2020-2021学年高考总复习数学(文)第二次模拟考试试题及答案解析九
- 格式:docx
- 大小:509.26 KB
- 文档页数:12
绝密★启封前 高考押题金卷(全国卷Ⅱ)文科数学本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
注意事项:1.答题前,考生务必将自己的准考证号、姓名填写在答题卡上。
考生要认真核对答题卡上粘贴的条形码的“准考证号、姓名、考试科目”与考生本人准考证号、姓名是否一致。
2.第Ⅰ卷每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,在选涂其他答案标号。
第Ⅱ卷必须用0.5毫米黑色签字笔书写作答.若在试题卷上作答,答案无效。
3.考试结束,监考员将试题卷、答题卡一并收回。
第Ⅰ卷一、选择题(本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的。
)1.已知全集,U R =且{}{}2|12,|680,A x x B x x x =->=-+<则()U C A B I 等于(A )[1,4)- (B )(2,3] (C )(2,3) (D )(1,4)-2.已知i z i 32)33(-=⋅+(i 是虚数单位),那么复数z 对应的点位于复平面内的(A )第一象限 (B )第二象限 (C )第三象限 (D )第四象限3.若()()()()2,1,1,1,2//a b a b a mb ==-+-r r r r r r,则m =()A .12 B .2 C .-2 D .12- 4.甲、乙等4人在微信群中每人抢到一个红包,金额为三个1元,一个5元,则甲、乙的红包金额不相等的概率为() (A)14(B)12(C)13(D)345.已知{}n a 为等比数列,472a a +=,568a a =-,则110a a +=()()A 7()B 5()C -5()D -76.下列函数中,与函数()3x xe ef x --=的奇偶性、单调性均相同的是()A .ln(y x =+B .2y x = C .tan y x =D .xy e =(7)若正整数N 除以正整数m 后的余数为n ,则记为(mod )N n m ≡,例如104(mod 6)≡,如图程序框图的算法源于我国古代《孙子算经》aaaa中的“孙子定理”的某一环节,执行该框图,输入2a =,3b =,5c =,则输出的N =()(A)6(B)9(C)12(D)218.已知函数,且f (a )=-3,则f (6-a )=(A )-74(B )-54(C )-34(D )-149.设x ,y 满足约束条件,1,x y a x y +≥⎧⎨-≤-⎩且z x ay =+的最小值为7,则a =(A )-5 (B )3 (C )-5或3 (D )5或-310.四棱锥P ABCD -的三视图如图所示,其五个顶点都在同一球面上,若四棱锥P ABCD -的侧面积等于4(12)+,则该外接球的表面积是(A) 4π (B)12π (C)24π (D)36π11.直线l 过双曲线12222=-by a x 的右焦点,斜率k=2.若l 与双曲线的两个交点分别在左右两支上,则双曲线的离心率e 的范围是()A.e>2B.1<e<3C.e>5D.1<e<512.已知函数2y x =的图象在点()200,x x 处的切线为l ,若l 也与函数ln y x =,)1,0(∈x 的图象相切,则0x 必满足()A .012x <<0 B .012x <<1C .2220<<x D 0x <<第Ⅱ卷注意事项:须用黑色墨水签字笔在答题卡上作答。
浙江省高考数学一模试卷(文科)一、选择题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知全集U=R,集合A={x|lgx≥0},,则A∩B为()A.{x|x≥1} B.C.{x|0<x≤1} D.2.已知命题p:若a<1,则a2<1,下列说法正确的是()A.命题p是真命题B.命题p的逆命题是真命题C.命题p的否命题是:若a<1,则a2≥1D.命题p的逆否命题是:若a2≥1,则a<13.函数的一条对称轴是()A.B.C.D.4.设α,β是两个不同的平面,m,n是两条不同的直线,且m⊂α,n⊂β()A.若m,n是异面直线,则α与β相交B.若m∥β,n∥α则α∥βC.若m⊥n,则α⊥βD.若m⊥β,则α⊥β5.已知等差数列{a n}公差为d,前n项和{s n},则下列描述不一定正确的是()A.若a1>0,d>0,则n唯一确定时也唯一确定B.若a1>0,d<0,则n唯一确定时也唯一确定C.若a1>0,d>0,则唯一确定时n也唯一确定D.若a1>0,d<0,则唯一确定时n也唯一确定6.已知函数f(x)=(x﹣)•sinx,x∈[﹣π,π]且x≠0,下列描述正确的是()A.函数f(x)为奇函数B.函数f(x)既无最大值也无最小值C.函数f(x)有4个零点D.函数f(x)在(0,π)单调递增7.如图,B、D是以AC为直径的圆上的两点,其中AB=,AD=,则•=()A.1 B.2 C.t D.2t8.已知双曲线=1(a>0,b>0),若焦点F(c,0)关于渐近线y=x的对称点在另一条渐近线y=﹣x上,则双曲线的离心率为()A.B.2 C.D.3二、填空题(本大题共7小题,多空题每题6分,单空题每题4分,共36分)9.已知数列{a n}满足a2=2,且数列{3a n﹣2n}为公比为2的等比数列,则a1=______,数列{a n}通项公式a n=______.10.函数则f(﹣1)=______,若方程f(x)=m有两个不同的实数根,则m的取值范围为______.11.已知实数x,y满足x>0,y>0,x+2y=3,则的最小值为______,x2+4y2+xy的最小值为______.12.已知实数x,y满足.(1)当a=2时,则2x+y的最小值为______;(2)若满足上述条件的实数x,y围成的平面区域是三角形,则实数a的取值范围是______.13.是按先后顺序排列的一列向量,若,且,则其中模最小的一个向量的序号为______.14.如图,平面ABC⊥平面α,D为线段AB的中点,,∠CDB=45°,点P为面α内的动点,且P到直线CD的距离为,则∠APB的最大值为______.15.边长为1的正方体ABCD﹣A1B1C1D1若将其对角线AC1与平面α垂直,则正方体ABCD﹣A1B1C1D1在平面α上的投影面积为______.三、解答题(本大题共5小题,共74分,解答应写出文字说明、证明过程或演算步骤)16.在△ABC中,角A,B,C所对的边分别为a,b,c,A=2C,且(Ⅰ)求cosC的值;(Ⅱ)若△ABC的面积为,求sinB及边b.17.已知数列{a n}的前n项和s n,满足s n=n(n﹣6),数列{b n}满足(Ⅰ)求数列{a n},{b n}的通项公式;(Ⅱ)记数列{c n}满足,求数列{c n}的前n项和T n.18.已知几何体P﹣ABCD如图,面ABCD为矩形,面ABCD⊥面PAB,且面PAB为正三角形,若AB=2,AD=1,E、F分别为AC、BP中点,(Ⅰ)求证:EF∥面PCD;(Ⅱ)求直线BP与面PAC所成角的正弦值.19.已知抛物线C:x2=2py(p>0),圆E:x2+(y+1)2=1,若直线L与抛物线C和圆E分别相切于点A,B(A,B不重合)(Ⅰ)当p=1时,求直线L的方程;(Ⅱ)点F是抛物线C的焦点,若对于任意的p>0,记△ABF面积为S,求的最小值.20.已知函数f(x)=x2+ax+1,其中a∈R,且a≠0(Ⅰ)设h(x)=(2x﹣3)f(x),若函数y=h(x)图象与x轴恰有两个不同的交点,试求a的取值集合;(Ⅱ)求函数y=|f(x)|在[0,1]上最大值.参考答案与试题解析一、选择题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知全集U=R,集合A={x|lgx≥0},,则A∩B为()A.{x|x≥1} B.C.{x|0<x≤1} D.【考点】交集及其运算.【分析】分别求出A与B中不等式的解集确定出A与B,找出两集合的交集即可.【解答】解:由A中不等式lgx≥0=lg1,得到x≥1,即A={x|x≥1},由B中不等式变形得:2x≥=2,即x≥,∴B={x|x≥},则A∩B={x|x≥1},故选:A.2.已知命题p:若a<1,则a2<1,下列说法正确的是()A.命题p是真命题B.命题p的逆命题是真命题C.命题p的否命题是:若a<1,则a2≥1D.命题p的逆否命题是:若a2≥1,则a<1【考点】四种命题的真假关系.【分析】举例说明命题p为假命题,求出命题p的逆命题,否命题,逆否命题逐一判断即可得答案.【解答】解:已知命题p:若a<1,则a2<1,如a=﹣2,则(﹣2)2>1,命题p为假命题,∴A 不正确;命题p的逆命题是:若a2<1,则a<1,为真命题,∴B正确;命题p的否命题是:若a≥1,则a2≥1,∴C不正确;命题p的逆否命题是:若a2≥1,则a>1,∴D不正确.故选:B.3.函数的一条对称轴是()A.B.C.D.【考点】三角函数中的恒等变换应用;正弦函数的对称性.【分析】由三角函数公式化简可得f(x)=2sin(x+),由三角函数的对称性可得.【解答】解:由三角函数公式化简可得f(x)=sinx+sin(+x)=sinx+cosx=2(sinx+cosx)=2sin(x+),由x+=kπ+可x=kπ+,k∈Z.结合选项可得当k=0时,函数的一条对称轴为x=.故选:B.4.设α,β是两个不同的平面,m,n是两条不同的直线,且m⊂α,n⊂β()A.若m,n是异面直线,则α与β相交B.若m∥β,n∥α则α∥βC.若m⊥n,则α⊥βD.若m⊥β,则α⊥β【考点】空间中直线与平面之间的位置关系;平面与平面之间的位置关系.【分析】在A中,α与β相交或平行;在B中,α与β相交或平行;在C中,α与β相交或平行;在D中,由面面垂直的判定定理得α⊥β.【解答】解:由α,β是两个不同的平面,m,n是两条不同的直线,且m⊂α,n⊂β,知:在A中,若m,n是异面直线,则α与β相交或平行,故A错误;在B中,若m∥β,n∥α,则α与β相交或平行,故B错误;在C中,若m⊥n,则α与β相交或平行,故C错误;在D中,若m⊥β,则由面面垂直的判定定理得α⊥β,故D正确.故选:D.5.已知等差数列{a n}公差为d,前n项和{s n},则下列描述不一定正确的是()A.若a1>0,d>0,则n唯一确定时也唯一确定B.若a1>0,d<0,则n唯一确定时也唯一确定C.若a1>0,d>0,则唯一确定时n也唯一确定D.若a1>0,d<0,则唯一确定时n也唯一确定【考点】等差数列的性质.【分析】S n=na1+=+,利用二次函数的性质即可得出.【解答】解:S n=na1+=+,可知:a1>0,d<0,则唯一确定时n不一定唯一确定,可能有两个值,故选:D.6.已知函数f(x)=(x﹣)•sinx,x∈[﹣π,π]且x≠0,下列描述正确的是()A.函数f(x)为奇函数B.函数f(x)既无最大值也无最小值C.函数f(x)有4个零点D.函数f(x)在(0,π)单调递增【考点】函数的图象.【分析】判断函数的奇偶性,求出函数的零点,利用导数判断单调性.【解答】解:∵f(﹣x)=(﹣x+)sin(﹣x)=(x﹣)•sinx=f(x).∴f(x)是偶函数.故A错误.令f(x)=0得x﹣=0或sinx=0,∵x∈[﹣π,π],∴x=±1或x=±π.∴f(x)有4个零点.故C正确.故选:C.7.如图,B、D是以AC为直径的圆上的两点,其中AB=,AD=,则•=()A.1 B.2 C.t D.2t【考点】平面向量数量积的运算.【分析】连结BC,CD,则=AB2,=AD2.于是•==.【解答】解:连结BC,CD.则AD⊥CD,AB⊥BC.∴=AB×AC×cos∠BAC=AB2=t+1.=AD×AC×cos∠CAD=AD2=t+2.∵,∴•===1.故选:A.8.已知双曲线=1(a>0,b>0),若焦点F(c,0)关于渐近线y=x的对称点在另一条渐近线y=﹣x上,则双曲线的离心率为()A.B.2 C.D.3【考点】双曲线的简单性质.【分析】首先求出F1到渐近线的距离,利用焦点F(c,0)关于渐近线y=x的对称点在另一条渐近线y=﹣x上,可得直角三角形,即可求出双曲线的离心率.【解答】解:由题意,F1(﹣c,0),F2(c,0),设一条渐近线方程为y=x,则F1到渐近线的距离为=b.设F1关于渐近线的对称点为M,F1M与渐近线交于A,∴|MF1|=2b,A为F1M的中点,又焦点F(c,0)关于渐近线y=x的对称点在另一条渐近线y=﹣x上,∴OA∥F2M,∴∠F1MF2为直角,∴△MF1F2为直角三角形,∴由勾股定理得4c2=c2+4b2∴3c2=4(c2﹣a2),∴c2=4a2,∴c=2a,∴e=2.故选:B.二、填空题(本大题共7小题,多空题每题6分,单空题每题4分,共36分)9.已知数列{a n}满足a2=2,且数列{3a n﹣2n}为公比为2的等比数列,则a1= 1 ,数列{a n}通项公式a n= .【考点】等比数列的通项公式.【分析】由于3a2﹣4=2.利用等比数列的通项公式可得3a n﹣2n,即可得出.【解答】解:3a2﹣4=2.∴3a n﹣2n=2×2n﹣2=2n﹣1.∴3a1﹣2=1,解得a1=1.∴a n=.故答案分别为:1;.10.函数则f(﹣1)= 2﹣,若方程f(x)=m有两个不同的实数根,则m的取值范围为(0,2).【考点】函数的零点与方程根的关系;函数的值.【分析】根据分段函数的表达式代入求解即可,作出函数f(x)的图象,利用数形结合进行求解即可.【解答】解:由分段函数的表达式得f(﹣1)=|﹣2|=2﹣,故答案为:2﹣,作出函数f(x)的图象如图:当x<0时,f(x)=2﹣e x∈(1,2),∴当x≤1时,f(x)∈[0,2),当x≥1时,f(x)≥0,若方程f(x)=m有两个不同的实数根,则0<m<2,即实数m的取值范围是(0,2),故答案为:2﹣,(0,2).11.已知实数x,y满足x>0,y>0,x+2y=3,则的最小值为,x2+4y2+xy的最小值为.【考点】函数的最值及其几何意义.【分析】根据基本不等式进行转化求解得的最小值,利用换元法转化为一元二次函数,利用一元二次函数的性质即可求x2+4y2+xy的最小值.【解答】解:由x+2y=3得+=1,则=+=(+)×1=(+)(+)=2+++≥+2=+=,当且仅当=,即3x2=2y2取等号,即的最小值为.由x+2y=3得x=3﹣2y,由x=3﹣2y>0得0<y<,则x2+4y2+xy=(3﹣2y)2+4y2+(3﹣2y)y=6y2﹣9y+9=6(y﹣)2+,即当y=时,x2+4y2+xy的最小值为,故答案为:,.12.已知实数x,y满足.(1)当a=2时,则2x+y的最小值为 5 ;(2)若满足上述条件的实数x,y围成的平面区域是三角形,则实数a的取值范围是1<a或a <.【考点】简单线性规划.【分析】(1)作出不等式组表示的平面区域;作出目标函数对应的直线;结合图象知当直线过B (5,3)时,z最大,当直线过C时,z最小.(2)作出不等式组.表示的平面区域,从而解出.【解答】解:(1)画出不等式表示的平面区域:将目标函数变形为z=2x+y,作出目标函数对应的直线,,解得A(1,3),直线过A(1,3)时,直线的纵截距最大,z最小,最小值为5;则目标函数z=2x+y的最小值为:5.故答案为:5.(2).如下图:y=a(x﹣3)恒过(3,0),则若不等式组表示的平面区域是一个三角形,K AB==﹣,则实数a的取值范围,1<a或a<,故答案为:1<a或a<.13.是按先后顺序排列的一列向量,若,且,则其中模最小的一个向量的序号为1002 .【考点】数列与向量的综合;向量的模.【分析】根据题意,求出x n与y n的通项公式,计算的模长最小值即可.【解答】解:是按先后顺序排列的一列向量,且,,∴+(1,1),即(x n,y n)=(x n﹣1,y n﹣1)+(1,1)=(x n﹣1+1,y n﹣1+1);∴,∴,∴||===;∴当n==1002,即n=1002时,其模最小.故答案为:1002.14.如图,平面ABC⊥平面α,D为线段AB的中点,,∠CDB=45°,点P为面α内的动点,且P到直线CD的距离为,则∠APB的最大值为90°.【考点】点、线、面间的距离计算.【分析】空间中到直线CD的距离为1的点构成一个圆柱面,它和面α相交得一椭圆,所以P在α内的轨迹为一个椭圆,D为椭圆的中心,且c=,b=,a=2.利用椭圆的性质:椭圆上点关于两焦点的张角在短轴的端点取得最大,即可得出.【解答】解:空间中到直线CD的距离为1的点构成一个圆柱面,它和面α相交得一椭圆,所以P在α内的轨迹为一个椭圆,D为椭圆的中心,c=,b=,a=2,于是A,B为椭圆的焦点,椭圆上点关于两焦点的张角在短轴的端点取得最大,∴∠APB=2∠APD=90°.故答案为:90°.15.边长为1的正方体ABCD﹣A1B1C1D1若将其对角线AC1与平面α垂直,则正方体ABCD﹣A1B1C1D1在平面α上的投影面积为.【考点】平行投影及平行投影作图法.【分析】根据题意,画出图形,找出与AC1垂直的平面去截正方体ABCD﹣A1B1C1D1所得的截面是什么,再求正方体在该平面上的投影面积.【解答】解:如图所示,连接BB1,DD1的中点MN,交AC1于点O,在对角面ACC1A1中,过点O作OP⊥AC,交AC1于点P,则平面MOP是对角线AC1的垂面;该平面截正方体ABCD﹣A1B1C1D1所得的截面是六边形MGHNFE;则正方体在该平面上的投影面积是MN•2OR=××2×=.故答案为:.三、解答题(本大题共5小题,共74分,解答应写出文字说明、证明过程或演算步骤)16.在△ABC中,角A,B,C所对的边分别为a,b,c,A=2C,且(Ⅰ)求cosC的值;(Ⅱ)若△ABC的面积为,求sinB及边b.【考点】正弦定理;两角和与差的正弦函数.【分析】(I)使用二倍角公式得出关于cosC的方程解出;(II)使用和角公式计算sinB,利用正弦定理和面积公式计算b.【解答】解:(I)∵cosA=cos2C=2cos2C﹣1=,∴cosC=±.∵A=2C,∴C是锐角,∴cosC=.(II)∵cosA=,cosC=,∴sinA=,sinC=.∴sinB=sin(A+C)=sinAcosC+cosAsinC=.由正弦定理得.∴a===5,∵S△ABC∴b=5.17.已知数列{a n}的前n项和s n,满足s n=n(n﹣6),数列{b n}满足(Ⅰ)求数列{a n},{b n}的通项公式;(Ⅱ)记数列{c n}满足,求数列{c n}的前n项和T n.【考点】数列的求和;等比数列的通项公式;等比数列的前n项和.【分析】(Ⅰ)当n≥2时,利用a n=S n﹣S n﹣1计算,进而可知a n=2n﹣7;通过b n+1=3b n可知数列{b n}为等比数列,利用b n=b2•3n﹣2计算即得结论;(Ⅱ)通过(I)可知c n=,进而分n为奇数、偶数两种情况讨论即可.【解答】解:(Ⅰ)当n=1时,a1=S1=﹣5,当n≥2时,a n=S n﹣S n﹣1=2n﹣7,又∵当n=1时满足上式,∴a n=2n﹣7;∵b n+1=3b n,b2=3,∴数列{b n}为等比数列,故其通项公式b n=b2•3n﹣2=3n﹣1;(Ⅱ)由(I)可知c n=,当n为偶数是,T n=+=+;当n为奇数时,T n=+=+;综上所述,T n=.18.已知几何体P﹣ABCD如图,面ABCD为矩形,面ABCD⊥面PAB,且面PAB为正三角形,若AB=2,AD=1,E、F分别为AC、BP中点,(Ⅰ)求证:EF∥面PCD;(Ⅱ)求直线BP与面PAC所成角的正弦值.【考点】直线与平面所成的角;直线与平面平行的判定.【分析】(I)连结BD,则E为BD的中点,利用中位线定理得出EF∥PD,故而EF∥面PCD;(II)取AP的中点H,连结HB,HC,过B作BO⊥HC于O,连结OP.则可证AP⊥平面BCH,于是AP⊥OB,结合OB⊥CH得出OB⊥平面PAC,于是∠BPO为PB与平面PAC所成的角.利用勾股定理计算BH,CH,OB,得出sin∠BPO=.【解答】证明:(I)连结BD,∵四边形ABCD是矩形,E是AC的中点,∴E是BD的中点.又F是BP的中点,∴EF∥PD,又EF⊄平面PCD,PD⊂平面PBD,∴EF∥平面PCD.(II)取AP的中点H,连结HB,HC,过B作BO⊥HC于O,连结OP.∵面ABCD⊥面PAB,面ABCD∩面PAB=AB,BC⊥AB,∴BC⊥平面PAB,∵AP⊂平面PAB,∴BC⊥AP,∵△PAB是等边三角形,∴AP⊥HB,又BC⊂平面BCH,BH⊂平面BCH,BC∩BH=B,∴AP⊥平面BCH,又OB⊂平面BCH,∴AP⊥OB,又OB⊥CH,CH⊂平面PAC,AP⊂平面PAC,CH∩AP=H,∴OB⊥平面PAC.∴∠BPO为PB与平面PAC所成的角.∵AB=2,BC=1,∴BH=,CH==2,∴BO==,∴sin∠BPO==.即直线BP与面PAC所成角的正弦值为.19.已知抛物线C:x2=2py(p>0),圆E:x2+(y+1)2=1,若直线L与抛物线C和圆E分别相切于点A,B(A,B不重合)(Ⅰ)当p=1时,求直线L的方程;(Ⅱ)点F是抛物线C的焦点,若对于任意的p>0,记△ABF面积为S,求的最小值.【考点】直线与圆锥曲线的综合问题;直线的一般式方程.【分析】(Ⅰ)设直线L的方程为y=kx+b,由点到直线距离公式和相切性质得k2+1=(1+b)2,联立,得x2﹣2kx﹣2b=0,由根的判别式得k2+2b=0,由此能求出直线L的方程.(Ⅱ)联立方程,得x2﹣2px﹣2pb=0,由此利用根的判别式、弦长公式、点到直线距离公式,结合已知能求出的最小值.【解答】解:(Ⅰ)当P=1时,抛物线x2=2y,由题意直线L的斜率存在,设直线L的方程为y=kx+b,即kx﹣y+b=0,由题意得=1,即k2+1=(1+b)2,①联立,得x2﹣2kx﹣2b=0,由△=0,得k2+2b=0,②由①②得k=±2,b=﹣4,故直线L的方程为y=,(Ⅱ)联立方程,得x2﹣2px﹣2pb=0,(*)由△=0,得pk2+2p=0,③∴b=﹣,代入(*)式,得x=pk,故点A(pk,),由①②得b=﹣,k2=,故A(pk,),∴|AB|===2•,点F到直线L的距离d==•=,∴S=|AB|•d==,∴==≥,当且仅当p=时,有最小值(2).20.已知函数f(x)=x2+ax+1,其中a∈R,且a≠0(Ⅰ)设h(x)=(2x﹣3)f(x),若函数y=h(x)图象与x轴恰有两个不同的交点,试求a的取值集合;(Ⅱ)求函数y=|f(x)|在[0,1]上最大值.【考点】函数与方程的综合运用;函数的最值及其几何意义.【分析】(Ⅰ)分类讨论,从而由f(x)=0恰有一解及f(x)=0有两个不同的解求得;(Ⅱ)分类讨论,从而确定二次函数的单调性及最值,从而确定函数y=|f(x)|在[0,1]上的最大值.【解答】解:(Ⅰ)(1)若f(x)=0恰有一解,且解不为,即a2﹣4=0,解得a=±2;(2)若f(x)=0有两个不同的解,且其中一个解为,代入得+a+1=0,解得a=﹣,检验满足△>0;综上所述,a的取值集合为{﹣,﹣2,2}.(Ⅱ)(1)若﹣≤0,即a≥0时,函数y=|f(x)|在[0,1]上单调递增,故y max=f(1)=2+a;(2)若0<﹣<1,即﹣2<a<0时,此时△=a2﹣4<0,且f(x)的图象的对称轴在(0,1)上,且开口向上;故y max=max{f(0),f(1)}=max{1,a+2}=,(3)若﹣≥1,即a≤﹣2时,此时f(1)=2+a≤0,y max=max{f(0),﹣f(1)}=max{1,﹣a﹣2}=,综上所述,y max=.。
课时规范练A组基础对点练1.抛掷两枚质地均匀的骰子,向上的点数之差的绝对值为3的概率是()A.19 B.16C.118 D.112解析:抛掷两枚质地均匀的骰子,向上的点数之差的绝对值为3的情况有:1,4;4,1;2,5;5,2;3,6;6,3共6种,而抛掷两枚质地均匀的骰子的情况有36种,所以所求概率P=636=16,故选B.答案:B2.某同学先后投掷一枚质地均匀的骰子两次,第一次向上的点数记为x,第二次向上的点数记为y,在直角坐标系xOy中,以(x,y)为坐标的点落在直线2x -y=1上的概率为()A.112 B.19C.536 D.16解析:先后投掷两次骰子的结果共有6×6=36种,而以(x,y)为坐标的点落在直线2x-y=1上的结果有(1,1),(2,3),(3,5),共3种,故所求概率为336=1 12.答案:A3.若某公司从五位大学毕业生甲、乙、丙、丁、戊中录用三人,这五人被录用的机会均等,则甲或乙被录用的概率为()A.23 B.25C.35 D.910解析:由题意知,从五位大学毕业生中录用三人,所有不同的可能结果有(甲,乙,丙),(甲,乙,丁),(甲,乙,戊),(甲,丙,丁),(甲,丙,戊),(甲,丁,戊),(乙,丙,丁),(乙,丙,戊),(乙,丁,戊),(丙,丁,戊),共10种,其中“甲与乙均未被录用”的所有不同的可能结果只有(丙,丁,戌)这1种,故其对立事件“甲或乙被录用”的可能结果有9种,所求概率P=910.答案:D4.从1,2,3,4中任取2个不同的数,则取出的2个数之差的绝对值为2的概率是()A.12 B.13C.14 D.16解析:从1,2,3,4中任取2个不同的数有以下六种情况:(1,2),(1,3),(1,4),(2,3),(2,4),(3,4),满足取出的2个数之差的绝对值为2的有(1,3),(2,4),故所求概率是26=1 3.答案:B5.从正方形四个顶点及其中心这5个点中,任取2个点,则这2个点的距离小于该正方形边长的概率为()A.15 B.25C.35 D.45解析:取两个点的所有情况有10种,两个点的距离小于正方形边长的情况有4种,所以所求概率为410=25.答案:B6.从字母a,b,c,d,e中任取两个不同字母,则取到字母a的概率为________.解析:总的取法有:ab,ac,ad,ae,bc,bd,be,cd,ce,de共10种,其中含有a的有ab,ac,ad,ae共4种,故所求概率为410=2 5.答案:2 57.如图的茎叶图是甲、乙两人在4次模拟测试中的成绩,其中一个数字被污损,则甲的平均成绩不超过乙的平均成绩的概率为________.解析:依题意,记题中的被污损数字为x,若甲的平均成绩不超过乙的平均成绩,则有(8+9+2+1)-(5+3+x+5)≤0,x≥7,即此时x的可能取值是7,8,9,因此甲的平均成绩不超过乙的平均成绩的概率P=310=0.3.答案:0.38.设连续掷两次骰子得到的点数分别为m,n,令平面向量a=(m,n),b=(1,-3).(1)求使得事件“a⊥b”发生的概率;(2)求使得事件“|a|≤|b|”发生的概率.解析:(1)由题意知,m∈{1,2,3,4,5,6},n∈{1,2,3,4,5,6},故(m,n)所有可能的取法共36种.a⊥b,即m-3n=0,即m=3n,共有2种:(3,1)、(6,2),所以事件a⊥b的概率为236=1 18.(2)|a|≤|b|,即m2+n2≤10,共有(1,1)、(1,2)、(1,3)、(2,1)、(2,2)、(3,1)6种,其概率为636=1 6.9.某校高三学生体检后,为了解高三学生的视力情况,该校从高三六个班的300名学生中以班为单位(每班学生50人),每班按随机抽样方法抽取了8名学生的视力数据.其中高三(1)班抽取的8名学生的视力数据与人数见下表:视力数据4.0 4.1 4.2 4.3 4.4 4.5 4.6 4.7 4.8 4.95.0 5.1 5.2 5.3人数2221 1(1)用上述样本数据估计高三(1)班学生视力的平均值;(2)已知其余五个班学生视力的平均值分别为4.3、4.4、4.5、4.6、4.8.若从这六个班中任意抽取两个班学生视力的平均值作比较,求抽取的两个班学生视力的平均值之差的绝对值不小于0.2的概率.解析:(1)高三(1)班学生视力的平均值为4.4×2+4.6×2+4.8×2+4.9+5.18=4.7,故估计高三(1)班学生视力的平均值为4.7.(2)从这六个班中任意抽取两个班学生视力的平均值作比较,所有的取法共有15种,而满足抽取的两个班学生视力的平均值之差的绝对值不小于0.2的取法有:(4.3,4.5),(4.3,4.6),(4.3,4.7),(4.3,4.8),(4.4,4.6),(4.4,4.7),(4.4,4.8),(4.5,4.7),(4.5,4.8),(4.6,4.8),共有10种,故抽取的两个班学生视力的平均值之差的绝对值不小于0.2的概率为P=1015=2 3.B组能力提升练10.(2019·河北三市联考)袋子中装有大小相同的5个小球,分别有2个红球、3个白球.现从中随机抽取2个小球,则这2个小球中既有红球也有白球的概率为()A.34 B.710C.45 D.35解析:设2个红球分别为a、b,3个白球分别为A、B、C,从中随机抽取2个,则有(a,b),(a,A),(a,B),(a,C),(b,A),(b,B),(b,C),(A,B),(A,C),(B,C),共10个基本事件,其中既有红球也有白球的基本事件有6个,则所求概率为P=610=3 5.答案:D11.在2,0,1,5这组数据中,随机取出三个不同的数,则数字2是取出的三个不同数的中位数的概率为()A.34 B.58C.12 D.14解析:分析题意可知,共有(0,1,2),(0,2,5),(1,2,5),(0,1,5)4种取法,符合题意的取法有2种,故所求概率P=12.答案:C12.(2018·商丘模拟)已知函数f(x)=13x3+ax2+b2x+1,若a是从1,2,3三个数中任取的一个数,b是从0,1,2三个数中任取的一个数,则该函数有两个极值点的概率为()A.79 B.13C.59 D.23解析:f′(x)=x2+2ax+b2,要使函数f(x)有两个极值点,则有Δ=(2a)2-4b2>0,即a2>b2.由题意知所有的基本事件有9个,即(1,0),(1,1),(1,2),(2,0),(2,1),(2,2),(3,0),(3,1),(3,2),其中第一个数表示a的取值,第二个数表示b的取值.满足a2>b2的共有6个,P=69=2 3.答案:D13.将一颗骰子投掷两次分别得到点数a,b,则直线ax-by=0与圆(x-2)2+y2=2相交的概率为________.解析:圆心(2,0)到直线ax-by=0的距离d=|2a|a2+b2,当d<2时,直线与圆相交,则有d=|2a|a2+b2<2,得b>a,满足b>a的共有15种情况,因此直线ax-by=0与圆(x-2)2+y2=2相交的概率为1536=5 12.答案:5 1214.(2019·长沙长郡中学检测)在所有的两位数10~99中,任取一个数,则这个数能被2或3整除的概率是________.解析:所有两位数共有90个,其中2的倍数有45个,3的倍数有30个,6的倍数有15个,所以能被2或3整除的共有45+30-15=60(个),所以所求概率是6090=2 3.答案:2 315.设甲、乙、丙三个乒乓球协会的运动员人数分别为27,9,18.现采用分层抽样的方法从这三个协会中抽取6名运动员组队参加比赛.(1)求应从这三个协会中分别抽取的运动员的人数;(2)将抽取的6名运动员进行编号,编号分别为A1,A2,A3,A4,A5,A6,现从这6名运动员中随机抽取2人参加双打比赛.①用所给编号列出所有可能的结果;②设A为事件“编号为A5和A6的两名运动员中至少有1人被抽到”,求事件A发生的概率.解析:(1)应从甲、乙、丙三个协会中抽取的运动员人数分别为3,1,2.(2)①从6名运动员中随机抽取2人参加双打比赛的所有可能结果为{A1,A2},{A1,A3},{A1,A4},{A1,A5},{A1,A6},{A2,A3},{A2,A4},{A2,A5},{A2,A6},{A3,A4},{A3,A5},{A3,A6},{A4,A5},{A4,A6},{A5,A6},共15种.②编号为A5和A6的两名运动员中至少有1人被抽到的所有可能结果为{A1,A5},{A1,A6},{A2,A5},{A2,A6},{A3,A5},{A3,A6},{A4,A5},{A4,A6},{A5,A6},共9种.因此,事件A发生的概率P(A)=915=3 5.。
山西省太原市高三第二次模拟考试理综化学试题可能用到的相对原子质量:H-1 C-12 O-16 S-32 Zn-65第一部分选择题(一)本题共13小题,每小题6分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
7、有机化学与材料、生活和环境密切相关。
下列说法正确的是A.利用植物秸秆可以生产香料乙酸乙酯B.从煤焦油中提取苯和苯的同系物,可采取的方法是萃取C.用石油裂解产物通过加聚反应直接制备PVC(聚氯乙烯)D.油脂在氢氧化钠溶液中加热发生皂化反应,最终生成高级脂肪酸和丙三醇8、1934年,科学家首先从人尿中分离出具有生长素效应的化学物质一吲哚乙酸,吲哚乙酸的结构如图所示。
下列有关吲哚乙酸的说法正确的是A.吲哚乙酸的分子式是C10H10NO2B.吲哚乙酸苯环上的二氯代物共有四种(不考虑立体异构)C.吲哚乙酸可以发生取代反应、加成反应、氧化反应和还原反应D. 1 mol吲哚乙酸与足量氢气发生加成反应时,最多可以消耗5 mol H29、短周期元素a、b、c、d分属三个周期,且原子序数依次增大。
其中b与a、c两种元素均可形成原子个数比为1:1或1:2的化合物,a、c的原子具有相同的最外层电子数,b、d形成的一种化合物在工业上是一种新型自来水消毒剂。
下列说法一定正确的是A. d的含氧酸是强酸B.离子半径:d>c>bC. b、c、d形成的化合物中只含离子键D. a、c形成的离子化合物具有还原性,可与水反应10、下列说法对应的离子方程式合理的是A.纯碱溶液去油污:CO32-+H2O=HCO3-+OH-B.泡沫灭火器工作原理:2Al3++3CO32-+3H2O= 2A1(OH)3↓+3CO2↑C.明矾溶液中加入过量的氢氧化钡溶液:Al3++SO42-+Ba2++4OH-=BaSO4↓+AlO2-+2H2OD.用石墨为电极,电解Pb(NO3)2和Cu(NO3)2的混合溶液制取PbO2时,阳极上发生的电极反应式:Pb2++2 H2O-2e-=PbO2+4H+11、下列实验操作、现象和对应的实验结论均正确的是12A.在铝土矿制备较高纯度A1的过程中常用到NaOH溶液、CO2气体、冰晶石B.石灰石、纯碱、石英、玻璃都属于盐,都能与盐酸反应C.在制粗硅时,被氧化的物质与被还原的物质的物质的量之比为2∶1D.黄铜矿(CuFeS2)与O2反应产生的Cu2S、FeO均是还原产物13、已知:25℃时,电离常数Kb(NH3·H2O)=1.8×l0-5,CH3COOH的电离常数与其相等。
三校联考高考数学模拟试卷(文科)(解析版)一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.设集合M={x|x2+3x+2<0},集合,则M∪N=()A.{x|x≥﹣2} B.{x|x>﹣1} C.{x|x<﹣1} D.{x|x≤﹣2}2.命题p:∃x∈N,x3<x2;命题q:∀a∈(0,1)∪(1,+∞),函数f(x)=loga (x﹣1)的图象过点(2,0),则下列命题是真命题的是()A.p∧q B.p∧¬q C.¬p∧q D.¬p∧¬q3.已知平面向量,的夹角为,且||=1,|+2|=2,则||=()A.2 B.C.1 D.34.已知双曲线C:(a>0,b>0)的离心率为,则C的渐近线方程为()A.y= B.y=C.y=±x D.y=5.执行如图所示的程序框图,则输出的S的值为()A.7 B.8 C.9 D.106.已知函数f(x)=2sin(2x+),把函数f(x)的图象沿x轴向左平移个单位,得到函数g(x)的图象.关于函数g(x),下列说法正确的是()A .在[,]上是增函数B .其图象关于直线x=﹣对称C .函数g (x )是奇函数D .当x ∈[0,]时,函数g (x )的值域是[﹣1,2]7.已知等差数列{a n }的公差d ≠0,且a 1,a 3,a 13成等比数列,若a 1=1,S n 是数列{a n }前n 项的和,则(n ∈N +)的最小值为( ) A .4B .3C .2﹣2 D .8.一个棱锥的三视图如图(尺寸的长度单位为m ),则该棱锥的全面积是(单位:m 2).( )A .B .C .D .9.已知函数f (x )=,则方程f (x )=ax 恰有两个不同实数根时,实数a的取值范围是( )(注:e 为自然对数的底数) A .(0,)B .[,]C .(0,)D .[,e]10.已知双曲线C :﹣=1的左、右焦点分别是F 1,F 2,正三角形△AF 1F 2的顶点A在y 轴上,边AF 1与双曲线左支交于点B ,且=4,则双曲线C 的离心率的值是( )A .+1 B .C .+1 D .11.已知一个平放的棱长为4的三棱锥内有一小球O (重量忽略不计),现从该三棱锥顶端向内注水,小球慢慢上浮,若注入的水的体积是该三棱锥体积的时,小球与该三棱锥各侧面均相切(与水面也相切),则球的表面积等于( ) A .π B .π C .π D .π12.若定义在区间[﹣2016,2016]上的函数f (x )满足:对于任意的x 1,x 2∈[﹣2016,2016],都有f (x 1+x 2)=f (x 1)+f (x 2)﹣2016,且x >0时,有f (x )<2016,f (x )的最大值、最小值分别为M ,N ,则M+N 的值为( ) A .2015 B .2016C .4030D .4032二、填空题:本大题共4小题,每小题5分. 13.设i 为虚数单位,则复数= .14.已知函数f (x )=2x 2﹣xf ′(2),则函数f (x )的图象在点(2,f (2))处的切线方程是 . 15.若x ,y 满足若z=x+my 的最大值为,则实数m= .16.在△ABC 中,三内角A ,B ,C 的对边分别为a ,b ,c ,且a 2=b 2+c 2+bc ,a=,S为△ABC 的面积,则S+cosBcosC 的最大值为 .三、解答题:解答应写出文字说明,证明过程或演算步骤.17.已知正项数列{a n }的前n 项和为S n ,且S n ,a n ,成等差数列. (1)证明数列{a n }是等比数列; (2)若b n =log 2a n +3,求数列{}的前n 项和T n .18.从甲、乙两部门中各任选10名员工进行职业技能测试,测试成绩(单位:分)数据的茎叶图如图1所示:(Ⅰ)分别求出甲、乙两组数据的中位数,并从甲组数据频率分布直方图如图2所示,求a ,b ,c 的值;(Ⅱ)从甲、乙两组数据中各任取一个,求所取两数之差的绝对值大于20的概率. 19.如图所示,在四棱锥P ﹣ABCD 中,底面是直角梯形ABCD ,其中AD ⊥AB ,CD ∥AB ,AB=4,CD=2,侧面PAD 是边长为2的等边三角形,且与底面ABCD 垂直,E 为PA 的中点.(1)求证:DE ∥平面PBC ; (2)求三棱锥A ﹣PBC 的体积.20.已知椭圆E :(a >b >0),F 1(﹣c ,0),F 2(c ,0)为椭圆的两个焦点,M 为椭圆上任意一点,且|MF 1|,|F 1F 2|,|MF 2|构成等差数列,过椭圆焦点垂直于长轴的弦长为3. (1)求椭圆E 的方程;(2)若存在以原点为圆心的圆,使该圆的任意一条切线与椭圆E 恒有两个交点A ,B ,且⊥,求出该圆的方程.21.设函数f (x )=x 2﹣(a+b )x+ablnx (其中e 为自然对数的底数,a ≠e ,b ∈R ),曲线y=f (x )在点(e ,f (e ))处的切线方程为y=﹣e 2. (1)求b ;(2)若对任意x∈[,+∞),f(x)有且只有两个零点,求a的取值范围.请考生在(22)、(23)、(24)三题中任选一题作答.如果多做,则按所做第一个题目记分.作答时,请写清题号.[选修4-1:几何证明选讲]22.如图,AB是⊙O的直径,弦CA、BD的延长线相交于点E,EF垂直BA的延长线于点F.求证:(1)∠DEA=∠DFA;(2)AB2=BEBD﹣AEAC.[选修4-4:坐标系与参数方程]23.(2016福安市校级模拟)极坐标系与直角坐标系xOy有相同的长度单位,以原点O为极点,以x轴正半轴为极轴.已知曲线C1的极坐标方程为ρ=2sin(θ+),曲线C 2的极坐标方程为ρsinθ=a(a>0),射线θ=φ,θ=φ﹣,θ=φ+,与曲线C1分别交异于极点O的四点A、B、C、D.(Ⅰ)若曲线C1关于曲线C2对称,求a的值,并把曲线C1和曲线C2化成直角坐标方程;(Ⅱ)求|OA||OC|+|OB||OD|的值.[选修4-5:不等式选讲]24.=|x+m|.(Ⅰ)解关于m的不等式f(1)+f(﹣2)≥5;(Ⅱ)当x≠0时,证明:.参考答案与试题解析一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.设集合M={x|x2+3x+2<0},集合,则M∪N=()A.{x|x≥﹣2} B.{x|x>﹣1} C.{x|x<﹣1} D.{x|x≤﹣2}【分析】根据题意先求出集合M和集合N,再求M∪N.【解答】解:∵集合M={x|x2+3x+2<0}={x|﹣2<x<﹣1},集合={x|2﹣x≤22}={x|﹣x≤2}={x|x≥﹣2},∴M∪N={x|x≥﹣2},故选A.【点评】本题考查集合的运算,解题时要认真审题,仔细解答.2.命题p:∃x∈N,x3<x2;命题q:∀a∈(0,1)∪(1,+∞),函数f(x)=loga (x﹣1)的图象过点(2,0),则下列命题是真命题的是()A.p∧q B.p∧¬q C.¬p∧q D.¬p∧¬q【分析】分别判断出p,q的真假,从而判断出复合命题的真假.【解答】解:命题p:∃x∈N,x3<x2,是假命题;命题q:∀a∈(0,1)∪(1,+∞),令x﹣1=1,解得:x=2,此时f(2)=0,(x﹣1)的图象过点(2,0),是真命题;故函数f(x)=loga故¬p∧q真是真命题;故选:C.【点评】本题考查了不等式以及对数函数的性质,考查复合命题的判断,是一道基础题.3.已知平面向量,的夹角为,且||=1,|+2|=2,则||=()【分析】根据向量的数量积的运算和向量的模计算即可.【解答】解:∵|+2|=2,∴+4+4=||2+4||||cos+4||2=||2+2||+4=12,解得||=2,故选:A.【点评】本题考查了向量的数量积的运算和向量的模的计算,属于基础题.4.已知双曲线C:(a>0,b>0)的离心率为,则C的渐近线方程为()A.y= B.y=C.y=±x D.y=【分析】由离心率和abc的关系可得b2=4a2,而渐近线方程为y=±x,代入可得答案.【解答】解:由双曲线C:(a>0,b>0),则离心率e===,即4b2=a2,故渐近线方程为y=±x=x,故选:D.【点评】本题考查双曲线的简单性质,涉及的渐近线方程,属基础题.5.执行如图所示的程序框图,则输出的S的值为()【分析】由已知中的程序语句可知该框图的功能是利用循环结构计算并输出变量S的值,模拟程序的运行过程,分析循环中各变量值的变化情况,可得答案.【解答】解:模拟执行程序框图,由程序框图可知该程序的功能是利用循环结构计算并输出变量S=﹣12+22﹣32+42的值,∵S=﹣12+22﹣32+42=10故选:D.【点评】本题考查了程序框图的应用问题,解题时应模拟程序框图的运行过程,以便得出正确的结论,属于基础题.6.已知函数f(x)=2sin(2x+),把函数f(x)的图象沿x轴向左平移个单位,得到函数g(x)的图象.关于函数g(x),下列说法正确的是()A.在[,]上是增函数B.其图象关于直线x=﹣对称C.函数g(x)是奇函数D.当x∈[0,]时,函数g(x)的值域是[﹣1,2]【分析】由条件利用函数y=Asin(ωx+φ)的图象变换规律求得g(x)的解析式,再利用余弦函数的图象性质,得出结论.【解答】解:把函数f(x)=2sin(2x+)的图象沿x轴向左平移个单位,得到函数g(x)=2sin[2(x+)+]=2cos2x的图象,显然,函数g(x)是偶函数,故排除C.当x∈[,],2x∈[,π],函数g(x)为减函数,故排除A.当x=﹣时,g (x )=0,故g (x )的图象不关于直线x=﹣对称,故排除B .当x ∈[0,]时,2x ∈[0,],cos2x ∈[﹣,1],函数g (x )的值域是[﹣1,2],故选:D .【点评】本题主要考查函数y=Asin (ωx+φ)的图象变换规律,余弦函数的图象性质,属于基础题.7.已知等差数列{a n }的公差d ≠0,且a 1,a 3,a 13成等比数列,若a 1=1,S n 是数列{a n }前n 项的和,则(n ∈N +)的最小值为( ) A .4B .3C .2﹣2 D .【分析】由题意得(1+2d )2=1+12d ,求出公差d 的值,得到数列{a n }的通项公式,前n 项和,从而可得,换元,利用基本不等式,即可求出函数的最小值.【解答】解:∵a 1=1,a 1、a 3、a 13成等比数列, ∴(1+2d )2=1+12d . 得d=2或d=0(舍去), ∴a n =2n ﹣1, ∴S n ==n 2, ∴=.令t=n+1,则=t+﹣2≥6﹣2=4当且仅当t=3,即n=2时,∴的最小值为4.故选:A .【点评】本题主要考查等比数列的定义和性质,等比数列的通项公式,考查基本不等式,属于中档题.8.一个棱锥的三视图如图(尺寸的长度单位为m),则该棱锥的全面积是(单位:m2).()A.B.C.D.【分析】由三视图可以看出,此几何体是一个侧面与底面垂直的三棱锥,垂直于底面的侧面是一个高为2,底连长也为2的等腰直角三角形,底面与垂直于底面的侧面全等,此两面的面积易求,另两个与底面不垂直的侧面是全等的,可由顶点在底面上的射影作出此两侧面底边的高,将垂足与顶点连接,此线即为侧面三角形的高线,求出侧高与底面的连长,用三角形面积公式求出此两侧面的面积,将四个面的面积加起来即可【解答】解:由三视图可以看出,此几何体是一个侧面与底面垂直且底面与垂直于底面的侧面全等的三棱锥由图中数据知此两面皆为等腰直角三角形,高为2,底面连长为2,故它们的面积皆为=2,由顶点在底面的投影向另两侧面的底边作高,由等面积法可以算出,此二高线的长度长度相等,为,将垂足与顶点连接起来即得此两侧面的斜高,由勾股定理可以算出,此斜高为2,同理可求出侧面底边长为,可求得此两侧面的面积皆为=,故此三棱锥的全面积为2+2++=,故选A.【点评】本题考点是由三视图求几何体的面积、体积,考查对三视图的理解与应用,主要考查对三视图与实物图之间的关系,用三视图中的数据还原出实物图的数据,再根据相关的公式求表面积与体积,本题求的是三棱锥的全面积,做本题时要注意本题中的规律应用,即四个侧面两两相等,注意到这一点,可以大大降低运算量.三视图的投影规则是主视、俯视 长对正;主视、左视高平齐,左视、俯视 宽相等.9.已知函数f (x )=,则方程f (x )=ax 恰有两个不同实数根时,实数a的取值范围是( )(注:e 为自然对数的底数) A .(0,)B .[,]C .(0,)D .[,e]【分析】由题意,方程f (x )=ax 恰有两个不同实数根,等价于y=f (x )与y=ax 有2个交点,又a 表示直线y=ax 的斜率,求出a 的取值范围. 【解答】解:∵方程f (x )=ax 恰有两个不同实数根, ∴y=f (x )与y=ax 有2个交点, 又∵a 表示直线y=ax 的斜率, ∴y ′=,设切点为(x 0,y 0),k=,∴切线方程为y ﹣y 0=(x ﹣x 0),而切线过原点,∴y 0=1,x 0=e ,k=, ∴直线l 1的斜率为, 又∵直线l 2与y=x+1平行, ∴直线l 2的斜率为,∴实数a 的取值范围是[,). 故选:B .【点评】本题考查了函数的图象与性质的应用问题,解题时应结合图象,以及函数与方程的关系,进行解答,是易错题.10.已知双曲线C:﹣=1的左、右焦点分别是F1,F2,正三角形△AF1F2的顶点A在y轴上,边AF1与双曲线左支交于点B,且=4,则双曲线C的离心率的值是()A.+1 B.C.+1 D.【分析】不妨设△AF1F2的边长为4,求得c=2,由向量共线可得|BF1|=1,在△BF1F2中,由余弦定理求得|BF2|=,再由双曲线的定义和离心率公式计算即可得到所求值.【解答】解:不妨设△AF1F2的边长为4,则|F1F2|=2c=4,c=2.由,可得|BF1|=1,在△BF1F2中,由余弦定理可得|BF2|2=|BF1|2+|F1F2|2﹣2|BF1||F1F2|cos∠BF1F2=1+16﹣2×1×4×=13,|BF2|=,由双曲线的定义可得2a=|BF2|﹣|BF1|=﹣1,解得a=,则e==.故选:B.【点评】本题考查双曲线的离心率的求法,注意运用双曲线的定义和余弦定理,考查运算能力,属于中档题.11.已知一个平放的棱长为4的三棱锥内有一小球O(重量忽略不计),现从该三棱锥顶端向内注水,小球慢慢上浮,若注入的水的体积是该三棱锥体积的时,小球与该三棱锥各侧面均相切(与水面也相切),则球的表面积等于()A.πB.πC.πD.π【分析】先求出没有水的部分的体积是,再求出棱长为2,可得小球的半径,即可求出球的表面积.【解答】解:由题意,没有水的部分的体积是正四面体体积的,∵正四面体的各棱长均为4, ∴正四面体体积为=,∴没有水的部分的体积是,设其棱长为a ,则=, ∴a=2,设小球的半径为r ,则4×r=,∴r=,∴球的表面积S=4=.故选:C .【点评】本题考查球的表面积,考查体积的计算,考查学生分析解决问题的能力,正确求出半径是关键.12.若定义在区间[﹣2016,2016]上的函数f (x )满足:对于任意的x 1,x 2∈[﹣2016,2016],都有f (x 1+x 2)=f (x 1)+f (x 2)﹣2016,且x >0时,有f (x )<2016,f (x )的最大值、最小值分别为M ,N ,则M+N 的值为( ) A .2015B .2016C .4030D .4032【分析】特殊值法:令x 1=x 2=0,得f (0)=2016,再令x 1+x 2=0,将f (0)=2014代入可得f (x )+f (﹣x )=4032.根据条件x >0时,有f (x )<2016,得出函数的单调性,根据单调性求出函数的最值.【解答】解:∵对于任意的x 1,x 2∈[﹣2016,2016],都有f (x 1+x 2)=f (x 1)+f (x 2)﹣2016,∴令x 1=x 2=0,得f (0)=2016,再令x 1+x 2=0,将f (0)=2014代入可得f (x )+f (﹣x )=4032. 设x 1<x 2,x 1,x 2∈[﹣2016,2016],则x 2﹣x 1>0,f (x 2﹣x 1)=f (x 2)+f (﹣x 1)﹣2016,∴f(x2)+f(﹣x1)﹣2016<2016.又∵f(﹣x1)=4032﹣f(x1),∴f(x2)<f(x1),即函数f(x)是递减的,∴f(x)max=f(﹣2016),f(x)min=f(2016).又∵f(2016)+f(﹣2016)=4032,∴M+N的值为4032.故选D.【点评】考查了抽象函数中特殊值的求解方法,得出函数的性质.二、填空题:本大题共4小题,每小题5分.13.设i为虚数单位,则复数= i .【分析】直接由复数代数形式的乘除运算化简复数,则答案可求.【解答】解:=,故答案为:i.【点评】本题考查了复数代数形式的乘除运算,是基础题.14.已知函数f(x)=2x2﹣xf′(2),则函数f(x)的图象在点(2,f(2))处的切线方程是4x﹣y﹣8=0 .【分析】求导函数,确定切点处的斜率与切点的坐标,即可求得函数f(x)的图象在点(2,f(2))处的切线方程.【解答】解:∵函数f(x)=2x2﹣xf′(2),∴f′(x)=4x﹣f′(2),∴f′(2)=8﹣f′(2),∴f′(2)=4∴f(2)=8﹣2×4=0∴函数f(x)的图象在点(2,f(2))处的切线方程是y﹣0=4(x﹣2)即4x﹣y﹣8=0故答案为:4x﹣y﹣8=0【点评】本题考查导数知识的运用,考查导数的几何意义,确定切点处的斜率与切点的坐标是关键.15.若x,y满足若z=x+my的最大值为,则实数m= 2 .【分析】画出满足约束条件的可行域,求出目标函数的最大值,从而建立关于m的等式,即可得出答案.【解答】解:由z=x+my得y=x,作出不等式组对应的平面区域如图:∵z=x+my的最大值为,∴此时z=x+my=,此时目标函数过定点C(,0),作出x+my=的图象,由图象知当直线x+my=,经过但A时,直线AC的斜率k=>﹣1,即m>1,由平移可知当直线y=x,经过点A时,目标函数取得最大值,此时满足条件,由,解得,即A(,),同时,A也在直线x+my=上,代入得+m=,解得m=2,故答案为:2.【点评】本题主要考查线性规划的应用,根据目标函数的几何意义确定取得最大值的最优解是解决本题的关键.16.在△ABC 中,三内角A ,B ,C 的对边分别为a ,b ,c ,且a 2=b 2+c 2+bc ,a=,S为△ABC 的面积,则S+cosBcosC 的最大值为.【分析】先利用余弦定理求得A ,进而通过正弦定理表示出c ,代入面积公式求得S+cosBcosC 的表达式,利用两角和与差的余弦函数公式化简求得其最大值.【解答】解:∵a 2=b 2+c 2+bc , ∴cosA==﹣,∴A=,由正弦定理 c=a ==2sinC , ∴S===sinBsinC ∴S+cosBcosC=sinBsinC+cosBcosC=cos (B ﹣C )≤,故答案为:.【点评】本题主要考查了正弦定理和余弦定理的应用.求得面积的表达式是解决问题的关键,属于中档题.三、解答题:解答应写出文字说明,证明过程或演算步骤.17.已知正项数列{a n }的前n 项和为S n ,且S n ,a n ,成等差数列. (1)证明数列{a n }是等比数列;(2)若b n =log 2a n +3,求数列{}的前n 项和T n .【分析】(1)由题意得2a n =S n +,易求,当n ≥2时,S n =2a n ﹣,S n ﹣1=2a n﹣1﹣,两式相减得a n =2a n ﹣2a n ﹣1(n ≥2),由递推式可得结论;(2)由(1)可求=2n ﹣2,从而可得b n ,进而有=,利用裂项相消法可得T n ;【解答】解:(1)证明:由S n ,a n ,成等差数列,知2a n =S n +, 当n=1时,有,∴,当n ≥2时,S n =2a n ﹣,S n ﹣1=2a n ﹣1﹣, 两式相减得a n =2a n ﹣2a n ﹣1(n ≥2),即a n =2a n ﹣1, 由于{a n }为正项数列,∴a n ﹣1≠0,于是有=2(n ≥2),∴数列{a n }从第二项起,每一项与它前一项之比都是同一个常数2, ∴数列{a n }是以为首项,以2为公比的等比数列. (2)解:由(1)知==2n ﹣2,∴b n =log 2a n +3==n+1,∴==,∴T n =()+()+…+()==.【点评】本题考查等差数列、等比数列的概念、数列的求和,裂项相消法是高考考查的重点内容,应熟练掌握.18.从甲、乙两部门中各任选10名员工进行职业技能测试,测试成绩(单位:分)数据的茎叶图如图1所示:(Ⅰ)分别求出甲、乙两组数据的中位数,并从甲组数据频率分布直方图如图2所示,求a,b,c的值;(Ⅱ)从甲、乙两组数据中各任取一个,求所取两数之差的绝对值大于20的概率.【分析】(Ⅰ)根据茎叶图能求出甲部门数据的中位数和乙部门数据的中位数,再求出甲部门的成绩在70~80的频率为0.5,由此能求出a,b,c.(Ⅱ)利用列举法求出从“甲、乙两组数据中各任取一个”的所有可能情况和其中所取“两数之差的绝对值大于20”的情况,由此能求出所取两数之差的绝对值大于20的概率.【解答】解:(Ⅰ)根据茎叶图得甲部门数据的中位数是78.5,乙部门数据的中位数是78.5;∵甲部门的成绩在70~80的频率为0.5,∴a=0.05,在80~90的频率为0.2,∴b=0.02在60~70的频率为0.1,∴c=0.01.(Ⅱ)从“甲、乙两组数据中各任取一个”的所有可能情况是:(63,67),(63,68),(63,69),(63,73),(63,75),…,(96,86),(96,94),(96,97)共有100种;其中所取“两数之差的绝对值大于20”的情况是:(63,85),(63,86),(63,94),(63,97),(72,94),(72,97),(74,97),(76,97),(91,67),(91,68),(91,69),(96,67),(96,68),(96,69),(96,73),(96,75)共有16种,故所求的概率为.【点评】本题考查概率的求法,考查频率分布直方图的应用,是基础题,解题时要认真审题,注意列举法的合理运用.19.如图所示,在四棱锥P﹣ABCD中,底面是直角梯形ABCD,其中AD⊥AB,CD∥AB,AB=4,CD=2,侧面PAD是边长为2的等边三角形,且与底面ABCD垂直,E为PA的中点.(1)求证:DE∥平面PBC;(2)求三棱锥A﹣PBC的体积.【分析】(1)(法一)取PB的中点F,连接EF,CF,由已知得EF∥AB,且,从而四边形CDEF是平行四边形,由此能证明DE∥平面PBC.(1)(法二):取AB的中点F,连接DF,EF,由已知得四边形BCDF为平行四边形,从而DF∥BC,由此能证明DE∥平面PBC.(2)取AD的中点O,连接PO,由已知得PO⊥平面ABCD,由此能求出三棱锥A﹣PBC 的体积.【解答】(1)证明:(方法一):取PB的中点F,连接EF,CF.∵点E,F分别是PA,PB的中点∴EF∥AB,且又CD∥AB,且∴EF∥CD,且EF=CD∴四边形CDEF是平行四边形,∴DE∥CF.又DE⊄平面PBC,CF⊂平面PBC∴DE∥平面PBC.(1)证明:(方法二):取AB的中点F,连接DF,EF.在直角梯形ABCD中,CD∥AB,且AB=4,CD=2,所以BF∥CD,且BF=CD.所以四边形BCDF为平行四边形,所以DF∥BC.在△PAB中,PE=EA,AF=FB,所以EF∥PB.又DF∩EF=F,PB∩BC=B,所以平面DEF∥平面PBC.因为DE⊂平面DEF,所以DE∥平面PBC.(2)解:取AD的中点O,连接PO.在△PAD中,PA=PD=AD=2,所以PO⊥AD,PO=又平面PAD⊥平面ABCD,平面PAD∩平面ABCD=AD,所以PO⊥平面ABCD,所以PO就是三棱锥P﹣ABC的高.在直角梯形ABCD中,CD∥AB,且AB=4,AD=2,AB⊥AD,所以.故.【点评】本题考查直线与平面平行的证明,考查三棱锥的体积的求法,解题时要注意空间思维能力的培养.20.已知椭圆E :(a >b >0),F 1(﹣c ,0),F 2(c ,0)为椭圆的两个焦点,M 为椭圆上任意一点,且|MF 1|,|F 1F 2|,|MF 2|构成等差数列,过椭圆焦点垂直于长轴的弦长为3. (1)求椭圆E 的方程;(2)若存在以原点为圆心的圆,使该圆的任意一条切线与椭圆E 恒有两个交点A ,B ,且⊥,求出该圆的方程.【分析】(1)通过|MF 1|,|F 1F 2|,|MF 2|构成等差数列,过椭圆焦点垂直于长轴的弦长为3.列出方程,求出a 、b ,即可求椭圆E 的方程;(2)假设以原点为圆心,r 为半径的圆满足条件.(ⅰ)若圆的切线的斜率存在,并设其方程为y=kx+m ,则r=,然后联立直线方程与椭圆方程,设A (x 1,y 1),B (x 2,y 2),结合x 1x 2+y 1y 2=0,即可求圆的方程.(ⅱ)若AB 的斜率不存在,设A (x 1,y 1),则B (x 1,﹣y 1),利用⊥,求出半径,得到结果.【解答】解:(1)由题知2|F 1F 2|=|MF 1|+|MF 2|, 即2×2c=2a ,得a=2c .①又由,得②且a 2=b 2+c 2,综合解得c=1,a=2,b=.∴椭圆E 的方程为+=1.﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(5分)(2)假设以原点为圆心,r 为半径的圆满足条件.(ⅰ)若圆的切线的斜率存在,并设其方程为y=kx+m ,则r=,r 2=,①消去y ,整理得(3+4k 2)x 2+8kmx+4(m 2﹣3)=0,设A (x 1,y 1),B (x 2,y 2),又∵⊥,∴x1x2+y1y2=0,即4(1+k2)(m2﹣3)﹣8k2m2+3m2+4k2m2=0,化简得m2=(k2+1),②由①②求得r2=.所求圆的方程为x2+y2=.﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(10分)(ⅱ)若AB的斜率不存在,设A(x1,y1),则B(x1,﹣y1),∵⊥,∴=0,得x=.此时仍有r2=|x|=.综上,总存在以原点为圆心的圆x2+y2=满足题设条件.【点评】考查椭圆的方程和基本性质,与向量相结合的综合问题.考查分析问题解决问题的能力.21.设函数f(x)=x2﹣(a+b)x+ablnx(其中e为自然对数的底数,a≠e,b∈R),曲线y=f(x)在点(e,f(e))处的切线方程为y=﹣e2.(1)求b;(2)若对任意x∈[,+∞),f(x)有且只有两个零点,求a的取值范围.【分析】(1)求导,从而求b;(2)由(1)得,,从而①当时,要使得f(x)在上有且只有两个零点,只需=,②当时,求导确定零点个数,③当a>e时,求导确定零点个数.【解答】解:(1),∵f′(e)=0,a≠e,∴b=e;(2)由(1)得,,①当时,由f′(x)>0得x>e;由f′(x)<0得.此时f(x)在上单调递减,在(e,+∞)上单调递增.∵,;∴要使得f(x)在上有且只有两个零点,则只需=,即;②当时,由f′(x)>0得或x>e;由f′(x)<0得a<x<e.此时f(x)在(a,e)上单调递减,在和(e,+∞)上单调递增.此时,∴此时f(x)在[e,+∞)至多只有一个零点,不合题意;③当a>e时,由f′(x)>0得或x>a,由f′(x)<0得e<x<a,此时f(x)在和(a,+∞)上单调递增,在(e,a)上单调递减,且,∴f(x)在至多只有一个零点,不合题意.综上所述,a的取值范围为.【点评】本题考查了导数的综合应用及导数的几何意义的应用,同时考查了分类讨论的思想应用,属于中档题.请考生在(22)、(23)、(24)三题中任选一题作答.如果多做,则按所做第一个题目记分.作答时,请写清题号.[选修4-1:几何证明选讲]22.如图,AB是⊙O的直径,弦CA、BD的延长线相交于点E,EF垂直BA的延长线于点F.求证:(1)∠DEA=∠DFA;(2)AB2=BEBD﹣AEAC.【分析】(1)连接AD,利用AB为圆的直径结合EF与AB的垂直关系,通过证明A,D,E,F四点共圆即可证得结论;(2)由(1)知,BDBE=BABF,再利用△ABC∽△AEF得到比例式,最后利用线段间的关系即求得AB2=BEBD﹣AEAC.【解答】证明:(1)连接AD,因为AB为圆的直径,所以∠ADB=90°,(1分)又EF⊥AB,∠AFE=90°,(1分)则A,D,E,F四点共圆(2分)∴∠DEA=∠DFA(1分)(2)由(1)知,BDBE=BABF,(1分)又△ABC∽△AEF∴,即ABAF=AEAC(2分)∴BEBD﹣AEAC=BABF﹣ABAF=AB(BF﹣AF)=AB2(2分)【点评】本小题主要考查与圆有关的比例线段、四点共圆的证明方法、三角形相似等基础知识,考查运算求解能力、化归与转化思想.属于中档题.[选修4-4:坐标系与参数方程]23.(2016福安市校级模拟)极坐标系与直角坐标系xOy有相同的长度单位,以原点O为极点,以x轴正半轴为极轴.已知曲线C1的极坐标方程为ρ=2sin(θ+),曲线C 2的极坐标方程为ρsinθ=a(a>0),射线θ=φ,θ=φ﹣,θ=φ+,与曲线C1分别交异于极点O的四点A、B、C、D.(Ⅰ)若曲线C1关于曲线C2对称,求a的值,并把曲线C1和曲线C2化成直角坐标方程;(Ⅱ)求|OA||OC|+|OB||OD|的值.【分析】(Ⅰ)曲线C1的极坐标方程为ρ=2sin(θ+),展开可得:,把ρ2=x2+y2,x=ρcosθ,y=ρsinθ代入可得直角坐标方程.把C2的方程化为直角坐标方程为y=a,根据曲线C1关于曲线C2对称,故直线y=a经过圆心解得a,即可得出.(Ⅱ)由题意可得,|OA|,|OB|,|OC|,|OD|,代入利用和差公式即可得出.【解答】解:(Ⅰ)曲线C1的极坐标方程为ρ=2sin(θ+),展开可得:,化为直角坐标方程为(x﹣1)2+(y﹣1)2=2.把C2的方程化为直角坐标方程为y=a,∵曲线C1关于曲线C2对称,故直线y=a经过圆心(1,1),解得a=1,故C2的直角坐标方程为y=1.(Ⅱ)由题意可得,,,,,.【点评】本题考查了直角坐标与极坐标的互化、圆的对称性、直线与圆相交弦长问题,考查了推理能力与计算能力,属于中档题.[选修4-5:不等式选讲]24.=|x+m|.(Ⅰ)解关于m的不等式f(1)+f(﹣2)≥5;(Ⅱ)当x≠0时,证明:.【分析】(Ⅰ)问题等价于|m+1|+|m﹣2|≥5,通过讨论m的范围,求出不等式的解集即可;(Ⅱ)根据绝对值的性质证明即可.【解答】解:(Ⅰ)不等式f(1)+f(﹣2)≥5等价于|m+1|+|m﹣2|≥5,可化为,解得m≤﹣2;或,无解;或,解得m≥3;综上不等式解集为(﹣∞,﹣2]∪[3,+∞)…(5分)(Ⅱ)证明:当x≠0时,,|x|>0,,…(10分)【点评】本题考查了解绝对值不等式问题,考查绝对值的性质,是一道中档题.。
最新高考数学二模试卷(文科)一、选择题(共12小题,每小题5分,满分60分)1.设集合A={﹣1,0,1,2,3},B={x|x2﹣2x>0},则A∩B=()A.{3} B.{2,3} C.{﹣1,3} D.{0,1,2}2.命题“∀x∈R,x2﹣x+1>0”的否定是()A.∀x0∈R,x02﹣x0+1≤0 B.∀x0∈R,x02﹣x0+1≤0C.∃x0R,x02﹣x0+1≤0 D.∃x0∈R,x02﹣x0+1≤03.在复平面内,复数z与的对应点关于虚轴对称,则z=()A.2﹣i B.﹣2﹣i C.2+i D.﹣2+i4.在等差数列{a n}中,a7=8,前7项和S7=42,则其公差是()A.﹣B.﹣C.D.5.执行如图的程序框图,若输入的a=209,b=76,则输出的a是()A.3 B.57 C.19 D.766.函数y=4sin(ωx+φ)(ω>0,|φ|<π)部分图象如图,其中点A(,0),B(,0),则()A.ω=,φ=﹣B.ω=1,φ=﹣C.ω=,φ=﹣D.ω=1,φ=﹣7.已知函数f(x)=+a,若f(x)是奇函数,则a=()A.0 B.C.D.8.设实数x,y满足约束条件,则z=的取值范围是()A.[,1] B.[,] C.[,] D.[,]9.某几何体的三视图如图所示,该几何体的体积为()A.B.C.D.310.当x∈[1,2],函数y=x2与y=a x(a>0)的图象有交点,则a的取值范围是()A.[,2] B.[,] C.[,2] D.[,]11.在△ABC中,AB=2BC,以A,B为焦点,经过C的椭圆和双曲线的离心率分别为e1,e2,则()A.﹣=1 B.﹣=2C.﹣=1 D.﹣=212.已知圆C:x2+y2=1,点M(t,2),若C上存在两点A、B满足=,则t的取值范围是()A.[﹣2,2] B.[﹣,] C.[﹣3,3] D.[﹣5,5]二、填空题(共4小题,每小题5分,满分20分)13.曲线y=e x在点(0,1)处的切线方程是.14.已知||=,||=2,若(+)⊥,则与的夹角是.15.设S n是数列{a n}的前n项和,a n=4S n﹣3,则S4= .16.在三棱锥P﹣ABC中,△ABC与△PBC都是等边三角形,侧面PBC⊥底面ABC,AB=2,则该三棱锥的外接球的表面积为.三、简答题,本大题共70分,17-21题为必考题,22-24为选考题17.在△ABC中,角A,B,C所对的边分别为a,b,c,2(a2﹣b2)=2accosB+bc.(Ⅰ)求A;(Ⅱ)D为边BC上一点,BD=3DC,∠DAB=,求tanC.18.四棱锥P﹣ABCD的底面ABCD是平行四边形,PA=AD,M,N分别是棱PC,AB 的中点,且MN⊥CD.(Ⅰ)求证:PN=CN;(Ⅱ)直线MN与平面PBD相交于点F,求MF:FN.19.某市工业部门计划对所辖中小型工业企业推行节能降耗技术改造,对所辖企业是否支持改造进行问卷调查,结果如表:支持不支持合计中型企业80 40 120小型企业240 200 440合计320 240 560(Ⅰ)能否在犯错误的概率不超过0.025的前提下认为“是否支持节能降耗技术改造”与“企业规模”有关?(Ⅱ)从上述320家支持节能降耗改造的中小企业中按分层抽样的方法抽出8家,然后从这8家中选出2家,求这2家中恰好中、小型企业各一家的概率K2=0.050 0.025 0.010P(K2≥k0)3.841 5.024 6.635K020.已知抛物线E:x2=4y,m,n是经过点A(a,﹣1)且倾斜角互补的两条直线,其中m与E有唯一公共点B,n与E相交于不同的两点C,D(Ⅰ)求m的斜率k的取值范围;(Ⅱ)当n过E的焦点时,求B到n的距离.21.设函数f(x)=x++alnx,其中a∈R.(Ⅰ)设f(x)的极小值点为x=t,请将a用t表示;(Ⅱ)记f(x)的极小值为g(t),证明:(1)g(t)=g();(2)函数y=g(t)恰有两个零点,且互为倒数.22.如图,AB为圆O的直径,PB,PC分别与圆O相切于B,C两点,延长BA,PC相交于点D.(Ⅰ)证明:AC∥OP;(Ⅱ)若CD=2,PB=3,求AB.23.在极坐标系中,曲线C:ρ=2acosθ(a>0),l:ρcos(θ﹣)=,C与l有且仅有一个公共点.(Ⅰ)求a;(Ⅱ)O为极点,A,B为C上的两点,且∠AOB=,求|OA|+|OB|的最大值.24.设f(x)=|x﹣1|﹣2|x+1|的最大值为m.(Ⅰ)求m;(Ⅱ)若a,b,c∈(0,+∞),a2+2b2+c2=m,求ab+bc的最大值.参考答案与试题解析一、选择题(共12小题,每小题5分,满分60分)1.设集合A={﹣1,0,1,2,3},B={x|x2﹣2x>0},则A∩B=()A.{3} B.{2,3} C.{﹣1,3} D.{0,1,2}考点:交集及其运算.专题:集合.分析:求出B中不等式的解集确定出B,找出A与B的交集即可.解答:解:由B中不等式变形得:x(x﹣2)>0,解得:x<0或x>2,即B={x|x<0或x>2},∵A={﹣1,0,1,2,3},∴A∩B={﹣1,3},故选:C.点评:此题考查了交集及其运算,熟练掌握交集的定义是解本题的关键.2.命题“∀x∈R,x2﹣x+1>0”的否定是()A.∀x0∈R,x02﹣x0+1≤0 B.∀x0∈R,x02﹣x0+1≤0C.∃x0R,x02﹣x0+1≤0 D.∃x0∈R,x02﹣x0+1≤0考点:命题的否定.专题:简易逻辑.分析:直接利用全称命题的否定是特称命题写出结果即可.解答:解:因为全称命题的否定是特称命题,所以,命题“∀x∈R,x2﹣x+1>0”的否定是:∃x0∈R,x02﹣x0+1≤0.故选:D.点评:本题考查命题的否定,特称命题与全称命题的否定关系,基本知识的考查.3.在复平面内,复数z与的对应点关于虚轴对称,则z=()A.2﹣i B.﹣2﹣i C.2+i D.﹣2+i考点:复数的代数表示法及其几何意义.专题:数系的扩充和复数.分析:化简复数为a+bi的形式,然后利用对称性求解即可.解答:解:==﹣2﹣i.在复平面内,复数z与的对应点关于虚轴对称,则z=2﹣i.故选:A.点评:本题考查复数的基本概念,复数的乘除运算,考查计算能力.4.在等差数列{a n}中,a7=8,前7项和S7=42,则其公差是()A.﹣B.﹣C.D.考点:等差数列的通项公式.专题:等差数列与等比数列.分析:直接由已知结合等差数列的通项公式和前n项和列式求得公差.解答:解:设等差数列{a n}的首项为a1,公差为d,由a7=8,S7=42,得,解得:.故选:D.点评:本题考查了等差数列的通项公式,考查了等差数列的前n项和,是基础题.5.执行如图的程序框图,若输入的a=209,b=76,则输出的a是()A.3 B.57 C.19 D.76考点:程序框图.专题:图表型;算法和程序框图.分析:模拟执行程序框图,依次写出每次循环得到的a,b,c的值,当b=0时满足条件b=0,退出循环,输出a的值为19.解答:解:模拟执行程序框图,可得a=209,b=76c=57a=76,b=57,不满足条件b=0,c=19,a=57,b=19不满足条件b=0,c=0,a=19,b=0满足条件b=0,退出循环,输出a的值为19.故选:C.点评:根据流程图(或伪代码)写程序的运行结果,是算法这一模块最重要的题型,其处理方法是:①分析流程图(或伪代码),从流程图(或伪代码)中即要分析出计算的类型,又要分析出参与计算的数据(如果参与运算的数据比较多,也可使用表格对数据进行分析管理)⇒②建立数学模型,根据第一步分析的结果,选择恰当的数学模型③解模,本题属于基础知识的考查.6.函数y=4sin(ωx+φ)(ω>0,|φ|<π)部分图象如图,其中点A(,0),B(,0),则()A.ω=,φ=﹣B.ω=1,φ=﹣C.ω=,φ=﹣D.ω=1,φ=﹣考点:正弦函数的图象.专题:三角函数的图像与性质.分析:结合图象,由周期求出ω,由五点法作图求出φ的值,可得函数的解析式.解答:解:由函数的图象可得==﹣,∴ω=.再根据五点法作图可得•+φ=0,求得φ=﹣,故选:C.点评:本题主要考查由函数y=Asin(ωx+φ)的部分图象求解析式,由周期求出ω,由五点法作图求出φ的值,属于基础题.7.已知函数f(x)=+a,若f(x)是奇函数,则a=()A.0 B.C.D.考点:函数奇偶性的性质.专题:函数的性质及应用.分析:根据奇函数的定义f(x)+f(﹣x)=0,x=1,特殊值求解即可.解答:解:∵函数f(x)=+a,f(x)是奇函数,∴f(1)+f(﹣1)=0,即++a=0,2a=1,a=,故选:B点评:本题考查了奇函数的定义性质,难度很小,属于容易题.8.设实数x,y满足约束条件,则z=的取值范围是()A.[,1] B.[,] C.[,] D.[,]考点:简单线性规划.专题:不等式的解法及应用.分析:作出不等式组对应的平面区域,利用目标函数的几何意义以及斜率公式的计算,即可求z的取值范围.解答:解:作出不等式组对应的平面区域如图:(阴影部分).z=的几何意义是区域内的点(x,y)到定点D(﹣1,0)的斜率,由图象知BD的斜率最大,CD的斜率最小,由,解得,即B(,),即BD的斜率k==,由,解得,即C(,),即CD的斜率k==,即≤z≤,故选:D.点评:本题主要考查线性规划以及直线斜率的应用,利用目标函数的几何意义,结合数形结合的数学思想是解决此类问题的基本方法.9.某几何体的三视图如图所示,该几何体的体积为()A.B.C.D.3考点:由三视图求面积、体积.专题:计算题;空间位置关系与距离.分析:根据几何体的三视图,得出该几何体是三棱柱与三棱锥的组合体,结合图中的数据,求出它的体积.解答:解:根据几何体的三视图,得;该几何体是下部为直三棱柱,上部为直三棱锥的组合体;如图所示:∴该几何体的体积是V几何体=V三棱柱+V三棱锥=×2×1×1+××2×1×1=.故选:A.点评:本题考查了利用空间几何体的三视图求体积的应用问题,是基础题目.10.当x∈[1,2],函数y=x2与y=a x(a>0)的图象有交点,则a的取值范围是()A.[,2] B.[,] C.[,2] D.[,]考点:函数的零点与方程根的关系.专题:计算题;作图题;函数的性质及应用.分析:作函数y=x2与y=a x(a>0)在[1,2]上的图象,结合图象写出a的取值范围即可.解答:解:作函数y=x2与y=a x(a>0)在[1,2]上的图象如下,结合图象可得,a的取值范围是[,],故选:B.点评:本题考查了函数的图象的应用,属于基础题.11.在△ABC中,AB=2BC,以A,B为焦点,经过C的椭圆和双曲线的离心率分别为e1,e2,则()A.﹣=1 B.﹣=2C.﹣=1 D.﹣=2考点:椭圆的简单性质.专题:圆锥曲线的定义、性质与方程.分析:以AB所在直线为x轴,其中点为原点,建立坐标系,再通过椭圆及双曲线的基本概念即可得到答案.解答:解:以AB所在直线为x轴,其中点为原点,建立坐标系,则A(﹣1,0),B(1,0),C(1+cosθ,sinθ),所以AC==,对于椭圆而言,2c=2,2a=AC+BC=+1,所以==;对于双曲线而言,2c=2,2a=AC﹣BC=﹣1,所以==;故﹣=﹣=1,故选:A.点评:本题考查椭圆、双曲线的概念,建立坐标系是解决本题的关键,属于中档题.12.已知圆C:x2+y2=1,点M(t,2),若C上存在两点A、B满足=,则t的取值范围是()A.[﹣2,2] B.[﹣,] C.[﹣3,3] D.[﹣5,5]考点:直线与圆的位置关系.专题:计算题;直线与圆.分析:确定A是MB的中点,利用圆x2+y2=1的直径是2,可得MA≤2,即点M到原点距离小于等于3,从而可得结论.解答:解:∵=,∴A是MB的中点,∵圆x2+y2=1的直径是2,∴MA≤2,∴点M到原点距离小于等于3,∴t2+4≤9,∴﹣≤t≤,故选:B.点评:本题考查向量知识的运用,考查直线与圆的位置关系,考查学生分析解决问题的能力,属于中档题.二、填空题(共4小题,每小题5分,满分20分)13.曲线y=e x在点(0,1)处的切线方程是x﹣y+1=0 .考点:利用导数研究曲线上某点切线方程.专题:导数的综合应用.分析:求出原函数的导函数,得到在x=0处的导数值,再求出f(0),然后直接写出切线方程的斜截式.解答:解:由f(x)=e x,得f′(x)=e x,∴f′(0)=e0=1,即曲线f(x)=e x在x=0处的切线的斜率等于1,曲线经过(0,1),∴曲线f(x)=e x在x=0处的切线方程为y=x+1,即x﹣y+1=0.故答案为:x﹣y+1=0.点评:本题考查利用导数研究曲线上某点的切线方程,曲线上某点处的导数值,就是曲线在该点处的切线的斜率,是中档题.14.已知||=,||=2,若(+)⊥,则与的夹角是150°.考点:平面向量数量积的运算.专题:平面向量及应用.分析:根据已知条件即可得到,所以根据进行数量积的运算即可得到3,所以求出cos<>=,从而便求出与的夹角.解答:解:∵;∴=;∴;∴与的夹角为150°.故答案为:150°.点评:考查两非零向量垂直的充要条件,以及数量积的计算公式,向量夹角的范围.15.设S n是数列{a n}的前n项和,a n=4S n﹣3,则S4= .考点:数列递推式.专题:等差数列与等比数列.分析:a n=4S n﹣3,当n=1时,a1=4a1﹣3,解得a1.当n≥2时,S n﹣S n﹣1=4S n﹣3,化为,利用等比数列的通项公式即可得出.解答:解:∵a n=4S n﹣3,∴当n=1时,a1=4a1﹣3,解得a1=1.当n≥2时,S n﹣S n﹣1=4S n﹣3,化为,∴数列是等比数列,首项为,公比为﹣,∴=.令n=4,则S4=+=.故答案为:.点评:本题考查了等比数列的通项公式,考查了变形能力,考查了推理能力与计算能力,属于中档题.16.在三棱锥P﹣ABC中,△ABC与△PBC都是等边三角形,侧面PBC⊥底面ABC,AB=2,则该三棱锥的外接球的表面积为20π.考点:球的体积和表面积.专题:计算题;空间位置关系与距离.分析:由题意,等边三角形的高为3,设球心到底面的距离为x,则r2=22+x2=12+(3﹣x)2,求出x,可得r,即可求出该三棱锥的外接球的表面积.解答:解:由题意,等边三角形的高为3,设球心到底面的距离为x,则r2=22+x2=12+(3﹣x)2,所以x=1,所以该三棱锥的外接球的表面积为4πr2=20π.故答案为:20π.点评:本题考查求三棱锥的外接球的表面积,考查学生的计算能力,确定球的半径是关键.三、简答题,本大题共70分,17-21题为必考题,22-24为选考题17.在△ABC中,角A,B,C所对的边分别为a,b,c,2(a2﹣b2)=2accosB+bc.(Ⅰ)求A;(Ⅱ)D为边BC上一点,BD=3DC,∠DAB=,求tanC.考点:余弦定理;正弦定理.专题:三角函数的求值;解三角形.分析:(Ⅰ)由余弦定理可得2accosB=a2+c2﹣b2,代入已知等式整理得cosA=﹣,即可求得A.(Ⅱ)由已知可求∠DAC=,由正弦定理有=,又BD=3CD,可得3sinB=2sinC,由B=﹣C化简即可得解.解答:解:(Ⅰ)因为2accosB=a2+c2﹣b2,所以2(a2﹣b2)=a2+c2﹣b2+bc.…(2分)整理得a2=b2+c2+bc,所以cosA=﹣,即A=.…(4分)(Ⅱ)因为∠DAB=,所以AD=BD•sinB,∠DAC=.…(6分)在△ACD中,有=,又因为BD=3CD,所以3sinB=2sinC,…(9分)由B=﹣C得cosC﹣sinC=2sinC,…(11分)整理得tanC=.…(12分)点评:本题主要考查了余弦定理,正弦定理,同角三角函数关系式,三角函数恒等变换的应用,综合性较强,属于基本知识的考查.18.四棱锥P﹣ABCD的底面ABCD是平行四边形,PA=AD,M,N分别是棱PC,AB 的中点,且MN⊥CD.(Ⅰ)求证:PN=CN;(Ⅱ)直线MN与平面PBD相交于点F,求MF:FN.考点:点、线、面间的距离计算;空间中直线与平面之间的位置关系.专题:综合题;空间位置关系与距离.分析:(Ⅰ)取PD中点E,连AE,EM,证明MN⊥平面PCD,可得MN⊥PC,即可证明PN=CN;(Ⅱ)设M,N,C,A到平面PBD的距离分别为d1,d2,d3,d4,则d3=2d1,d4=2d2,由V A﹣PBD=V C﹣PBD,得d3=d4,则d1=d2,即可得出结论.解答:(Ⅰ)证明:取PD中点E,连AE,EM,则EM∥AN,且EM=AN,四边形ANME是平行四边形,MN∥AE.由PA=AD得AE⊥PD,故MN⊥PD.又因为MN⊥CD,所以MN⊥平面PCD,则MN⊥PC,PN=CN.…(6分)(Ⅱ)解:设M,N,C,A到平面PBD的距离分别为d1,d2,d3,d4,则d3=2d1,d4=2d2,由V A﹣PBD=V C﹣PBD,得d3=d4,则d1=d2,故MF:FN=d1:d2=1:1.…(12分)点评:本题考查线面垂直的证明,考查等体积的运用,考查学生分析解决问题的能力,属于中档题.19.某市工业部门计划对所辖中小型工业企业推行节能降耗技术改造,对所辖企业是否支持改造进行问卷调查,结果如表:支持不支持合计中型企业80 40 120小型企业240 200 440合计320 240 560业规模”有关?(Ⅱ)从上述320家支持节能降耗改造的中小企业中按分层抽样的方法抽出8家,然后从这8家中选出2家,求这2家中恰好中、小型企业各一家的概率K2=0.050 0.025 0.010P(K2≥k0)3.841 5.024 6.635K0考点:独立性检验.专题:计算题;概率与统计.分析:(Ⅰ)由题意知根据表中所给的数据,利用公式可求K2的值,从临界值表中可以知道K2>5.024,根据临界值表中所给的概率得到与本题所得的数据对应的概率是0.025,得到结论;(Ⅱ)由(Ⅰ)可知“支持”的企业中,中、小企业数之比为1:3,按分层抽样得到的8家中,中、小企业分别为2家和6家,列表确定基本事件,即可求出这2家中恰好中、小型企业各一家的概率.解答:解:(Ⅰ)K2=≈5.657,因为5.657>5.024,所以能在犯错概率不超过0.025的前提下认为“是否支持节能降耗技术改造”与“企业规模”有关.…(4分)(Ⅱ)由(Ⅰ)可知“支持”的企业中,中、小企业数之比为1:3,按分层抽样得到的8家中,中、小企业分别为2家和6家,分别记为A1,A2,B1,B2,B3,B4,B5,B6,把可能结果列表如下:A1 A2 B1 B2 B3 B4 B5 B6A1﹣+ + + + + +A2﹣+ + + + + +B1 + + ﹣B2 + + ﹣B3 + + ﹣B4 + + ﹣B5 + + ﹣B6 + + ﹣结果总数是56,符合条件的有24种结果.(若用树状图列式是:)从8家中选2家,中、小企业恰各有一家的概率为=.…(12分)点评:本题考查独立性检验的应用,考查概率的计算,考查学生的计算能力,属于中档题.20.已知抛物线E:x2=4y,m,n是经过点A(a,﹣1)且倾斜角互补的两条直线,其中m与E有唯一公共点B,n与E相交于不同的两点C,D(Ⅰ)求m的斜率k的取值范围;(Ⅱ)当n过E的焦点时,求B到n的距离.考点:直线与圆锥曲线的关系.专题:综合题;圆锥曲线的定义、性质与方程.分析:(Ⅰ)设直线m:y+1=k(x﹣a),n:y+1=﹣k(x﹣a),代入抛物线方程,运用判别式等于0和大于0,解不等式即可得到k的范围;(Ⅱ)k AF==﹣k,所以ak=2,确定B的坐标,再求出B到n的距离.解答:解:(Ⅰ)m:y+1=k(x﹣a),n:y+1=﹣k(x﹣a),分别代入x2=4y,得x2﹣4kx+4ka+4=0①,x2+4kx﹣4ka+4=0②,…(2分)由△1=0得k2﹣ka﹣1=0,由△2>0得k2+ka﹣1>0,…(4分)故有2k2﹣2>0,得k2>1,即k<﹣1或k>1.…(6分)(Ⅱ)F(0,1),k AF==﹣k,所以ak=2.…(8分)由△1=0得k2=ka+1=3,B(2k,k2),所以B到n的距离d===4 …(12分)点评:本题考查抛物线的方程和性质,主要考查直线和抛物线方程联立,运用判别式,考查运算化简的能力,属于中档题.21.设函数f(x)=x++alnx,其中a∈R.(Ⅰ)设f(x)的极小值点为x=t,请将a用t表示;(Ⅱ)记f(x)的极小值为g(t),证明:(1)g(t)=g();(2)函数y=g(t)恰有两个零点,且互为倒数.考点:利用导数研究函数的极值;函数的零点.专题:导数的综合应用.分析:(Ⅰ)求出导函数,利用f(x)的极小值点为x=t.推出t=>0,然后求解单调区间,a=﹣表示出a与t的关系.(Ⅱ)(ⅰ)由(Ⅰ)知f(x)的极小值,就是证明g()=g(t).(ⅱ)求出函数的g′(t)=﹣(1+)lnt,利用单调性以及极值,判断分别存在唯一的c ∈(1,1)和d∈(1,e2),推出g(c)=g(d)=0,化简即可.解答:解:(Ⅰ)f′(x)=1﹣+=.t=>0,…(2分)当x∈(0,t)时,f′(x)<0,f(x)单调递减;当x∈(t,+∞)时,f′(x)>0,f(x)单调递增.…(4分)由f′(t)=0得a=﹣t.…(6分)(Ⅱ)(ⅰ)由(Ⅰ)知f(x)的极小值为g(t)=t++(﹣t)lnt,则g()=+t+(t﹣)ln=t++(﹣t)lnt=g(t).…(8分)(ⅱ)g′(t)=﹣(1+)lnt,…(9分)当t∈(0,1)时,g′(t)>0,f(t)单调递增;当t∈(1,+∞)时,g′(t)<0,g(t)单调递减.…(10分)又g()=g(e2)=﹣e2<0,g(1)=2>0,分别存在唯一的c∈(1,1)和d∈(1,e2),使得g(c)=g(d)=0,且cd=1,所以y=g(t)有两个零点且互为倒数.…(12分)点评:本题考查函数的导数的综合应用,函数的单调性以及函数的极值的求法,函数的零点的应用,考查计算能力.22.如图,AB为圆O的直径,PB,PC分别与圆O相切于B,C两点,延长BA,PC相交于点D.(Ⅰ)证明:AC∥OP;(Ⅱ)若CD=2,PB=3,求AB.考点:与圆有关的比例线段;空间中直线与直线之间的位置关系.专题:选作题;立体几何.分析:(Ⅰ)利用切割线定理,可得PB=PC,且PO平分∠BPC,可得PO⊥BC,又AC ⊥BC,可得AC∥OP;(Ⅱ)由切割线定理得DC2=DA•DB,即可求出AB.解答:(Ⅰ)证明:因PB,PC分别与圆O相切于B,C两点,所以PB=PC,且PO平分∠BPC,所以PO⊥BC,又AC⊥BC,即AC∥OP.…(4分)(Ⅱ)解:由PB=PC得PD=PB+CD=5,在Rt△PBD中,可得BD=4.则由切割线定理得DC2=DA•DB,得DA=1,因此AB=3.…(10分)点评:本题考查切割线定理,考查学生分析解决问题的能力,正确运用切割线定理是关键.23.在极坐标系中,曲线C:ρ=2acosθ(a>0),l:ρcos(θ﹣)=,C与l有且仅有一个公共点.(Ⅰ)求a;(Ⅱ)O为极点,A,B为C上的两点,且∠AOB=,求|OA|+|OB|的最大值.考点:简单曲线的极坐标方程.专题:坐标系和参数方程.分析:(I)把圆与直线的极坐标方程分别化为直角坐标方程,利用直线与圆相切的性质即可得出a;(II)不妨设A的极角为θ,B的极角为θ+,则|OA|+|OB|=2cosθ+2cos(θ+)=2cos(θ+),利用三角函数的单调性即可得出.解答:解:(Ⅰ)曲线C:ρ=2acosθ(a>0),变形ρ2=2ρacosθ,化为x2+y2=2ax,即(x﹣a)2+y2=a2.∴曲线C是以(a,0)为圆心,以a为半径的圆;由l:ρcos(θ﹣)=,展开为,∴l的直角坐标方程为x+y﹣3=0.由直线l与圆C相切可得=a,解得a=1.(Ⅱ)不妨设A的极角为θ,B的极角为θ+,则|OA|+|OB|=2cosθ+2cos(θ+)=3cosθ﹣sinθ=2cos(θ+),当θ=﹣时,|OA|+|OB|取得最大值2.点评:本题考查了把圆与直线的极坐标方程分别化为直角坐标方程、直线与圆相切的性质、极坐标方程的应用、三角函数的单调性,考查了推理能力与计算能力,属于中档题.24.设f(x)=|x﹣1|﹣2|x+1|的最大值为m.(Ⅰ)求m;(Ⅱ)若a,b,c∈(0,+∞),a2+2b2+c2=m,求ab+bc的最大值.考点:绝对值不等式的解法;基本不等式.专题:计算题;分类讨论;不等式的解法及应用.分析:(Ⅰ)运用零点分区间,讨论x的范围,去绝对值,由一次函数的单调性可得最大值;(Ⅱ)由a2+2b2+c2=(a2+b2)+(b2+c2),运用重要不等式,可得最大值.解答:解:(Ⅰ)当x≤﹣1时,f(x)=3+x≤2;当﹣1<x<1时,f(x)=﹣1﹣3x<2;当x≥1时,f(x)=﹣x﹣3≤﹣4.故当x=﹣1时,f(x)取得最大值m=2.(Ⅱ)a2+2b2+c2=(a2+b2)+(b2+c2)≥2ab+2bc=2(ab+bc),当且仅当a=b=c=时,等号成立.此时,ab+bc取得最大值=1.点评:本题考查绝对值不等式的解法和运用,主要考查分类讨论的思想方法和重要不等式的解法,属于中档题.。
江苏省最新中考联考九年级数学学科(试卷满分:150分 考试时间:120分钟)一、选择题(每小题3分,共24分.在每小题给出的四个选项中,有且只有一项是正确的。
) 1.722是 A .整数 B .自然数 C .无理数 D .有理数2.下列计算正确的是A .a 3+a 4=a 7B .a 3•a 4=a 7C .a 3﹣a 4=a ﹣1D .a 3÷a 4=a3.有一种病毒呈球形,其最小直径约为0.000 000 08米,用科学记数法表示为 A .80×190-米 B .0.8×170-米C .8×180-米 D .8×190-米4.如图所示的物体的左视图(从左面看得到的视图)是A .B .C .D .5. 甲、乙、丙、丁四位同学五次数学测验成绩统计如右表所 示.如果从这四位同学中,选出一位成绩较好且状态稳定的 同学参加全国数学联赛,那么应选A .甲B .乙C .丙D .丁 6.一个正方形的面积等于10,则它的边长a 满足A. 3<a <4B. 5<a <6C.7<a <8D. 9<a <10 7.无论m 为何值,点A (m ,5﹣2m )不可能在 A .第一象限 B .第二象限 C .第三象限 D .第四象限8.如图,点A 在双曲线y=上,点B 在双曲线y=(k ≠0)上,AB ∥x轴,过点A 作AD ⊥x 轴于D .连接OB ,与AD 相交于点C ,若AC=2CD ,则k 的值为 A .6 B .9C .10D .12甲 乙 丙 丁平均数 80 85 85 80 方差42 42 54 59二、填空题(本大题共10小题,每小题3分,共30分。
) 9.0的相反数是▲.10.分解因式:2mx 2-4mx +2m=▲.11.如果分式242--x x 的值为零,那么x =▲.12.如表记录了一名球员在罚球线上投篮的结果.那么,这名球员投篮一次,投中的概率 约为▲(精确到0.1). 投篮次数(n ) 50 100 150 200 250 300 500 投中次数(m ) 28 60 78 104 123 152 251 投中频率(m/n )0.560.600.520.520.490.510.5013.如图,已知AB ∥CD ∥EF ,AD :AF=3:5,BE=12,那么CE 的长等于▲°. 14.一个圆锥的侧面展开图是半径为3,圆心角为120°的扇形,则这个圆锥的高为▲.15.如图,等腰△ABC 中,AB=AC ,BC=8.已知重心G 到点A 的距离为6,则G 到点B 的距离是▲.16.如图,正方形ABCD 和正方形OEFG 中,点E 、B 、C 在x 轴上,点A 和点F 的坐标分别为(3,2),(-1,-1),则两个正方形的位似中心的坐标是▲.17.如图①,在边长为8的等边△ABC 中,CD ⊥AB ,垂足为D ,⊙O 的圆心与点D 重合,⊙O 与线段CD 交于点E ,若将⊙O 沿DC 方向向上平移1cm 后,如图②,⊙O 恰与△ABC 的边AC 、BC 相切,则图①中CE 的长为▲cm .18.若关于x 的一元二次方程-x 2+2ax +2-3a =0的一根x 1≥1,另一根x 2≤-1,则抛物线y =-x 2+2ax +2-3a 的顶点到x 轴距离的最小值是▲. 三、解答题(本大题有10小题,共96分.) 19.(8分)(1)计算:)216tan 3012π-⎛⎫-︒++ ⎪⎝⎭(2)解不等式组⎪⎩⎪⎨⎧-+≤421-x 2)3(x 1)-4(x x π,并写出它的所有整数解.20.(本题满分8分)先化简,再求值:)1211(122+--÷--m m m m ,其中m 满足一元二次方程0342=+-m m .21. (本题满分8分)某校举行全体学生“汉字听写”比赛,每位学生听写汉字39个.随机抽取了部分学生的听写结果,绘制成如下的图表.根据以上信息完成下列问题:(1)统计表中的m =▲,n =▲,并补全条形统计图; (2)扇形统计图中“C 组”所对应的圆心角的度数是▲;(3)已知该校共有900名学生,如果听写正确的字的个数少于24个定为不合格,请你估计该校本次听写比赛不合格的学生人数.22.(本题满分8分)小明有一个呈等腰直角三角形的积木盒,现在积木盒中只剩下如图1所示的九个空格,图2是可供选择的A 、B 、C 、D 四块积木.(1)小明选择把积木A 和B 放入图3,要求积木A 和B 的九个小圆恰好能分别与图3中的九个小圆重合,请在图3中画出他放入方式的示意图(温馨提醒:积木A 和B 的连接小圆的小线段还是要画上哦!);(2)现从A 、B 、C 、D 四块积木中任选两块,请用列表法或画树状图法求恰好能全部不重叠放入的概率.23.(本题满分10分)如图,在□ABCD 中,AE 平分∠BAD ,交BC 于点E ,BF 平分∠ABC ,交AD 于点F ,AE 与BF 交于点P ,连接EF ,PD . (1)求证:四边形ABEF 是菱形;(2)若AB=4,AD=6,∠ABC=60°,求tan ∠ADP.24.(本题满分10分)“上海迪士尼乐园”将于2016年6月16日开门迎客,小明准备利 用暑假从距上海2160千米的某地去“上海迪士尼乐园”参观游览,下图是他在火车站咨 询得到的信息:本地前往上海有城城际直达动车的平乘坐城际直达动车际直达动车和特快列车两种乘车方式可供选择!均时速是特快列车的1.6倍!要比乘坐特快列车少用6小时!根据上述信息,求小明乘坐城际直达动车到上海所需的时间.25.(本题满分10分)如图,在△ABC 中,AB=AC ,以AC 为直径作⊙O 交BC 于点D ,过点D 作⊙O 的切线,交AB 于点E ,交CA 的延长线于点F . (1)求证:EF ⊥AB ;BE ADCO(2)若∠C=30°,EF =EB 的长.26.(本题满分10分)在平面直角坐标系xOy 中,对于(,)P a b 和点(,)Q a b ',给出如下定义:若⎩⎨⎧<-≥=)1()1('a b a b b ,则称点Q 为点P 的限变点.例如:点()2,3的限变点的坐标是()2,3,点()2,5-的限变点的坐标是()2,5--.(1)点)的限变点的坐标是▲;(2)判断点()2,1A --、()1,2B -中,哪一个点是函数2y x=图象上某一个点的限变点? 并说明理由;(3)若点(,)P a b 在函数3+-=x y 的图象上,其限变点(,)Q a b '的纵坐标b '的取值范围是36'-≤≤-b ,求a 的取值范围.27.(本题满分12分)如图,△ABC和△DEF均是边长为4的等边三角形,△DEF的顶点D为△ABC的一边BC的中点,△DEF绕点D旋转,且边DF、DE始终分别交△ABC的边AB、AC于点H、G。
河北省初中毕业生升学文化课模拟考试数学试卷本试卷分卷Ⅰ和卷Ⅱ两部分;卷Ⅰ为选择题,卷Ⅱ为非选择题.本试卷满分为120分,考试时间为120分钟.卷Ⅰ(选择题,共42分)注意事项:1.答卷I前,考生务必将自己的姓名、准考证号、科目填涂在答题卡上. 考试结束,监考人员将试卷和答题卡一并收回.2.每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑. 答在试卷上无效.一、选择题(本大题共16个小题,1~6小题,每小题2分;7~16小题,每小题3分,共42分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.如果+30 m表示向东走30 m,那么向西走40 m表示为( ▲)A.+30 m B.-30 m C.+40 m D.-40 m2.中国航母辽宁舰是中国人民海军第一艘可以搭载固定翼飞机的航空母舰,满载排水量为67500吨,这个数据用科学记数法表示为( ▲)A.6.75×103吨B.6.75×104吨C.6.75×105吨D.6.75×10-4吨a 的值为( ▲)3. 已知点A(a,2013)与点A′(-2014,b)是关于原点O的对称点,则bA . 1B . 5C . 6D .44.如图,已知一商场自动扶梯的长l 为13米,高度h 为5米,自动扶梯与地面所成的夹角为θ,则tan θ的值等于( ▲ ) A .125 B .512C .135 D .1312 5.一组数据2,4,x ,2,4,7的众数是2,则这组数据的平均数、中位数分别为( ▲ ) A .3,4B .3,3.5C . 3.5,3D .4,36.反比例函数xm y 3-=(m ≠3)在图象所在的每一象限内,函数值y 随自变量x 的增大而增大,则m 的取值范围是( ▲ ) A .3m <-B . 3m >-C .3m <D . 3m >7.已知⊙O 1和⊙O 2的半径分别为1和4,如果两圆的位置关系为相交,那么圆心距O 1O 2的取值范围在数轴上表示正确的是( ▲ )8.用棋子按下列方式摆图形,依此规律,第n 个图形比第(n-1)个图形多(▲ )枚棋子.0 0 3 5 3 5 1414ABCDA .4nB . 5n-4C .4n-3D . 3n-29. 如图,平行四边形ABCD 的顶点A 、B 、D 在⊙O 上,顶点C 在⊙O 的直径BE 上,∠ADC=54°,连接AE ,则∠AEB 的度数为( ▲ ) A .27° B .36° C . 46° D .63°10.如图1,在矩形ABCD 中,动点P 从点B 出发,沿BC ,CD 运动至点D 停止,设点P 运动的路程为x ,△ABP 的面积为y ,y 关于x 的函数图象如图2所示, 则△ABC 的面积是( ▲ ) A .4 B .3 C .2 D .111.下列图形中,既是轴对称图形又是中心对称图形的是( ) A.菱形、正方形、平行四边形 B.矩形、等腰三角形、圆 C.矩形、正方形、等腰梯形D.菱形、正方形、圆12.有下列命题:①两条直线被第三条直线所截,同位角相等;②两点之间,线段最短;③相等的角是对顶角;④两个锐角的和是锐角;⑤同角或等角的补角相等. 正确命题的个数是( ) A.2个B.3个C.4个D.5个13.若不等式组211x a x a >-⎧⎨<+⎩无解,则a 的取值范围是( )A.2a <B.2a =C.2a >D.2a ≥ABCDP图114.已知,△ABC 中,∠A=90°,∠ABC=30°.将△ABC 沿直线BC 平移得到△111C B A ,1B 为BC 的中点,连结1BA ,则tan BC A 1∠的值为( ) A .43 B .53 C .63 D .73 15.一个几何体是由若干个相同的立方体组成,其主视图和左视图如图所示,则组成这个几何体的立方体个数不可能的是( )A .15个B .13个C .11个D .5个 16.给出以下命题:①已知8215-可以被在60~70之间的两个整数整除,则这两个数是63、65;②若,2=x a ,3=ya 则y x a -2=34; ③已知关于x 的方程322=-+x mx 的解是正数,则m 的取值范围为6-≠->m m 或; ④若方程x 2-2(m+1)x+m 2=0有两个整数根,且12<m<60, 则m 的整数值有2个. 其中正确的是( )A .①②B .①②④C .①③④ D.②③④ 河北省初中毕业生升学文化课模拟考试(第14题)总 分 核分人(第15题)数学试卷卷II(非选择题,共78分)注意事项:1.答卷II前,将密封线左侧的项目填写清楚.2.答卷II时,将答案用黑色字迹的钢笔、签字笔或圆珠笔直接写在试卷上.题号二三21 22 23 24 25 26得分得分评卷人二、填空题(本大题共4个小题,每小题3分,共12分.把答案写在题中横线上)17.一个不透明的袋中装有除颜色外其他均相同的2个红球和3个黄球,从中随机摸出一个黄球的概率是▲ .18.若实数a、b满足a+b=5,a2b+ab2=-10,则ab的值是▲.19.如图,矩形ABCD中,AB=8,AD=3.点E从D向C以每秒1个单位的速度运动,以AE为一边在AE的右下方作正方形AEFG,同时垂直于CD 的直线MN 也从C 向D 以每秒2个单位的速度运动,当经过 ▲ 秒时,直线MN 和正方形AEFG 开始有公共点?20.如图,Rt △ABC 的斜边AB 在x 轴上,OA=OB=6,点C 在第一象限,∠A=30°, P (m ,n )是线段BC 上的动点,过点P 作BC 的垂线a ,以直线a 为对称轴,将线段OB 轴对称变换后得线段O ′B ′, (1)当点B ′ 与点C 重合时,m 的值为 ▲ ;(2)当线段O ′B ′与线段AC 没有公共点时,m 的取值范围是 ▲ .三、解答题(本大题共6个小题,共66分.解答应写出文字说明、证明过程或演算步骤)21.(本小题满分9分)如图,用两段等长的铁丝恰好可以分别围成一个正五边形和一个正六边形,其中正五边形的边长为(217x +)cm ,正六边形的边长为(22x x +)cm (0)x >其中.求这两段铁丝的总长.得 分评卷人22.(本小题满分10分)已知:图1为一锐角是30°的直角三角尺,其边框为透明塑料制成(内、外直角三角形对应边互相平行且三处所示宽度相等).操作:将三角尺移向直径为6cm 的⊙O ,它的内Rt △ABC 的斜边AB 恰好等于⊙O 的直径,它的外Rt △A ′B ′C ′的直角边A ′C ′ 恰好与⊙O 相切(如图2)。
文科数学参考公式:锥体的体积公式:1 3V Sh=,其中S为锥体的底面积,h为锥体的高.一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设全集U R=,集合{}10A x x=-≤,集合{}260B x x x=--<则下图中阴影部分表示的集合为()A.{}3x x<B.{}31x x-<≤C.{}2x x<D.{}21x x-<≤2.设复数z满足()12z i-=(其中i为虚数单位),则下列说法正确的是()A.2z=B.复数z的虚部是iC.1z i=-+D.复数z在复平面内所对应的点在第一象限3.已知{}n a是公差为2的等差数列,n S为数列{}n a的前n项和,若515S=,则5a=()A.3B.5C.7D.94.已知角a的终边经过点(),2m m-,其中0m≠,则sin cosa a+等于()A.55-B.55± C.35-D.35±5.某商场举行有奖促销活动,抽奖规则如下:箱子中有编号为1,2,3,4,5的五个形状、大小完全相同的小球,从中任取两球,若摸出的两球号码的乘积为奇数则中奖;否则不中奖则中奖的概率为()A.110B.15C.310D.256.已知变量,x y满足约束条件1,50,210,xx yx x⎧≥⎪=-≥⎨⎪-+≤⎩则目标函数2z x y=+的最小值为()A.3B.6 C.7D.87.已知底面是直角三角形的直棱柱的正视图、俯视图如下图所示,则该棱柱5的左视图的面积为()A .186B .183 C. 182 D .27228.设12,F F 分别为双曲线()222210,0x y a b a b-=>>的左、右焦点,12,A A 为双曲线的左右顶点,其中1212,3,F F A A =,若双曲线的顶点到渐近线的距离为2,则双曲线的标准方程为( )A .22136x y -= B .22163x y -= C. 2212y x -= D .2212x y -= 9.执行如图所示的程序框图,则该程序框图的输出结果是( )A .3-B .12-C.13D .2 10.如图,半径为1的圆O 中,,A B 为直径的两个端点,点P 在圆上运动,设BOP x ∠=,将动点P 到,A B 两点的距离之和表示为x 的函数()f x ,则()y f x =在[]0,2π上的图象大致为( )A. B.C.C.11.已知抛物线2:4C x y =,过抛物线C 上两点,A B 分别作抛物线的两条切线,,PA PB P 为两切线的交点O为坐标原点若,0PA PB =u u u r u u u r,则直线OA 与OB 的斜率之积为( )A .14-B .3- C.18- D .4- 12.已知定义在R 上的函数()f x ,当1x >-时,21,10,()1n ,0,x x f x x x +-<≤⎧⎪=⎨>⎪⎩且(1)f x -为奇函数,若方程()()R f x kx k k =+∈的根为12,,,n x x x L ,则12x x x +++L 的所有的取值为( )A .6-或4-或2-B .7-或5-或3-C. 8-或6-或4-或2- D .9-或7-或5-或3-第Ⅱ卷(共90分)二、填空题:本题共4小题,每小题5分,满分20分.13.已知12,e e u r u u r 是互相垂直的单位向量,向量123a e e =-u r u u r r,12b e e =+u r u u r r ,则a b ⋅=r r .14.2018年4月4日,中国诗词大会第三季总决赛如期举行,依据规则,本场比赛共有甲、乙、丙、丁、戊五位选手有机会问鼎冠军,某家庭中三名诗词爱好者依据选手在之前比赛中的表现,结合自己的判断,对本场比赛的冠军进行了如下猜测:爸爸:冠军是甲或丙;妈妈:冠军一定不是乙和丙;孩子:冠军是丁或戊. 比赛结束后发现:三人中只有一个人的猜测是对的,那么冠军是.15.已知[]x 表示不超过x 的最大整数,例如:[][]2.32, 1.52=-=-.在数列{}n a 中,[]1,n a gn n N +=∈,记n S 为数列{}n a 的前n 项和,则2018S =.16.已知点,,,P A B C 均在表面积为81π的球面上,其中PA ⊥平面ABC ,30,=3BAC AC ∠=o,则三棱锥P ABC -的体积的最大值为.三、解答题:共70分。
最新高考数学三模试卷(文科)一、选择题1.设集合A={x|x (x ﹣3)<0},B={x|x ﹣2≤0},则A ∩B=( )A .(0,2]B .(0,2)C .(0,3)D .[2,3)2.设z 满足i (1+z )=2+i ,则|z|=( )A .B .C .2D .13.设命题p :∀x >0,xe x >0,则¬p 为( )A .∀x ≤0,xe x ≤0B .∃x 0≤0,x 0e x0≤0C .∀x >0,xe x ≤0D .∃x 0>0,x 0e x0≤04.从3名男生和2名女生中任意推选2名选手参加辩论赛,则推选出的2名选手恰好是1男1女的概率是( )A .B .C .D .5.如图所示的程序框图的算法思路源于我国古代数字著作《数书九章》,称为“秦九韶算法”.执行该程序框图,若输入x=2,n=5,则输出的v=( )A .26B .48C .57D .646.一个圆柱挖去一部分后,剩余部分的三视图如图所示,则剩余部分的表面积等于( )A .39πB .48πC .57πD .63π7.已知x ,y 满足约束条件,则的最大值是( )A .﹣2B .﹣1C .D .28.已知函数f (x )=Asin (ωx+φ)(A >0,ω>0)的图象与直线y=b (0<b <A )相交,其中一个交点P 的横坐标为4,若与P 相邻的两个交点的横坐标为2,8,则函数f (x )( )A .在[0,3]上是减函数B .在[﹣3,0]上是减函数C .在[0,π]上是减函数D .在[﹣π,0]上是减函数9.设函数f (x )=e x +ax 在(0,+∞)上单调递增,则实数a 的取值范围为( )A .[﹣1,+∞)B .(﹣1,+∞)C .[0,+∞)D .(0,+∞)10.正三棱柱的底面边长为,侧棱长为2,且三棱柱的顶点都在同一球面上,则该球的表面积为( )A .4πB .8πC .12πD .16π11.已知定义在R 上的函数f (x )是奇函数,且f (x )在(﹣∞,0)上是减函数,f (2)=0,g (x )=f (x+2),则不等式xg (x )≤0的解集是( )A .(﹣∞,﹣2]∪[2,+∞)B .[﹣4,﹣2]∪[0,+∞)C .(﹣∞,﹣4]∪[﹣2,+∞)D .(﹣∞,﹣4]∪[0,+∞)12.已知抛物线C :y 2=2px (p >0)的焦点为F ,点A ,B 在C 上,且点F 是△AOB 的重心,则cos ∠AFB 为( )A .﹣B .﹣C .﹣D .﹣二、填空题13.若和是两个互相垂直的单位向量,则|+2|=_______.14.已知α为锐角,cos α=,则sin (﹣α)=_______.15.在△ABC 中,∠A ,∠B ,∠C 所对的边长分别是x+1,x ,x ﹣1,且∠A=2∠C ,则△ABC 的周长为_______.16.已知圆C :(x ﹣a )2+y 2=1(a >0),过直线l :2x+2y+3=0上任意一点P 作圆C 的两条切线PA ,PB ,切点分别为A ,B ,若∠APB 为锐角,则a 的取值范围为_______.三、解答题17.设S n 是数列{a n }的前n 项和,且S n =2a n ﹣1.(1)证明:数列{a n }是等比数列;(2)求数列{na n }的前n 项和T n .18.在四棱锥P ﹣ABCD 中,底面ABCD 是菱形,AB=2,∠BAD=60°,PC ⊥BD .(1)证明:PB=PD ;(2)若平面PBD ⊥平面ABCD ,且∠DPB=90°,求点B 到平面PDC 的距离.19.PM2.5是指空气中直径小于或等于2.5微米的细颗粒物,它对人体健康和大气环境质量的影响很大.2012年2月,中国发布了《环境空气质量标准》,开始大力治理空气污染.用x=1,2,3,4,5依次表示2013年到2017年这五年的年份代号,用y 表示每年3月份的PM2.5指数的平均值(单位:μg/m 3).已知某市2013年到2016年每年3月份PM2.5指数的平均值的折线图如图:(1)根据折线图中的数据,完成表格:年份2013 2014 2015 2016年份代号(x) 1 2 3 4PM2.5指数(y)(2)建立y关于x的线性回归方程;(3)在当前治理空气污染的力度下,预测该市2017年3月份的PM2.5指数的平均值.附:回归直线方程=x+中参数的最小二乘估计公式;=, =﹣.20.已知椭圆C: +=1(a>b>0)的离心率为,以该椭圆上的点和椭圆的两个焦点为顶点的三角形的周长为6.(1)求椭圆C的方程;(2)设过点C的左焦点F的直线l交C于A,B两点,是否存在常数λ,使||=λ•恒成立,若存在,求出λ的值;若不存在,请说明理由.21.已知函数f(x)=+b在x=1处的切线方程为x+y﹣3=0.(1)求a,b.(2)证明:当x>0,且x≠1时,f(x)>.[选修4-1:几何证明选讲]22.如图,E为⊙O上一点,点A在直径BD的延长线上,过点B作⊙O的切线交AE的延长线于点C,CE=CB.(1)证明:AE2=AD•AB.(2)若AE=4,CB=6,求⊙O的半径.[选修4-4:坐标系与参数方程选讲]23.已知曲线C的极坐标方程是ρsin2θ﹣8cosθ=0,以极点为平面直角坐标系的原点,极轴为x轴的正半轴,建立平面直角坐标系xOy.在直角坐标系中,倾斜角为α的直线l过点P(2,0).(1)写出曲线C的直角坐标方程和直线l的参数方程;(2)设点Q和点G的极坐标分别为(2,),(2,π),若直线l经过点Q,且与曲线C 相交于A,B两点,求△GAB的面积.[选修4-5:不等式选讲]24.已知函数f(x)=.(1)求函数f(x)的值域;(2)若函数f(x)的值域是[m,n],且a2+b2=m,c2+d2=n,求ac+bd的取值范围.参考答案与试题解析一、选择题1.设集合A={x|x (x ﹣3)<0},B={x|x ﹣2≤0},则A ∩B=( )A .(0,2]B .(0,2)C .(0,3)D .[2,3)【考点】交集及其运算.【分析】求出A 与B 中不等式的解集分别确定出A 与B ,找出两集合的交集即可.【解答】解:由A 中不等式解得:0<x <3,即A=(0,3),由B 中不等式解得:x ≤2,即B=(﹣∞,2],则A ∩B=(0,2],故选:A .2.设z 满足i (1+z )=2+i ,则|z|=( )A .B .C .2D .1【考点】复数求模.【分析】根据复数的四则运算求出z ,然后利用复数的模长公式进行求解即可.【解答】解:由i (1+z )=2+i ,得1+z==1﹣2i ,则z=﹣2i ,则|z|=2,故选:C3.设命题p :∀x >0,xe x >0,则¬p 为( )A .∀x ≤0,xe x ≤0B .∃x 0≤0,x 0e x0≤0C .∀x >0,xe x ≤0D .∃x 0>0,x 0e x0≤0【考点】命题的否定.【分析】根据全称命题的否定是特称命题进行判断.【解答】解:命题是全称命题,则命题的否定是特称命题,则¬p :∃x 0>0,x 0e x0≤0,故选:D4.从3名男生和2名女生中任意推选2名选手参加辩论赛,则推选出的2名选手恰好是1男1女的概率是( )A .B .C .D .【考点】古典概型及其概率计算公式.【分析】本题是一个等可能事件的概率,试验发生所包含的事件数是C 52种结果,满足条件的事件是抽到的2名学生恰好是1男1女,有C 31C 21,进而得到概率.【解答】解:从3名男生和2名女生中任意推选2名选手参加辩论赛,共有C 52=10种选法, 选出的2名选手恰好是1男1女有C 31C 21=6种,故推选出的2名选手恰好是1男1女的概率是=,故选:C .5.如图所示的程序框图的算法思路源于我国古代数字著作《数书九章》,称为“秦九韶算法”.执行该程序框图,若输入x=2,n=5,则输出的v=( )A.26 B.48 C.57 D.64【考点】程序框图.【分析】根据已知的程序框图可得,该程序的功能是利用循环结构计算并输出变量v的值,模拟程序的运行过程,可得答案.【解答】解:模拟程序的运行,可得x=2,n=5,v=1,k=2执行循环体,v=4,k=3满足条件k<5,执行循环体,v=11,k=4满足条件k<5,执行循环体,v=26,k=5不满足条件k<5,退出循环,输出v的值为26.故选:A.6.一个圆柱挖去一部分后,剩余部分的三视图如图所示,则剩余部分的表面积等于()A.39π B.48π C.57π D.63π【考点】由三视图求面积、体积.【分析】根据三视图可知该几何体是:一个圆柱在上底面挖去了一个同底等高的圆锥,由三视图求出几何元素的长度,由圆柱、圆锥的侧面积公式求出剩余部分的表面积.【解答】解:根据三视图可知该几何体是:一个圆柱在上底面挖去了一个同底等高的圆锥,且圆柱底面圆的半径为3,母线长是4,则圆锥的母线长是=5,∴剩余部分的表面积S=π×32+2π×3×4+π×3×5=48π,故选:B.7.已知x,y满足约束条件,则的最大值是()A.﹣2 B.﹣1 C.D.2【考点】简单线性规划.【分析】作出不等式组对应的平面区域,利用直线的斜率公式,结合数形结合进行求解即可.【解答】解:作出不等式组对应的平面区域如图,则的几何意义是区域内的点到原点的斜率,由图象知OA的斜率最大,由得,即A(2,4),此时的最大值是,故选:D8.已知函数f(x)=Asin(ωx+φ)(A>0,ω>0)的图象与直线y=b(0<b<A)相交,其中一个交点P的横坐标为4,若与P相邻的两个交点的横坐标为2,8,则函数f(x)()A.在[0,3]上是减函数B.在[﹣3,0]上是减函数C.在[0,π]上是减函数D.在[﹣π,0]上是减函数【考点】正弦函数的图象.【分析】先根据正弦函数的图象的对称性可得函数f(x)的图象的相邻的两条对称轴分别为x=3和x=6,且函数f(x)在[3,6]上单调递减,故f(x)在[0,3]上是增函数,在[﹣3,0]上是减函数,从而得出结论.【解答】解:∵函数f(x)=Asin(ωx+φ)(A>0,ω>0)的图象与直线y=b(0<b<A)相交,其中一个交点P的横坐标为4,若与P相邻的两个交点的横坐标为2,8,则函数f(x)的图象的相邻的两条对称轴分别为x=3和x=6,且函数f(x)在[3,6]上单调递减,故f(x)在[0,3]上是增函数,在[﹣3,0]上是减函数,故选:B.9.设函数f(x)=e x+ax在(0,+∞)上单调递增,则实数a的取值范围为()A.[﹣1,+∞)B.(﹣1,+∞)C.[0,+∞)D.(0,+∞)【考点】利用导数研究函数的单调性.【分析】函数f(x)=e x+ax在区间(0,+∞)上单调递增⇔函数f′(x)=e x+a≥0在区间在区间(0,+∞)上成立.(0,+∞)上恒成立⇔a≥[﹣e x]min【解答】解:f′(x)=e x+a,∵函数f(x)=e x+ax在区间(0,+∞)上单调递增,∴函数f′(x)=e x+a≥0在区间(0,+∞)上恒成立,∴a≥[﹣e x]在区间(0,+∞)上成立,min∵在区间(0,+∞)上﹣e x<﹣1,∴a≥﹣1,故选:A.10.正三棱柱的底面边长为,侧棱长为2,且三棱柱的顶点都在同一球面上,则该球的表面积为()A.4πB.8πC.12π D.16π【考点】球的体积和表面积.【分析】根据正三棱柱的对称性,它的外接球的球心在上下底面中心连线段的中点.再由正三角形的性质和勾股定理,结合题中数据算出外接球半径,用球表面积公式即可算出该球的表面积.【解答】解:设三棱柱ABC﹣A′B′C′的上、下底面的中心分别为O、O′,,根据图形的对称性,可得外接球的球心在线段OO′中点O1∵OA=AB=1,OO=AA′=11A=∴O1因此,正三棱柱的外接球半径R=,可得该球的表面积为S=4πR2=8π故选:B.11.已知定义在R上的函数f(x)是奇函数,且f(x)在(﹣∞,0)上是减函数,f(2)=0,g(x)=f(x+2),则不等式xg(x)≤0的解集是()A.(﹣∞,﹣2]∪[2,+∞)B.[﹣4,﹣2]∪[0,+∞)C.(﹣∞,﹣4]∪[﹣2,+∞)D.(﹣∞,﹣4]∪[0,+∞)【考点】奇偶性与单调性的综合.【分析】由题意可得g(x)关于点(﹣2,0)对称,g(0)=f(2)=0,g(﹣4)=f(﹣2)=0,画出g(x)的单调性示意图,数形结合求得不等式xg(x)≤0的解集.【解答】解:由题意可得g(x)的图象是把f(x)的图象向左平移2个单位得到的,故g(x)关于点(﹣2,0)对称,g(0)=f(2)=0,g(﹣4)=f(﹣2)=0,它的单调性示意图,如图所示:根据不等式xg(x)≤0可得,x的符号和g(x)的符号相反,∴xg(x)≤0的解集为(﹣∞,﹣4]∪[﹣2,+∞),故选:C.12.已知抛物线C:y2=2px(p>0)的焦点为F,点A,B在C上,且点F是△AOB的重心,则cos∠AFB为()A.﹣ B.﹣ C.﹣D.﹣【考点】抛物线的简单性质.【分析】设A(m,)、B(m,﹣),则=,p=,可得A的坐标,求出AF,利用二倍角公式可求.【解答】解:由抛物线的对称性知,A、B关于x轴对称.设A(m,)、B(m,﹣),则=,∴p=.∴A(m, m),∴AF=m,∴cos∠AFB==,∴cos∠AFB=2cos2∠AFB﹣1=﹣.故选:D.二、填空题13.若和是两个互相垂直的单位向量,则|+2|= .【考点】平面向量数量积的运算.【分析】计算()2,然后开方即可.【解答】解:∵和是两个互相垂直的单位向量,∴,.∴()2==5,∴||=.故答案为:.14.已知α为锐角,cosα=,则sin(﹣α)= .【考点】两角和与差的正弦函数.【分析】由已知利用同角三角函数基本关系式可求sinα,利用特殊角的三角函数值及两角差的正弦函数公式化简所求即可计算得解.【解答】解:∵α为锐角,cosα=,∴sin==,∴sin(﹣α)=sin cosα﹣cos sinα=﹣×=.故答案为:.15.在△ABC中,∠A,∠B,∠C所对的边长分别是x+1,x,x﹣1,且∠A=2∠C,则△ABC 的周长为15 .【考点】余弦定理.【分析】由已知及正弦定理,二倍角的正弦函数公式可得:cosC=,又由余弦定理可得:cosC=,从而可得=,解得x,即可得解三角形的周长.【解答】解:∵∠A,∠B,∠C所对的边长分别是x+1,x,x﹣1,且∠A=2∠C,∴由正弦定理可得:,∴,可得:cosC=,又∵由余弦定理可得:cosC=,∴=,整理即可解得x=5,∴△ABC的周长为:(x+1)+x+(x﹣1)=3x=15.故答案为:15.16.已知圆C:(x﹣a)2+y2=1(a>0),过直线l:2x+2y+3=0上任意一点P作圆C的两条切线PA,PB,切点分别为A,B,若∠APB为锐角,则a的取值范围为(,+∞).【考点】圆的切线方程.【分析】作出直线l和圆C,PA,PB为圆的两条切线,连接AC,BC,PC,由∠APB为锐角,可得0<∠APC<,运用解直角三角形可得可得1<PA恒成立,由勾股定理可得PA2=PC2﹣1,求得PC的最小值,可得PA的最小值,解不等式即可得到所求a的范围.【解答】解:作出直线l和圆C,PA,PB为圆的两条切线,连接AC,BC,PC,由圆心C(a,0)到直线l的距离为d=>>1,可得直线和圆相离.由∠APB为锐角,可得0<∠APC<,即0<tan∠APC<1,在Rt△APC中,tan∠APC==,可得1<PA恒成立,由勾股定理可得PA2=PC2﹣1,当PC⊥l时,PC取得最小值,且为,即有1<,解得a>.故答案为:(,+∞).三、解答题17.设S n 是数列{a n }的前n 项和,且S n =2a n ﹣1.(1)证明:数列{a n }是等比数列;(2)求数列{na n }的前n 项和T n .【考点】数列的求和;等比数列的通项公式.【分析】(1)由S n =2a n ﹣1.可得当n=1时,a 1=2a 1﹣1,解得a 1.当n ≥2时,a n =S n ﹣S n ﹣1,化为:a n =2a n ﹣1.利用等比数列的通项公式即可得出.(2)由(1)可得:a n =2n ﹣1.na n =n •2n ﹣1.利用“错位相减法”与等比数列的前n 项和公式即可得出.【解答】(1)证明:∵S n =2a n ﹣1.∴当n=1时,a 1=2a 1﹣1,解得a 1=1.当n ≥2时,a n =S n ﹣S n ﹣1=2a n ﹣1﹣(2a n ﹣1﹣1),化为:a n =2a n ﹣1.∴数列{a n }是等比数列,首项为1,公比为2.(2)解:由(1)可得:a n =2n ﹣1.na n =n •2n ﹣1.∴数列{na n }的前n 项和T n =1+2×2+3×22+…+n •2n ﹣1,2T n =2+2×22+…+(n ﹣1)•2n ﹣1+n •2n ,∴﹣T n =1+2+22+…+2n ﹣1﹣n •2n =﹣n •2n =(1﹣n )•2n ﹣1,∴T n =(n ﹣1)•2n +1.18.在四棱锥P ﹣ABCD 中,底面ABCD 是菱形,AB=2,∠BAD=60°,PC ⊥BD .(1)证明:PB=PD ;(2)若平面PBD ⊥平面ABCD ,且∠DPB=90°,求点B 到平面PDC 的距离.【考点】点、线、面间的距离计算.【分析】(1)如图所示,连接AC 交BD 于点O ,连接OP .利用菱形的性质可得AC ⊥BD ,利用线面垂直的判定与性质定理可证明BD ⊥PO .又O 是BD 的中点,可得PB=PD .(2)底面ABCD 是菱形,AB=2,∠BAD=60°,可得△PBD 与△BCD 都是等边三角形.由平面PBD ⊥平面ABCD ,平面PBD ∩平面ABCD=BD ,PO ⊥BD .可得PO ⊥平面ABCD ,因此PO ⊥AC ,又AC⊥BD,可建立如图所示的空间直角坐标系.设平面PCD的法向量=(x,y,z),则,利用点B到平面PDC的距离d=即可得出.【解答】(1)证明:如图所示,连接AC交BD于点O,连接OP.∵四边形ABCD是菱形,∴AC⊥BD,又PC⊥BD,且PC∩AC=C,∴BD⊥平面PAC.则BD⊥PO.又O是BD的中点,∴PB=PD.(2)解:底面ABCD是菱形,AB=2,∠BAD=60°,∴△PBD与△BCD都是等边三角形.∵平面PBD⊥平面ABCD,平面PBD∩平面ABCD=BD,PO⊥BD.∴PO⊥平面ABCD,∴PO⊥AC,又AC⊥BD,可建立如图所示的空间直角坐标系.∵∠DPB=90°,PB=PD,BD=2,∴PO=1,∴P(0,0,1),B(1,0,0),D(﹣1,0,0),C(0,,0),=(﹣1,0,﹣1),=(0,,﹣1),=(1,﹣,0),设平面PCD的法向量=(x,y,z),则,∴,取=,则点B到平面PDC的距离d===.19.PM2.5是指空气中直径小于或等于2.5微米的细颗粒物,它对人体健康和大气环境质量的影响很大.2012年2月,中国发布了《环境空气质量标准》,开始大力治理空气污染.用x=1,2,3,4,5依次表示2013年到2017年这五年的年份代号,用y表示每年3月份的PM2.5指数的平均值(单位:μg/m3).已知某市2013年到2016年每年3月份PM2.5指数的平均值的折线图如图:(1)根据折线图中的数据,完成表格:年份2013 2014 2015 2016年份代号(x) 1 2 3 4PM2.5指数(y)(2)建立y关于x的线性回归方程;(3)在当前治理空气污染的力度下,预测该市2017年3月份的PM2.5指数的平均值.附:回归直线方程=x+中参数的最小二乘估计公式;=, =﹣.【考点】线性回归方程.【分析】(1)根据折线图中的数据,完成表格即可;(2)计算线性回归方程中的系数,可得线性回归方程;(3)x=5代入线性回归方程,可得结论.【解答】解:(1)年份2013 2014 2015 2016年份代号(x) 1 2 3 4PM2.5指数(y)90 88 70 64(2)=2.5, =78,(xi ﹣)(yi﹣)=﹣48,=5,==﹣9.6, =﹣=102,∴y关于x的线性回归方程是: =﹣9.6x+102;(3)2017年的年份代号是5,当x=5时, =﹣9.6×5+102=54,∴该市2017年3月份的PM2.5指数的平均值的预测值是54μg/m3.20.已知椭圆C: +=1(a>b>0)的离心率为,以该椭圆上的点和椭圆的两个焦点为顶点的三角形的周长为6.(1)求椭圆C的方程;(2)设过点C的左焦点F的直线l交C于A,B两点,是否存在常数λ,使||=λ•恒成立,若存在,求出λ的值;若不存在,请说明理由.【考点】椭圆的简单性质.【分析】(1)由=,2a+2c=6,a2=b2+c2,联立解出即可得出椭圆C的方程.(2)F(﹣1,0),设A(x1,y1),B(x2,y2).当直线l的斜率不存在时,x1=﹣1,不妨取y1=,可得λ==﹣.当直线l的斜率存在时,设直线l的方程为y=k(x+1),代入椭圆方程整理为:(4k2+3)x2+8k2x+4k2﹣12=0,△>0,利用根与系数的关系可得=,•=(x1+1)(x2+1)+y1y2,计算即可得出.【解答】解:(1)∵=,2a+2c=6,a2=b2+c2,解得a=2,c=1,b2=3.∴椭圆C的方程为=1.(2)F(﹣1,0),设A(x1,y1),B(x2,y2).当直线l的斜率不存在时,x1=﹣1,不妨取y1=,||=3, =, =.•=,则λ===﹣.当直线l的斜率存在时,设直线l的方程为y=k(x+1),则,整理为:(4k2+3)x2+8k2x+4k2﹣12=0,△=64k4﹣4(4k2+3)(4k2﹣12)=122(1+k2)>0,x 1+x2=,x1x2=.==,=(x1+1,y1),=(x2+1,y2)..• =(x1+1)(x2+1)+y1y2=(k2+1)[x1x2+(x1+x2)+1]=,则==﹣.综上所述:可得存在常数λ=﹣,使||=λ•恒成立.21.已知函数f(x)=+b在x=1处的切线方程为x+y﹣3=0.(1)求a,b.(2)证明:当x>0,且x≠1时,f(x)>.【考点】利用导数求闭区间上函数的最值;利用导数研究曲线上某点切线方程.【分析】(1)求出函数的导数,根据f(1)=2,f′(1)=﹣1,求出a,b的值即可;(2)问题转化为(x﹣﹣2lnx)>0,令g(x)=x﹣﹣2lnx,(x>0),求出g(x)的单调区间,从而证出结论即可.【解答】解:(1)f(x)的定义域是(0,+∞),f(x)=+b,切点是(1,2),∴f(1)=b=2,f′(x)=,∴f′(1)=a=﹣1,故a=﹣1,b=2;(2)证明:由(1)得:f(x)=+2,f(x)>,∴(x﹣﹣2lnx)>0,令g(x)=x﹣﹣2lnx,(x>0),则g′(x)=(x﹣1)2>0,∴g(x)在(0,1)递增,在(1,+∞)递增,∵g(1)=0,∴g(x)>0⇔x>1,g(x)<0⇔0<x<1,∴x>1时, g(x)>0,0<x<1时, g(x)>0,x>0且x≠1时,(x﹣﹣2lnx)>0,∴当x>0,且x≠1时,f(x)>.[选修4-1:几何证明选讲]22.如图,E为⊙O上一点,点A在直径BD的延长线上,过点B作⊙O的切线交AE的延长线于点C,CE=CB.(1)证明:AE2=AD•AB.(2)若AE=4,CB=6,求⊙O的半径.【考点】与圆有关的比例线段.【分析】(1)证明AC是⊙O的切线,根据切割线定理可得:AE2=AD•AB.(2)根据切割线定理求出AD,即可求⊙O的半径.【解答】(1)证明:∵过点B作⊙O的切线交AE的延长线于点C,∴∠CBO=∠CBE+∠OBE=90°.∵CE=CB,OE=OB,∴∠CEB=∠CBE,∠OEB=∠OBE,∴∠CEO=∠CEB+∠OEB=∠CBE+∠OBE=90°,∴CE⊥OE,∵OE是⊙O的半径,∴AC是⊙O的切线,根据切割线定理可得AE2=AD•AB.(2)解:∵CE=CB=6,AE=4,∴AC=10,∴AB=8∵AE2=AD•AB,AE=4,∴42=AD•8,∴AD=2,∴BD=8﹣2=6,∴⊙O的半径为3.[选修4-4:坐标系与参数方程选讲]23.已知曲线C的极坐标方程是ρsin2θ﹣8cosθ=0,以极点为平面直角坐标系的原点,极轴为x轴的正半轴,建立平面直角坐标系xOy.在直角坐标系中,倾斜角为α的直线l过点P(2,0).(1)写出曲线C的直角坐标方程和直线l的参数方程;(2)设点Q和点G的极坐标分别为(2,),(2,π),若直线l经过点Q,且与曲线C相交于A,B两点,求△GAB的面积.【考点】简单曲线的极坐标方程;参数方程化成普通方程.【分析】(1)ρsin2θ﹣8cosθ=0,化为ρ2sin2θ﹣8ρcosθ=0,令,即可得出直角坐标方程.直线l的参数方程为:(t为参数).(2)点Q和点G的极坐标分别为(2,),(2,π),分别化为:Q(0,﹣2),G(﹣2,0).kl=1,倾斜角为,可得直线l的参数方程:(t为参数).将参数方程代入曲线C的方程可得:t2﹣8t﹣32=0,设t1与t2为此方程的两个实数根,可得|AB|=|t1﹣t2|=.点G到直线l的距离d.即可得出S△GAB=|BA|•d.【解答】解:(1)ρsin2θ﹣8cosθ=0,化为ρ2sin2θ﹣8ρcosθ=0,∴直角坐标方程为:y2=8x.直线l的参数方程为:(t为参数).(2)点Q和点G的极坐标分别为(2,),(2,π),分别化为:Q(0,﹣2),G(﹣2,0),kl==1,倾斜角为,直角坐标方程为:y=x﹣2.可得直线l的参数方程:(t为参数).将参数方程代入曲线C的方程可得:t2﹣8t﹣32=0,△=128+4×32>0,设t1与t2为此方程的两个实数根,可得:t1+t2=,t1t2=﹣32.∴|AB|=|t1﹣t2|===16.点G到直线l的距离d==2.∴S △GAB=|BA|•d==16.[选修4-5:不等式选讲]24.已知函数f(x)=.(1)求函数f(x)的值域;(2)若函数f(x)的值域是[m,n],且a2+b2=m,c2+d2=n,求ac+bd的取值范围.【考点】函数的最值及其几何意义.【分析】(1)记g(x)=|x+3|﹣|x﹣1|+5,分类讨论求得g(x)=,从而求值域;(2)由柯西不等式知(a2+b2)(c2+d2)≥(ac+bd)2,从而求取值范围.【解答】解:(1)记g(x)=|x+3|﹣|x﹣1|+5,则g(x)=,故g(x)∈[1,9],故f(x)∈[1,3].(2)由(1)知,a2+b2=1,c2+d2=3,由柯西不等式知,(a2+b2)(c2+d2)≥(ac+bd)2,(当且仅当ad=bc时,取等号;)即(ac+bd)2≤3,故﹣≤ac+bd≤,故ac+bd的取值范围为[﹣,].2016年9月12日。
2020-2021学年度第一学年度质量检测高二文科数学(二)考生注意:本试卷分第I 卷(选择题)和第II 卷(非选择题)两部分,满分150分,考试时间120分钟。请将答案填写在答题纸相对应的位置,交卷时,只交答题纸。第I 卷(选择题共60分)一、选择题(本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.下列语句中是命题的个数为①-5∈Z;②π不是实数;③大边所对的角大于小边所对的角;(4)2是无理数. A.1 B.2 C.3 D.42.条件P:动点M 到两定点距离之和等于定长,条件Q:动点M 的轨迹是椭圆,则P 是Q 的A.充要条件B.必要不充分条件C.充分不必要条件D.既不充分又不必要条件 3.设原命题“若p 则q ”真而逆命题假,则p 是q 的A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分又不必要条件4.已知椭圆2212516x y +=上的一点P 到椭圆一个焦点的距离为3,则P 到另一个焦点的距离 A.2B.3C.5D.7 5.椭圆221x my +=的焦点在y 轴上,长轴长是短轴长的两倍,则m 的值为1.2A B.2 D.4 6.若A ⌝是B 的充分不必要条件,则A 是B ⌝的A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件7.已知命题p:∀x ∈R ,sinx≤1,则A.¬p:∃x ∈R ,s inx≥1B.¬p:∀x ∈R ,sinx≥1C.¬p:∃x ∈R ,sinx>1D.¬p:∀x ∈R ,sinx>18.已知方程221221x y k k +=--表示焦点在y 轴上的椭圆,则实数k 的取值范围是 A.(1,2) B.(1,+∞)1.(,2)2C 1.(,1)2D 9.抛物线顶点是坐标原点,焦点是椭圆2241x y +=的一个焦点,则此抛物线的焦点到准线的距离是.23A .3B 3.C 3.D 10.直线y=kx+2与抛物线28y x =只有一个公共点,则k 的值为A.1B.0C.1或0D.1或311.在椭圆2214520x y +=上有一点P,12F F 、是椭圆的左右焦点,12F PF 为直角三角形,则这样的点P 有 A.2个 B.4个 C.6个 D.8个12.用一个与圆柱母线成60°角的平面截圆柱,截面是一个椭圆,则此椭圆的离心率是2.2A 1.2B3.C 3.D 第II 卷(非选择题共90分)二、填空题(本大题共4个小题,每小题5分,共20分)13.若命题“2230ax ax -->不成立”是真命题,则实数a 的取值范围是___.14.命题“若a>b,则221a b >-”的否命题为___.15.抛物线21(0)y x m m=<的焦点坐标是____. 16.过抛物线26y x =的焦点作直线交抛物线于1122(,),(,)A x y B x y 两点,如果128,x x +=那么|AB|的值为___.三、解答题(本大题共6个小题,共70分.解答应写出文字说明、证明过程或演算步骤)17.(本小题满分10分)指出下列命题中哪些是全称命题,哪些是特称命题,并判断真假.(1)若a>0,且a≠1,则对任意实数x,0.x a >(2)对任意实数12,x x 、若12,x x <则12tan tan .x x <0(3),T ∃∈R 使 ()0sin x T sinx +=.0(4),x ∃∈R 使2010x +<.18.(本小题满分12分)是否存在实数p,使4x+p<0是220x x -->的充分条件?如果存在,求出p 的取值范围;否则,说明理由.19.(本小题满分12分)已知焦点在x 轴上的抛物线,其通径(过焦点且垂直于对称轴的弦)的长为8,求此抛物线的标准方程,并写出它的焦点坐标和准线方程.20.(本小题满分12分)求与椭圆224936x y +=有相同的焦距,.21.(本小题满分12分)已知12,F F 是椭圆22197x y +=的两个焦点,A 为椭圆上一点,且1245,AF F ︒∠=求12AF F 的面积.22.(本小题满分12分)已知椭圆C 的焦点分别为1(F -和2F 长轴长为6,设直线y=x+2交椭圆C 于A 、B 两点,求线段AB 的中点坐标.。
陕西省榆林市2022届高三二模语文试题及答案统编版高三总复习榆林市2021~2022年度高三第二次模拟考试语文试题考生注意:1.本试卷共150分, 考试时间150分钟。
2.请将各题答案填写在答题卡上。
3.本试卷主要考试内容:高考全部内容。
一、现代文阅读(36分)(一)论述类文本阅读(本题共3小题, 9分)阅读下面的文字, 完成1~3题。
近年来, 影片《少年的你》热映, 但随之而来的是原著深陷“融梗”“抄袭”的舆论旋涡。
回溯众多被曝光的抄袭事件, 媒介化语境是其发生的共性前提。
在这一语境下, 写作的门槛降低, 写作人数、作品数量增长迅猛;作者、作品受媒介影响渐深, 认为如无充分的媒介传播, 很快就会“沉底”;读者化身用户, 自带流量, 参与写作的可能性增强;等等。
由此, 人们获取知识的自由度、平等度提高了, 文艺文本的获得和传播变得较为容易。
写作也不再是个人的闭门造车。
它依媒介而生, 触媒介而存, 在本质上演化成了动态的社交行为。
写作的公共化、敞开性等特点, 逐渐凸显。
而在另一个层面, 媒介化语境下写作的跨平台、跨媒介传播特性, 以及背后庞大的粉丝群体, 使得文学作品极易演化为文化创意产业的“脚本”。
市场效益的提高, 再加上众多写作平台、媒介等的宣传, 写作与利益有了更深刻的勾连, 写作诉求的功利化也成为一种常态。
问题是, 这种功利化的写作诉求, 若能与作者的才情相匹配, 那么就可以顺势而为;但假如名不副实, 就容易出现模仿、抄袭等行为。
媒介化语境下, 写作与利益的深度勾连, 使得商业写作成为潮流, 这虽然为当前的文艺原创打了鸡血, 却也在一定程度上消解了文艺本应有的崇高与神圣, 使得许多人对写作失去了敬畏。
对不少写手来说, 写作就是码字, 是获取名利的工具。
这种“无畏”, 使得他们只看到写作的潜在经济效能, 而忽略了其“别才”“别趣”特性。
于是, 由“无畏”而致“无谓”。
当不再心存敬畏, 就会由模仿、致敬走向创新的焦虑, 直至突破写作底线。
2019年高三校际联合检测文科数学本试卷分第I卷和第Ⅱ卷两部分,共5页。
满分150分。
考试时间120分钟.考试结束后,将本试卷和答题卡一并交回。
注意事项:1.答题前,考生务必用0.5毫米黑色签字笔将姓名、座号、考生号、县区和科类填写在答题卡和试卷规定的位置上。
2.第I卷每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。
3.第II卷必须用0.5毫米黑色签字笔作答,答案必须写在答题卡各题目指定区域内相应的位置;如需改动,先划掉原来的答案,然后再写上新的答案;不能使用涂改液、胶带纸、修正带。
不按以上要求作答的答案无效。
4.填空题请直接填写答案,解答题应写出文字说明、证明过程或演算步骤。
参考公式:=V Sh柱体(S是柱体的底面积,h是柱体的高);34=3V Rπ球(R是球的半径)第I卷(共50分)一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.(1)若复数z满足11zi=+(i为虚数单位),则复数z的共轭复数z的模为(A)0 (B)1 (C) 2(D)2(2)已知命题:,sin 1p x R ∀∈≤,则p ⌝是 (A),sin 1x R x ∀∈≥(B) ,sin 1x R x ∀∈> (C),sin 1x R ∃∈≥(D),sin 1x R x ∃∈>(3)若集合{}21x A x =>,集合{}ln B x x =>0,则“x ∈A ”是“x ∈B ”的(A)充分不必要条件 (B)必要不充分条件 (C)充要条件(D)既不充分也不必要条件(4)一个算法的程序框图如图所示,若该程序输出的结果为10,则判断框中应填入的条件是 (A) 3k ≥- (B) 2k ≥- (C) 3k <-(D) 3k ≤-(5)函数()cos x y e x ππ=-≤≤ (其中e 为自然对数的底数)的大致图象为(6)某几何体的三视图如图所不,则该几何体的体积是 (A)43π (B)243π+(C)223π+(D)53π(7)函数()sin 23f x x π⎛⎫=+ ⎪⎝⎭的图象向左平移4π个单位后,所得图象与y 轴距离最近的对称轴方程为 (A) 3x π=(B) 6x π=- (C)24x π=-(D)1124x π=(8) ABC ∆三内角A ,B ,C 的对边分别为,,,120a b c A =o ,则()sin 30a C b c--o 的值为(A)12(B)12-(C)32(D)32-(9)已知函数()2016112,01,2log , 1.x x f x x x ⎧--≤≤⎪=⎨⎪>⎩若,,a b c 互不相等,且()()()f a f b f c ==,则a b c ++的取值范围是(A)(1,2016) (B)[1,2016] (C)(2,2017) (D)[2,2017](10)如图,已知双曲线()2222:10,0x y C a b a b-=>>的右顶点为A ,O 为坐标原点,以A 为圆心的圆与双曲线C 的一条渐近线交于P ,Q两点,若60,3PAQ OQ OP ∠==ou u u r u u u r 且,则双曲线C 的离心率为 (A) 233(B)72(C)396(D) 3第II 卷(共100分)二、填空题:本大题共5小题,每小题5分,共25分.(11)将某班参加社会实践的48名学生编号为:l ,2,3,…,48,采用系统抽样的方法从中抽取一个容量为6的样本,已知5号,21号,29号,37号,45号学生在样本中,则样本中还有一名学生的编号是____________.(12)设不等式组0,4,1x y x y x -≤⎧⎪+≤⎨⎪≥⎩表示的平面区域为M ,若直线():2l y k x =+上存在区域M 内的点,则实数k 的取值范围是___________.(13)若,a b R ∈,且满足条件()()22111a b ++-<,则函数()log a b y x +=是增函数的概率是____________.(14)在计算“()12231n n ⨯+⨯+⋅⋅⋅+⨯+”时,某同学发现了如下一种方法: 先改写第k 项:()()()()()111211,3k k k k k k k k +=++--+⎡⎤⎣⎦由此得()1121230123⨯=⨯⨯-⨯⨯,()1232341233⨯=⨯⨯-⨯⨯, ……()()()()()1112113n n n n n n n n +=++--+⎡⎤⎣⎦相加,得()()()112231123n n n n n ⨯+⨯+⋅⋅⋅++=++.类比上述方法,()()12323412n n n ⨯⨯+⨯⨯+⋅⋅⋅+++=_______________________. (结果写成关于n 的一次因式的积......的形式) (15)已知不等式()[]22222201,22x xxxa x --+-+≥∈在时恒成立,则实数a 的取值范围是___________.三、解答题:本大题共6小题,共75分. (16)(本小题满分12分)2016年“五一”期间,高速公路某服务区从七座以下小型汽车中,按进服务区的先后每间隔50辆就抽查一辆进行询问调查.共询问调查40名驾驶员.将他们在某段高速公路的车速(km /h)分成六段:[60,65),[65,70),[70,75),[75,80),[80,85),[85,90),得到如图所示的频率分布直方图.(I)求这40辆小型车辆的平均车速(各组数据平均值可用其中间数值代替); (II)若从车速在[60,70)的车辆中任意抽取2辆,求其中车速在[65,70)的车辆中至少有一辆的概率.(17)(本小题满分12分)已知函数()()2cos 23sin cos sin f x x x x a x =-+的一个零点是12π.(I)求函数()f x 的最小正周期;(II)令,64x ππ⎡⎤∈-⎢⎥⎣⎦,求此时()f x 的最大值和最小值. (18)(本小题满分12分)等差数列{}n a 的前n 项和为nS ,数列{}n b 是等比数列,且满足11223,1,10a b b S ==+=,5232a b a -=.(I)求数列{}n a 和数列{}n b 的通项公式;(II)令2,n n nn S c b n ⎧⎪=⎨⎪⎩为奇数,,为偶数,设数列{}n c 的前n 项和为n T ,求2n T .(19)(本小题满分12分)如图,平面ABCD ⊥平面ABEF ,四边形ABCD 是矩形,四边形ABEF 是等腰梯形,其中AB//EF ,AB=2AF ,∠BAF=60°,O ,P 分别为AB ,CB 的中点,M 为△OBF 的重心.(I)求证:平面ADF ⊥平面CBF ; (II)求证:PM //平面AFC .(20)(本小题满分13分)已知函数()()212ln 21xf x f x x+'=+. (I)求函数()f x 在点()()1,1f 处的切线方程;(II)若关于x 的方程()()121,f x a f x e e⎡⎤'=+⎢⎥⎣⎦在上有两个不同的实数根,求实数a的取值范围;(Ⅲ)若存在120x x >>,使()()1122ln ln f x k x f x k x -≤-成立,求实数k 的取值范围.(21)(本小题满分14分)如图,A(2,0)是椭圆()222210x y a a a b +=>>长轴右端点,点B ,C 在椭圆上,BC过椭圆O ,0,,,AC BC OC AC M N ⋅==u u u u r u u u u r u u u r u u u r为椭圆上异于A ,B 的不同两点,MCN∠的角平分线垂直于x 轴. (I)求椭圆方程;(II)问是否存在实数λ,使得MN BA λ=u u u u r u u u r,若存在,求出λ的最大值;若不存在,请说明理由.参考答案及评分标准说明:本标准中的解答题只给出一种解法,考生若用其它方法解答,只要步骤合理,结果正确,准应参照本标准相应评分。
最新高考模拟考试理科数学本试卷分第I 卷(选择题)和第Ⅱ卷(非选择题)两部分,共5页.考试时间120分钟.满分150分.答题前,考生务必用0.5毫米的黑色签字笔将自己的姓名、座号、考号填写在答题纸规定的位置.第I 卷(选择题 共50分)注意事项:每小题选出答案后,用铅笔把答题纸上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案,不能答在试题卷上.一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知i 为虚数单位,复数12i z a i -=+的实部与虚部互为相反数,则实数a = (A)-1 (B)1 (C)3 (D)3-2.已知集合{}2230A x x x =--<,(){}ln 2B x y x ==-,定义{},A B x x R x B -=∈∉且,则A B -= (A)(-1,2) (B)[)2,3 (C)(2,3) (D)(]1,2-3.已知()()2,22a b a b a b ==+⋅-=-u u r u u r r r r r ,则a b r r 与的夹角为 (A)30° (B)45°(C)60° (D)120° 4.命题p :若22x y ≥,则11gx gy ≥;命题q :若随机变量ξ服从正态分布()()23,,60.72N P σξ≤=,则()00.28P ξ≤=.下列命题为真命题的是(A)p q ∧ (B)p q ⌝∧ (C)p q ∨⌝ (D)p q ⌝∧⌝5.右图所示的程序框图中按程序运行后输出的结果 (A)7 (B)8 (C)9(D)10 6.已知函数()()()2cos 0,0f x x ωθθπω=+<<>为奇函数,其图象与直线y=2相邻两交点的距离为π,则函数()f x(A)在,63ππ⎡⎤⎢⎥⎣⎦上单调递减 (B)在,63ππ⎡⎤⎢⎥⎣⎦上单调递增 (C)在,64ππ⎡⎤-⎢⎥⎣⎦上单调递减 (D)在,64ππ⎡⎤-⎢⎥⎣⎦上单调递增 7.若对任意实数x 使得不等式23x a x --+≤恒成立,则实数a 的取值范围是(A)[]1,5- (B)[]2,4- (C)[]1,1- (D)[]5,1- 8.已知等腰ABC ∆满足,32AB AC BC AB ==,点D 为BC 边上一点且AD=BD ,则sin ADB ∠的值为(A)36 (B)23 (C)223 (D)639.设双曲线()222210,0x y a b a b-=>>的右焦点为F ,过点F 作x 轴的垂线交两渐近线于点A ,B 两点,且与双曲线在第一象限的交点为P ,设O 为坐标原点,若()225OP OA OB ,,8u R u λλμλ=+∈+=uu r uuu r uu u r ,则双曲线的离心率为 (A)23 (B)35 (C)32 (D)9810.已知函数()23261x ax f x x ++=+,若存在x N *∈使得()2f x ≤成立,则实数a 的取值范围为 (A)[)15,-+∞ (B)(,2122⎤-∞-⎦ (C )(],16-∞- (D)(],15-∞- 第II 卷(非选择题共100分)注意事项:1.请用0.5毫米的黑色签字笔将每题的答案填写在答题纸的指定位置.书写的答案如需改动,要先划掉原来的答案,然后再写上新答案.2.不在指定答题位置答题或超出答题区域书写的答案无效.在试题卷上答题无效.二、填空题:本大题共5小题,每小题5分,共25分.11.正四棱锥的主视图和俯视图如图所示,其中主视图为边长为1的正三角形,则该正四棱锥的表面积为__________.12.在二项式393n x x ⎛- ⎪⎝⎭的展开式中,偶数项的二项式系数之和为256,则展开式中x 的系数为___________. 13.若变量,x y 少满足约束条件32930,0x y x y y ≤+≤⎧⎪-+≥⎨⎪≥⎩则z =x +2y 的最大值为__________.14.抛物线()2:20C y px p =>的焦点为F ,O 为坐标原点,M 为C 上一点.若2,MF p MOF =∆的面积为43,则抛物线方程为____________.15.已知函数()31,1,1x f x x x x ⎧≥⎪=⎨⎪<⎩,若关于x 的方程()f x x m =+有两个不同的实根,则实数m 的取值范围为___________.三、解答题:本大题共6小题,共75分.解答应写出文字说明,证明过程或演算步骤.16.(本小题满分12分)已知()()()2cos sin cos cos 102f x x x x x πλλ⎛⎫=-+-+> ⎪⎝⎭的最大值为3. (I)求函数()f x 的对称轴;(II)在ABC ∆中,内角A ,B ,C 的对边分别为,,a b c ,且cos cos 2A a B c b =-,若不等式()f B m <恒成立,求实数m 的取值范围.17. (本小题满分12分)已知四棱锥P ABCD -,底面ABCD 为平行四边形,PD ⊥底面ABCD ,2,2AD PD DC ===,E,F 分别为PD ,PC 的中点,且BE 与平面ABCD 所成角的正切值为2. (I )求证:平面PAB ⊥平面PBD ;(II )求面PAB 与面EFB 所成二面角的余弦值.18.(本小题满分12分)2015年,威海智慧公交建设项目已经基本完成.为了解市民对该项目的满意度,分别从不同公交站点随机抽取若干市民对该项目进行评分(满分100分),绘制如下频率分布直方图,并将分数从低到高分为四个等级:已知满意度等级为基本满意的有680人.(I)若市民的满意度评分相互独立,以满意度样本估计全市市民满意度.现从全市市民中随机抽取4人,求至少有2人非常满意的概率;(II)在等级为不满意市民中,老年人占13.现从该等级市民中按年龄分层抽取15人了解不满意的原因,并从中选取3人担任整改督导员,记X 为老年督导员的人数,求X 的分布列及数学期望E (X );(III)相关部门对项目进行验收,验收的硬性指标是:市民对该项目的满意指数不低于0.8,否则该项目需进行整改,根据你所学的统计知识,判断该项目能否通过验收,并说明理由.(注:满意指数=100满意程度的平均分)19.(本小题满分12分)设单调数列{}n a 的前n 项和为n S ,2694n n S a n =+-,126,,a a a 成等比数列.(I)求数列{}n a 的通项公式;(II)设()226131n n n b n a -=+⋅,求数列{}n b 的前n 项和n T .20.(本小题满分13分)已知函数()()()ln 1,, 1.ax f x x g x a x a=+=>+ (I)若函数()()1f x x x =与g 在处切线的斜率相同,求a 的值:(II)设()()()()=,F x f x g x F x -求的单调区间:(III)讨论关于x 的方程()()f x g x =的根的个数.21.(本小题满分14分)已知椭圆()221222:10,,x y C a b F F a b+=>>是左右焦点,A ,B 是长轴两端点,点()12,,P a b F F 与围成等腰三角形,且12PF F S ∆=(I)求椭圆C 的方程;(II)设点Q 是椭圆上异于A ,B 的动点,直线4x QA QB =-与,分别交于M,N 两点.(i)当1QF MN λ=u u u r u u u u r 时,求Q 点坐标;(ii)过点M,N ,1F 三点的圆是否经过x 轴上不同于点1F 的定点?若经过,求出定点坐标,若不经过,请说明理由.。
2018-2019学年高三(下)第一次质检数学试卷(文科)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设集合P={﹣1,0,1},,则P∩Q=()A.{﹣1,0,1} B.{0,1} C.{0} D.{1}2.设复数z满足,则z=()A.1﹣i B.1+i C.﹣1+i D.﹣1﹣i3.从1,2,3,4这四个数中,随机取出两个数字,剩下两个数字的和是奇数的概率是()A.B.C.D.4.已知sinα=2cosα,则=()A.B.C.2 D.5.抛物线y2=4x的焦点到双曲线x2﹣y2=2的渐近线的距离是()A.B. C.D.26.函数f(x)=log2x﹣的零点包含于区间()A.(1,2)B.(2,3)C.(3,4)D.(4,+∞)7.执行如图的程序框图,如果输入a=4,那么输出的n的值为()A.5 B.4 C.3 D.28.同时具有性质“①最小正周期是4π;②是图象的一条对称轴;③在区间上是减函数”的一个函数是()A.B.C.D.9.下列说明正确的是()A.“若a>1,则a2>1”的否命题是“若a>1,则a2≤1”B.{a n}为等比数列,则“a1<a2<a3”是“a4<a5”的既不充分也不必要条件C.∃x0∈(﹣∞,0),使成立D.“”必要不充分条件是“”10.已知点P的坐标(x,y)满足,过点P的直线l与圆C:x2+y2=16相交于A,B两点,则|AB|的最小值为()A.B.C.D.11.在△ABC中,内角A,B,C的对边分别是a,b,c,若,,则tanA=()A. B.C.D.12.设方程2x|lnx|=1有两个不等的实根x1和x2,则()A.x1x2<0 B.x1x2=1 C.x1x2>1 D.0<x1x2<1二、填空题(每题5分,满分20分,将答案填在答题纸上)13.已知向量,且与共线,则x的值为.14.已知定义在R上的偶函数f(x)满足:当x≥0时,f(x)=x3﹣8,则关于x的不等式f(x﹣2)>0的解集为.15.古埃及数学中有一个独特现象:除用一个单独的符号表示以外,其他分数都要写成若干个单位分数和的形式.例如=+,可以这样来理解:假定有两个面包,要平均分给5个人,每人不够,每人余,再将这分成5份,每人得,这样每人分得+.形如(n=5,7,9,11,…)的分数的分解:=+,=+,=+,…,按此规律,则(1)= .(2)= .(n=5,7,9,11,…)16.一个三棱锥的三视图如图所示,则该三棱锥的外接球的表面积为.三、解答题(本大题共5小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.已知等比数列{a n}为递增数列,且,2(a1+a3)=5a2.(1)求数列{a n}的通项公式;(2)令,求数列{b n}的前n项和S n.18.如图,在直三棱柱ABC﹣A1B1C1中,底面是正三角形,点D 是A1B1中点,AC=2,CC1=.(Ⅰ)求三棱锥C﹣BDC1的体积;(Ⅱ)证明:A1C⊥BC1.19.某公司共有职工8000名,从中随机抽取了100名,调查上、下班乘车所用时间,得下表:所用时间(分钟)[0,20)[20,40)[40,60)[60,80)[80,100)人数25 50 15 5 5公司规定,按照乘车所用时间每月发给职工路途补贴,补贴金额y(元)与乘车时间t (分钟)的关系是,其中表示不超过的最大整数.以样本频率为概率:(I)求公司一名职工每月用于路途补贴不超过300元的概率;(II)估算公司每月用于路途补贴的费用总额(元).20.已知椭圆+=1(a>b>0)的右焦点为F,右顶点为A,上顶点为B,已知|AB|=|OF|,且△A0B的面积为.(1)求椭圆的方程;(2)直线y=2上是否存在点M,便得从该点向椭圆所引的两条切线相互垂直?若存在,求点M的坐标,若不存在,说明理由.21.已知函数f(x)=(a﹣)x2+lnx,(a∈R).(Ⅰ)当a=0时,求f(x)在区间[,e]上的最大值;(Ⅱ)若在区间(1,+∞)上,函数f(x)的图象恒在直线y=2ax 下方,求a的取值范围.请考生在22、23、24三题中任选一题作答,如果多做,则按所做的第一题记分.[选修4-1:几何证明选讲]22.如图,等腰△ABC的一条腰及底边中线分别与圆O相交于点A,D和E、F,圆O的切线FG与CE相交于点G.(I)证明:FG⊥CE;(Ⅱ)若BA=4BD,BF=3BE,求FG:CE.[选修4-4:坐标系与参数方程]23.在极坐标系中,曲线C的方程为ρ2=,点R(2,).(Ⅰ)以极点为原点,极轴为x轴的正半轴,建立平面直角坐标系,把曲线C的极坐标方程化为直角坐标方程,R点的极坐标化为直角坐标;(Ⅱ)设P为曲线C上一动点,以PR为对角线的矩形PQRS的一边垂直于极轴,求矩形PQRS周长的最小值,及此时P点的直角坐标.[选修4-5:不等式选]24.已知函数f(x)=|x﹣5|+|x﹣3|.(Ⅰ)求函数f(x)的最小值m;(Ⅱ)若正实数a,b满足+=,求证:+≥m.参考答案与试题解析一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设集合P={﹣1,0,1},,则P∩Q=()A.{﹣1,0,1} B.{0,1} C.{0} D.{1}【考点】交集及其运算.【分析】化简集合B,然后直接利用交集运算求解.【解答】解:集合P={﹣1,0,1},=[0,4)∴P∩Q={0,1},故选:B.2.设复数z满足,则z=()A.1﹣i B.1+i C.﹣1+i D.﹣1﹣i【考点】复数求模.【分析】利用复数的运算法则、共轭复数的定义、模的计算公式即可得出.【解答】解:∵,∴(1﹣i)(1﹣i),2z=2(1﹣i),解得z=1﹣i.故选:A.3.从1,2,3,4这四个数中,随机取出两个数字,剩下两个数字的和是奇数的概率是()A.B.C.D.【考点】古典概型及其概率计算公式.【分析】先求出基本事件总数,再求出剩下两个数字的和是奇数包含的基本事件个数,由此能求出剩下两个数字的和是奇数的概率.【解答】解:从1,2,3,4这四个数中,随机取出两个数字,基本事件总数n==6,剩下两个数字的和是奇数包含的基本事件个数m==4,∴剩下两个数字的和是奇数的概率p==.故选:C.4.已知sinα=2cosα,则=()A.B.C.2 D.【考点】三角函数的化简求值.【分析】利用诱导公式以及二倍角公式化简所求的表达式为正切函数的形式,代入求解即可.【解答】解:sinα=2cosα,可得tanα=2,则=﹣sin2α=﹣=﹣==.故选:B.5.抛物线y2=4x的焦点到双曲线x2﹣y2=2的渐近线的距离是()A.B. C.D.2【考点】双曲线的简单性质.【分析】容易求出抛物线焦点及双曲线的渐近线方程分别为(1,0),y=±x,所以根据点到直线的距离公式即可求得该焦点到渐近线的距离.【解答】解:抛物线的焦点为(1,0),双曲线的渐近线方程为y=±x;∴由点到直线的距离公式得抛物线焦点到双曲线渐近线的距离为:.故选A.6.函数f(x)=log2x﹣的零点包含于区间()A.(1,2)B.(2,3)C.(3,4)D.(4,+∞)【考点】二分法求方程的近似解.【分析】由题意知函数f(x)=log2x﹣在(0,+∞)上连续,再由函数的零点的判定定理求解.【解答】解:函数f(x)=log2x﹣在(0,+∞)上连续,f(3)=log23﹣<0;f(4)=log24﹣=>0;故函数f(x)=log2x﹣的零点所在的区间是(3,4).故选:C.7.执行如图的程序框图,如果输入a=4,那么输出的n的值为()A.5 B.4 C.3 D.2【考点】程序框图.【分析】执行程序框图,依次写出每次循环得到的P,Q值,不满足条件P≤Q,程序终止即可得到结论.【解答】解:执行程序框图,有n=0,0≤1,P=1,Q=3,n=1;n=1,1≤3,P=1+4=5,Q=7,n=2;n=2,5≤7,P=5+16=21,Q=15,n=3;n=3,21≤15不成立,输出,n=3;故选:C8.同时具有性质“①最小正周期是4π;②是图象的一条对称轴;③在区间上是减函数”的一个函数是()A.B.C.D.【考点】由y=Asin(ωx+φ)的部分图象确定其解析式.【分析】利用函数的周期,求出ω,利用图象关系直线x=对称,即可判断选项的正误.【解答】解:对于选项A、B,∵T==π,故A,B不正确;对于选项C,如果x=为对称轴.所以+=kπ,k∈Z,可得=kπ,k不存在,不满足题意,故C不正确;对于选项D,因为T==4π,且由=k,k∈Z,解得图象的对称轴方程为:x=2kπ+,k∈Z,当k=0时,x=为图象的一条对称轴.由2kπ≤≤2kπ,k∈Z,解得单调递减区间为:[4kπ+,4kπ+],k∈Z,可得函数在区间上是减函数,故D正确.故选:D.9.下列说明正确的是()A.“若a>1,则a2>1”的否命题是“若a>1,则a2≤1”B.{a n}为等比数列,则“a1<a2<a3”是“a4<a5”的既不充分也不必要条件C.∃x0∈(﹣∞,0),使成立D.“”必要不充分条件是“”【考点】命题的真假判断与应用.【分析】真假写出原命题的否命题判断A;由a1<a2<a3,说明数列为递增数列,可得a4<a5,反之,由a4<a5,不一定有数列为递增数列判断B;由幂函数的单调性判断C;由正切函数值的求法结合充分必要条件的判断方法判断D.【解答】解:“若a>1,则a2>1”的否命题是“若a<1,则a2≤1”,故A错误;{a n}为等比数列,a1<a2<a3,说明数列为递增数列,则a4<a5,反之,由a4<a5,不一定有a1<a2<a3,∴“a1<a2<a3”是“a4<a5”的充分不必要条件,故B错误;当x0∈(﹣∞,0)时,幂函数在(0,+∞)上为减函数,,故C错误;由,不一定有,反之由,一定有,∴是的必要不充分条件,故D正确.故选:D.10.已知点P的坐标(x,y)满足,过点P的直线l与圆C:x2+y2=16相交于A,B两点,则|AB|的最小值为()A.B.C.D.【考点】简单线性规划.【分析】作出不等式组对应的平面区域,画出以原点为圆心,半径是4的圆,利用数形结合即可得到在哪一个点的直线与圆相交的弦最短.【解答】解:作出不等式组对应的平面区域如图由图象可知,当P点在直线x=1与x+y=4的交点时,与圆心距离最远,作出直线与圆相交的弦短.P的坐标为(1,3),圆心到P点距离为d=,根据公式|AB|=2,可得:|AB|=2.故选:A.11.在△ABC中,内角A,B,C的对边分别是a,b,c,若,,则tanA=()A. B.C.D.【考点】正弦定理.【分析】利用正弦定理,分别求得b和c,b和a的关系,最后利用余弦定理求得cosA的值,可得sinA,则tanA可求得.【解答】解:△ABC中,∵,∴c=2b.若=,∴a2=19b2,∴cosA====,∴sinA==,∴tanA==.故选:C.12.设方程2x|lnx|=1有两个不等的实根x1和x2,则()A.x1x2<0 B.x1x2=1 C.x1x2>1 D.0<x1x2<1【考点】根的存在性及根的个数判断.【分析】由题意可得y=|lnx|和y=()x的图象有两个交点,如图可得设0<x1<1,x2>1,求得ln(x1x2)的范围,即可得到所求范围.【解答】解:方程2x|lnx|=1有两个不等的实根x1和x2,即为y=|lnx|和y=()x的图象有两个交点,如图可得设0<x1<1,x2>1,由ln(x1x2)=lnx1+lnx2=﹣+=,由0<x1<1,x2>1,可得2x1﹣2x2<0,2x1+x2>0,即为ln(x1x2)<0,即有0<x1x2<1.故选:D.二、填空题(每题5分,满分20分,将答案填在答题纸上)13.已知向量,且与共线,则x的值为﹣2 .【考点】向量的物理背景与概念.【分析】根据平面向量的坐标运算以及两向量共线的坐标表示,列出方程求出x的值.【解答】解:∵向量,∴﹣=(2﹣x,2),又与共线,∴(2﹣x)×(﹣1)﹣2x=0,解得x=﹣2.故答案为:﹣2.14.已知定义在R上的偶函数f(x)满足:当x≥0时,f(x)=x3﹣8,则关于x的不等式f(x﹣2)>0的解集为{x|x<0或x >4} .【考点】函数的单调性与导数的关系;函数单调性的性质.【分析】根据函数奇偶性和单调性的关系,不等式f(x﹣2)>0等价为f(|x﹣2|)>f(2),即|x﹣2|>2,即可得到结论.【解答】解:当x≥0时,f(x)=x3﹣8,∴f(2)=0,且函数单调递增∵f(x)是偶函数,∴f(﹣x)=f(x)=f(|x|),则不等式f(x﹣2)>0等价为f(|x﹣2|)>f(2)∴|x﹣2|>2,∴x>4或x<0,∴不等式的解集为{x|x<0或x>4},故答案为:{x|x<0或x>4}.15.古埃及数学中有一个独特现象:除用一个单独的符号表示以外,其他分数都要写成若干个单位分数和的形式.例如=+,可以这样来理解:假定有两个面包,要平均分给5个人,每人不够,每人余,再将这分成5份,每人得,这样每人分得+.形如(n=5,7,9,11,…)的分数的分解:=+,=+,=+,…,按此规律,则(1)= +.(2)= +.(n=5,7,9,11,…)【考点】归纳推理.【分析】(1)由已知中=+,可以这样来理解:假定有两个面包,要平均分给5个人,每人不够,每人余,再将这分成5份,每人得,这样每人分得+,类比可推导出=+;(2)由已知中=+,可以这样来理解:假定有两个面包,要平均分给5个人,每人不够,每人余,再将这分成5份,每人得,这样每人分得+,类比可推导出=+.【解答】解:(1)假定有两个面包,要平均分给11个人,每人不够,每人分则余,再将这分成11份,每人得,这样每人分得+.故=+;(2)假定有两个面包,要平均分给n(n=5,7,9,11,…)个人,每人不够,每人分则余,再将这分成n份,每人得,这样每人分得+.故=+;故答案为:+,+16.一个三棱锥的三视图如图所示,则该三棱锥的外接球的表面积为29π.【考点】球内接多面体;球的体积和表面积.【分析】该三棱锥为长方体切去四个小三棱锥得到的,故长方体的体对角线等于外接球的直径.【解答】解:由三视图可知该三棱锥为边长为2,3,4的长方体切去四个小棱锥得到的几何体.设该三棱锥的外接球半径为R,∴2R==,∴R=.∴外接球的表面积为S=4πR2=29π.故答案为:29π.三、解答题(本大题共5小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.已知等比数列{a n}为递增数列,且,2(a1+a3)=5a2.(1)求数列{a n}的通项公式;(2)令,求数列{b n}的前n项和S n.【考点】数列的求和;数列递推式.【分析】(1)利用等比数列的通项公式即可得出;(2)对n分类讨论,利用等比数列的求和公式即可得出.【解答】解:(1)设{a n}的首项为a1,公比为q,∴,解得a1=q.又∵2(a n+a n+2)=5a n+1,∴,则2(1+q2)=5q,2q2﹣5q+2=0,解得(舍)或q=2.∴.(2)∵,n为偶数时,;n为奇数时,.∴S n=.18.如图,在直三棱柱ABC﹣A1B1C1中,底面是正三角形,点D 是A 1B1中点,AC=2,CC1=.(Ⅰ)求三棱锥C﹣BDC1的体积;(Ⅱ)证明:A1C⊥BC1.【考点】棱柱、棱锥、棱台的体积;直线与平面垂直的性质.【分析】(Ⅰ)利用,求三棱锥C﹣BDC1的体积;(Ⅱ)取C1B1的中点E,连接A1E,CE.通过证明面A1CE,证明:A1C⊥BC1.【解答】(Ⅰ)解:过D作DH⊥C1B1,直三棱柱中C1B1⊥面A1B1C1,∴C1B1⊥DH,∴DH⊥面BCC1,∴DH是高,DH=,…∵,∴•…(Ⅱ)证明:取C1B1的中点E,连接A1E,CE∵底面是正三角形,∴A1E⊥B1C1•…矩形C1B1BC中,Rt△C1CE中,,Rt△BCC1中,,∴,∴△C1CE∽△BCC1,∴∠C1BC=∠EC1C,∵,∴,∴CE⊥BC1•…∴面A1CE,∴A1C⊥BC1•…19.某公司共有职工8000名,从中随机抽取了100名,调查上、下班乘车所用时间,得下表:所用时间(分[0,[20,[40,[60,[80,钟)20)40)60)80)100)人数25 50 15 5 5公司规定,按照乘车所用时间每月发给职工路途补贴,补贴金额y(元)与乘车时间t (分钟)的关系是,其中表示不超过的最大整数.以样本频率为概率:(I)求公司一名职工每月用于路途补贴不超过300元的概率;(II)估算公司每月用于路途补贴的费用总额(元).【考点】等可能事件的概率;频率分布表.【分析】(Ⅰ)当0≤t<60时,y≤300,所求事件的概率为++,运算求得结果.(Ⅱ)依题意,故公司一名职工每月的平均路途补贴为=,再把乘以公司总人数,即为所求.【解答】解:(Ⅰ)当0≤t<60时,y≤300.记事件“公司1人每月用于路途补贴不超过300元”为A.…则P(A)=++=0.9,即公司一名职工每月用于路途补贴不超过300元的概率为0.9.…(Ⅱ)依题意,当t∈[0,20 )时,[]=0;当t∈[20,40 )时,[]=1;当t∈[40,60 )时,[]=2;当t∈[60,80 )时,[]=3;当t∈[80,100 )时,[]=4.故公司一名职工每月的平均路途补贴为==246(元),…该公司每月用于路途补贴的费用总额约为×8000=246×8000=1968000(元).…20.已知椭圆+=1(a>b>0)的右焦点为F,右顶点为A,上顶点为B,已知|AB|=|OF|,且△A0B的面积为.(1)求椭圆的方程;(2)直线y=2上是否存在点M,便得从该点向椭圆所引的两条切线相互垂直?若存在,求点M的坐标,若不存在,说明理由.【考点】椭圆的简单性质.【分析】(1)通过椭圆+=1(a>b>0)的右焦点为F,右顶点为A,上顶点为B,已知|AB|=|OF|,且△A0B的面积为,建立关于a,b,c的方程,解出a,b,即求出椭圆的标准方程.(2)对于存在性问题,要先假设存在,先设切线y=k(x﹣m)+2,与椭圆联立,利用△=0,得出关于斜率k的方程,利用两根之积公式k1k2=﹣1,求出Q点坐标.【解答】解:(1)∵椭圆+=1(a>b>0)的右焦点为F,右顶点为A,上顶点为B,已知|AB|=|OF|,且△A0B的面积为,∴=c,=,∴a=2,b=,∴椭圆方程为=1.(2)假设直线y=2上存在点Q满足题意,设Q(m,2),当m=±2时,从Q点所引的两条切线不垂直.当m≠±2时,设过点Q向椭圆所引的切线的斜率为k,则l的方程为y=k(x﹣m)+2,代入椭圆方程,消去y,整理得:(1+2k2)x2﹣4k(mk﹣2)x+2(mk﹣2)2﹣4=0,∵△=16k2(mk﹣2)2﹣4(1+2k2)[2(mk﹣2)2﹣4]=0,∴(m2﹣4)k2﹣4mk+2=0,*设两条切线的斜率分别为k1,k2,则k1,k2是方程(m2﹣4)k2﹣4mk+2=0的两个根,∴k1k2==﹣1,解得m=±,点Q坐标为(,2),或(﹣,2).∴直线y=2上两点(,2),(﹣,2)满足题意.21.已知函数f(x)=(a﹣)x2+lnx,(a∈R).(Ⅰ)当a=0时,求f(x)在区间[,e]上的最大值;(Ⅱ)若在区间(1,+∞)上,函数f(x)的图象恒在直线y=2ax 下方,求a的取值范围.【考点】利用导数求闭区间上函数的最值;函数恒成立问题.【分析】(Ⅰ)当a=0时,求得函数f(x)的导数,由导数大于0,可得增区间;导数小于0,可得减区间,进而得到f(x)的最大值为f(1);(Ⅱ)令g(x)=f(x)﹣2ax=(a﹣)x2+lnx﹣2ax,求得g(x)的定义域,由题意可得在区间(1,+∞)上,函数f(x)的图象恒在直线y=2ax下方等价于g(x)<0 在区间(1,+∞)上恒成立.求得,讨论①若,②若a≤,求得单调区间,可得g(x)的范围,由恒成立思想,进而得到a 的范围.【解答】解:(Ⅰ)当a=0时,,导数,当x∈[,1],有f'(x)>0;当x∈(1,e],有f′(x)<0,可得f(x)在区间[,1]上是增函数,在(1,e]上为减函数,又f(x)max=f(1)=﹣;(Ⅱ)令g(x)=f(x)﹣2ax=(a﹣)x2+lnx﹣2ax,则g(x)的定义域为(0,+∞),在区间(1,+∞)上,函数f(x)的图象恒在直线y=2ax下方等价于g(x)<0 在区间(1,+∞)上恒成立.,①若,令g′(x)=0,得极值点,当x1<x2,即时,在(0,1)上有g′(x)>0,在(1,x2)上有g′(x)<0,在(x2,+∞)上有g′(x)>0,此时g(x)在区间(x2,+∞)上是增函数,并且在该区间上有g(x)∈(g(x2),+∞)不合题意;当x2≤x1,即a≥1时,同理可知,g(x)在区间(1,+∞)上,有g(x)∈(g(1),+∞),也不合题意;②若a≤,则有x1>x2,此时在区间(1,+∞)上恒有g′(x)<0,从而g(x)在区间(1,+∞)上是减函数;要使g(x)<0在此区间上恒成立,只须满足,由此求得a的范围是.综合①②可知,当a∈[﹣,]时,函数f(x)的图象恒在直线y=2ax下方.请考生在22、23、24三题中任选一题作答,如果多做,则按所做的第一题记分.[选修4-1:几何证明选讲]22.如图,等腰△ABC的一条腰及底边中线分别与圆O相交于点A,D和E、F,圆O的切线FG与CE相交于点G.(I)证明:FG⊥CE;(Ⅱ)若BA=4BD,BF=3BE,求FG:CE.【考点】与圆有关的比例线段.【分析】(1)连结AE,则∠EFC=90°,∠EAF=∠EFG,∠EAF=∠ECF,从而∠ECF=∠EFG,由此能证明FG⊥CE.(2)设BE=t,EF=2t,推导出EG=FG=,AB=2,CF=,CE=,由此能求出FG:CE的值.【解答】证明:(1)连结AE,∵等腰△ABC的一条腰及底边中线分别与圆O相交于点A,D和E、F,圆O的切线FG与CE相交于点G,∴∠EFC=90°,∠EAF=∠EFG,∠EAF=∠ECF,∴∠ECF=∠EFG,∴∠ECF+∠CFG=∠CFG+∠EFG=90°,∴FG⊥CE.解:(2)设BD=k,则AD=3k,BC=4k,设BE=t,EF=2t,EG=FG=,∵BD•BA=BE•BF,∴4k2=3t2,∴k=,AB=4×=2,=,∴CE==,∴FG:CE==.[选修4-4:坐标系与参数方程]23.在极坐标系中,曲线C的方程为ρ2=,点R(2,).(Ⅰ)以极点为原点,极轴为x轴的正半轴,建立平面直角坐标系,把曲线C的极坐标方程化为直角坐标方程,R点的极坐标化为直角坐标;(Ⅱ)设P为曲线C上一动点,以PR为对角线的矩形PQRS的一边垂直于极轴,求矩形PQRS周长的最小值,及此时P点的直角坐标.【考点】简单曲线的极坐标方程.【分析】(Ⅰ)首先根据变换关系式把极坐标方程转化成直角坐标方程,进一步把极坐标转化成直角坐标.(Ⅱ)把椭圆的直角坐标形式转化成参数形式,进一步把矩形的周长转化成三角函数的形式,通过三角恒等变换求出最小值,进一步求出P的坐标.【解答】解:(Ⅰ)由于x=ρcosθ,y=ρsinθ,则:曲线C的方程为ρ2=,转化成.点R的极坐标转化成直角坐标为:R(2,2).(Ⅱ)设P()根据题意,得到Q(2,sinθ),则:|PQ|=,|QR|=2﹣sinθ,所以:|PQ|+|QR|=.当时,(|PQ|+|QR|)min=2,矩形的最小周长为4,点P().[选修4-5:不等式选]24.已知函数f(x)=|x﹣5|+|x﹣3|.(Ⅰ)求函数f(x)的最小值m;(Ⅱ)若正实数a,b满足+=,求证:+≥m.【考点】二维形式的柯西不等式;绝对值三角不等式.【分析】(1)根据绝对值三角不等式f(x)=|x﹣5|+|x﹣3|≥|(x ﹣5)﹣(x﹣3)|=2;(2)根据柯西不等式(+)•(1+)≥(+)2.【解答】解:(1)根据绝对值三角不等式,f(x)=|x﹣5|+|x﹣3|≥|(x﹣5)﹣(x﹣3)|=2,当且仅当,x∈[3,5]时,函数f(x)取得最小值2,所以,m=2;(2)根据柯西不等式,(+)•(1+)≥(+)2=3,所以,+≥=2,因此,+≥2,而m=2,即,+≥m,证毕.2016年10月25日美好的未来不是等待,而是孜孜不倦的攀登。
最新高三二模数学(文)试卷本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共150分,考试用时120分钟。
第Ⅰ卷1至3页,第Ⅱ卷4至6页。
答卷前,考生务必将自己的姓名、准考号填写在答题卡上,并在规定位置粘贴考试用条形码。
答题时,务必将答案涂写在答题卡上,答在试卷上的无效。
考试结束后,将本试卷和答题卡一并交回。
祝各位考生考试顺利! 参考公式:● 如果事件A ,B 互斥,那么()()()P A B P A P B =+U .● 柱体体积公式:V sh =,其中s 表示柱体底面积,h 表示柱体的高. ● 锥体体积公式:13V sh =,其中s 表示柱体底面积,h 表示柱体的高. ● 球体表面积公式:24πR S =, 其中R 表示球体的半径. ● 球体体积公式:34π3V R =,其中R 表示球体的半径. 第Ⅰ卷注意事项:1.每小题选出答案后,用铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
2.本卷共8题,共40分。
一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的. (1)已知集合{}2|10,A x x x =-∈R ≥,{|03,}B x x x =<∈R ≤,则A B =I (A ){|13}x x x <<∈R , (B ){|13}x x x ∈R ≤≤,(C ){|13}x x x <∈R ≤,(D ){|03}x x x <<∈R ,(2)已知抛物线22(0)y px p =>上一点M 的横坐标为3,且满足||2MF p =,则抛物线方程为(A )22y x = (B )24y x =(C )212y x =(D )26y x = (3)某程序框图如下图所示,若输出的26S =, 则判断框内为(A )3?k > (B )4?k >(C )5?k > (D )6?k >(4)函数()|2|x f x x e =--+的零点所在的区间是(A )(1,0)- (B )(0,1) (C )(1,2) (D )(2,3) (5)“2x >” 是“220x x ->”成立的(A )既不充分也不必要条件(B )充要条件(C )必要而不充分条件 (D )充分而不必要条件(6)函数13()sin 2cos2,2f x x x x =+∈R ,将函数()f x 的图象向右平移π3个单位长度,得到函数()g x 的图象,则()g x 在区间ππ[,]63-上的最小值为(A )0(B )3- (C )1-(D )12(7)已知双曲线2222:1(0,0)x y C a b a b-=>>,以C 的右焦点(,0)F c 为圆心,以a 为半径的圆与C 的一条渐近线交于,A B 两点,若23AB c =,则双曲线C 的离心率为 (A )35(B )326 (C )6(D )32(8)已知函数f (x )是定义域为R 的偶函数,且f (x +1)=1f (x ),若f (x )在[-1,0]上是减函数,记0.5(log 2)a f =,2(log 4)b f =,0.5(2)c f =则(A )a b c >> (B )a c b >> (C )b c a >> (D )b a c >>第Ⅱ卷注意事项:1.用黑色墨水的钢笔或签字笔将答案写在答题卡上.........。
2.本卷共12题,共110分。
二、填空题:本大题共6个小题,每小题5分,共30分. (9)已知i 是虚数单位,则(2i)(13i)+-=.(10)若直线l 过点(1,2)-且与直线350x y -+=垂直,则直线l 的方程是. (11)当10<x a <时,若函数(1)y x ax =-的最大值为112,则a =. (12)如图,是一个几何体的三视图,其中正视图是等腰直角三角形,侧视图与俯视图均为边长为1的正方形,则该几何体外接球的表面积为.(13)如图,已知圆内接四边形ABCD ,边AD 延长线交BC 延长线于点P ,连结AC ,BD ,若6AB AC ==,9PD =则AD =.(14)已知等腰ABC ∆,点D 为腰AC 上一点,满足2BA BC BD +=u u u v u u u v u u u v ,且||3BD =u u u v,则ABC∆面积的最大值为.三、解答题:本大题共6小题,共80分.解答应写出文字说明、证明过程或演算步骤. (15)(本小题满分13分)在钝角..ABC △中,内角A B C ,,所对的边分别为a b c ,,,已知7a =,3b =.11cos 14C =, (Ⅰ)求c 和角A 的大小;(Ⅱ)求sin(2)6C π-的值.某工厂要安排生产Ⅰ,Ⅱ两种产品,这些产品要在,,,A B C D 四种不同的设备上加工,按工艺规定,在一天内,每件产品在各设备上需要加工的时间,及各设备限制最长使用时间如下表: 设备 产品Ⅰ每件需要加工时间产品Ⅱ每件需要加工时间设备最长使用时间A 2小时 2小时 12小时B 1小时 2小时 8小时C 4小时 0小时 16小时 D0小时4小时12小时设计划每天生产产品Ⅰ的数量为x (件),产品Ⅱ的数量为y (件),(Ⅰ)用x ,y 列出满足设备限制使用要求的数学关系式,并画出相应的平面区域; (Ⅱ)已知产品Ⅰ每件利润2(万元)产品Ⅱ每件利润3(万元),在满足设备限制使用要求的情况下,问该工厂在每天内产品Ⅰ,产品Ⅱ各生产多少会使利润最大,并求出最大利润.(17)(本小题满分13分)如图,在四棱锥P ABCD -中,底面ABCD 是菱形,侧面PBC 是直角三角形,90PCB ∠=o ,点E 是PC 的中点,且平面PBC ⊥平面ABCD .(Ⅰ)证明://AP 平面BED ; (Ⅱ)证明:平面APC ⊥平面BED ; (Ⅲ)若2BC PC ==,60ABC ∠=o , 求异面直线AP 与BC 所成角的余弦值.设椭圆:C 22221(0)x y a b a b+=>>,过点Q ,右焦点F ,(Ⅰ)求椭圆C 的方程;(Ⅱ)设直线:(1)l y k x =-(0k >)分别交x 轴,y 轴于,C D 两点,且与椭圆C 交于,M N 两点,若CN MD =u u u r u u u u r,求k 值,并求出弦长||MN .(19)(本小题满分14分)已知数列{}n a 是等差数列,公差0d >,12a =,其前n 项为n S (n *∈N ).且145,,2a a S +成等比数列.(Ⅰ)求数列{}n a 的通项n a 及前n 项和n S ;(Ⅱ)若4n n a b =,数列{}2n n b b +的前n 项和为n T ,证明:对n *∈N ,433n T <≤.(20)(本小题满分14分)已知函数21()ln 2f x a x bx x =++,(,a b ∈R )(Ⅰ)若函数()f x 在121,2x x ==处取得极值,求,a b 的值,并说明分别取得的是极大值还是极小值;(Ⅱ)若函数()f x 在(1,(1)f )处的切线的斜率为1,存在[1,]x e ∈,使得21())2f x x a x x -+≤(+2)(-成立,求实数a 的取值范围;(Ⅲ) 若2()()(1)2b h x x f x x +=+-,求()h x 在[1,e ]上的最小值及相应的x 值.数 学(文)参考答案一、选择题:每小题5分,共40分二、填空题:每小题5分,共30分.三、解答题:共6小题,共80分. (15)(本小题满分13分)在钝角..ABC △中,内角A B C ,,所对的边分别为a b c ,,,已知7a =,3b =.11cos 14C =, (Ⅰ)求c 和角A 的大小;(Ⅱ)求sin(2)6C π-的值.(Ⅰ)因为7a =,3b =.11cos 14C =,所以sin C 由余弦定理知:222112cos 4992372514c a b ab C =+-=+-⨯⨯⨯=,故5c =.由正弦定理知:sin sin a cA C=,7sin 14sin 5a C A c ===, 因为钝角..ABC △,a c b >>,所以A 为钝角,故120A =︒. (Ⅱ)sin(2)sin 2cos cos2sin 666C C C πππ-=-2211111712(21)1414298=⨯-=(16)(本小题满分13分)某工厂要安排生产Ⅰ,Ⅱ两种产品,这些产品要在,,,A B C D四种不同的设备上加工,按工艺规定,在一天内,每件产品在各设备上需要加工的时间,及各设备限制最长使用时间如下表:设备产品Ⅰ每件需要加工时间产品Ⅱ每件需要加工时间设备最长使用时间A 2小时2小时12小时B 1小时2小时8小时C 4小时0小时16小时D 0小时4小时12小时(Ⅰ)用x,y列出满足设备限制使用要求的数学关系式,并画出相应的平面区域;(Ⅱ)已知产品Ⅰ每件利润2(万元)产品Ⅱ每件利润3(万元),在满足设备限制使用要求的情况下,问该工厂在每天内产品Ⅰ,产品Ⅱ各生产多少会使利润最大,并求出最大利润. 解:(Ⅰ)产品Ⅰ的数量为x,产品Ⅱ的数量为y,x,y所满足的数学关系式为:221228416412x yx yxy+⎧⎪+⎪⎨⎪⎪⎩≤≤0≤≤0≤≤,即62843x yx yxy+⎧⎪+⎪⎨⎪⎪⎩≤≤0≤≤0≤≤画出不等式组62843x yx yxy+⎧⎪+⎪⎨⎪⎪⎩≤≤0≤≤0≤≤所表示的平面区域,即可行域(图中阴影部分)(Ⅱ)设最大利润为z(万元),则目标函数23z x y=+,将23z x y =+变形233z y x =-+,这是斜率为23-,随z 变化的一组平行直线,3z是直线在y轴上的截距,当3z取得最大值时,z 的值最大,又因为x ,y 所满足的约束条件,所以由图可知,当直线233z y x =-+经过可行域上的点M 时,截距3z最大,联立方程组:28416x y x +=⎧⎨=⎩得点M 坐标为(4,2),此时243214z =⨯+⨯=.所以,每天安排生产4件产品Ⅰ,2件产品Ⅱ,会使利润最大为14(万元) (17)(本小题满分13分)如图,在四棱锥P ABCD -中,底面ABCD 是菱形,侧面PBC 是直角三角形,90PCB ∠=o ,点E 是PC 的中点,且平面PBC ⊥平面ABCD .(Ⅰ)证明://AP 平面BED ; (Ⅱ)证明:平面APC ⊥平面BED ;(Ⅲ)若2BC PC ==,60ABC ∠=o ,求异面直线AP 与BC 所成角的余弦值.(Ⅰ)设AC BD O =I ,ABCD 是平行四边形,故O 为BD 中点。