增长速度不同,故不是一次函数;假设是指数函数,由“指数爆炸”以及前五年的增长速度可知,从1986年到2011年25年的时间,2011年的产值将很大,故不是指数函数;对数函数的增长速度较慢,不符合题意.由以上分析,此函数模型可能是幂函数类型,结合本题的数字特点,可判断是二次函数.故选B.【例2】某公司为了实现1 000万元的利润目标,准备制定一个激励销售人员的奖励方案:在销售利润达到10万元时,按销售利润进行奖励,且奖金y(单位:万元)随销售利润x(单位:万元)的增加而增加,但奖金总数不能超过5万元,同时奖金不能超过利润的25%.现有三个奖励模型:y=0.25x,y=log7x+1,y=1.002x,其中哪个模型能符合公司的要求?分析:某个奖励模型符合公司要求,即当x∈[10,1 000]时,能够满足y≤5,且yx≤25%,可以先从函数图像得到初步的结论,再通过具体计算,确认结果.解:借助计算器或计算机作出函数y=5,y=0. 25x,y=log7x+1,y=1.002x的图像如下图所示:观察图像发现,在区间[10,1 000]上模型y=0.25x,y=1.002x的图像都有一部分在y=5的上方,这说明只有按模型y=log7x+1进行奖励才能符合公司要求,下面通过计算确认上述判断.首先计算哪个模型的奖金总数不超过5万元.对于模型y=0.25x,它在区间[10,1 000]上是单调递增的,当x∈(20,1 000)时,y>5,因此该模型不符合要求.对于模型y=1.002x,利用计算器,可知1.002806≈5.005,由于y=1.002x是增函数,故当x∈(806,1 000]时,y>5,因此,也不符合题意.对于模型y=log7x+1,它在区间[10,1 000]上单调递增且当x=1 000时,y=log71 000+1≈4.55<5,所以它符合资金总数不超过5万元的要求.再计算按模型y=log7x+1奖励时,资金是否超过利润x的25%,即当x∈[10,1 000]时,利用计算器或计算机作f(x)=log7x+1-0.25x的图像,由图像可知f(x)是减函数,因此f(x)<f(10)≈-0.316 7<0,即log7x+1<0.25x.所以当x∈[10,1 000]时,y<0.25x.这说明,按模型y=log7x+1奖励不超过利润的25%.综上所述,模型y=log7x+1确实符合公司要求.析规律不同函数类型增长的含义从这个例题我们看到,底数大于1的指数函数模型比一次项系数为正数的一次函数模型增长速度要快得多,而后者又比真数大于1的对数函数模型增长速度要快,从这个实例我们可以体会到对数增长,直线上升,指数爆炸等不同函数类型增长的含义.3.利用三种函数的图像解决与方程和不等式有关的问题利用指数函数、对数函数和幂函数图像的直观性,可解决与方程和不等式有关的问题,如判断方程是否有解、解的个数,方程根的分布情况等.把解方程和不等式问题转化为函数问题,这是函数思想和转化与化归思想的运用.例如,方程log2(x+4)=3x解的个数是( ).A.0 B.1C.2 D. 3我们可以在同一坐标系中画出对数型函数y =log 2(x +4)和指数函数y =3x的图像(其中,y =log 2(x +4)的图像由y =log 2x 的图像向左平移4个单位长度得到),如图所示.由图像可以看出,它们有两个交点A (x 1,y 1),B (x 2,y 2),即方程log 2(x +4)=3x 的解为x=x 1或x =x 2,因此,方程的解有两个.又如,若x 满足-3+log 2x =-x ,则x 属于区间( ).A .(0,1)B .(1,2)C .[2,3)D .(3,4)由-3+log 2x =-x ,得log 2x =3-x ,在同一坐标系中作出对数函数y =log 2x 和一次函数y =3-x 的图像,如图所示.观察图像可知,若log 2x =3-x ,则x 的取值在1与3之间,又知log 22=1,3-2=1,故选C.【例3-1】已知x 1是方程x +lg x =3的解,x 2是方程x +10x =3的解,则x 1+x 2=( ).A .6B .3C .2D .1解析:方程x +lg x =3可化为lg x =3-x ,方程x +10x =3可化为10x =3-x .在同一直角坐标系中画出函数y =lg x ,y =10x 和y =3-x 的图像,由于y =lg x 与y =10x 互为反函数,所以它们的图像关于直线y =x 对称.又因为直线y =3-x 与y =x 垂直,由3,y x y x=-⎧⎨=⎩得,两直线的交点P 的坐标为33,22⎛⎫ ⎪⎝⎭.由题意知,y =lg x 与y =3-x 交点A 的横坐标为x 1,y =10x 与y =3-x 交点B 的横坐标为x 2.因为点A ,B 关于P 对称,所以,由线段的中点坐标公式得12322x x +=,即x +x 2=3. 答案:B谈重点 线段AB 的中点坐标公式在平面直角坐标系中,若点A 的坐标为(x 1,y 1),点B 的坐标为(x 2,y 2),则线段AB 的中点P 的坐标为⎝ ⎛⎭⎪⎫x 1+x 22,y 1+y 22. 【例3-2】若x 2<log m x 在x ∈10,2⎛⎫ ⎪⎝⎭内恒成立,求实数m 的取值范围. 解:设y 1=x 2,y 2=log m x .若x 2<log m x 在x ∈10,2⎛⎫ ⎪⎝⎭内恒成立,则0<m <1.两个函数的图像如图所示.当12x =时,211124y ⎛⎫== ⎪⎝⎭.若两函数图像在12x =处相交,则214y =, 由11log 24m =得1412m =,即411216m ⎛⎫== ⎪⎝⎭. 又x 2<log m x 在x ∈10,2⎛⎫ ⎪⎝⎭内恒成立,根据底数m 对函数y =log m x 图像的影响可知,实数m 的取值范围为1,116⎡⎫⎪⎢⎣⎭. 【例3-3】方程2x =x 2有多少个实数根?解:在同一直角坐标系中画出函数y =2x 和y =x 2的图像.可以看出,在y 轴左侧,两个函数的图像有一个交点,而在y 轴右侧有两个交点(2,4)和(4,16).当x >4时,指数函数y =2x 的增长快于幂函数y =x 2的增长,这就是说在x >4时,指数函数y=2x与幂函数y=x2的图像没有交点,因此方程2x=x2有3个实数根.。
§3.5 对数函数问题导学一、对数函数的概念及对数函数与指数函数的关系活动与探究1(1)下列函数是对数函数的是( ). A .y =log 2(3x ) B .y =log 2x 3C .14log y x =D .121log y x= (2)写出下列函数的反函数:①y =⎝ ⎛⎭⎪⎫12x;②y =ln x.迁移与应用1.若对数函数f (x )的图像经过点(16,-2),那么f (x )的解析式为__________.2.若函数y =f (x )是函数y =a x(a >0,且a ≠1)的反函数,其图像经过点(a ,a ),则f (x )等于( ).A .log 2xB .12log x C .12x D .x 2(1)判断一个函数是否是对数函数,主要根据解析式的特征来判定,求对数函数解析式时,主要利用待定系数法求出底数a 的值.(2)函数y =log a x 的反函数是y =a x (a >0,且a ≠1);函数y =a x的反函数是y =log a x (a >0,且a ≠1).二、求与对数函数有关的函数的定义域活动与探究2求下列函数的定义域:(1)f (x )=lg(4-x )x -3;(2)y =log 0.1(4x -3).迁移与应用求下列函数的定义域:(1)y =1lg(x +1)-3;(2)y =log 3x -1.求与对数函数有关的函数定义域时,除遵循前面已学习过的求函数定义域的方法外,还要注意对数函数自身的要求:真数大于零.三、对数函数的图像活动与探究3作出函数f (x )=|log 3x |的图像,并求出其值域和单调区间.迁移与应用函数f (x )=log 41x的大致图像为( ).1.作函数的图像通常采用描点法和图像变换法,可灵活选用; 2.一般地,函数y =-f (x )与y =f (x )的图像关于x 轴对称,函数y =f (-x )与y =f (x )的图像关于y 轴对称,函数y =-f (-x )与y =f (x )的图像关于原点对称.四、对数函数单调性的应用活动与探究4(1)比较下列各组数的大小:①124log 5与log 1267;②12log 3与15log 3;③log a 2与log a 3.(2)若log a (1-2x )>log a (1+2x ),求实数x 的取值范围.迁移与应用1.设a =log 2π,b =log 23,c =log 32,则( ). A .a >b >c B .a >c >b C .b >a >c D .b >c >a2.若log a 3<1,求a 的取值范围.(1)比较两个对数值的大小,常用方法有:①底数相同,真数不同时,用对数函数的单调性来比较;②底数不同,而真数相同时,常借助图像比较,也可用换底公式转化为同底数的对数后比较;③底数与真数都不同,需寻求中间值比较.④分类讨论:当底数与1的大小关系不确定时,要对底数与1比较,分类讨论.(2)解与对数有关的取值范围问题通常转化为不等式(组)求解,其依据是对数函数的单调性.(3)解决与对数函数相关的问题时,要遵循“定义域优先”的原则,切勿忘记真数大于0这一条件.当堂检测1.若函数f (x )=⎝ ⎛⎭⎪⎫13x的反函数是y =g (x ),则g (3)=( ).A .127B .27C .-1D .12.若log 5x <-1,则x 的取值范围是( ).A .x <15B .0<x <15C .x >15 D .x >53.下列不等式成立的是( ). A .log 32<log 23<log 25 B .log 32<log 25<log 23 C .log 23<log 32<log 25 D .log 23<log 25<log 324.函数y =__________.5.画出下列函数的图像,并根据图像写出函数的定义域、值域以及单调区间: (1)y =log 3(x -2); (2)y =|12log x |.答案:课前预习导学 【预习导引】1.y =log a x 底数 10 e预习交流1 提示:根据对数函数的定义,只有严格符合y =log a x (a >0,a ≠1,x >0)形式的函数才是对数函数.例如y =log 3x (x >0),12log y x =(x >0)是对数函数,而y =2log 2x ,212log y x =等都不是对数函数.2.反函数 互换 y =x3.(1)描点法 先画函数x =log 2y 的图像,再变换为y =log 2x 的图像. (2)(1,0) y 轴右边 x 轴上方 x 轴下方 (0,+∞)4.(0,+∞) (-∞,+∞) (-∞,0) (0,+∞)预习交流2 提示:不论a (a >0,且a ≠1)取何值,总有log a 1=0,因此对数函数图像过定点(1,0),对于函数y =log a f (x ),若令f (x )=1解得x =x 0,那么其图像经过定点(x 0,0).预习交流3 提示:当a >1时,a 值越大,图像越靠近x 轴; 当0<a <1时,a 值越大,图像越远离x 轴.课堂合作探究 【问题导学】活动与探究1 思路分析:(1)根据对数函数的定义进行判断;(2)根据指数函数y =a x与对数函数y =log a x 的关系直接写出函数的反函数.(1)C 解析:由对数函数的定义知,只有函数14log y x =是对数函数,其余选项中的函数均不是对数函数,故选C.(2)解:①指数函数y =⎝ ⎛⎭⎪⎫12x,它的底数是12,它的反函数是对数函数12log y x =.②对数函数y =ln x ,它的底数是e ,它的反函数是指数函数y =e x.迁移与应用 1.()14log f x x = 解析:设f (x )=log a x (a >0,且a ≠1),由已知得log a 16=-2,因此a -2=16,解得a =14,故()14log f x x =.2.B 解析:由题意,知f (x )=log a x . ∵其图像过(a ,a ),∴a =log a a .∴a =12.∴()12log f x x =.活动与探究2 思路分析:(1)x 取值需使分母不等于零且真数为正实数; (2)x 取值需使被开方数为非负数且真数为正实数.解:(1)要使函数有意义,需有⎩⎪⎨⎪⎧4-x >0,x -3≠0,解得x <4,且x ≠3,所以函数的定义域为(-∞,3)∪(3,4).(2)要使函数有意义,需有⎩⎪⎨⎪⎧4x -3>0,log 0.1(4x -3)≥0,即⎩⎪⎨⎪⎧4x -3>0,4x -3≤1,解得34<x ≤1.所以函数的定义域为⎝ ⎛⎦⎥⎤34,1. 迁移与应用 解:(1)∵由⎩⎪⎨⎪⎧lg(x +1)-3≠0,x +1>0,得⎩⎪⎨⎪⎧x +1≠103,x >-1,∴x >-1,且x ≠999,∴函数的定义域为{x |x >-1,且x ≠999}. (2)要使函数有意义,应有log 3x -1≥0, 即log 3x ≥1,所以x ≥3, 即函数的定义域为{x |x ≥3}. 活动与探究3 思路分析:将函数f (x )化为分段函数,结合对数函数及图像变换可作出函数图像,然后通过图像求出值域和单调区间.解:f (x )=|log 3x |=⎩⎪⎨⎪⎧log 3x ,x ≥1,-log 3x ,0<x <1,所以f (x )的图像在[1,+∞)上与y =log 3x 的图像相同,在(0,1)上的图像与y =log 3x的图像关于x 轴对称,据此可画出其图像如下:从图像可知:函数f (x )的值域为[0,+∞),递增区间是[1,+∞),递减区间是(0,1).迁移与应用 D 解析:由于f (x )=log 41x=-log 4x ,其图像与y =log 4x 的图像关于x轴对称,故选D.活动与探究 4 思路分析:(1)①中两数同底不同真,可利用对数函数的单调性;②中同真不同底,可结合图像判断;③中底数中含有字母,需分类讨论.(2)对底数a 进行讨论,结合对数函数的单调性求解. 解:(1)①12log y x =在(0,+∞)上递减,又因为45<67,所以112246log >log 57.②因为在x ∈(1,+∞)上,15log y x =的图像在12log y x =图像的上方,所以1125log 3<log 3.③当a >1时,y =log a x 为增函数,所以log a 2<log a 3.当0<a <1时,y =log a x 为减函数, 所以log a 2>log a 3.(2)当a >1时,依题意有⎩⎪⎨⎪⎧ 1-2x >0,1+2x >0,1-2x >1+2x ,解得-12<x <0;当0<a <1时,依题意有⎩⎪⎨⎪⎧1-2x >0,1+2x >0,1-2x <1+2x ,解得0<x <12.因此当a >1时,x 的取值范围是⎝ ⎛⎭⎪⎫-12,0,当0<a <1时,x 的取值范围是⎝ ⎛⎭⎪⎫0,12. 迁移与应用 1.A 解析:∵函数y =log 2x 在(0,+∞)上是增函数,∴log 2π>log 23,即a >b .又∵b =12log 23>12,c =12log 32<12,∴b >c .∴a >b >c .2.解:当a >1时,原不等式可化为log a 3<log a a , ∴a >3.当0<a <1时,原不等式可化为log a 3<log a a , ∴a <3.又∵0<a <1,∴0<a <1.综上知,所求a 的取值范围是(0,1)∪(3,+∞). 【当堂检测】1.C 解析:依题意g (x )=13log x ,所以g (3)=13log 3=-1.2.B 解析:由log 5x <-1可得log 5x <log 515,所以0<x <15.3.A 解析:∵y =log 2x 在(0,+∞)上是增函数,∴log 25>log 23>log 22=1.又y =log 3x 在(0,+∞)上为增函数, ∴log 32<log 33=1. ∴log 32<log 23<log 25.4.[0,1) 解析:∵由12log (1)x -≥0,得0<1-x ≤1,∴0≤x <1.5.解:(1)函数y =log 3(x -2)的图像可看作把函数y =log 3x 的图像向右平移2个单位长度得到的,如图①.其定义域为(2,+∞),值域为R ,在区间(2,+∞)上是增函数.(2)y =|12log x |=122log ,01,log ,1,x x x x <≤⎧⎪⎨⎪>⎩其图像如图②.其定义域为(0,+∞),值域为[0,+∞),在(0,1]上是减少的,在(1,+∞)上是增加的.。
3.5 对数函数第1课时 对数函数的概念 对数函数y =log2x 的图像和性质[核心必知]1.对数函数的概念 (1)对数函数的定义:一般地,函数y =log a x (a >0,a ≠1)叫作对数函数,a 叫作对数函数的底数. (2)两种特殊的对数函数:我们称以10为底的对数函数y =lg_x 为常用对数函数;称以无理数e 为底的对数函数y =ln_x 为自然对数函数.2.反函数指数函数y =a x与对数函数y =log a x (a >0且a ≠1)互为反函数. 3.函数y =log 2x 的图像和性质图像性质(1)定义域:(0,+∞)(2)值域:R(3)过点(1,0),即x =1,y =0 (4)当x >1时,y >0;当0<x <1时,y <0 (5)单调性:在(0,+∞)上是增函数[问题思考]1.函数y =log 3x (x >0),y =log 12x (x >0),y =2log 2x ,y =log 12x 2都是对数函数吗?为什么?提示:根据对数函数的定义,只有严格符合y =log a x (a >0,a ≠1,x >0)形式的函数才是对数函数.因此y =log 3x (x >0),y =log 12x (x >0)是对数函数,而y =2log 2x ,y=log 12x2等都不是对数函数.2.函数y =log a x 2与y =2log a x (a >0且a ≠1)是同一个函数吗?为什么?提示:不是,因为定义域不同. 3.对数函数y =log 2x 与指数函数y =2x有何关系?提示:(1)对数函数y =log 2x 与指数函数y =2x互为反函数,其图像关于直线y =x 对称;(2)对数函数y =log 2x 与指数函数y =2x的定义域与值域互换,即y =log 2x 的定义域(0,+∞)是y =2x的值域,而y =log 2x 的值域R 恰好是y =2x 的定义域.(3)对数函数y =log 2x 与指数函数y =2x的单调性一致,即都是增函数.讲一讲1.求下列函数的定义域.(1)y =-log 2(1-x );(2)y =lg(x -1)+log (x +1)(16-4x).[尝试解答] (1)要使函数有意义, 需有⎩⎪⎨⎪⎧1-x >0,-log 2(1-x )≥0,即⎩⎪⎨⎪⎧x <1,log 2(1-x )≤0,解得0≤x <1,所以函数的定义域为[0,1).(2)要使函数有意义,需有⎩⎪⎨⎪⎧ x -1>0,16-4x>0,x +1>0,x +1≠1,即⎩⎪⎨⎪⎧x >1,x <2,x >-1,x ≠0.∴1<x <2,故所求函数的定义域为(1,2).求函数的定义域时,若遇到简单的对数不等式,可利用对数函数的单调性或结合函数的图像求解.注意保证真数有意义:如log 2x <1,有人常由此得到x <2,而忘记x >0.同时应保证底数大于0且不等于1.对于含有字母的函数求定义域时应注意分类讨论,切记不能将结果写成交或并的形式.练一练1.求下列函数的定义域. (1)y=1-log 2x ;(2)y =lg(x +1)+1log 2(-x )+1.解:(1)要使函数有意义,需有⎩⎪⎨⎪⎧x >0,1-log 2x ≥0,即0<x ≤2,∴所求函数的定义域为(0,2]. (2)要使函数有意义,需有:⎩⎪⎨⎪⎧x +1>0,-x >0,log 2(-x )+1≠0.即-1<x <0且x ≠-12.∴所求函数的定义域为⎝⎛⎭⎪⎫-1,-12∪⎝ ⎛⎭⎪⎫-12,0.讲一讲2.写出下列函数的反函数. (1)y =log 0.13x ;(2)y =3.05x. [尝试解答] (1)y =log 0.13x 的反函数是y =0.13x .(2)y =3.05x的反函数是y =log 3.05x .函数y =log a x 的反函数是y =a x(a >0,a ≠1);函数y =a x 的反函数是y =log a x (a >0,a ≠1).练一练2.写出下列函数的反函数.(1)y =lg x ;(2)y =ln x ;(3)y =⎝ ⎛⎭⎪⎫13x.解:(1)y =lg x 的反函数为y =10x. (2)y =ln x 的反函数为y =e x. (3)y =⎝ ⎛⎭⎪⎫13x的反函数为y =log 13x .讲一讲3.根据函数f (x )=log 2x 的图像和性质解决以下问题.(1)若f (a )>f (2),求a 的取值范围;(2)y =log 2(2x -1)在x ∈[2,14]上的最值.[尝试解答] 函数y =log 2x 的图像如图.(1)因为y =log 2x 是增函数, 若f (a )>f (2), 即log 2a >log 22, 则a >2.所以a 的取值范围为(2,+∞). (2)∵2≤x ≤14, ∴3≤2x -1≤27,∴log 23≤log 2(2x -1)≤log 227. ∴函数y =log 2(2x -1)在x ∈[2,14]上的最小值为log 23,最大值为log 227.(1)研究函数y =log 2x 的性质,应让学生熟悉其图像,由图像可一览无余地发现其相应的性质.(2)函数y =log 2x 的图像和性质的应用,突出表现在可用来比较大小、解相关不等式、求最值等,尤其要注意单调性的应用.练一练3.(1)比较log 245与log 234的大小;(2)若log 2(2-x )>0,求x 的取值范围. 解:(1)函数f (x )=log 2x 在(0,+∞)上为增函数,又∵45>34,∴log 245>log 234.(2)log 2(2-x )>0即log 2(2-x )>log 21,∵函数y =log 2x 为增函数,∴2-x >1,即x <1.∴x 的取值范围为(-∞,1).当m 为何值时,关于x 的方程|log 2(x -1)|=m 无解?有一解?有两解?[巧思] 将关于x 的方程解的问题转化为函数y =|log 2x -1|的图像与直线y =m 的交点个数问题,利用数形结合法求解.[妙解] 在同一坐标系,分别作出函数y =|log 2(x -1)|和y =m 的图像,如图所示.由图像得:当m <0时,方程无解,当m =0时,方程有一解,当m >0时,方程有两解.1.下列函数是对数函数的是( ) A .y =log a (2x ) B .y =lg(10x) C .y =log a (x 2+x ) D .y =ln x 解析:选D 形如y =log a x (a >0且a ≠1)的函数为对数函数,所以只有y =ln x 符合此形式.2.函数y =log 2x (1≤x ≤8)的值域是( )A .RB .[0,+∞)C .(-∞,3]D .[0,3]解析:选D ∵y =log 2x 在[1,8]上为增函数,∴log 21≤y ≤log 28,即y ∈[0,3].3.图中所示图像对应的函数可能是( )A .y =2xB .y =2x的反函数 C .y =2-xD .y =2-x 的反函数解析:选D 由y =⎝ ⎛⎭⎪⎫12x的图像以及与其反函数间的关系知,图中的图像对应的函数应为y =的图像.4.若函数f (x )=a x(a >0,且a ≠1)的反函数图像过点(2,-1),则a 的值是________.解析:依题意,f (x )的图像过点 (-1,2),∴a -1=2,即a =12.答案:125.函数y =log 2(3x -1+1)的定义域为________,值域为________.解析:由已知得x -1≥0,得x ≥1,故定义域为[1,+∞).又x -1≥0得3x -1≥30=1,∴3x -1+1≥2.∴y =log 2(3x -1+1)≥log 22=1.∴值域为[1,+∞).答案:[1,+∞) [1,+∞)6.已知对数函数f (x )=log 2(x +3)-1. (1)求此对数函数的定义域;(2)若f (a )>f (1),求a 的取值范围. 解:(1)由题意知x +3>0,即x >-3, ∴函数的定义域为(-3,+∞). (2)f (a )=log 2(a +3)-1,f (1)=log 2(1+3)-1=1,∵f (x )为增函数, ∴⎩⎪⎨⎪⎧a +3>0log 2(a +3)-1>1,即⎩⎪⎨⎪⎧a +3>0a +3>4∴a >1.即a 的取值范围是(1,+∞).一、选择题1.(重庆高考)函数y =lg(x +1)x -1的定义域是( )A .(-1,+∞)B .[-1,+∞)C .(-1,1)∪(1,+∞)D .[-1,1)∪(1,+∞)解析:选C 由题意得⎩⎪⎨⎪⎧x +1>0,x -1≠0,∴⎩⎪⎨⎪⎧x >-1,x ≠1,故选C.2.函数y =log 2|x |的图像大致是( )解析:选Ay =log 2|x |=⎩⎪⎨⎪⎧log 2x (x >0),log 2(-x ) (x <0),分别作图知A 正确.3.已知函数y =log 2x ,其反函数y =g (x ),则g (x -1)的图像是( )解析:选C 由已知g (x )=2x,∴g (x -1)=2x -1,故选C.4.设f (x )是奇函数,当x >0时,f (x )=log 2x ,则当x <0时,f (x )等于( )A .-log 2xB .log 2(-x )C .log x 2D .-log 2(-x ) 解析:选 D ∵x <0,∴-x >0,∴f (-x )=log 2(-x ).又∵f (x )是奇函数,∴f (-x )=-f (x ), ∴f (x )=-log 2(-x ). 二、填空题5.集合A ={y |y =log 2x ,x >1},B =yy=⎝ ⎛⎭⎪⎫12x,x >1,则(∁R A )∩B =________. 解析:∵x >1,∴log 2x >log 21=0,∴A={y |y >0}.而当x >1时,0<⎝ ⎛⎭⎪⎫12x <⎝ ⎛⎭⎪⎫121,∴B =y 0<y <12.∴(∁R A )∩B ={y |y ≤0}∩⎩⎨⎧⎭⎬⎫y 0<y <12=∅.答案:∅6.若函数y =f (x )是函数y =a x(a >0,且a ≠1)的反函数,其图像经过点(a ,a ),则f (x )=________.解析:∵y =f (x )的图像过点(a ,a ), ∴其反函数y =a x的图像过点(a ,a ),∴a a=a =,∴a =12,∴f (x )=.答案:7.若log 2a <log 2b <0,则a ,b,1的大小关系是________.解析:log 2a <log 2b <0⇔log 2a <log 2b <log 21,∵y =log 2x 在(0,+∞)上是增函数,∴a <b <1.答案:a <b <18.函数f (x )=log 2x 在区间[a,2a ](a >0)上的最大值与最小值之差为________.解析:∵f (x )=log 2x 在区间[a,2a ]上是增函数,∴f (x )max -f (x )min =f (2a )-f (a )=log 22a -log 2a =log 22=1.答案:1 三、解答题9.求下列函数的定义域. (1)y =lg(x +1)+2x 2-x;(2)y =log (x -2)(5-x ).解:(1)要使函数有意义,需⎩⎪⎨⎪⎧x +1>0,2-x >0,即⎩⎪⎨⎪⎧x >-1,x <2,∴函数的定义域为(-1,2).(2)要使函数有意义.需⎩⎪⎨⎪⎧ 5-x >0,x -2>0,x -2≠1,即⎩⎪⎨⎪⎧x <5,x >2,x ≠3.∴定义域为(2,3)∪(3,5).10.已知函数f (x )=log 2(x +1),g (x )=log 2(1-x ).(1)若函数f (x )的定义域为[3,63],求函数f (x )的最值;(2)求使f (x )-g (x )>0的x 的取值范围;(3)判断函数F (x )=f (x )+g (x )的奇偶性.解:(1)由题意知,3≤x ≤63,∴4≤x +1≤64,∵函数y =log 2x 是增函数,∴log 24≤log 2(x +1)≤log 264,∴2≤f (x )≤6,∴f (x )的最大值为6,最小值为2. (2)f (x )-g (x )>0⇔f (x )>g (x ), 即log 2(x +1)>log 2(1-x ),则⎩⎪⎨⎪⎧x +1>0,1-x >0,x +1>1-x ,得:0<x <1,∴x 的取值范围为(0,1).(3)要使函数F (x )=f (x )+g (x )有意义,需⎩⎪⎨⎪⎧1+x >0,1-x >0,即-1<x <1,∴定义域为(-1,1) 又F (-x )=f (-x )+g (-x ) =log 2(1-x )+log 2(1+x )=log 2(1-x 2)=f (x )+g (x )=F (x ), ∴F (x )为偶函数.第2课时 对数函数的图像和性质[核心必知]对数函数的图像和性质底数a >1 0<a <1图 像性质定义域 (0,+∞) 值域(-∞,+∞)过定点恒过点(1,0),即x =1时,y =0有界性当x >1时,y >0;当0<x <1时,y <0当x >1时,y <0; 当0<x <1时,y >0 单调性在定义域内是增函数在定义域内是减函数[问题思考]对数函数y =log a x (a >0,a ≠1)的底数变化对图像位置有何影响?提示:在同一坐标系中作出对数函数y =log 2x ,y =log 5x ,y =log 12x ,y =log 15x 的图像如图所示:观察这些图像,可得如下规律: (1)上下比较:在直线x =1的右侧,a >1时,a 越大,图像越靠近x 轴,0<a <1时,a 越小,图像越靠近x 轴.(2)左右比较(比较图像与y =1的交点):交点的横坐标越大,对应的对数函数的底数越大.讲一讲1.比较大小(1)log23.4,log28.5;(2)log0.31.8,log0.32.7;(3)log67,log76;(4)log3π,log20.8;(5)log712,log812.[尝试解答] (1)考察对数函数y=log2x,∵2>1,∴它在(0,+∞)上是增函数.∴log23.4<log28.5.(2)考察对数函数y=log0.3x,∵0<0.3<1,∴它在(0,+∞)上是减函数,∴log0.31.8>log0.32.7.(3)∵log67>log66=1,log76<log77=1,∴log67>log76.(4)∵log3π>log31=0,log20.8<log21=0,∴log3π>log20.8.(5)法一:在同一坐标系中作出函数y=log7x与y=log8x的图像,由底数变化对图像位置的影响知:log7 12>log8 12.法二:log7 12log 8 12=lg 12lg 7lg 12lg 8=lg 8lg 7=log78>1.∵log812>0,∴log712>log812.比较对数值大小的类型及相应方法:[注意] 当底数为字母时要分类讨论.练一练1.比较下列各组中两个值的大小 (1)ln 0.3,ln 2; (2)log 23,log 0.32; (3)log a π,log a 3.141;解:(1)(单调性法)因为y =ln x 在(0, +∞)上是增函数,所以ln 0.3<ln 2.(2)(中间量法)因为log 23>log 21=0,log 0.32<0,所以log 23>log 0.32.(3)(分类讨论)当a >1时,函数y =log a x 在定义域上是增函数,则有log a π>log a 3.141;当0<a <1时,函数y =log a x 在定义域上是减函数,则有log a π<log a 3.141.综上所得,当a >1时,log a π>log a 3.141;当0<a <1时,log a π<log a 3.141. (4)(图像法)借助y =log 14x 及y =log 15x的图像,如图,在(1,+∞)上,y =log 14x的图像在y =log 15x 图像的下方,∴log 143<log 153.讲一讲2.画出下列函数的图像,并根据图像写出函数的定义域与值域以及单调区间:(1)y =log 3(x -2); (2)y =|log 12x |.[尝试解答] (1)函数y =log 3(x -2)的图像可看作把函数y =log 3x 的图像向右平移2个单位得到的,如图①.其定义域为(2,+∞),值域为R ,在区间(2,+∞)上是增加的;(2)y=|log12x |=⎩⎪⎨⎪⎧log 12x ,0<x ≤1,log 2x ,x >1,其图像如图②.其定义域为(0,+∞),值域为[0,+∞),在(0,1]上是减少的,在[1,+∞)上是增加的.把例2(2)变为y =,画出其图像,并根据图像写出定义域,判断奇偶性及单调性.解:y ==其图像如图所示.其定义域为{x |x ≠0},为偶函数. 在(-∞,0)为增加的,在(0,+∞)上为减少的.(1)与对数函数有关的一些对数型函数,如y =log a x +k ,y =log a |x |,y =|log a x +k |等,其图像可由y =log a x 的图像,通过平移,对称或翻折变换而得到.(2)对能画出图像的对数型函数性质及对数型方程解的研究,常先画出图像,再利用数形结合法求解.练一练2.已知函数f (x )=|log 2(x +1)|. (1)画出其图像,并写出函数的值域及单调区间;(2)若方程f (x )=k 有两解,求实数k 的取值范围.解:(1)函数y =|log 2(x +1)|的图像如图.由图像知,其值域为[0,+∞),单调减区间是(-1,0],单调增区间是[0,+∞).(2)由(1)的图像知,k >0即可.讲一讲3.已知f (x )=log a (1+x ),g (x )=log a (1-x ),其中a >0,a ≠1.(1)求函数f (x )-g (x )的定义域; (2)判断函数f (x )-g (x )的奇偶性,并予以证明;(3)求使f (x )-g (x )>0的x 的取值范围.[尝试解答] (1)要使函数f (x )-g (x )有意义,需有⎩⎪⎨⎪⎧1+x >01-x >0,解得-1<x <1,所以f (x )-g (x )的定义域为(-1,1). (2)任取x ∈(-1,1),则-x ∈(-1,1)f (-x )-g (-x )=log a (1-x )-log a (1+x )=-[f (x )-g (x )],所以f (x )-g (x )在(-1,1)上是奇函数. (3)由f (x )-g (x )>0得log a (1+x )>log a (1-x ),①当a >1时,则①可化为⎩⎪⎨⎪⎧1+x >1-x-1<x <1,解得0<x <1;当0<a <1时,由⎩⎪⎨⎪⎧1+x <1-x-1<x <1,解得-1<x <0.所以当a >1时,x 的取值范围是(0,1), 当0<a <1时,x 的取值范围是(-1,0).(1)判断函数的奇偶性,首先应求出定义域,看是否关于原点对称.而对于类似于f (x )=log a g (x )的函数,利用f (-x )±f (x )=0来判断奇偶性更简捷.(2)判断函数的单调性有两种思路,①利用定义;②利用图像.练一练3.已知f (x )=log a (a x-1)(a >0且a ≠1).(1)求f (x )的定义域; (2)讨论f (x )的单调性.解:(1)要使函数f (x )=log a (a x-1)(a >0,且a ≠1)有意义,则a x-1>0.当a >1时,由a x-1>0得a x>1,即x >0,故函数的定义域为(0,+∞); 当0<a <1时,由a x-1>0得a x>1,即x <0,故函数的定义域为(-∞,0). (2)当a >1时, 设0<x 1<x 2,则∴f (x 1)-f (x 2)==,即f (x 1)<f (x 2).∴函数f (x )在(0,+∞)上是增函数.同理可证,当0<a <1时,f (x )在(-∞,0)上也是增函数.设函数y =f (x ),且log 2(log 2y )=log 23x +log 2(3-x ),求f (x )的值域.[错解] 由log 2(log 2y )=log 23x +log 2(3-x ),得log 2y =3x (3-x ),∴y =23x (3-x ).∵3x (3-x )=-3x 2+9x =-3⎝ ⎛⎭⎪⎫x -322+274≤274, ∴函数的值域为(-∞,2274].[错因] 产生错解的原因在于未掌握对数函数、指数函数需满足真数大于0,a x>0(a >0,且a ≠1).此题因在未确定定义域前求值域,从而把值域扩大了.[正解] 由log 2(log 2y )=log 23x +log 2(3-x ),得log 2y =3x (3-x ), ∴y =23x (3-x ),且⎩⎪⎨⎪⎧3x >0,3-x >0,log 2y >0,即⎩⎪⎨⎪⎧0<x <3,y >1.而-3x 2+9x =-3⎝ ⎛⎭⎪⎫x -322+274.∵0<x <3,∴0<-3x 2+9x ≤274,.1.已知函数f (x )=log (a +1)x 是(0,+∞)上的增函数,那么a 的取值范围是( ) A .(0,1) B .(1,+∞) C .(-1,0) D .(0,+∞)解析:选D 由题意得a +1>1,解得a >0. 2.函数y =1+log 3x 的图像一定经过点( ) A .(1,0) B .(0,1) C .(2,0) D .(1,1)解析:选D ∵y =log 3x 一定过定点(1,0).∴y =1+log 3x 的图像一定过点(1,1). 3.(天津高考)已知a =21.2,b =⎝ ⎛⎭⎪⎫12-0.8,c =2log 52,则a ,b ,c 的大小关系为( ) A .c <b <a B .c <a <b C .b <a <c D .b <c <a解析:选A a =21.2>2,而b =⎝ ⎛⎭⎪⎫12-0.8=20.8,所以1<b <2,c =2log 52=log 54<1,所以c <b <a .4.函数y =lg(4-x )x -3的定义域是________.解析:要使该函数有意义,需有⎩⎪⎨⎪⎧4-x >0,x -3≠0,即⎩⎪⎨⎪⎧x <4,x ≠3.∴x ∈(-∞,3)∪(3,4). 答案:(-∞,3)∪(3,4)5.已知0<a <1,0<b <1,如果a log b (x -3)<1,那么x 的取值范围为________. 解析:a log b (x -3)<1即a log b (x -3)<a 0. ∵0<a <1,∴y =a x在(-∞,+∞)上是减函数, ∴log b (x -3)>0, 又∵0<b <1,∴y =log b x 在(0,+∞)上是减函数, ∴0<x -3<1,解得3<x <4.答案:(3,4)6.设函数f (x )=⎩⎪⎨⎪⎧2-x,x ≤1,log 3x 3·log 3x9,x >1.(1)求f ⎝ ⎛⎭⎪⎫log 232的值; (2)求f (x )的最小值. 解:(1)∵log 232<log 22=1,∴f ⎝ ⎛⎭⎪⎫log 232=2-log 232=2log 223=23, 即f ⎝⎛⎭⎪⎫log 232=23. (2)当x ∈(-∞,1]时,f (x )=2-x=⎝ ⎛⎭⎪⎫12x ≥12,即f (x )min =12.当x ∈(1,+∞)时,f (x )=(log 3x -1)(log 3x -2), 令log 3x =t ,则t >0,∴f (x )=(t -1)(t -2)=⎝ ⎛⎭⎪⎫t -322-14.∵t >0,∴当t =32时,f (x )min =-14<12.∴f (x )的最小值是-14.一、选择题1.若a =log 3π,b =log 76,c =log 20.8,则( ) A .a >b >c B .b >a >c C .c >a >b D .b >c >a解析:选A a =log 3π>log 33=1,log 71<b =log 76<log 77, ∴0<b <1,c =log 20.8<log 21=0,∴a >b >c .2.函数f (x )=ln(x 2+1)的图像大致是( )解析:选A 依题意,得f (-x )=ln(x 2+1)=f (x ),所以函数f (x )为偶函数,即函数f (x )的图象关于y 轴对称,故排除C.因为函数f (x )过定点(0,0),排除B ,D ,应选A.3.函数y =log a (x -3)+2的图像恒过定点( ) A .(3,0) B .(3,2) C .(4,0) D .(4,2)解析:选D 令x =4,则y =log a (4-3)+2=2, ∴函数的图像恒过定点(4,2). 4.已知函数f (x )=⎩⎪⎨⎪⎧log 2(-x ),x <0,log 12x , x >0,若f (m )<f (-m ),则实数m 的取值范围是( )A .(-1,0)∪(0,1)B .(-∞,-1)∪(1,+∞)C .(-1,0)∪(1,+∞)D .(-∞,-1)∪(0,1)解析:选C 当m >0时,-m < 0,f (m )<f (-m )⇒log 12m <log 2m ⇒log 21m <log 2m ⇒1m <m ,可得m >1;当m <0时,-m >0,f (m )<f (-m )⇒log 2(-m )<log 12(-m )⇒log 2(-m )<log 2(-1m )⇒-m <-1m,可得-1<m <0.故m 的取值范围是-1<m <0或m >1. 二、填空题5.已知函数f (x )=2log 12x 的值域为[-1,1],则函数f (x )的定义域是________.解析:由题意知-1≤2log 12x ≤1,即-1≤-2log 2x ≤1.∴-12≤log 2x ≤12,即log 222≤log 2x ≤log 22, ∴22≤x ≤ 2. 答案:⎣⎢⎡⎦⎥⎤22,2 6.已知f (x )=|lg x |,则f ⎝ ⎛⎭⎪⎫14,f ⎝ ⎛⎭⎪⎫13,f (2)的大小关系为________.解析:f ⎝ ⎛⎭⎪⎫14=lg 14=-lg 4=lg 4, f ⎝ ⎛⎭⎪⎫13=lg 13=-lg 3=lg 3,f (2)=|lg 2|=lg 2,∴f (2)<f ⎝ ⎛⎭⎪⎫13<f ⎝ ⎛⎭⎪⎫14.答案:f (2)<f ⎝ ⎛⎭⎪⎫13<f ⎝ ⎛⎭⎪⎫14 7.方程⎝ ⎛⎭⎪⎫13|x |=|log 13x |的根的个数为________.解析:同一坐标系中作出y =⎝ ⎛⎭⎪⎫13|x |与y =|log 13x |的图像,可知有两个交点,故有两解.答案:28.已知函数f (x )的图像与函数g (x )=3x的图像关于直线y =x 对称,令h (x )=f (1-|x |),则关于函数h (x )有以下命题:(1)h (x )的图像关于原点(0,0)对称; (2)h (x )的图像关于y 轴对称; (3)h (x )的最小值为0;(4)h (x )在区间(-1,0)上单调递增.其中正确的是________.解析:∵函数f (x )的图像与函数g (x )=3x的图像关于直线y =x 对称,∴f (x )与g (x )互为反函数,∴f (x )=log 3x ;∴h (x )=f (1-|x |)=log 3(1-|x |). 由1-|x |>0得-1<x <1. ∵h (x )的定义域关于原点对称,且h (-x )=log 3(1-|-x |)=log 3(1-|x |)=h (x ). ∴h (x )是偶函数,其图像关于y 轴对称,(2)正确; 又当x ∈(-1,0)时,h (x )=log 3(1+x ), 显然h (x )在(-1,0)上是递增的,∴(4)正确;利用特殊点验证可知,(1)不正确;由于h (x )在(-1,0)上单调递增,且h (x )为偶函数, ∴h (x )在[0,1)上单调递减,∴h (x )在(-1,1)上有最大值,h (0)=log 31=0,无最小值,故(3)不正确. 答案:(2)(4) 三、解答题9.(1)已知函数f (x )=log 3(3x+1)+12ax 是偶函数,求a 的值;(2)已知函数f (x )=log a (1-x )+log a (x +3)(a >0且a ≠1). ①求函数的定义域和值域;②若函数f (x )有最小值为-2,求a 的值. 解:(1)函数的定义域是R ,由于f (x )为偶函数,∴f (-x )=f (x ),即对任意x ∈R ,总有log 3(3-x +1)-12ax =log 3(3x+1)+12ax ,∴log 3(3-x+1)-log 3(3x+1)=ax ,即(a +1)x =0,由于x 是任意实数,∴a =-1.(2)①由⎩⎪⎨⎪⎧1-x >0,x +3>0得-3<x <1.∴函数的定义域为{x |-3<x <1}.f (x )=log a (1-x )(x +3).设t =(1-x )(x +3)=4-(x +1)2, ∴t ≤4,又t >0,则0<t ≤4.当a >1时,y ≤log a 4,值域为(-∞,log a 4]. 当0<a <1时,y ≥log a 4,值域为[log a 4,+∞); ②由题意及①知,当0<a <1时,函数有最小值. ∴log a 4=-2.∴a =12.10.设函数f (x )=x 2-x +b ,且满足f (log 2a )=b ,log 2[f (a )]=2(a >0,a ≠1),求f (log 2x )的最小值及对应的x 值.解:由f (log 2a )=b 可得,(log 2a )2-log 2a +b =b , ∴log 2a =1或log 2a =0.∴a =2或a =1(舍去). 又∵log 2[f (a )]=2,即log 2(2+b )=2, ∴2+b =4,b =2.∴f (x )=x 2-x +2. ∴f (log 2x )=⎝ ⎛⎭⎪⎫log 2x -122+74.∴当log 2x =12,即x =2时,y min =74.。
§4对数
4.1对数及其运算
第1课时对数及其运算
课时过关·能力提升1如果=b(a>0且a≠1),则()
A.2log a b=1
B.log a=b
C.lo a=b
D.lo b=a
解析:由题意,=b(a>0且a≠1),则=b,由对数的定义得,=log a b,即2log a b=1.故选A.
答案:A
2若102x=25,则x等于()
A.lg
B.lg 5
C.2lg 5
D.2lg
解析:∵102x=25,∴2x=lg 25=2lg 5,
即x=lg 5.
答案:B
3已知log3(log5a)=log4(log5b)=0,则的值为()
A.1
B.-1
C.5
D.
答案:A
4已知,则x=()
A. B.
C.2
D.
解析:因为,所以=3-1,
即2log2x=-1,所以log2x=-,
解得x=,故选B.
答案:B
5已知(x-2)2+(y-1)2=0,则log x(y x)的值是()
A.1
B.0
C.x
D.y
解析:因为(x-2)2+(y-1)2=0,
所以x-2=0,y-1=0,所以x=2,y=1.
所以log x(y x)=log2(12)=log21=0.
答案:B
6有以下四个结论:①lg(lg 10)=0;②lg(ln e)=0;③若e=ln x,则x=e2;④ln(lg 1)=0.其中正确的是()
A.①②
B.①②③
C.①②④
D.②③④
解析:可根据对数、常用对数和自然对数的概念以及对数式与指数式的转化,对各结论进行判断.由于1的对数等于0,底数的对数等于1,所以可判断①②均正确;③中应得到x=e e,故③错误;④中由于lg 1=0,而0没有对数,所以④式不成立.综上可知,正确的结论是①②.故选A.
答案:A
7已知函数f(3x)=log2,那么f(1)的值为()
A.log2
B.2
C.1
D.
解析:∵f(3x)=log2=log2,
∴f(1)=log2=log22=1,故选C.
答案:C
8若log2[lg(ln x)]=0,则x=.
解析:因为log2[lg(ln x)]=0,
所以lg(ln x)=20=1,
所以10=ln x,所以x=e10.
答案:e10
★9若正数a,b满足2+log2a=3+log3b=log6(a+b),则的值为.答案:108
10求+103lg 3+的值.
解原式=31·-24·+(10lg 3)3+
=3×6-16×3+33+()-2
=18-48+27+=-.
11解下列关于x的方程:
(1)log2(2x+1)=log2(3x);
(2)log5(2x+1)=log5(x2-2).
解(1)由log2(2x+1)=log2(3x),
得2x+1=3x,
解得x=1.
经检验,当x=1时,满足2x+1>0,3x>0,
故x=1.
(2)由log5(2x+1)=log5(x2-2),
得2x+1=x2-2,
即x2-2x-3=0,
解得x=-1或x=3.。