量子复习提纲
- 格式:doc
- 大小:30.50 KB
- 文档页数:2
高等量子力学复习纲要2012级硕士生高等量子力学期末考试复习纲要 1. 会证明矢量空间中矢量的一些基本运算性质和定理;由右矢空间中矢量的关系证明左矢空间中相应的关系;有限维空间中各种不同的完全集所含矢量数目相同。
2. 会利用Schmidt正交化方法构造基矢;会利用直积基矢来展开波函数。
3. 会证明一些重要的公式与定理,比如:算符有逆定理;Glauber公式;厄米算符的性质定理;幺正算符的性质定理;投影算符的性质;本征矢量的完全集等。
定理4. 会证明幺正变换不改变矢量和算符的关系式;有逆算符不改变矢量的相关性。
5. 掌握量子力学的五个基本原理。
6. 会利用Levi-Civita符号及算符的基本对易关系证明角动量算符各分量与其它算符各分量的对易关系。
7. 会利用作用在位置和动量本征矢量上的升降算符的定义证明动量算符的本征矢量在坐标表象中的表示。
8. 会利用角动量的升降算符讨论对给定的角量子数j相应磁量子数m的取值范围;利用轨道角动量的本征函数所满足的本征值方程求解。
Y(,,,)Y(,,,)lm009. 试述绘景变换与表象变换的关系;三种绘景的区别和联系;会证明Heisenber方程;相互作用绘景中态矢量和算符所满足的方程。
10. 试给出薛定谔绘景中密度算符的表达式,并由此推导Liouville方程;会证明密度算符是厄米算符。
11. 会判断纯态和混合态;会由态的密度矩阵求力学量的平均值或者相反;会由不正交参与态构成的混合态构造正交参与态构成的混合态。
12. 能写出真空和电磁场中电子的所满足的Dirac方程及其协变形式;给出其中各物理量的含义;给出并证明自由电子体系的守恒量;会说明为何自由电子的哈密顿的本征矢量为何是高度简并的。
13. 会推导位置算符和动量算符在空间反演下的变换性质;能写出空间平移和空间转动算符的形式;会区分标量和矢量算符;会区分真标量和赝标量以及真矢量和轴矢量算符。
14. 理解系统在某一空间对称变换下具有不变性的含义,能写出系统在空间变换Q下具有不变性的明确数学表达式。
量⼦⼒学复习提纲`2010级材料物理专业《量⼦⼒学》复习提纲要点之⼀1. 19世纪末到20世纪初,经典物理学在解释⿊体辐射、光电效应、原⼦的光谱线系和固体的低温⽐热等实验结果时遇到了严重的困难,揭露经典物理学的局限性。
2. 普朗克提出“ 能量⼦ ”(内容是能量单位hv?)的假设,解决了⿊体辐射问题;爱因斯坦在普朗克“ 能量⼦ ”假设的启发下,提出了“光量⼦” (内容是以速度c 在空间运动的粒⼦?)的假设,成功解释了光电效应现象。
爱因斯坦的的光量⼦理论1924年被康普顿效应(内容是散射光中除了有原波长λ0的x 光外,还产⽣了波长λ>λ0 的x 光,其波长的增量随散射⾓的不同⽽变化。
这种现象称为康普顿效应(Compton Effect)?)证实,被物理学界接受。
3. 德布罗意在光的波粒⼆象性的启⽰下,提出⼀切微观粒⼦(原⼦、电⼦、质⼦等)也具有波粒⼆象性的假说,在⼀定条件下,表现出粒⼦性,在另⼀些条件下体现出波动性。
德布罗意的假说的正确性,在1927年为戴维孙(Davission )和⾰末(Germer )所做的电⼦衍射实验所证实。
4. 描述光的粒⼦性的能量E 和动量P与描述其波动性的频率ν波⽮K由 Planck- Einstein ⽅程联系起来,即:ων ==h E (其中的各物理量的意义?)。
5. 描述微观粒⼦(如原⼦、电⼦、质⼦等)粒⼦性的物理量为能量E 和动量P,描述其波动性的物理量为频率ν(或⾓频率ω)和波长λ,它们间的关系可⽤德布罗意关系式表⽰,即:ων ==h E(其中的各物理量的意义);。
7. 正⽐例,即描写粒⼦的波可认为是⼏率波,反映了微观粒⼦运动的统计规律。
8. 波函数在全空间每⼀点应满⾜单值、有限、连续三个条件,该条件称为波函数的标准条件。
8. 通常将在⽆穷远处为零的波函数所描写的状态称为束缚态,属于不同能级的束缚定态波函数彼此正交,可表⽰为)(0*n m dx n m ≠=?ψψ。
《量子力学》总复习一. 波粒二象性---微观粒子特性(1) 态的描述经典态(),P r →量子态(态矢—一般表示)或波函数:),...,(),,(t P t x Φψ(不同的具体表象)),(t x ψ的意义:t 时刻,x 附近,单位体积内找到粒子的几率幅 ),(t x ψ的性质:1)单值,2)连续,3)归一(2) 力学量的描述QQ ˆ→,对易关系,测不准问题 (3) 德布洛意关系 k P E ==,ω (粒子量与波量)二.力学量算符(1)Qˆ 出现的场合:Q ˆ ,(2)Q ˆ的性质:1)线性性 nnn n Q CC Q ψψ∑∑=ˆˆ(态的叠加原理的要求) 2)厄米性 Q Q ˆˆ=+ 或⎰⎰=τψψτψψd Q d Q **)ˆ(ˆ (Qˆ的本征值、平均值为实数的要求) (3)Qˆ的表示:不同表象有不同的表示 x 表象中:,ˆ,ˆxi P x xx∂∂== P 表象中:,ˆ,ˆxx xP P P i x=∂∂-= n 表象中:ˆˆˆ)xaa +=+, 注:1)<Qˆ>与表象的选择无关! 2)算符相等的定义:ψ=ψB A ˆˆ(ψ为任意态),则B Aˆˆ= (4) 力学量算符的对易关系2ˆˆˆˆˆ[,],[,]ˆˆˆ[,]ˆˆˆ[,]ˆˆˆ[,]ˆˆ[,]0j k j kj kj k llxy z yz x zx yix P i L L i LL L i L L L i L L L i L L L δε==⎧=⎪⎪↔=⎨⎪=⎪⎩= ,其中110ijkε⎧⎪=-⎨⎪⎩当下标排列(,,)i j k 为偶排列时ijk ε值为1;为奇排列时ijk ε值为-1;当下标(,,)i j k 中有两个下标相同时ijk ε值为0 注:对易关系与表象的选择无关! (5) 测不准关系222]ˆ,ˆ[41)ˆ()ˆ(B A B A -≥∆∆ 表明:1)0]ˆ,ˆ[≠B A,B A ˆ,ˆ无共同的本征态,B A ,不可能同时测准; 2)0]ˆ,ˆ[=B A,B A ˆ,ˆ有共同的本征态,B A ,有可能同时测准,即 在它们的共同本征态上可同时测准。
《量子力学》复习资料第一章 绪论1、经典物理学的困难:①黑体辐射;②光电效应;③氢原子线性光谱;④固体在低温下的比热。
2、★★★普朗克提出能量子假说:黑体只能以νh E =为能量单位不连续的发射和吸收辐射能量,⋯⋯==,3,2,1 n nh E n ν,能量的最小单元νh 称为能量子。
意义:解决了黑体辐射问题。
3、★★★(末考选择)爱因斯坦提出光量子假说:电磁辐射不仅在发射和吸收时以能量νh 的微粒形式出现,而且以这种形式在空间以光速c 传播,这种粒子叫做光量子,也叫光子。
意义:解释了光电效应。
【注】光电效应方程为0221W hv v m m e -= 4、★★★玻尔的三个基本假设:①定态假设:原子核外电子处在一些不连续的定常状态上,称为定态,而且这些定态相应的能量是分立的。
②跃迁假设:原子在与能级m E 和n E 相对应的两个定态之间跃迁时,将吸收或辐射频率为ν的光子,而且有m n E E hv -=.③角动量量子化假设:角动量必须是 的整数倍,即 ,3,2,1,==n n L意义:解决了氢原子光谱问题。
(末考选择)5、★★★玻尔理论后来也遇到了困难,为解决这些困难,德布罗意提出了微观粒子也具有波粒二象性的假说。
6、德布罗意公式:⇒⎪⎩⎪⎨⎧===k n h p h Eλν意义:将光的波动性和粒子性联系起来,两式的左端描述的是粒子性(能量和动量),右端描述的是波动性(频率和波长)。
7、(填空)德布罗意波长的计算:meUhmE h p h 22===λ 8、★★★康普顿散射实验的意义:证明了光具有粒子性。
(末考填空)同时也证实了普朗克和爱因斯坦理论的正确性。
9、★★★证实了电子具有波动性的典型实验:戴维孙-革末的电子衍射实验(也证实了德布罗意假说的正确性)、电子双缝衍射实验。
10、微观粒子的运动状态和经典粒子的运动状态的区别:(1)描述方式不同:微观粒子的运动状态用波函数描述,经典粒子的运动状态用坐标和动量描述;(2)遵循规律不同:微观粒子的运动遵循薛定谔方程,经典粒子的运动遵循牛顿第二定律。
量子力学复习资料一、基本概念1、波粒二象性这是量子力学的核心概念之一。
它表明微观粒子既具有粒子的特性,如位置和动量,又具有波动的特性,如波长和频率。
例如,电子在某些实验中表现出粒子的行为,如碰撞和散射;而在另一些实验中,如双缝干涉实验,又表现出波动的行为。
2、量子态量子态是描述微观粒子状态的方式。
与经典物理学中可以精确确定粒子的位置和动量不同,在量子力学中,粒子的状态通常用波函数来描述。
波函数的平方表示在某个位置找到粒子的概率密度。
3、不确定性原理由海森堡提出,指出对于一个微观粒子,不能同时精确地确定其位置和动量,或者能量和时间。
即:\(\Delta x \cdot \Delta p \geq \frac{\hbar}{2}\),\(\Delta E \cdot \Delta t \geq \frac{\hbar}{2}\),其中\(\hbar\)是约化普朗克常数。
二、数学工具1、薛定谔方程这是量子力学中的基本方程,类似于经典力学中的牛顿运动方程。
对于一个质量为\(m\)、势能为\(V(x)\)的粒子,其薛定谔方程为:\(i\hbar\frac{\partial \Psi(x,t)}{\partial t} =\frac{\hbar^2}{2m}\frac{\partial^2 \Psi(x,t)}{\partial x^2} + V(x)\Psi(x,t)\)。
2、算符在量子力学中,物理量通常用算符来表示。
例如,位置算符\(\hat{x}\)、动量算符\(\hat{p}\)等。
算符作用在波函数上,得到相应物理量的可能取值。
三、常见量子力学系统1、一维无限深势阱粒子被限制在一个宽度为\(a\)的区域内,势能在区域内为零,在区域外为无穷大。
其能量本征值为\(E_n =\frac{n^2\pi^2\hbar^2}{2ma^2}\),对应的本征函数为\(\Psi_n(x) =\sqrt{\frac{2}{a}}\sin(\frac{n\pi x}{a})\)。
量子力学复习提纲一波函数一、波函数的意义及性质在量子力学理论体系中,体系的状态用波函数来描述,一般记为),(t rψ=ψ,其物理意义是玻恩的几率解释:在时刻t ,在),,(z y x 附近体积元dxdydz 内发现粒子(体系)的几率为dxdydz t r 2|),(|ψ。
对波函数,要认识一下几个问题: 1、关于波函数的归一化问题(1)几率描述中实质问题是相对几率,即要求任意两点的几率比值相同即可,因此),(t r ψ和),(t r Cψ描述的是同一个几率波。
这导致波函数总有一个不确定的常数因子。
(2)根据(1),我们一般要求波函数归一化,即选择常数C ,使1||2=ψ?τd C不过这样选择的常数C ,还有一个不确定的相因子,我们把满足这个条件的常数C ,叫归一化常数。
(3)由于我们关注的是相对几率,因此在某些情形下,我们也使用一些非归一化的波函数,如自由粒子平面波函数r p i e r=2/3)2(1)(πψ 粒子的位置本征函数)()(0r r r-=δψ2、波函数的标准化条件(1)既然波函数是几率波,因此要求波函数模方为有限,是必然的。
即=ψ2||有限值。
但实际上,只要波函数满足=ψτd 2||有限就可以了。
例如对粒子位置本征函数就是这样。
而这种放宽的条件会导致波函数在某点的值变为无穷大。
这也是允许的。
(2)波函数的连续性要根据定态薛定谔方程来确定。
)()()](2[222x E x x V dx d ψψμ=+- 因此,如果)(x V 是x 的连续函数,则)(x ψ和dxd ψ必为x 的连续函数。
如果><=ax V a x Vx V 21)(,其中21,V V 是常数,且)(12V V -有限,则波函数及其一阶导数连续。
证明:将薛定谔方程在a x =邻域积分,得0)(])([2)0()0(2l i m''=-?→?=--+?+-dx x E x V a a a a ψμψψεε所以,)('x ψ连续,从而)(x ψ也连续。
量子力学期末考试复习重点、复习提纲量子力学期末考试复习重点、复习提纲第一章绪论1、了解黑体辐射、光电效应和康普顿效应。
2、掌握玻尔—索末菲的量子化条件公式。
3、掌握并会应用德布罗意公式。
4、了解戴维逊-革末的电子衍射实验。
第二章波函数和薛定谔方程1、掌握、区别及计算概率密度和概率2、掌握可积波函数归一化的方法3、理解态叠加原理是波函数的线性叠加4、掌握概率流密度矢量5、理解定态的概念和特点6、掌握并会应用薛定谔方程求解一维无限深方势阱中粒子的波函数及对应能级7、掌握线性谐振子的能级8、定性掌握隧道效应的概念及应用。
第三章量子力学中的力学量1、会算符的基本计算2、掌握厄米算符的定义公式,并能够证明常见力学量算符是厄米算符。
3、了解波函数归一化的两种方法4、掌握动量算符及其本征方程和本征函数5、掌握角动量平方算符和z分量算符各自的本征值,本征方程6、掌握三个量子数n,l,m的取值范围。
7、了解氢原子体系转化为二体问题8、掌握并会求氢原子处于基态时电子的最可几半径9、掌握并会证明定理属于不同本征值(分立谱)的两个本征函数相互正交10、力学量算符F的本征函数组成正交归一系的表达式(分立谱和连续谱)11、理解本征函数的完全性,掌握波函数按某力学量的本征函数展开(分立谱),会求展开系数,理解展开系数的意义。
12、掌握两个计算期望值的公式,会证明其等价性,能应用两公式计算期望值13、掌握坐标、动量算符之间的对易关系,掌握角动量算符之间的对易关系。
14、掌握并会证明定理如果两个算符有一组共同本征函数,而且本征函数组成完全系,则两个算符对易15、掌握不确定关系不等式。
第四章态和力学量的表象(4.1~4.3节)1、理解和掌握什么是表象2、理解不同表象中的波函数描写同一状态。
3、理解态矢量和希尔伯特空间4、了解算符F在Q表象中的表示形式,算符在其自身表象中的表示形式。
)(Et r p i p Ae-⋅=ψ《量子力学》复习 提纲一、基本假设 1、(1)微观粒子状态的描述 (2)波函数具有什么样的特性 (3)波函数的统计解释2、态叠加原理(说明了经典和量子的区别)3、波函数随时间变化所满足的方程 薛定谔方程4、量子力学中力学量与算符之间的关系5、自旋的基本假设 二、三个实验1、康普顿散射(证明了光子具有粒子性) 第一章2、戴维逊-革末实验(证明了电子具有波动性) 第三章3、史特恩-盖拉赫实验(证明了电子自旋) 第七章 三、证明1、粒子处于定态时几率、几率流密度为什么不随时间变化;2、厄密算符的本征值为实数;3、力学量算符的本征函数在非简并情况下正交;4、力学量算符的本征函数组成完全系;5、量子力学测不准关系的证明;6、常见力学量算符之间对易的证明;7、泡利算符的形成。
四、表象算符在其自身的表象中的矩阵是对角矩阵。
五、计算1、力学量、平均值、几率;2、会解简单的薛定谔方程。
第一章 绪论1、德布洛意假设: 德布洛意关系:戴维孙-革末电子衍射实验的结果: 2、德布洛意平面波:3、光的波动性和粒子性的实验证据:4、光电效应:5、康普顿散射:∑=nnn c ψψ1d 2=⎰τψ(全)()ψψψψμ∇-∇2=** i j 0=⋅∇+∂∂j tρ⎥⎦⎤⎢⎣⎡+∇-=),(222t r V H μ)(,)(),(r er t r n tE i n n nψψψ-=n n n E H ψψ=附:(1)康普顿散射证明了光具有粒子性(2)戴维逊-革末实验证明了电子具有波动性 (3)史特恩-盖拉赫实验证明了电子自旋第二章 波函数和薛定谔方程1.量子力学中用波函数描写微观体系的状态。
2.波函数统计解释:若粒子的状态用()t r ,ψ描写,τψτψψd d 2*=表示在t 时刻,空间r处体积元τd 内找到粒子的几率(设ψ是归一化的)。
3.态叠加原理:设 n ψψψ,,21是体系的可能状态,那么,这些态的线性叠加∑=nnn c ψψ也是体系的一个可能状态。
量子力学复习提纲第一章 绪论 1.德布罗意关系, E h νω==(1)h p n k λ==(2)2.微观粒子的波粒二象性.3. 电子被V 伏电压加速,则电子的德布罗意波长为12.25hA λ=≈(3)第二章 波函数和薛定谔方程 1.波函数的统计解释:波函数在空间某一点的强度()2,r t ψ 和在该处找到粒子的几率成正比,描写粒子的波是几率波. 其中2w*=ψψ=ψ代表几率密度.2.态叠加原理:如果1ψ和2ψ是体系的可能状态,那么它们的线性叠加1122c c ψ=ψ+ψ,也是体系的一个可能状态.3. 薛定谔方程和定态薛定谔方程薛定谔方程()(),ˆ,r t i H r t t∂ψ=ψ∂(4)定态薛定谔方程()()ˆH r E r ψ=ψ (5)其中()22ˆ2H U r μ=-∇+ (6)为哈密顿算符,又称为能量算符,4. 波函数的标准条件: 有限性,连续性(包括ψ及其一阶导数)和单值性.5. 波函数的归一化,1d τ*∞ψψ=⎰(9)6.求解一维薛定谔方程的几个例子.一维无限深势阱及其变种, 一维线性谐振子; 势垒贯穿.第三章 量子力学中的力学量1. 坐标算符, 动量算符及角动量算符;构成量子力学力学量的法则;2. 本征值方程,本征值,本征函数的概念ˆF ψλψ= (10)3. 厄密算符的定义,性质及与力学量的关系.ˆF dx ψφ*=⎰()ˆF dx ψφ*⎰(11)实数性: 厄密算符的本征值是实数.正交性: 厄密算符的属于不同本征值的两个本征函数 相互正交.完全性: 厄密算符ˆF的本征函数()n x φ和()x λφ组成完全系, 即任一函数()x ψ可以按()n x φ和()x λφ展开为级数:()()()n n nx c x c x d λλψφφλ=+∑⎰ (12)展开系数: ()()nnc x x dx φψ*=⎰, (13)()()c x x dx λλφψ*=⎰. (14)2nc 是在()x ψ态中测量力学量F 得到nλ的几率,2c d λλ是在()x ψ态中测量力学量F ,得到测量结果在λ到d λλ+范围内的几率.4. 2ˆL 和ˆZL 算符的本征值方程,本征值和本征函数. ()22ˆ1L l l ψψ=+ , ˆzL m ψψ= 本征函数 (),lm Y θφ.5. 氢原子的哈密顿算符及其本征值,本征函数nlm ψ的数学结构, ()()(),,,nlmnl lm r R r Y ψθφθφ= (15)主量子数n ,角量子数l 和磁量子数m 的取值范围,简并态的概念.6. 氢原子的能级公式和能级的简并度.422,1,2,3,...2s n e E n nμ=-= (16)不考虑电子的自旋是2n 度简并的;考虑电子的自旋是22n 度简并的.7. 给定电子波函数的表达式,根据电子在(),,r θφ点周围的体积元内的几率()22,,sin nlm r r drd d ψθφθθφ(17)计算电子几率的径向分布和角分布.计算在半径r 到r dr +的球壳内找到电子的几率. 8. 给定态函数,计算力学量平均值,平均值的计算公式.()()ˆF x F x dx ψψ*=⎰(18) 注意(11)式对波函数所在的空间作积分. 9. 算符的对易关系及测不准关系.(1) 如果一组算符相互对易,则这些算符所表示的力学量同时具有确定值(即对应的本征值), 这些算符有组成完全系的共同的本征函数.例如: 氢原子的哈密顿算符ˆH ,角动量平方算符2ˆL 和角动量算符ˆz L 相互对易, 则(i) 它们有共同的本征函数nlm ψ, (ii) 在态nlm ψ中,它们同时具有确定值:4222s n e E n μ=-,()21l l + , m .(2) 测不准关系:如果算符ˆF和ˆG 不对易,则一般来说它们不能同时有确定值. 设ˆFˆG -ˆG ˆF =ˆik 则算符ˆF和ˆG 的均方偏差满足:()_______2ˆF ∆⋅()_______22ˆ4k G ∆≥(19)其中 ()()________________________2222222F F F F FF F F F ∆=-=-+=-()__________222F F F ∆=-, ()__________222G G G ∆=-(a) 利用测不准关系估计氢原子的基态能量, 线性谐振子的零点能等.(b) 给定态函数ψ,计算两个力学量ˆF和ˆG 的均方偏差的乘积()_______2ˆF∆⋅()_______2ˆ?G ∆=(20)第四章 态和力学量的表象 1. 对表象的理解(1) 状态ψ: 态矢量(2) Q 表象:力学量Q 的本征函数 ()()()12,,...,...n u x u x u x构成无限维希耳伯特空间(坐标系)的基矢量 (4) 将态矢量按照上述基矢量展开:()()(),n n nx t a t u x ψ=∑()()()12,,...,...n a t a t a t 是态矢量ψ在Q 表象中沿各基矢量的分量.(5) ()2n a t 是在(),x t ψ所描写的态中,测量力学量Q 得到结果为n Q 的几率. 2. 算符在Q 表象中的表示(i)算符ˆF在Q 表象中是一个矩阵, nm F 称为矩阵元 ()(),nm nm F u x F x u x dx i x *∂⎛⎫≡ ⎪∂⎝⎭⎰(ii) 算符在自身表象中是一个对角矩阵,其对角矩阵元为该算符对应的本征值. 3. 量子力学公式的矩阵表述 (1) 平均值公式:†F F =ψψ (21)(2) 本征值方程 → 久期方程()()()()()()1111121222122212 ... ... ... ... : : : ... ... : : :m m n n nm mm a t a t F F F a t a t F F F F F F a t a t λ⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎪= ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭→ 111212122212 ... ... ... ... 0... ... ..............................n n n n nn F F F F F F F F F λλλ--=-(3) 薛定谔方程的矩阵形式 di H dtψ=ψ(22) 4. 么正变换的概念(1) 么正变换是两个表象基矢量之间的变换矩阵. (2) 么正变换的矩阵元由两个表象的基矢量共同确定,()()()(),.n n m m S x x dx S x x dx ββααψϕψϕ***⎫=⎪⎬=⎪⎭⎰⎰(3) 态矢量由A 表象变换到B 表象的公式1b S a -= (23)(4) 力学量ˆF由A 表象变换到B 表象的公式: 1F S FS -'= (24)5. 么正变换的性质(i) 么正变换不改变算符的本征值; (ii) 么正变换不改变矩阵F 的迹; (iii) 么正变换不改变力学量的平均值.第五章 微扰理论(I) 求解非简并定态微扰问题 (1) 确定微扰的哈密顿算符ˆH'. ()0ˆˆˆHH H '=+, 及与()0ˆH对应的零级近似能量()n E 和零级近似波函数()0nψ;(2) 计算能量的一级修正:()()()100ˆn nn E H d ψψτ*'=⎰ (25)(3) 计算波函数的一级修正:()()()()10'00mn n m mn mH E E ψψ'=-∑(26) (4) 计算能量的二级修正:()()()22'0nln ln l H E E E '=-∑ (27)(II) 求解非简并定态微扰问题 (只要求能量的一级修正) 求解步骤(1) 确定微扰的哈密顿算符ˆH'. (2) 确定微扰算符的矩阵元:ˆliH '=ˆl i H d φφτ*'⎰(28)(3) 求解久期方程得到能量的一级修正()()()111121121222112.........................................................n k n k kkkkn H E H H H H E H H H H E '''-'''-='''- (29)(III) 变分法不作要求 (IV) 含时微扰论 (1) 基本步骤设0ˆH 的本征函数为n φ为已知:0ˆn n nH φεφ=(30)将ψ按照0ˆH 的定态波函数n it n n e εφ-Φ=展开:()n nna t ψ=Φ∑(31)展开系数的表达式:()01mk ti t m mka t H e dt i ω'''=⎰(32)其中ˆmn m n H H d φφτ*''=⎰(33)是微扰矩阵元,()1m nmnωεε=-(34)为体系由n ε能级跃迁到m ε能级的玻尔频率. 在t 时刻发现体系处于m Φ态的几率是()2m a t , 体系在微扰的作用下,由初态k Φ跃迁到终态m Φ的几率为()2k m m W a t →= (35)(2) 用于周期微扰()()ˆˆi t i t H t F e e ωω-'=+得到()()()11mk mk i t i t mk m mk mk F e e a t ωωωωωωωω''+-⎡⎤--=-+⎢⎥+-⎣⎦(36)由(36)式,讨论并理解发生跃迁的条件是mkωω=±或m k m k εεω=± (37)(i) 表明只有外界的微扰含有频率mk ω时,体系才能从k Φ态跃迁到m Φ态,这时体系吸收和发射的能量是mk ω ;(ii)跃迁是一个共振现象.(3) 能量时间的测不准关系的含义E t ∆∆ (38)(4) 了解原子的跃迁几率和三个爱因斯坦系数:mk A , mkB 和km B 及相互关系. (5) 了解用含时微扰理论计算爱因斯坦发射和吸收系数(6) 记住对角量子数和磁量子数的选择定则1,0, 1.l l l m m m '∆=-=±⎫⎬'∆=-=±⎭(39) 第六章 散射只要求理解微分散射截面的概论, 不作计算要求.第七章 自旋与全同粒子1. 电子的自旋角动量S ,它在空间任何方向的投影只能取 2z S =± (40) 2. 自旋算符的矩阵形式 01ˆ210x S ⎛⎫= ⎪ ⎪⎝⎭ , 0ˆ20y i S i ⎛⎫-= ⎪ ⎪⎝⎭ , 10ˆ201z S ⎛⎫= ⎪ ⎪-⎝⎭(41) 3.泡利矩阵 01ˆ10x σ⎛⎫= ⎪ ⎪⎝⎭, 0ˆ0y i i σ⎛⎫-= ⎪ ⎪⎝⎭, 10ˆ01z σ⎛⎫= ⎪ ⎪-⎝⎭ (42)(1) 求力学量在某个自旋态的平均值和均方偏差.†G G =ψψ (43)()11121†1222122G G G G G G **⎛⎫ψ⎛⎫=ψψ=ψψ ⎪ ⎪ ⎪ψ⎝⎭⎝⎭ (44) (2)求解自旋角动量算符的本征值方程, 本征值和本征函数4. 自旋与轨道角动量的耦合及产生光谱的精细结构的原因.5. 全同性原理的表述6. 描写全同粒子体系状态的波函数只能是对称或反对称的,它们的对称性不随时间改变.实验证明,微观粒子按照其波函数的对称性可以分为两类: (I) 费米子: 波函数是反对称的;(II) 玻色子: 波函数是对称的.7.泡利不相容原理:不能有两个或两个以上的费米子处于同一状态.。
量子力学内容提要一、量子力学的研究对象和应用领域量子力学是研究微观粒子运动规律的一种基本理论。
它是上个世纪二十年代在总结大量实验事实和在旧量子论的基础上建立起来的。
它不仅在近代物理学中占有极其重要的位置,而且还被广泛地应用到化学、电子学、材料学、现代光学、计算机、天体物理等许多现代科技领域,凡是涉及到微观粒子(比如分子、原子、电子等)的各门学科和新兴技术,都几乎离不开应用量子力学的基本原理。
二、目的要求量子力学是20世纪自然科学的重大进展之一,也是近代物理学两大支柱之一。
设置量子力学课程的主要目的是:⑴了解微观世界矛盾的特殊性和微观粒子的运动规律,深入理解微观粒子的运动特性;(2)初步掌握量子力学的基本概念、基本原理、基本方法及量子力学的数学描述形式,并能运用量子力学基本理论和方法处理简单的微观体系问题。
(3) 了解量子力学在现代科学技术中的广泛应用,深化和扩展在普通物理中学过的有关知识,为以后从事物理教学或进一步深造打下扎实的学科基础。
三、主要内容I.绪论:量子力学的研究对象和方法特点,经典物理学的困难,量子力学发展简史,光的波粒二象性,早期的量子论,微观粒子的波粒二象性。
II.波函数和薛定谔方程:波函数的统计解释,态迭加原理,薛定谔方程,一维定态问题。
III.力学量的算符表示:表示力学量的算符,算符的本征值和本征函数,动量算符和角动量算符,厄米算符本征函数的正交归一完备性,算符与力学量的关系,算符的对易关系,两个力学量同时有确定值的条件,测不准关系,力学量期望值及其随时间的变化,对称性与守恒律。
电子在库仑场中的的运动,氢原子。
IV.态和力学量的表象:态的表象,算符的矩阵表示,量子力学公式的矩阵表述,幺正变换。
V.近似方法:定态微扰理论,变分法的基本原理及方法,含时微扰理论(跃迁几率、光的发射和吸收、选择定则)。
VI.电子自旋与角动量:电子自旋,自旋算符和波函数,角动量耦合,涉及自旋-轨道耦合时的处理方法。
一. 量子力学基本原理原理1 态与波函数● 微观体系的状态被一个波函数完全描述,从这个波函数可以得出体系的所有性质。
波函数一般应满足连续性,有限性和单值性三个条件。
● 数学上,波函数是希尔伯特空间中的矢量。
相差一个复数因子的两个矢量,描写同一状态。
波函数归一化。
● 波函数的几率解释。
z y x ∆∆∆2)(r ψ:在r 点处的体积元d x y z τ=∆∆∆中找到粒子的概率。
● 定义一个量子体系的任意两个波函数ψ 与ϕ 的内积⎰=ϕψτϕψ*d ),(,原理2 力学量与算符● 描写微观系统物理量的是希尔伯特空间中的厄米算符。
● 如果在经典力学中有相应的力学量,在量子力学中表示这个力学量的算符,由经典表示式中将动量p 换成算符∇- i 得出:位置算符r r →,动量算符∇-=→ i ˆpp , 角动量∇⨯-=⨯=r pr Li ˆˆ。
直角坐标分量表示。
角动量算符Lˆ的模方(L ˆ的平方):22222ˆˆˆˆˆˆˆzy x L L L L ++=⋅==L L L . 角动量在球面坐标系的表示:]sin 1)sin (sin 1[ˆ222ϕθθθθθ∂∂+∂∂∂∂-= Lϕ∂∂-= i ˆz Lθθθθθ222sin ˆ)sin (sin ˆz L L +∂∂∂∂-= ● 厄密算符的定义,性质和运算规则:算符Aˆ的复共轭算符*ˆA ,算符A ˆ的转置算符~ˆA ,)*ˆ*,()ˆ,(~ψϕϕψA A = 算符A ˆ的厄米共轭算符或伴随算符+A ˆ:),ˆ()ˆ,(ϕψϕψA A=+, 厄米算符(自伴算符):AAˆˆ=+ 厄米算符的本征值必为实数,厄米算符的属于不同本征值的本征函数彼此正交。
厄米算符的本征函数组成正交归一函数系。
厄米算符所有本征函数组成的函数系构成完备系。
● 算符Aˆ的本征值方程 n n nA A ψψ=ˆ● 物理量所能取的值,是相应算符的本征值。
如果用测量仪器测量这个力学量的取值,则只能测得其本征值。
870量子力学大纲
(实用版)
目录
1.量子力学的概述
2.量子力学的基本原理
3.量子力学的重要应用
4.量子力学的发展前景
正文
量子力学是现代物理学的重要分支,它的出现极大地拓宽了我们对微观世界的理解。
量子力学不仅提供了一种理论框架来描述原子、分子和基本粒子的行为,也为许多重要的现代技术提供了理论基础。
量子力学的基本原理主要包括波函数、不确定性原理和波粒二象性。
波函数是描述量子系统状态的复数值函数,它包含了有关量子系统的所有信息。
不确定性原理则表明,在微观世界中,我们不能同时准确地知道一个粒子的位置和速度。
波粒二象性是量子力学的核心概念,它指出微观粒子既具有波动性,也具有粒子性。
量子力学的重要应用包括半导体技术、核磁共振技术和激光技术等。
半导体技术是现代电子技术的基础,它利用量子力学的原理来设计和制造半导体器件。
核磁共振技术是一种用于研究物质结构的重要技术,它利用量子力学的原理来解释核磁共振现象。
激光技术则是一种利用量子力学的原理来产生和放大光波的技术。
量子力学的发展前景非常广阔。
一方面,量子力学的原理正在被用于设计和制造新型的量子计算机和量子通信系统。
这些系统有望在未来实现比经典计算机和通信系统更快、更安全的信息处理和传输。
另一方面,量子力学的原理也被用于研究和开发新型的材料和药物,这些材料和药物有望在未来带来新的科技突破。
总的来说,量子力学是一门深奥而又充满挑战的学科,它不仅提供了一种理论框架来描述微观世界,也为许多重要的现代技术提供了理论基础。
量子计算基础复习资料量子计算是一个令人着迷且充满挑战的领域,它正在以惊人的速度改变着我们对计算和信息处理的理解。
在这篇复习资料中,我们将深入探讨量子计算的基本概念、原理和关键技术。
一、量子力学基础要理解量子计算,首先需要对量子力学的一些基本概念有所了解。
量子力学是描述微观世界粒子行为的理论。
1、量子态量子态是量子系统所处的状态。
与经典物理学中的确定状态不同,量子态是通过波函数来描述的,具有叠加性和不确定性。
2、叠加态一个量子系统可以同时处于多个不同的状态,这就是叠加态。
例如,一个量子比特可以同时处于 0 和 1 的叠加态。
3、测量与塌缩当对量子态进行测量时,它会随机塌缩到某个确定的本征态,测量结果取决于波函数的概率分布。
二、量子比特量子比特(qubit)是量子计算的基本信息单元,与经典计算中的比特不同。
1、定义与表示经典比特只能处于 0 或 1 两种状态,而量子比特可以处于 0 和 1 的任意叠加态。
通常用狄拉克符号|0⟩和|1⟩表示量子比特的基态,叠加态可以表示为|ψ⟩=α|0⟩+β|1⟩,其中α和β是复数,且满足|α|² +|β|² = 1 。
2、与经典比特的比较经典比特是确定性的,而量子比特具有不确定性和并行处理的能力,这使得量子计算在某些问题上具有巨大的优势。
三、量子门量子门是对量子比特进行操作的基本单元,类似于经典计算中的逻辑门。
1、常见的量子门(1)Hadamard 门(H 门):将量子比特从基态转换为叠加态。
(2)Pauli 门:包括 X 门(比特翻转)、Y 门和 Z 门。
(3)CNOT 门(受控非门):对两个量子比特进行操作,实现控制和翻转。
2、量子门的矩阵表示每个量子门都可以用一个矩阵来表示,通过矩阵乘法对量子态进行变换。
四、量子算法量子算法是利用量子特性来解决特定问题的方法。
1、 Shor 算法用于分解大整数,其效率远远超过经典算法,对密码学产生了重大影响。
量子力学复习提纲
第二章
1)实物粒子的波粒二象性,德布罗依关系公式
2)波函数的统计解释和波函数的标准条件
3)态迭加原理
4)薛定谔方程(公式)
5)定态薛定谔方程(公式)
6)定态薛定谔方程求解一维问题(一维无限深势阱),定态能量和定态波函数(公式);掌握能量量子化、零点能等概念
7)解释隧道效应
8)几率流密度的概念及公式
9)一维自由粒子的波函数公式
10)透射系数D公式(E<U O)
第三章
1)量子力学中力学量用算符表示,特别是常见力学量的算符的表示
2) 线性厄米算符
3)算符的本征函数、本征值
4)厄米算符本征函数正交性和完全性
5)求力学量的平均值、各种可能的取值及相应几率的方法
6)算符的对易关系证明和力学量不确定关系(测不准关系)应用
第四章
1)氢原子的能级,波函数,三个量子数
2)角动量算符和角动量z分量算符的本征值
3)简并与简并度
4)氢原子核外电子的几率分布
第五章
1)定态微扰论的适用条件
2)能量一级修正公式及物理意义
3)能量二级修正公式
第六章
1) 电子自旋,自旋角动量算符的本征值
2) 全同粒子、玻色子、费米子的对称波函数的和反对称波
函数
第八章
1) 含时微扰及其跃迁几率公式
2)叠加系数a n(t)的模的平方|a n(t)|2的物理意义
3)自发辐射系数A nk、受激辐射系数B nk、吸收系数B kn 4)量子跃迁的选择定则。