GADC-AKMA中文资料
- 格式:pdf
- 大小:122.91 KB
- 文档页数:10
sigemaadc原理sigma-delta广播,也称为sigma-delta调制,是一种数字信号处理技术,用于将模拟信号转换为数字信号。
它的目标是以尽可能低的成本和复杂度来实现高度精确的模拟到数字(ADC)和数字到模拟(DAC)转换。
下面我将详细介绍sigma-delta广播的原理和工作方式。
1.概述sigma-delta广播是一种过采样技术,其原理是通过将模拟信号与高频的数字信号混合,然后通过数字滤波器进行滤波和解调,最后得到所需的数字表示。
这种技术是一种折衷方案,它通过牺牲频率范围来获得更高的分辨率。
2.工作原理sigma-delta广播的基本理念是将输入信号通过一个差分器与一个参考电平相减,然后将结果通过一个累加器进行积分。
累加器的输出经过一个比较器与一个比较电平进行比较,产生一个数字输出。
这个数字输出表示模拟信号相对于参考电平的增减情况。
3.模拟和数字滤波为了产生高精度的数字表示,sigma-delta广播使用了两个滤波器。
第一个是模拟滤波器,它通过降低输入信号的带宽来抑制高频噪声。
第二个是数字滤波器,它对经过模数转换器的输出进行滤波和解调。
这些滤波器可以是软件实现的数字滤波器或硬件电路中的滤波器。
4.高阶和多级结构为了提高精度,sigma-delta广播通常使用高阶(即具有多级或多个级联的一阶差分器)结构。
高阶结构可以通过增加积分器的数量来提高信噪比。
此外,多级结构还可以通过级联多个模数转换器来提高分辨率。
5.量化误差和噪声振幅在sigma-delta广播中,量化误差是由于数字转换器本身的有限精度引起的。
为了减小量化误差的影响,通常需要使用更高的比特数来表示数字输出。
另一个影响精度的因素是噪声振幅,即模拟信号中包含的噪声。
通过使用高阶结构、过采样和滤波器设计,可以有效地抑制量化误差和噪声振幅。
6.使用范围sigma-delta广播通常用于低频和中频信号的数字转换。
由于它的高精度和低成本,它在音频和视频编码、无线通信、传感器接口等领域得到广泛应用。
元器件交易网Technical Data Sheet3474AN/GADB-AKMA/XR/MSFeatures․High luminous intensity output ․Oval Shape ․Well defined spatial radiation ․Wide viewing angle (2θ1/2) : 110o / 50o ․The product itself will remain within RoHS compliant version ․UV resistant epoxyDescriptions․This precision optical performance oval LED is specifically designed for passenger information signs ․This lamp has matched radiation patterns with red and blue mixing color applicationsApplications․Color Graphic Signs ․Message boards ․Variable message signs (VMS) ․Commercial outdoor advertisingDevice Selection GuideLED Part No. 3474AN/GADB-AKMA/R/MS 3474AN/GADB-AKMA/PR/MS Chip Material Emitted Color InGaN Lens Color Stopper No YesBrilliant Green Green DiffusedEverlight Electronics Co., Ltd. Device Number : DT1-347-022http\\: Prepared date:03-24-2008Rev 1Page: 1 of 10Prepared by: Grace Shen元器件交易网Technical Data Sheet3474AN/GADB-AKMA/XR/MSPackage Dimensions Stopper TypeNo Stopper TypeNotes: ․All dimensions are in millimeters, tolerance is 0.25mm except being specified. ․Protruded resin under flange is 1.5mm Max LED. ․Bare copper alloy is exposed at tie-bar portion after cutting.Everlight Electronics Co., Ltd. Device Number : DT1-347-022 http\\: Prepared date:03-24-2008 Rev 1 Page: 2 of 10Prepared by: Grace Shen元器件交易网Technical Data Sheet3474AN/GADB-AKMA/XR/MSAbsolute Maximum Rating (Ta=25℃)Parameter Forward Current Pulse Forward Current (Duty1/10@ 1KHz) Operating Temperature Storage Temperature Soldering Temperature Power Dissipation Reverse Voltage Electrostatic Discharge Symbol IF IFP Topr Tstg Tsol Pd VR ESD Absolute Maximum Rating 30 100 -40 ~ +85 -40 ~ +100 260 100 5 1K Unit mA mA ℃ ℃ ℃ mW V VNotes: Soldering time≦5 seconds.Electro-Optical Characteristics (Ta=25℃)Parameter Luminous Intensity Viewing Angle Peak Wavelength Dominant Wavelength Spectrum Half width Forward Voltage Reverse Current Symbol IV 2θ1/2 λp λd Δλ VF IR Min. 1740 --525 -2.8 -Typ. -X:110 Y:50 522 -35 --Max. 3450 --535 -3.6 50 Unit mcd deg nm V μA ConditionIF=20mAVR=5VRank Combination (IF=20mA)Rank Luminous Intensity K2 1740~2070 L1 2070~2480 L2 2480~2880 M1 2880~3450Unit:mcd*Measurement Uncertainty of Luminous Intensity: ±10%Rank Dominant Wavelength1 525~5302 530~535Unit:nm*Measurement Uncertainty of Dominant Wavelength ±1.0nmEverlight Electronics Co., Ltd. Device Number : DT1-347-022http\\: Prepared date:03-24-2008Rev 1Page: 3 of 10Prepared by: Grace Shen元器件交易网Technical Data Sheet3474AN/GADB-AKMA/XR/MSTypical Electro-Optical Characteristics CurvesEverlight Electronics Co., Ltd. Device Number : DT1-347-022http\\: Prepared date:03-24-2008Rev 1Page: 4 of 10Prepared by: Grace Shen元器件交易网Technical Data Sheet3474AN/GADB-AKMA/XR/MSTaping DimensionsEverlight Electronics Co., Ltd. Device Number : DT1-347-022http\\: Prepared date:03-24-2008Rev 1Page: 5 of 10Prepared by: Grace Shen元器件交易网Technical Data Sheet3474AN/GADB-AKMA/XR/MSTaping Sizes Specifications Symbol Items Tape Feed Hole Diameter Component Lead Pitch Front-to-Read Deflection Feed Hole to Button of Component Feed Hole to Overall Component Height Lead Length after Component Removal Feed Hole Pitch Lead Location Center of Component Location Overall Taped Package Thickness Feed Hole Location Adhesive Tape Width Adhesive Tape Position Tape Width Symbol mm D F △H H1 H2 L P P1 P2 T W0 W1 W2 W3 4.00 2.54 2.0 18.5 24.6 11.00 12.70 5.10 6.35 1.42 9.00 13.00 4.00 18.00 Avg. Inch 0.157 0.100 0.078 0.729 0.969 0.433 0.500 0.200 0.250 0.056 0.354 0.512 0.157 0.709 Tolerance (mm) ±0.2 ±0.3 Max ±1.0 ±1.0 Max ±0.3 ±0.7 ±1.2 Max ±0.5 ±0.5 Max ±0.75Everlight Electronics Co., Ltd. Device Number : DT1-347-022http\\: Prepared date:03-24-2008Rev 1Page: 6 of 10Prepared by: Grace Shen元器件交易网Technical Data Sheet3474AN/GADB-AKMA/XR/MSPacking Specification■Inner Carton EVERLIGHT CPN: P/N:XXXXXXXXXXRoHSXXX/XXXX-XXXX QTY:XXXXCAT:XX HUE:XX REF:XXLOT NO: MADE IN TAIWAN■Label Form Specification CPN: Customer’s Production Number P/N : Production Number QTY: Packing Quantity CAT: Rank of Luminous Intensity HUE: Rank of Dominant Wavelength REF: Reference LOT No: Lot Number MADE IN TAIWAN: Production Place■Outside Carton■Packing Quantity 1. 2500 PCS/1 Inner Carton 2. 10Inner Cartons/1 Outside CartonEverlight Electronics Co., Ltd. Device Number : DT1-347-022http\\: Prepared date:03-24-2008Rev 1Page: 7 of 10Prepared by: Grace Shen元器件交易网Technical Data Sheet3474AN/GADB-AKMA/XR/MSNotes1. Lead Forming During lead formation, the leads should be bent at a point at least 3mm from the base of the epoxy bulb. Lead forming should be done before soldering. Avoid stressing the LED package during leads forming. The stress to the base may damage the LED’s characteristics or it may break the LEDs. Cut the LED leadframes at room temperature. Cutting the leadframes at high temperatures may cause failure of the LEDs. When mounting the LEDs onto a PCB, the PCB holes must be aligned exactly with the lead position of the LED. If the LEDs are mounted with stress at the leads, it causes deterioration of the epoxy resin and this will degrade the LEDs. 2. Storage The LEDs should be stored at 30°C or less and 70%RH or less after being shipped from Everlight and the storage life limits are 3 months. If the LEDs are stored for 3 months or more, they can be stored for a year in a sealed container with a nitrogen atmosphere and moisture absorbent material. Please avoid rapid transitions in ambient temperature, especially, in high humidity environments where condensation can occur. 3. Soldering Careful attention should be paid during soldering. When soldering, leave more then 3mm from solder joint to epoxy bulb, and soldering beyond the base of the tie bar is recommended. Recommended soldering conditions: Hand Soldering Temp. at tip of iron Soldering time Distance 300℃ Max. (30W Max.) 3 sec Max. 3mm Min.(From solder joint to epoxy bulb) Preheat temp. Bath temp. & time Distance DIP Soldering 100℃ Max. (60 sec Max.) 260 Max., 5 sec Max 3mm Min. (From solder joint to epoxy bulb)Everlight Electronics Co., Ltd. Device Number : DT1-347-022http\\: Prepared date:03-24-2008Rev 1Page: 8 of 10Prepared by: Grace Shen元器件交易网Technical Data Sheet3474AN/GADB-AKMA/XR/MSRecommended soldering profilelaminar waveFluxingPreheadAvoiding applying any stress to the lead frame while the LEDs are at high temperature particularly when soldering. Dip and hand soldering should not be done more than one time After soldering the LEDs, the epoxy bulb should be protected from mechanical shock or vibration until the LEDs return to room temperature. A rapid-rate process is not recommended for cooling the LEDs down from the peak temperature. Although the recommended soldering conditions are specified in the above table, dip or handsoldering at the lowest possible temperature is desirable for the LEDs. Wave soldering parameter must be set and maintain according to recommended temperature and dwell time in the solder wave. 4. Cleaning When necessary, cleaning should occur only with isopropyl alcohol at room temperature for a duration of no more than one minute. Dry at room temperature before use. Do not clean the LEDs by the ultrasonic. When it is absolutely necessary, the influence of ultrasonic cleaning on the LEDs depends on factors such as ultrasonic power and the assembled condition. Ultrasonic cleaning shall be pre-qualified to ensure this will not cause damage to the LED.Everlight Electronics Co., Ltd. Device Number : DT1-347-022http\\: Prepared date:03-24-2008Rev 1Page: 9 of 10Prepared by: Grace Shen元器件交易网Technical Data Sheet3474AN/GADB-AKMA/XR/MS5. Heat Management Heat management of LEDs must be taken into consideration during the design stage of LED application. The current should be de-rated appropriately by referring to the de-rating curve found in each product specification. The temperature surrounding the LED in the application should be controlled. Please refer to the data sheet de-rating curve. 6. ESD (Electrostatic Discharge) Electrostatic discharge (ESD) or surge current (EOS) can damage LEDs. An ESD wrist strap, ESD shoe strap or antistatic gloves must be worn whenever handling LEDs. All devices, equipment and machinery must be properly grounded. Use ion blower to neutralize the static charge which might have built up on surface of the LEDs plastic lens as a result of friction between LEDs during storage and handing. 7. Other Above specification may be changed without notice. EVERLIGHT will reserve authority on material change for above specification. When using this product, please observe the absolute maximum ratings and the instructions for using outlined in these specification sheets. EVERLIGHT assumes no responsibility for any damage resulting from use of the product which does not comply with the absolute maximum ratings and the instructions included in these specification sheets. These specification sheets include materials protected under copyright of EVERLIGHT corporation. Please don’t reproduce or cause anyone to reproduce them without EVERLIGHT’s consent.EVERLIGHT ELECTRONICS CO., LTD. Office: No 25, Lane 76, Sec 3, Chung Yang Rd, Tucheng, Taipei 236, Taiwan, R.O.CTel: 886-2-2267-2000, 2267-9936 Fax: 886-2267-6244, 2267-6189, 2267-6306 http:\\Everlight Electronics Co., Ltd. Device Number : DT1-347-022http\\: Prepared date:03-24-2008Rev 1Page: 10 of 10Prepared by: Grace Shen。
YAV 8AD-16高精度采集卡技术手册V1701武汉亚为电子科技有限公司YAV 6542注意序号版本号编写人编写日期支持对象应用时间特别说明1 1.0 郑先科2014.10 YAV 8AD-16采集卡2 2.0 郑先科2015.01 YAV 8AD-16采集卡3 3.0 郑先科2017.01 YAV 8AD-16采集卡目录功能概述 (5)技术指标 (5)1.模拟信号输入 (5)2.通信总线 ......................................................................................................... 错误!未定义书签。
3.温度条件 ......................................................................................................... 错误!未定义书签。
硬件特点 (6)原理框图 (6)端子信息 (7)1.端子排列 (7)2.端子描述 (8)电气参数 (9)通信 (9)采集卡指示灯 (9)机械规格 (9)模拟量输入功能 (11)模拟量输入 (11)输入采样原理 (11)输入接线 (11)采样值计算 (12)1.无符号整型 (12)2.ADC数据类型 (12)3.模拟量值 (13)通信协议 (14)MODBUS-RTU通信协议 (14)应用实例 (17)采集卡连接 (17)发现硬件 (18)软件功能 (18)软件应用 (18)bVIEW (18)2.MODBUS RTU通信 (19)3.组态及PLC (19)注意事项及故障排除 (22)注意事项 (22)1.存储说明 (22)2.出货清单 (22)3.质保及售后 (22)4.特别说明 (22)故障排除 (23)1.无法正常采集数据 (23)2.VI文件打不开 (23)3.多卡不识别 (24)4.不显示波形 (24)5.采集速度不够 (24)6.软件弹出错误 (24)性能测试 (25)安全规范 (25)耐电压范围测试 (25)环境适应性测试 (26)文档权利及免责声明 (27)联系方式 (28)V智能体验 (29)功能概述模块有12路16位AI,电源电压为12V。
AD/DA的常用芯片简介如今出产AD/DA的首要厂家有ADI、TI、BB、PHILIP、MOTOROLA等,武汉力源公司具有多年从事电子商品的履历和雄厚的技才调气支撑,已获得排行国际前列的仿照IC出产厂家ADI、TI 公司署理权,运营全系列适用各种范畴/场合的AD/DA器材。
1.AD公司AD/DA器材AD公司出产的各种模数改换器(ADC)和数模改换器(DAC)(总称数据改换器)一贯坚持商场领导方位,包含高速、高精度数据改换器和如今盛行的微改换器体系(MicroConvertersTM)。
1)带信号调度、1mW功耗、双通道16位AD改换器:AD7705 AD7705是AD公司出品的适用于低频丈量仪器的AD改换器。
它能将从传感器接纳到的很弱的输入信号直接改换成串行数字信号输出,而无需外部外表拓宽器。
选用Sigma;-Delta;的ADC,完毕16位无误码的超卓功用,片内可编程拓宽器可设置输入信号增益。
经过片内操控寄存器调整内部数字滤波器的封闭时刻和更新速率,可设置数字滤波器的榜首个凹口。
在+3V电源和1MHz主时钟时,AD7705功耗仅是1mW。
AD7705是依据微操控器(MCU)、数字信号处理器(DSP)体系的志向电路,能够进一步节约本钱、减小体积、减小体系的凌乱性。
运用于微处理器(MCU)、数字信号处理(DSP)体系,手持式仪器,散布式数据搜团体系。
2)3V/5VCMOS信号调度AD改换器:AD7714AD7714是一个无缺的用于低频丈量运用场合的仿照前端,用于直接从传感器接纳小信号并输出串行数字量。
它运用Sigma;-Delta;改换技能完毕高达24位精度的代码而不会扔掉。
输入信号加至坐落仿照调制器前端的专用可编程增益拓宽器。
调制器的输出经片内数字滤波器进行处理。
数字滤波器的初度陷波经过片内操控寄存器来编程,此寄存器能够调度滤波的截止时刻和树立时刻。
AD7714有3个差分仿照输入(也可所以5个伪差分仿照输入)和一个差分基准输入。
Audio Codec for Recordable DVDADAV803 Rev.0Information furnished by Analog Devices is believed to be accurate and reliable.However, no responsibility is assumed by Analog Devices for its use, nor for anyinfringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A. Tel: Fax: 781.326.8703© 2004 Analog Devices, Inc. All rights reserved.FEATURESStereo analog-to-digital converter (ADC) Supports 48/96 kHz sample rates102 dB dynamic rangeSingle-ended inputAutomatic level controlStereo digital-to-analog converter (DAC) Supports 32/44.1/48/96/192 kHz sample rates 101 dB dynamic rangeSingle-ended outputAsynchronous operation of ADC and DAC Stereo sample rate converter (SRC)Input/output range: 8 kHz to 192 kHz140 dB dynamic rangeDigital interfacesRecordPlaybackAuxiliary recordAuxiliary playbackS/PDIF (IEC60958) input and outputDigital interface receiver (DIR)Digital interface transmitter (DIT)PLL-based audio MCLK generatorsGenerates required DVDR system MCLKs Device control via I2C®-compatible serial port 64-lead LQFP packageFUNCTIONAL BLOCK DIAGRAMIAUXLRCLIAUXBCLIAUXSDATDIRIDACLDD1YSCLK3YSCLK2YSCLK1CLKIOUTIN CLKO4756--1ILRCLIBCLISDATFigure 1.APPLICATIONSDVD-recordableAll formatsCD-R/WPRODUCT OVERVIEWThe ADAV803 is a stereo audio codec intended for applications such as DVD or CD recorders that require high performance and flexible, cost-effective playback and record functionality. The ADAV803 features Analog Devices’ proprietary, high performance converter cores to provide record (ADC), playback (DAC), and format conversion (SRC) on a single chip. The ADAV803 record channel features variable input gain to allow for adjustment of recorded input levels and automatic level control, followed by a high performance stereo ADC whose digital output is sent to the record interface. The record channel also features level detectors that can be used in feedback loops to adjust input levels for optimum recording. The playback channel features a high performance stereo DAC with independent digital volume control. The sample rate converter (SRC) provides high performance sample rate conversion to allow inputs and outputs that require different sample rates to be matched. The SRC input can be selected from playback, auxiliary, DIR, or ADC (record). The SRC output can be applied to the playback DAC, both main and auxiliary record channels, and a DIT. Operation of theADAV803 is controlled via an I2C-compatible serial interface, which allows the programming of individual control register settings. The ADAV803 operates from a single analog 3.3 V power supply and a digital power supply of 3.3 V with optional digital interface range of 3.0 V to 3.6 V.The part is housed in a 64-lead LQFP package and is character-ized for operation over the commercial temperature range of −40°C to +85°C.ADAV803Rev. 0 | Page 2 of 56TABLE OF CONTENTSSpecifications.....................................................................................3 Test Conditions.............................................................................3 ADAV803 Specifications.............................................................3 Timing Specifications..................................................................6 Temperature Range......................................................................7 Absolute Maximum Ratings............................................................8 ESD Caution..................................................................................8 Pin Configuration and Function Descriptions.............................9 Typical Performance Characteristics...........................................11 Functional Description..................................................................15 ADC Section...............................................................................15 DAC Section................................................................................18 Sample Rate Converter (SRC) Functional Overview............19 PLL Section.................................................................................22 SPDIF Transmitter and Receiver..............................................23 Serial Data Ports.........................................................................27 Interface Control............................................................................30 I 2C Interface................................................................................30 Block Reads and Writes.............................................................31 Register Descriptions.....................................................................32 Layout Considerations...................................................................55 ADC.............................................................................................55 DAC..............................................................................................55 PLL...............................................................................................55 Reset and Power-Down Considerations.................................55 Outline Dimensions.......................................................................56 Ordering Guide.. (56)REVISION HISTORY7/04—Revision 0: Initial VersionADAV803Rev. 0 | Page 3 of 56SPECIFICATIONSTEST CONDITIONSTest conditions, unless otherwise noted. Table 1.Test Parameter Condition Supply VoltageAnalog 3.3 V Digital 3.3 V Ambient Temperature 25°C Master Clock (XIN) 12.288 MHz Measurement Bandwidth 20 Hz to 20 kHz Word Width (All Converters) 24 bits Load Capacitance on Digital Outputs 100 pF ADC Input Frequency 1007.8125 Hz at −1 dBFS DAC Output Frequency 960.9673 Hz at 0 dBFS Digital Input Slave Mode, I 2S Justified Format Digital Output Slave Mode, I 2S Justified FormatADAV803 SPECIFICATIONSTable 2.Parameter Min Typ Max Unit Comments PGA SECTION Input Impedance 4 kΩ Minimum Gain 0 dB Maximum Gain 24 dB Gain Step 0.5 dB REFERENCE SECTION Absolute Voltage, V REF 1.5 V V REF Temperature Coefficient 80 ppm/°C ADC SECTION Number of Channels 2 Resolution 24 Bits Dynamic Range −60 dB input Unweighted 99 dB f S = 48 kHz 98 dB f S = 96 kHz A-Weighted 98 102 dB f S = 48 kHz 101 dB f S = 96 kHz Total Harmonic Distortion plus NoiseInput = −1.0 dBFS −88 dB f S = 48 kHz −87 dB f S = 96 kHz Analog Input Input Range (± Full Scale) 1.0 V rms DC Accuracy Gain Error −1.5 −0.8 dB Interchannel Gain Mismatch 0.05 dB Gain Drift 1 mdB/°C Offset −10 mV Crosstalk (EIAJ Method) −110 dB Volume Control Step Size (256 Steps) 0.39 % perstepADAV803Rev. 0 | Page 4 of 56Parameter Min Typ Max Unit Comments Maximum Volume Attenuation −48 dB Mute Attenuation ∞ dB ADC outputs all zero codes Group Delay f S = 48 kHz 910 µs f S = 96 kHz 460 µsADC LOW-PASS DIGITAL DECIMATION FILTER CHARACTERISTICS 1Pass-Band Frequency 22 kHz Sample rate: 48 kHz 44 kHz Sample rate: 96 kHz Stop-Band Frequency 26 kHz Sample rate: 48 kHz 52 kHz Sample rate: 96 kHz Stop-Band Attenuation 120 dB Sample rate: 48 kHz 120 dB Sample rate: 96 kHz Pass-Band Ripple ±0.01 dB Sample rate: 48 kHz ±0.01 dB Sample rate: 96 kHz ADC HIGH-PASS DIGITAL FILTER CHARACTERISTICS Cutoff Frequency 0.9 Hz f S = 48 kHz SRC SECTION Resolution 24 Bits Sample Rate 8 192 kHz XIN = 27 MHz SRC MCLK 138 × f S-MAX 33 MHz f S-MAX is the greater of the input oroutput sample rateMaximum Sample Rate Ratios Upsampling 1:8 Downsampling 7.75:1 Dynamic Range 140 20 Hz to f S /2, 1 kHz, −60 dBFS input,f IN = 44.1 kHz, f OUT = 48 kHzTotal Harmonic Distortion plus Noise 120 dB 20 Hz to f S /2, 1 kHz, 0 dBFS input.f IN = 44.1 kHz, f OUT = 48 kHzDAC SECTION Number of Channels 2Resolution 24 BitsDynamic Range 20 Hz to 20 kHz, −60 dB inputUnweighted 99 dB f S = 48 kHz 98 dB f S = 96 kHz A-Weighted 97 101 dB f S = 48 kHz 100 dB f S = 96 kHz Total Harmonic Distorton plus Noise Referenced to 1V rms −91 dB f S = 48 kHz −90 dB f S = 96 kHzAnalog OutputsOutput Range (± Full Scale) 1.0 V rms Output Resistance 60 Ω Common-Mode Output Voltage 1.5 VDC AccuracyGain Error −2 −0.8 dB Interchannel Gain Mismatch 0.05 dB Gain Drift 1 mdB/°C DC Offset −30 +30 mV Crosstalk (EIAJ Method) −110 dB Phase Deviation 0.05 DegreesMute Attenuation −95.625 dBVolume Control Step Size (256 Steps) 0.375 dBADAV803Rev. 0 | Page 5 of 56Parameter Min Typ Max Unit CommentsGroup Delay 48 kHz 630 µs 96 kHz 155 µs 192 kHz 66 µsDAC LOW-PASS DIGITAL INTERPOLATION FILTER CHARACTERISTICS Pass-Band Frequency 20 kHz Sample rate: 44.1 kHz 22 kHz Sample rate: 48 kHz 42 kHz Sample rate: 96 kHz Stop-Band Frequency 24 kHz Sample rate: 44.1 kHz 26 kHz Sample rate: 48 kHz 60 kHz Sample rate: 96 kHz Stop-Band Attenuation 70 dB Sample rate: 44.1 kHz 70 dB Sample rate: 48 kHz 70 dB Sample rate: 96 kHz Pass-Band Ripple ±0.002 dB Sample rate: 44.1 kHz ±0.002 dB Sample rate: 48 kHz ±0.005 dB Sample rate: 96 kHz PLL SECTION Master Clock Input Frequency 27/54 MHz Generated System Clocks MCLKO 27/54 MHz SYSCLK1 256 768 × f S 256/384/512/768 × 32/44.1/ 48 kHz SYSCLK2 256 768 × f S 256/384/512/768 × 32/44.1/ 48 kHz SYSCLK3 256 512 × f S 256/512 × 32/44.1/48 kHz Jitter SYSCLK1 65 ps rms SYSCLK2 75 ps rms SYSCLK3 75 ps rms DIR SECTION Input Sample Frequency 27.2 200 kHz Differential Input Voltage 200 mV DIT SECTIONOutput Sample Frequency 27.2 200 kHzDIGITAL I/OInput Voltage High, V IH 2.0 DVDD V Input Voltage Low, V IL 0.8 V Input Leakage, I IH @ V IH = 3.3 V 10 µA Input Leakage, I IL @ V IL = 0 V 10 µAOutput Voltage High, V OH @ I OH = 0.4 mA 2.4 VOutput Voltage Low, V OL @ I OL = −2 mA 0.4 V Input Capacitance 15 pFPOWER Supplies Voltage, AVDD 3.0 3.3 3.6 V Voltage, DVDD 3.0 3.3 3.6 V Voltage, ODVDD 3.0 3.3 3.6 V Operating Current All supplies at 3.3 V Analog Current 60 mA Digital Current 38 mA Digital Interface Current 13 mA DIRIN/DIROUT Current 5 mA PLL Current 18 mAADAV8031 Guaranteed by design.TIMING SPECIFICATIONSTiming specifications are guaranteed over the full temperature and supply range.Rev. 0 | Page 6 of 56ADAV803Rev. 0 | Page 7 of 56ParameterMin Typ Max Unit Comments Master Mode t MLD xLRCLK Delay 5 ns From xBCLK falling edge t MDD xSDATA Delay 10 ns From xBCLK falling edge t MDS xSDATA Setup 10 ns From xBCLK rising edge t MDH xSDATA Hold10 ns From xBCLK rising edge1The prefix x refers to I-, O-, IAUX-, or OAUX- for the full pin name.TEMPERATURE RANGETable 4.Parameter Min Typ Max Unit Specifications Guaranteed 25 °C Functionality Guaranteed −40 +85 °CStorage −65 +150 °CADAV803Rev. 0 | Page 8 of 56ABSOLUTE MAXIMUM RATINGSTable 5.Parameter RatingDVDD to DGND and ODVDD toDGND0 V to 4.6 V AVDD to AGND 0 V to 4.6 V Digital Inputs DGND − 0.3 V to DVDD + 0.3 V Analog Inputs AGND − 0.3 V to AVDD + 0.3 V AGND to DGND −0.3 V to +0.3 V Reference Voltage Indefinite short circuit to ground Soldering (10 s) 300°CStresses above those listed under Absolute Maximum Ratingsmay cause permanent damage to the device. This is a stress rating only; functional operation of the device at these or any other conditions above those indicated in the operationalsection of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.ESD CAUTIONESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000 V readily accumulate on the human body and test equipment and can discharge without detection. Although this product features proprietary ESD protection circuitry, permanent damage may occur on devices subjected to high energy electrostatic discharges. Therefore, proper ESD precautions are recommended to avoid performancedegradation or loss of functionality.ADAV803Rev. 0 | Page 9 of 56PIN CONFIGURATION AND FUNCTION DESCRIPTIONSCO U T LCO U T RO A U X S D A T I A U X L R C L I A U X B C L KI A U X S D A T I L R C L I B C L I S D A T O L R C L O B C L O S D A T D I R I O D V D O D G N D I T O U O A U X L R C L O A U X B C L A P L NA P L PG N DA P R PA P R NV D DG N DR E FG N DI L T DG N DV D D04756-0-002NC = NO CONNECTFigure 2. Pin ConfigurationNI II I II IIADAV803Rev. 0 | Page 10 of 56PinN o. Mnemonic I/O Description 27 OAUXLRCLK I /O Sampling Clock (LRCLK) of Auxiliary Digital Output Port. 28 OAUXBCLK I/O Serial Clock (BCLK) of Auxiliary Digital Output Port. 29 OAUXSDATA O Data Output of Auxiliary Digital Output Port. 30 IAUXLRCLK I/O Sampling Clock (LRCLK) of Auxiliary Digital Input Port. 31 IAUXBCLK I/O Serial (BCLK) of Auxiliary Digital Input Port. 32 IAUXSDATA I Data Input of Auxiliary Digital Input Port. 33 DGND Digital Ground. 34 DVDD Digital Supply Voltage. 35 MCLKI I External MCLK Input. 36 MCLKO O Oscillator Output. 37 XOUT I Crystal Input. 38 XIN I Crystal or External MCLK Input. 39 SYSCLK3 O System Clock 3 (from PLL2). 40 SYSCLK2 O System Clock 2 (from PLL2). 41 SYSCLK1 O System Clock 1 (from PLL1). 42 DGND Digital Ground. 43 PLL_VDD Supply for PLL Analog Section. This pin should be connected to AVDD. 44 PLL_GND Ground for PLL Analog Section. This pin should be connected to AGND. 45 PLL_LF1 Loop Filter for PLL1. 46 PLL_LF2 Loop Filter for PLL2. 47 ADGND Analog Ground (Mixed Signal). This pin should be connected to AGND. 48 ADVDD Analog Voltage Supply (Mixed Signal). This pin should be connected to AVDD.49 VOUTR O Right Channel Analog Output. 50 NC No Connect. 51 VOUTL O Left Channel Analog Output. 52 NC No Connect. 53 AVDD Analog Voltage Supply. 54 AGND Analog Ground. 55 FILTDOutput DAC Reference Decoupling. 56 AGND Analog Ground.57 VREF Voltage Reference Voltage. 58 AGND Analog Ground. 59 AVDD Analog Voltage Supply. 60 CAPRN ADC Modulator Input Filter Capacitor (Right Channel, Negative). 61 CAPRP ADC Modulator Input Filter Capacitor (Right Channel, Positive). 62 AGND Analog Ground. 63 CAPLP ADC Modulator Input Filter Capacitor (Left Channel, Positive). 64 CAPLN ADC Modulator Input Filter Capacitor (Left Channel, Negative).元器件交易网ADAV803 TYPICAL PERFORMANCE CHARACTERISTICS00MAGNITUDE (dB)–50MAGNITUDE (dB)–50–100–10004756-0-003–150 0 0.5 1.0 1.5 FREQUENCY (Normalized to fS)–150 0 96 192 FREQUENCY (kHz) 2882.0384Figure 3. ADC Composite Filter ResponseFigure 6. DAC Composite Filter Response, 48 kHz500MAGNITUDE (dB)MAGNITUDE (dB)–5–50–10 –15–100–20 –25 –30 0 5 10 FREQUENCY (Hz) 1504756-0-004 04756-0-007–150 0 12 24 FREQUENCY (kHz) 362048Figure 4. ADC High-Pass Filter Response, fS = 48 kHzFigure 7. DAC Pass-Band Filter Response, 48 kHz5 00.060.04–5MAGNITUDE (dB) MAGNITUDE (dB)0.02–10 –150.00–0.02–20 –25 –30 0 5 10 FREQUENCY (Hz) 1504756-0-00520–0.06 0 8 16 FREQUENCY (kHz)24Figure 5. ADC High-Pass Filter Response, fS = 96 kHzFigure 8. DAC Filter Ripple, 48 kHzRev. 0 | Page 11 of 5604756-0-008–0.0404756-0-006元器件交易网ADAV8030 0–50MAGNITUDE (dB)–50MAGNITUDE (dB)–100–100 –15004756-0-01204756-0-009–150 0 192 384 FREQUENCY (kHz) 576–200 0 384 768 FREQUENCY (kHz) 11527681536Figure 9. DAC Composite Filter Response, 96 kHzFigure 12. DAC Composite Filter Response, 192 kHz00–2MAGNITUDE (dB)–50MAGNITUDE (dB)04756-0-010–4–6–100–804756-0-013–150 0 24 48 FREQUENCY (kHz) 7296–10 486480 FREQUENCY (kHz)96Figure 10. DAC Pass-Band Filter Response, 96 kHzFigure 13. DAC Pass-Band Filter Response, 192 kHz0.100.50 0.40 0.300.050.20MAGNITUDE (dB) MAGNITUDE (dB)04756-0-0110.10 0.00 –0.10 –0.200.00–0.05–0.30 –0.40 –0.50 0 8 16 32 FREQUENCY (kHz) 6404756-0-014–0.10 0 24 48 FREQUENCY (kHz) 7296Figure 11. DAC Filter Ripple, 96 kHzFigure 14. DAC Filter Ripple, 192 kHzRev. 0 | Page 12 of 56元器件交易网ADAV8030 –20 –40MAGNITUDE (dB)0 DNR = 102dB (A-Weighted) –20 –40MAGNITUDE (dB)THD+N = 95dB–60 –80 –100 –12004756-0-015–60 –80 –100 –120 –140 –160 0 5 10 15 20 25 30 FREQUENCY (kHz) 35 4004756-0-018–140 –160 0 2 4 6 8 10 12 14 FREQUENCY (kHz) 16 182045 48Figure 15. DAC Dynamic Range, fS = 48 kHzFigure 18. DAC THD + N, fS = 96 kHz0 –20 –40MAGNITUDE (dB)0 THD+N = 96dB –20 –40MAGNITUDE (dB)DNR = 102dB (A-Weighted)–60 –80 –100 –12004756-0-016–60 –80 –100 –120 –140 –160 0 5 10 FREQUENCY (kHz) 1504756-0-019–140 –160 0 2 4 6 8 10 12 14 FREQUENCY (kHz) 16 182020Figure 16. DAC THD + N, fS = 48 kHzFigure 19. ADC Dynamic Range, fS = 48 kHz0 –20 –40MAGNITUDE (dB)0 DNR = 102dB (A-Weighted) –20 –40MAGNITUDE (dB)THD+N = 92dB (VIN = –3dB)–60 –80 –100 –12004756-0-017–60 –80 –100 –120 –140 –160 0 5 10 FREQUENCY (kHz) 1504756-0-020–140 –160 0 5 10 15 20 25 30 FREQUENCY (kHz) 35 4045 4820Figure 17. DAC Dynamic Range, fS = 96 kHzFigure 20. DAC THD + N, fS = 48 kHzRev. 0 | Page 13 of 56元器件交易网ADAV8030 –20 –40MAGNITUDE (dB)0 DNR = 102dB (A-Weighted) –20 –40MAGNITUDE (dB)THD+N = 92dB (VIN = –3dB)–60 –80 –100 –12004756-0-021–60 –80 –100 –120 –140 –160 0 8 16 24 32 FREQUENCY (kHz) 4004756-0-022–140 –160 0 8 16 24 32 FREQUENCY (kHz) 404848Figure 21. ADC Dynamic Range, fS = 96 kHzFigure 22. ADC THD + N, fS = 96 kHzRev. 0 | Page 14 of 56元器件交易网ADAV803 FUNCTIONAL DESCRIPTIONADC SECTIONThe ADAV803’s ADC section is implemented using a secondorder multibit (5 bits) Σ-∆ modulator. The modulator is sampled at either half of the ADC MCLK rate (modulator clock = 128 × fS) or one-quarter of the ADC MCLK rate (modulator clock = 64 × fS). The digital decimator consists of a Sinc^5 filter followed by a cascade of three half-band FIR filters. The Sinc decimates by a factor of 16 at 48 kHz and by a factor of 8 at 96 kHz. Each of the half-band filters decimates by a factor of 2. Figure 23 shows the details of the ADC section. The ADC can be clocked by a number of different clock sources to control the sample rate. MCLK selection for the ADC is set by Internal Clocking Control Register 1 (Address 0x76). The ADC provides an output word of up to 24 bits of resolution in twos complement format. The output word can be routed to either the output ports, the sample rate converter, or the SPDIF digital transmitter.DIR PLL(256 × fS) DIR PLL(512 × fS) PLL2 INTERNALADC04756-0-023Programmable Gain Amplifier (PGA)The input of the record channel features a PGA that converts the single-ended signal to a differential signal, which is applied to the analog Σ-Δ modulator of the ADC. The PGA can be programmed to amplify a signal by up to 24 dB in 0.5 dB increments. Figure 24 shows the structure of the PGA circuit.4kΩ TO 64kΩ EXTERNAL CAPACITOR (1nF NPO) 125Ω4kΩ VREFCAPxN EXTERNAL TO CAPACITOR MODULATOR (1nF NPO)04756-0-024 04756-0-025125Ω 8kΩ 8kΩ EXTERNAL CAPACITOR (1nF NPO)CAPxPFigure 24. PGA Block DiagramAnalog Σ-∆ ModulatorThe ADC features a second-order, multibit, Σ-Δ modulator. The input features two integrators in cascade followed by a flash converter. This multibit output is directed to a scrambler, followed by a DAC for loop feedback. The flash ADC output is also converted from thermometer coding to binary coding for input as a 5-bit word to the decimator. Figure 25 shows the ADC block diagram. The ADC also features independent digital volume control for the left and right channels. The volume control consists of 256 linear steps, with each step reducing the digital output codes by 0.39%. Each channel also has a peak detector that records the peak level of the input signal. The peak detector register is cleared by reading it.ADC MCLK DIVIDERADC MCLKFigure 23. Clock Path Control on the ADCMULTI-BIT Σ–∆ MODULATORPLL1 INTERNALMCLKIREG 0x6F BITS 1–0XINREG 0x76 BITS 4–2DECIMATOR VOLUME CONTROLHPFPEAK DETECTADC MODCLK SINC^5 ADC MCLK/2 (TYP 6.144MHz)384kHz 768kHzHALF-BAND 192kHz FILTER 384kHz96kHz SINC COMPENSATION 192kHzHALF-BAND 48kHz FILTER 96kHzFigure 25. ADC Block DiagramRev. 0 | Page 15 of 56元器件交易网ADAV803Automatic Level Control (ALC)The ADC record channel features a programmable automatic level control block. This block monitors the level of the ADC output signal and automatically reduces the gain, if the signal at the input pins causes the ADC output to exceed a preset limit. This function can be useful to maximize the signal dynamic range when the input level is not well defined. The PGA can be used to amplify the unknown signal, and the ALC reduces the gain until the ADC output is within the preset limits. This results in maximum front end gain. Because the ALC block monitors the output of the ADC, the volume control function should not be used. The ADC volume control scales the results from the ADC, and any distortion caused by the input signal exceeding the input range of the ADC is still present at the output of the ADC, but scaled by a value determined by the volume control register. The ALC block has two functions, attack mode and recovery mode. Recovery mode consists of three settings: no recovery, normal recovery, and limited recovery. These modes are discussed in the following sections. Figure 26 is a flow diagram of the ALC block. When the ALC has been enabled, any changes made to the PGA or ALC settings are ignored. To change the functionality of the ALC, it must first be disabled. The settings can then be changed and the ALC re-enabled.No Recovery ModeBy default, there is no gain recovery. Once the gain has been reduced, it is not recovered until the ALC has been reset, either by toggling the ALCEN bit in ALC Control Register 1 or by writing any value to ALC Control Register 3. The latter option is more efficient, because it requires only one write operation to reset the ALC function. No recovery mode prevents volume modulation of the signal caused by adjusting the gain, which can create undesirable artifacts in the signal. The gain can be reduced but not recovered. Therefore, care should be taken that spurious signals do not interfere with the input signal, because these might trigger a gain reduction unnecessarily.Normal Recovery ModeNormal recovery mode allows for the PGA gain to be recovered, provided that the input signal meets certain criteria. First, the ALC must not be in attack mode, that is, the PGA gain has been reduced sufficiently such that the input signal is below the level set by the attack threshold bits. Second, the output result from the ADC must be below the level set by the recovery threshold bits in the ALC control register. If both of these criteria are met, the gain is recovered by one step (0.5 dB). The gain is incrementally restored to its original value, assuming that the ADC output level is below the recovery threshold at intervals determined by the recovery time bits. If the ADC output level exceeds the recovery threshold while the PGA gain is being restored, the PGA gain value is held and does not continue restoration until the ADC output level is again below the recovery threshold. Once the PGA gain is restored to its original value, it is not changed again unless the ADC output value exceeds the attack threshold and the ALC then enters attack mode. Care should be taken when using this mode to choose values for the attack and recovery thresholds that prevent excessive volume modulation caused by continuous gain adjustments.Attack ModeWhen the absolute value of the ADC output exceeds the level set by the attack threshold bits in ALC Control Register 2, attack mode is initiated. The PGA gain for both channels is reduced by one step (0.5 dB). The ALC then waits for a time determined by the attack timer bits before sampling the ADC output value again. If the ADC output is still above the threshold, the PGA gain is reduced by a further step. This procedure continues until the ADC output is below the limit set by the attack threshold bits. The initial gains of the PGAs are defined by the ADC left PGA gain register and the ADC right PGA gain register and they can have different values. The ALC subtracts a common gain offset to these values. The ALC preserves any gain difference in dB as defined by these registers. At no time do the PGA gains exceed their initial values. The initial gain setting, therefore, also serves as a maximum value. The limit detection mode bit in ALC Control Register 1 determines how the ALC responds to an ADC output that exceeds the set limits. If this bit is a 1, then both channels must exceed the threshold before the gain is reduced. This mode can be used to prevent unnecessary gain reduction due to spurious noise on a single channel. If the limit detection mode bit is a 0, the gain is reduced when either channel exceeds the threshold.Limited Recovery ModeLimited recovery mode offers a compromise between no recovery and normal recovery modes. If the output level of the ADC exceeds the attack threshold, then attack mode is initiated. When attack mode has reduced the PGA gain to suitable levels, the ALC attempts to recover the gain to its original level. If the ADC output level exceeds the level set by the recovery threshold bits, a counter is incremented (GAINCNTR). This counter is incremented at intervals equal to the recovery time selection, if the ADC has any excursion above the recovery threshold. If the counter reaches its maximum value, determined by the GAINCNTR bits in ALC Control Register 1, the PGA gain is deemed suitable and no further gain recovery is attempted. Whenever the ADC output level exceeds the attack threshold, attack mode is reinitiated and the counter is reset.Rev. 0 | Page 16 of 56元器件交易网ADAV803Selecting a Sample RateThe output sample rate of the ADC is always ADC MCLK/256, as shown in Figure 23. By default, the ADC modulator runs at ADC MCLK/2. When the ADC MCLK exceeds 12.288 MHz, the ADC modulator should be set to run at ADC MCLK/4. This is achieved by setting the AMC (ADC Modulator Clock) bit in the ADC Control Register 1. To compensate for the reduced modulator clock speed, a different set of filters is used in the decimator section ensuring that the sample rate remains the same. The AMC bit can also be used to boost the THD + N performance of the ADC at the expense of dynamic range. The improvement is typically 0.5 dB to 1.0 dB and works, because selecting the lower modulator rate reduces the amount of digital noise, improving THD + N, but reduces the oversampling ratio, therefore reducing the dynamic range by a corresponding amount. For best performance of the ADC, avoid using similar frequency clocks from separate sources in the ADAV803. For example, running the ADC from a 12.288 MHz clock connected to MCLKI and using the PLL to generate a separate 12.288 MHz clock for the DAC can reduce the performance of the ADC. This is due to the interaction of the clocks, which generate beat frequencies that can affect the charge on the switch capacitors of the analog inputs.ATTACK MODE WAIT FOR SAMPLE NO IS A RECOVERY MODE ENABLED? NO IS SAMPLE GREATER THAN ATTACK THRESHOLD? YES DECREASE GAIN BY 0.5dB AND WAIT ATTACK TIMEYESLIMITED RECOVERYNORMAL RECOVERYWAIT FOR SAMPLEWAIT FOR SAMPLEIS SAMPLE ABOVE ATTACK THRESHOLD? NOIS SAMPLE ABOVE ATTACK THRESHOLD? NOHAS RECOVERY TIME BEEN REACHED? YESNOHAS RECOVERY TIME BEEN REACHED? YESNOARE ALL SAMPLES BELOW RECOVERY THRESHOLD? YESNOARE ALL SAMPLES BELOW RECOVERY THRESHOLD? YESNOINCREASE GAIN BY 0.5dB INCREMENT GAINCNTR HAS GAIN BEEN FULLY RESTORED? HAS GAIN BEEN FULLY RESTORED? INCREASE GAIN BY 0.5dB WAIT RECOVERY TIMENOYES YESIS GAINCNTR AT MAXIMUM? NONOYES04756-0-026Figure 26. ALC Flow DiagramRev. 0 | Page 17 of 56。
连接/参考器件电路笔记 CN-0249Circuits from the Lab™ reference circuits are engineered and tested for quick and easy system integration to help solve today’s analog, mixed-signal, and RF design challenges. For more information and/or support, visit /CN0249.AD9253 14位、125 MSPS 四通道模数转换器(ADC)14位、125 MSPS 四通道ADC ,通过后端数字求和增强SNR 性能Rev. 0Circuits from the Lab™ circuits from Analog Devices have been designed and built by Analog Devices engineers. Standard engineering practices have been employed in the design and construction of each circuit, and their function and performance have been tested and veri ed in a lab environment at room temperature. However , you are solely responsible for testing the circuit and determining its suitability and applicability for your use and application. Accordingly , in no event shall Analog Devices be liable for direct, indirect, special, incidental, consequential or punitive damages due to any cause whatsoever connected to the use of any Circuits from the Lab circuits. (Continued on last page)One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A. Tel: 781.329.4700 Fax: 781.461.3113 ©2013 Analog Devices, Inc. All rights reserved.ADC 1,2,3,4:AD9253QUAD 14-BIT,125MSPSANALOG SIGNAL INPUTnn + 210303-001CLOCK INPUTADC 1ADC 3ADC 4ADC 2POST DIGITAL SUMMERΣnnnANALOG FRONT-ENDCLOCK CIRCUITRY图1. 四个并联ADC 求和得到更高SNR 的基本框图评估和设计支持设计和集成文件原理图、布局文件、物料清单电路功能与优势图1所示电路是14位、125 MSPS 四通道ADC 系统的简化图,该电路使用后端数字求和将信噪比(SNR)从单通道ADC 的74 dBFS 提升到四通道ADC 的78.5 dBFS 。
Rev. BInformation furnished by Analog Devices is believed to be accurate and reliable. However, noresponsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Speci cations subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. T rademarks and registered trademarks are the property of their respective owners.One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A. Tel: 781.329.4700 Fax: 781.461.3113 ©2007 Analog Devices, Inc. All rights reserved.引脚配置OUT A1–IN A2+IN A3–V4+V8OUT B7–IN B6+IN B5ADTL082JTOP VIEW(Not to Scale)6275-1OUT A1–IN A2+IN A3–V4+V8OUT B7–IN B6+IN B5ADTL082ATOP VIEW(Not to Scale)6275-2OUT A1–IN A2+IN A3+V4OUT D14–IN D13+IN D12–V11+IN B5+IN C10–IN B6–IN C9OUT B7OUT C8ADTL084JTOP VIEW(Not to Scale)6275-3ADTL084A1234567–IN A+IN A+VOUT B–IN B+IN BOUT A141312111098–IN D+IN D–VOUT C–IN C+IN COUT DTOP VIEW(Not to Scale)6275-4低成本、JFET输入运算放大器ADTL082/ADTL084产品特性TL082/TL084兼容低输入偏置电流:10 pA(最大值)失调电压5.5 mV(最大值,ADTL082A/ADTL084A)9 mV(最大值,ADTL082J/ADTL084J)工作电压:±15 V低噪声:16 nV/√Hz宽带宽:5 MHz压摆率:20 V/μs共模抑制比(CMRR):80 dB(最小值)总谐波失真: 0.001%电源电流:1.2 mA(典型值)单位增益稳定应用通用放大功率控制和监测有源滤波器工业/过程控制数据采集采样保持电路积分器输入缓冲图1. 8引脚SOIC_N(R-8)图2. 8引脚MSOP(RM-8)图3. 14引脚SOIC_N(R-14)图4. 14引脚TSSOP(RU-14)概述ADTL082和ADTL084均为具有业界领先性能的JFET输入放大器,其性能优于TL08x器件。
ALx SeriesAir Cooled Linear DC Electronic LoadMAGNA LOADNumber of Models6Power Levels 1.25 kW to 2.5 kW+Max. Voltage Levels From 200 Vdc to 1,000 VdcMax. Current Levels From 60 Adc to 600 AdcSize3UPage 2Magna-Power ElectronicsNote: Specifications and features are subject to change at any time without notice.MagnaLINK™ Distributed DSP ArchitectureMagna-Power’s MagnaLINK™ technology provides distributed Texas Instrument DSP control across power processing stages inside the MagnaLOAD DC electronic load. This technology follows a significant internal development cycle from Magna-Power to provide a unified digital control platform across its electronic loads and power supplies, featuring fully digital control loops, adjustable control gains, programmable slew rates, function generation 1, and many new advanced control technologies.Many Control ModesTo accommodate a variety of DC sources, all ALx Series MagnaLOADs come with many distinct control modes, including: Voltage Mode, Current Mode, Power Mode, and Resis-tance Mode. Preference for DC regulation is given to the parameter in the selected mode within the programmed set-points. Using the MagnaLOAD’s set-points and trip settings, the product can configured to either trip with a fault when a limit is exceeded or to cross-over into a different regulation state.Key FeaturesExtensive Programming SupportAll ALx Series MagnaLOADs come with a dedicated National Instruments LabVIEW™ driver, Interchangeable Virtual Instrument (IVI) driver, and support for a wide range of Standard Commands for Programmable Instrumentation (SCPI). These programming interfaces support full control, measurement, and monitoring of the MagnaLOAD. All of the MagnaLOAD’s available communication interfaces are supported by these drivers and command sets, including: USB, RS485, LXI TCP/IP Ethernet, and IEEE-488 GPIB.Feature Highlights• MagnaLINK™ Distributed DSP Architecture• 16-bit digital programming and monitoring resolution• Many control modes, including: voltage, current, power, resistance • Wide voltage-current-power operating profile• Integrated front and rear full control (host) USB ports, RS485, and dual MagnaLINK™ ports, with LXI TCP/IP Ethernet and IEEE-488 GPIB available. • Digital master-slaving capability 1• Integrated arbitrary waveforms with up to 100 steps per stored function 1• Configurable external analog-digital user I/O •Designed and manufactured in the USAConfigurable External User I/OBeyond the front panel and computer controls, all MagnaLOADs come standard with a 25-pin D-Sub connector designated as the External User I/O. This connector provides: 8 Digital Outputs, 4 Digital Inputs, 4 Analog Outputs, 4 Analog Inputs.The analog-digital I/O pins are configurable, allowing the user to select which parameters they want to control and monitor. Nearly all of the MagnaLOAD’s parameters are select-able. This configurable I/O scheme reduces complexity, eases PLC integration and allows control parameters from various interfaces simultaneously. 0-10V is used for analog I/O, while and 5V is used for digital I/O; both +10V and +5V reference signals are provided.Analog Input 1Analog Input 2Analog Input 3Analog Input 4Voltage Set Point Current Set PointPower Set Point Resistance Set Point Over Voltage Trip Setting Over Current Trip Setting Over Power Trip SettingUnder Voltage Trip Setting Integrated Arbitrary Waveform Generation 1MagnaLOADs provide user programmable arbitrary waveforms. Each arbitrary waveform can consists many points with the following settings available:• Voltage, Current, Power, and Resistance Set Points • Time Period• Rise and Fall Slew Rates•Stop, Loop, or Jump-to-Point SettingWith the integrated arbitrary waveform generation, the MagnaLOAD can easily be used to provide a wide range of user-generated waveforms including step load transitions or pulsed DC loading.Current Slew Rate Rise SettingTime (seconds)0t1t2t3t4t5t6t7t8tD C I n p u t C u r r e n t (A d c )Current Set-Point1Planned featured to be supported via future firmware updatePage 3Datasheet • ALx Series MagnaLOAD DC Electronic Load DiagramsALx Series Front ViewALx Series Rear ViewALx Series Rear ViewALx2.5-200-600+LXIProduct SeriesMaximum Power (kW)Maximum Voltage (Vdc)Maximum Current (Adc)Integrated OptionsModels2.5 kW1000 Vdc120 AdcRack-mountModel Ordering GuideThere are many possible configurations for the ALx Series product. Using the follow-ing ordering guide and models chart to define the best model for your application.The following table details the available standard ALx Series models. Refer to the Operating Profile for the product’s available operating region over a given model’s maximum power, voltage and current specifications.Page 4Magna-Power ElectronicsMagnaLOAD Front Panel1Start Button: Enables the DC input busStop Button: Disable the DC input bus 2Voltage measurement display 3Current measurement display44-line character display featuring a menu system, operating status and modes, product messages with diagnostic codes, resistance measurement display, and power measure-ment display5Control power switch, energizes the control circuits without engaging DC bus LED indicator that the DC input is enabled 6Full control (host) front panel USB port 7Clean air intake, with integrated fans 8Aluminium digital encoder knob for program-ming set-points910LED indicator of the MagnaLOAD’s present regulation state, which can include: constant voltage (CV), constant current (CC), constant power (CP), or constant resistance (CR)11Selector buttons to choose which set-point the digital encoder knob and digital keypad buttons will modify.12Menu Button: Enters the menu system on the 4-line display Back Button: Moves back one level in the menu Enter Button: Selects the highlighted menu itemClear Button: Removes the product from a faulted stateLock Button: Locks the front panel, with password protection。
G代码列表本机床由各种G代码与M代码来控制。
以下为G代码列表。
有关M代码信息参看第1-7页。
M代码列表机床布置图LC-α与LC-β机床为混合光路系统,可使板材沿X轴方向运动,而激光切割头沿Y 轴方向运动。
LC-α机床使板材移动通过一球形传送台,同时LC-β机床使吸盘与板材沿X 轴方向运动。
LC-θ或FO机床可使激光切割头沿X轴和Y轴方向移动。
坐标轴在基准位置时,激光切割头位于LC-α,-β和-θ机床工作区域的X+和Y+角处,同时也位于FO机床工作区域X+和Y-角位置上。
坐标与尺寸这些机床所采用的NC只承受一定围的值,下表为各种用途的允值围。
数字格式/允值围项目公制英制X, Y, Z +/– 99999.9999 +/– 9999.9999G 1 to 9999 1 to 9999N 0 to 99999 1 to 99999O 0 to 9999 0 to 9999R, I, J +/– 99999.9999 +/– 9999.9999M 1 to 999 0 to 999X (as parameter) .001 to 9999.999 .001 to 9999.999P 1 to 9999 1 to 9999G20 选择INCH〔英制〕坐标可用于MDI或在单独一行上一程序开始时使用。
更换坐标系后,必须再次设置G92。
这可通过再次设置机床基准〔使用RETRACT回零模式〕或使用G92或G130指令来完成。
注意在一个程序中,必须遵守用于英制坐标的G92的说明或者一G130指令。
G21 选择METRIC公制坐标可用于MDI或在单独一行上一程序开始时使用。
更换坐标系后,必须再次设置G92,这可通过再次设置机床基准〔使用RETRACT回零模式〕或使用G92或G130指令来完成。
注意在一个程序中,必须遵守用于英制坐标的G92的说明或者一G130指令。
G90 绝对编程当G90被执行时,其程序中的所有坐标都要参照当前程序原点或绝对原点G90为MODAL并始终有效直到G91被执行。
目前生产AD/DA的主要厂家有ADI、TI、BB、PHILIP、MOTOROLA等,武汉力源公司拥有多年从事电子产品的经验和雄厚的技术力量支持,已取得排名世界前列的模拟IC生产厂家ADI、TI 公司代理权,经营全系列适用各种领域/场合的AD/DA器件。
1. AD公司AD/DA器件AD公司生产的各种模数转换器(ADC)和数模转换器(DAC)(统称数据转换器)一直保持市场领导地位,包括高速、高精度数据转换器和目前流行的微转换器系统(MicroConvertersTM )。
1)带信号调理、1mW功耗、双通道16位AD转换器:AD7705AD7705是AD公司出品的适用于低频测量仪器的AD转换器。
它能将从传感器接收到的很弱的输入信号直接转换成串行数字信号输出,而无需外部仪表放大器。
采用Σ-Δ的ADC,实现16位无误码的良好性能,片内可编程放大器可设置输入信号增益。
通过片内控制寄存器调整内部数字滤波器的关闭时间和更新速率,可设置数字滤波器的第一个凹口。
在+3V电源和1MHz主时钟时, AD7705功耗仅是1mW。
AD7705是基于微控制器(MCU)、数字信号处理器(DSP)系统的理想电路,能够进一步节省成本、缩小体积、减小系统的复杂性。
应用于微处理器(MCU)、数字信号处理(DSP)系统,手持式仪器,分布式数据采集系统。
2)3V/5V CMOS信号调节AD转换器:AD7714AD7714是一个完整的用于低频测量应用场合的模拟前端,用于直接从传感器接收小信号并输出串行数字量。
它使用Σ-Δ转换技术实现高达24位精度的代码而不会丢失。
输入信号加至位于模拟调制器前端的专用可编程增益放大器。
调制器的输出经片内数字滤波器进行处理。
数字滤波器的第一次陷波通过片内控制寄存器来编程,此寄存器可以调节滤波的截止时间和建立时间。
AD7714有3个差分模拟输入(也可以是5个伪差分模拟输入)和一个差分基准输入。
单电源工作(+3V或+5V)。
PMC232/PMS232系列带12位ADC、采用FPPA TM技术双核心8位单片机数据手册第0.03版2017年3月27日Copyright 2017 by PADAUK Technology Co., Ltd., all rights reserved10F-2, No. 1, Sec. 2, Dong-Da Road, Hsin-Chu 300, Taiwan, R.O.C.重要声明应广科技保留权利在任何时候变更或终止产品,建议客户在使用或下单前与应广科技或代理商联系以取得最新、最正确的产品信息。
应广科技不担保本产品适用于保障生命安全或紧急安全的应用,应广科技不为此类应用产品承担任何责任。
关键应用产品包括,但不仅限于,可能涉及的潜在风险的死亡,人身伤害,火灾或严重财产损失。
应广科技不承担任何责任来自于因客户的产品设计所造成的任何损失。
在应广科技所保障的规格范围内,客户应设计和验证他们的产品。
为了尽量减少风险,客户设计产品时,应保留适当的产品工作范围安全保障。
提供本文档的中文简体版是为了便于了解,请勿忽视文中英文的部份,因为其中提供有关产品性能以及产品使用的有用信息,应广科技暨代理商对于文中可能存在的差错不承担任何责任,建议参考本文件英文版。
目录1. 单片机特点 (8)1.1. 系列特点 (8)1.2. 高性能RISC CPU架构 (8)1.3. 系统功能 (8)1.4. 封装信息 (9)2. 系统概述和方框图 (10)3. PMC232系列引脚功能描述 (11)4. PMS232系列引脚功能描述 (12)5. 器件电气特性 (15)5.1. 直流/交流特性 (15)5.2. 最大范围 (17)5.3. ILRC频率与VDD、温度关系的曲线图 (18)5.4. IHRC频率与VDD、温度关系的曲线图 (19)5.5. 工作电流量测值@系统时钟=ILRC÷N (20)5.6. 工作电流量测值@系统时钟=IHRC÷N (20)5.7. 工作电流量测值@系统时钟=4MH Z晶振EOSC÷N (21)5.8. 工作电流量测值@系统时钟=32K H Z晶振EOSC÷N (21)5.9. IO引脚输出驱动电流(I OH)和灌电流(I OL)曲线图 (22)5.10. 测量的IO输入阈值电压(V IH/V IL) (22)5.11. IO引脚拉高阻抗曲线图 (22)5.12. 输出(VDD/2)偏置电压与VDD关系的曲线图 (23)5.13. 开机时序图 (23)6. 功能概述 (24)6.1. 处理单元 (24)6.1.1程序计数器 (25)6.1.2 堆栈指针 (25)6.1.3 一个处理单元工作模式 (26)6.2. OTP程序存储器 (27)6.2.1 程序存储器分配 (27)6.2.2 两个处理单元工作模式下程序存储器分配例子 (27)6.2.3 一个处理单元工作模式下程序存储器分配例子 (28)6.3 程序结构 (29)6.3.1 两个处理单元工作模式下程序结构 (29)6.3.2 一个处理单元工作模式下程序结构 (29)6.4 启动程序 (30)6.5 数据存储器 (31)6.6 算术和逻辑单元 (31)6.7 振荡器和时钟 (32)6.7.1 内部高频振荡器(IHRC)和低频振荡器(ILRC) (32)6.7.2 单片机校准 (32)6.7.3 IHRC频率校准和系统时钟 (32)6.7.4 晶体振荡器 (34)6.7.5 系统时钟和LVR水平 (35)6.7.6 系统时钟切换 (36)6.8 16位定时器(T IMER16) (37)6.9 8位PWM定时器(T IMER2) (39)6.9.1 使用Timer2产生定期波形 (40)6.9.2 使用Timer2产生8位PWM波形 (41)6.9.3 使用Timer2产生6位PWM波形 (43)6.10 看门狗定时器 (44)6.11 中断 (45)6.12 掉电模式 (47)6.12.1 省电模式(stopexe) (47)6.12.2 掉电模式(stopsys) (48)6.12.3 唤醒 (49)6.13 IO端口 (50)6.14 复位和LVR (51)6.14.1 复位 (51)6.14.2 LVR (51)6.15 VDD/2偏置电压 (51)6.16 数字转换(ADC)模块 (52)6.16.1 AD转换的输入要求 (53)6.16.2 ADC分辨率选择 (54)6.16.3 ADC 时钟选择 (54)6.16.4 AD转换 (54)6.16.5 模拟引脚的配置 (54)6.16.6 使用ADC (54)7. IO寄存器 (55)7.1 算术逻辑状态寄存器(FLAG),IO地址=0X00 (55)7.2 FPP单元允许寄存器(FPPEN),IO地址=0X01 (55)7.3 堆栈指针寄存器(SP),IO地址=0X02 (55)7.4 时钟控制寄存器(CLKMD),IO地址=0X03 (56)7.5 中断允许寄存器(INTEN),IO地址=0X04 (56)7.6 中断请求寄存器(INTRQ),IO地址=0X05 (56)7.7 T IMER16控制寄存器(T16M),IO地址=0X06 (57)7.8 通用数据输入/输出寄存器(GDIO),IO地址=0X07 (57)7.9 外部晶体振荡器控制寄存器(EOSCR),IO地址=0X0A (57)7.10 内部高频RC振荡器控制寄存器(IHRCR,只写),IO地址=0X0B (58)7.11 中断边沿选择寄存器(INTEGS,只写),IO地址=0X0C (58)7.12 端口A数字输入禁止寄存器(PADIER,只写),IO地址=0X0D (58)7.13 端口B数字输入禁止寄存器(PBDIER,只写),IO地址=0X0E (59)7.14 端口A数据寄存器(PA),IO地址=0X10 (59)7.15 端口A控制寄存器(PAC),IO地址=0X11 (59)7.16 端口A上拉控制寄存器(PAPH),IO地址=0X12 (59)7.17端口B数据寄存器(PB),IO地址=0X14 (59)7.18端口B控制寄存器(PBC),IO地址=0X15 (59)7.19 端口B上拉控制寄存器(PBPH),IO地址=0X16 (60)7.20 端口C数据寄存器(PC),IO地址=0X17 (60)7.21 端口C控制寄存器(PCC),IO地址=0X18 (60)7.22 端口C上拉控制寄存器(PCPH),IO地址=0X19 (60)7.23 ADC控制寄存器(ADCC),IO地址=0X20 (60)7.24 ADC模式控制寄存器(ADCM,只写),IO地址=0X21 (61)7.25 ADC数据高位寄存器(ADCRH,只读),IO地址=0X22 (61)7.26 ADC数据低位寄存器(ADCRL,只读),IO地址=0X23 (61)7.27 杂项寄存器(MISC),IO地址=0X3B (62)7.28 T IMER2控制寄存器(TM2C),IO地址=0X3C (63)7.29 T IMER2计数寄存器(TM2CT),IO地址=0X3D (63)7.30 T IMER2分频器寄存器(TM2S),IO地址=0X37 (63)7.31 T IMER2上限寄存器(TM2B),IO地址=0X09 (64)8. 指令 (65)8.1 数据传输类指令 (65)8.2 算术运算类指令 (69)8.3 移位运算类指令 (71)8.4 逻辑运算类指令 (72)8.5 位运算类指令 (74)8.6 条件运算类指令 (75)8.7 系统控制类指令 (77)8.8 指令执行周期综述 (79)8.9 指令影响标志的综述 (80)9. 特别注意事项 (81)9.1 警告 (81)9.2 使用IC时 (81)9.2.1 IO使用与设定 (81)9.2.2 中断 (82)9.2.3 切换系统时钟 (82)9.2.4 掉电模式、唤醒以及看门狗 (83)9.2.5 TIMER溢出时间 (84)9.2.6 ADC使用注意事项 (84)9.2.7 LVR (84)9.2.8 IHRC (84)9.2.9 单/双核模式下指令周期差异 (85)9.3 使用ICE时 (85)9.3.1 PMC232/PMS232系列于仿真器PDK3S-I-001/002/003上仿真时 (85)9.3.2 使用PDK3S-I-001/002/003仿真PMC232/PMS232系列功能時注意事項 (86)修订历史:修订日期描述0.01 2015/8/1 初版。
4/98G2A THRU G2MGLASS PASSIVATED JUNCTION RECTIFIERReverse Voltage -50 to 1000 VoltsForward Current -2.0 AmperesFEATURES♦High temperature metallurgically bonded construction♦ Glass passivated cavity-free junction ♦ Hermetically sealed package 2.0 Ampere operation at T A =75°C with no thermal runaway♦ T ypical I R less than 0.1µA♦ Capable of meeting environmental standards of MIL-S-19500♦ High temperature soldering guaranteed:350°C/10 seconds, 0.375" (9.5mm) lead length,5 lbs.(2.3kg) tensionMECHANICAL DATACase:JEDEC DO-204AP solid glass bodyTerminals:Solder plated axial leads, solderable per MIL-STD-750, Method 2026Polarity:Color band denotes cathode end Mounting Position:AnyWeight:0.02 ounce, 0.56 gramMAXIMUM RATINGS AND ELECTRICAL CHARACTERISTICSRatings at 25°C ambient temperature unless otherwise specified.SYMBOLS G2A G2B G2D G2G G2J G2K G2M UNITSMaximum repetitive peak reverse voltage V RRM 501002004006008001000Volts Maximum RMS voltage V RMS 3570140280420560700Volts Maximum DC blocking voltageV DC 501002004006008001000Volts Maximum average forward rectified current 0.375” (9.5mm) lead length at T A =75°C I (AV) 2.0Amps Peak forward surge current8.3ms single half sine-wave superimposed on rated load (JEDEC Method)I FSM 50.0AmpsMaximum instantaneous forward voltage at 2.0A V F 1.21.1Volts Maximum full load reverse current, full cycleaverage 0.375" (9.5mm) lead length at T A =100°C I R(AV)100.0µA Maximum DC reverse current T A =25°C 1.0at rated DC blocking voltageT A =150°CI R 100.0µA Typical reverse recovery time (NOTE 1)t rr 1.5µs Typical junction capacitance (NOTE 2)C J 15.0pF Typical thermal resistance (NOTE 3)R ΘJA 55.0°C/W Operating junction and storage temperature rangeT J , T STG-65 to +175°CNOTES:(1) Measured with I F =0.5A, I R =1.0A, Irr=0.25A(2) Measured at 1.0 MH Z and applied reverse voltage of 4.0 Volts(3) Thermal resistance from junction to ambient at 0.375" (9.5mm) lead length P.C.B mounted.Dimensions in inches and (millimeters)*Brazed-lead assembly is covered by Patent No.3,930,306P A TE NT ED*DO-204AP1101001020304050110100110300.20.40.60.8 1.0 1.2 1.40.010.111002550751001251501750.51.01.52.0020*********0.010.1110RATINGS AND CHARACTERISTIC CURVES G2A AND G2MFIG. 1 - FORWARD CURRENT DERATING CURVEFIG. 3 - TYPICAL INSTANTANEOUS FORWARDCHARACTERISTICSFIG. 4 - TYPICAL REVERSE CHARACTERISTICS60 H ZRESISTIVE OR INDUCTIVE LOADPULSE WIDTH=300µs 1% DUTY CYCLET J =25°CT J =125°CT J =75°CAMBIENT TEMPERATURE, °CNUMBER OF CYCLES AT 60 H ZPERCENT OF RATED PEAK REVERSE VOLTAGE, %A V E R A G E F O R W A R D R E C T I F I E D C U R R E N T , A M P E R E SFIG. 2 - MAXIMUM NON-REPETITIVE PEAKFORWARD SURGE CURRENTI N S T A N T A N E O U S R E V E R S E C U R R E N T ,M I C R O A M P E R E SINSTANTANEOUS FORWARD VOLTAGE,VOLTSFIG. 5 - TYPICAL JUNCTION CAPACITANCEREVERSE VOLTAGE, VOLTSP E A K F O R W A R D S U R G E C U R R E N T ,A M P E R E SJ U N C T I O N C A P A C I T A N C E , p FI N S T A N T A N E O U S F O R W A R D C U R R E N T ,A M P E R E ST J=T J max.8.3ms SINGLE HALFSINE-WAVE (JEDEC Method)T J =25°C f=1.0 MHz Vsig=50mVp-p0.375" (9.5mm) LEAD LENGTHCAPACITANCE LOAD Ipk/I AV = 5.01020T J =25°CT J =150°C。
kaya采集卡说明书从视频源得到的信号,经过视频接口送到视频采集卡,信号首先进过模数转换,然后送到数字解码器解码。
模数转换器ADC实际上也是一个视频解码器,可以看出它对来自视频源的视频信号解码和数字化,另外,采用不同的颜色空间可选择不同的视频输入解码器芯片。
视频采集就是将视频源的模拟信号通过处理转变成数码信息,并将这些数码信息存储在电脑硬盘上的过程。
这种模拟数码转变是通过视频采集卡上的采集芯片进行的。
通常在采集过程,对数码信息还进行一定形式的实时压缩处理。
当图像采集卡的信号输入速率较高时,需要考虑图像采集卡与图像处理系统之间的带宽问题。
在使用PC时,图像采集卡采用PCI接口的理论带宽峰值为132MB/S。
在实际使用中,有可能在传输瞬间不能满足高传输率的要求。
为了避免与其他PCI设备产生冲突时丢失数据,图像采集卡上应有数据缓存。
一般情况下,2MB的板载存储器可以满足大部分的任务要求。
1、视野(FOV)或现场是相机及光学系统“看”到的真实世界的具体部分。
2、CCD芯片将光能转化为电能。
3、相机将此信息以模拟信号的格式输出至图像采集卡。
4、AD –转换器将模拟信号转换成8 位(或多位)的数字信号。
每个象素独立地把光强以灰度值(Gray level)的形式表达。
5、这些光强值从CCD芯片的矩阵中被存储在内存的矩阵数据结构中。
灰度值(Gray Level)——象素光强弱信息的表示灰度值为真实世界图像量化的表现方法。
通常灰度值从最黑到最白为0 -255。
光线进入CCD象素,如果光强达到CCD感应的极限,此象素为纯白色。
对应于内存中该象素灰度值为255。
如果完全没有光线进入CCD象素,此象素为纯黑色。
对应于内存中该象素灰度值为0。
GC-CAM 4.14中文入门一 . 启动GC-CAM 4.14进入如下层显示 (Layer List) 界面:二. 载入界面(Aperture Lists)Aperture lists 此项为输入Gerber 文件所对应的钻带文件,即D 码.如图所示,REP 文件格式为PowerPCB 所产生的D 码文件.a01表示当前的D 码文件只有一个D 码形式.如:我现在读入的文件其设计软件为Tango 软件,生成CAM GERBER 文件时,无论是线路底层、阻焊层、丝印字符层、孔径符号输出层等所有的层都只共用一个D 码文件,所以这里我只有a01所选显示.但如由PowerPCB 生成的GERBER 文件,每一个层,都有一个对应的D 码文件相配合,所以当我在Layer List 中同时输入几个GERBER 文件时(底层、阻焊层、丝印字符层…时),这里Aperture List 就会如图,a01,a02,a03对应的各层的D 码数据,供调入时自动载入.三 . 数控文件 (DRILL)输入界面.一般输入后的数据,需手工进行调整,方法: 单击旁边所对应的,出现如下图对话框,这时对照源钻孔文件,对应修改输入钻径即可.因GC-CAM 的DRILL 处理能力不强,所以这里不多作介绍了.有兴趣的朋友,可来信交流.最后就是载入文件了,方法:这里就是,每一层文件,都对应着一个D 码文件。
File->Load Layers (Ctrl+L) 选择对应的类型定.在窗口中的Layers中,你可单击选择所要载入的层.如果后,显示的线条、焊盘、字符都明显变粗大了或变细了,这就表示输入的格式不对,这时就需要重新输入, 通常, 如果这种情况发生的话, 需要试验几次方能得到正确的格式. 所以, 我们总是要求顾客提供RS-274-X格式的文件, 就不会有这种情况了.四.坐标的介绍:如左图:User ---用户坐标Abs ---绝对坐标Rel ---相对坐标.Marked DataPads:0 是指什么? --被标出来的焊盘数Traces:1 是指什么?—被标出来的线条数R el相对坐标指定0点坐标的做法: 把光标定于你要设0点的位置, 键入”z”, 然后, rel 的值就是以你定义的0点为准的相对坐标User用户坐标指定0点坐标的做法:Shift+Ctrl+Z,出现定义窗口,这时你什么都不用做,直接按下即可.五.在GC-CAM拼片.(如拼版方案为水平2张,垂直3张,单片SIZE:33.5*19.5 单位:MM)如图:方法:Edit->Editing Mode->选Layers (Panelize)在中,选择需拼片的层,”OK”退出.这时软件会以简化的形式显示出来,如图:在这里我们不需要理它,进入下一步:按下”*”号选择全部.Edit->Array Copy+paste其中:X copies: 是指沿X方向做多少次拼版.Y copies: 是指沿Y方向做多少次拼版.X setup: 是指拼版时X方向的拼版距离.Y setup: 是指拼版时Y方向的拼版距离.设定单位格式, ,后结果如图所示.取消简化形式,改为以实际的PCB图形方式显示,方法:选取Draw->Control Draw->Draw Panels 中选Full模式即可.结果如图.注:在GC-CAM的拼片中,有一个非常之大的好处,就是:在GC-CAM拼版中,只要改变了一个,其它的全部都会自动更正即:如果当你全部已拼好版时,才发现某处地方需要修改,如需在线路层上,加上日期等,这时在别的CAM软件上时,你就需要逐个来修改善,或进行单个修改后,再重新拼片,这样是一件相当麻烦的事情,但在GC-CAM中,你只需对单个进行修改即可,其它已拼好的也会同时跟着已更改好的改变.免去你重新拼片或逐个修改善所带来的麻烦.六.板层重叠:将这两层进行重叠对齐方法: CAM->Register Layers…如图:将线路层与阻焊层进行重叠首先个人建议,先将全部层设置为零线模式,方法:Ctrl+D 如图:在选项中,将显示方式选为:,退出.结果,如图:2.接下来就是用十字光标来选择定位点了.方法:放大图形以方面操作,然后按下”Ctrl+N”进行元素的捕捉,后按下”M”键确定.如图:3.两层重叠:按下:CAM->Register Layers…是指移动到那层上.(即,以这层为固定的目标,其它层将移动到这层上面)按下后,两层重叠后的结果如图所示:七.”C” :Compsite (挖去一块)的应用操作:在文章的开头部分,我已谈过 “C” :Compsite (挖去一块)的概念,这里我就详细说明其作用与实现的方法.实现方法:设置层的状态属性为:”C”.在如下图中设置其属性即可操作时,将”C”层设为EDIT (可编辑层”E”),其它层设为View (只读层”V”)进行增加、删除等操作即可设置好后,要想看到被挖掉的效果,方法:”Ctrl+D”. 在出现的Control Draw 对话框中的中,选择,确定即可.八. 操作技巧:1. 线段的快速、准确测量.如图:要快速、准确测量以下线段的长度.方法:按下”Crtl+N”进行线段左边端点的中心捕捉,然后按下”Z”键,将坐标值设为 0:0再按下”Ctrl+N”对线段的右边端点进行中心捕捉.*** 注:composite Layer (即属性为“C ”的层)一定要在被Composite 的层的前面。
元器件交易网Technical Data Sheet5484BN/GADC-AKMA/XR/MSFeatures․High luminous intensity output ․Oval Shape ․Well defined spatial radiation ․Wide viewing angle (2θ1/2) : 110o / 40o ․UV resistant epoxy ․The product itself will remain within RoHS compliant versionDescriptions․This precision optical performance oval LED is specifically designed for passenger information signs ․This lamp has matched radiation patterns with red and blue mixing color applicationsApplications․Color graphic signs ․Message boards ․Variable message signs (VMS) ․Commercial outdoor advertisingDevice Selection GuideLED Part No. 5484BN/GADC-AKMA/R/MS 5484BN/GADC-AKMA/PR/MS Chip Material Emitted Color InGaN Brilliant Green Lens Color Green Diffused Stopper No YesEverlight Electronics Co., Ltd. Device Number : DT1-548-047http\\: Prepared date:03-24 -2008Rev 1Page: 1 of 10Prepared by: Grace Shen元器件交易网Technical Data Sheet5484BN/GADC-AKMA/XR/MSPackage DimensionsStopper Type No Stopper TypeNotes: ․All dimensions are in millimeters, tolerance is 0.25mm except being specified. ․Protruded resin under flange is 1.5mm Max LED. ․Bare copper alloy is exposed at tie-bar portion after cutting.Everlight Electronics Co., Ltd. Device Number : DT1-548-047http\\: Prepared date:03-24 -20083Rev 1Page: 2 of 10Prepared by: Grace Shen元器件交易网Technical Data Sheet5484BN/GADC-AKMA/XR/MSAbsolute Maximum Rating (Ta=25℃)Parameter Symbol Absolute Maximum Rating Forward Current IF 30 Pulse Forward Current (Duty1/10@ 1KHz) IFP 100 Operating Temperature Topr -40 ~ +85 Storage Temperature Tstg -40 ~ +100 Soldering Temperature Tsol 260 Power Dissipation Pd 100 Reverse Voltage VR 5 Electrostatic Discharge ESD 1K Notes: Soldering time≦5 seconds. Unit mA mA ℃ ℃ ℃ mW V VElectro-Optical Characteristics (Ta=25℃)Parameter Luminous Intensity Viewing Angle Peak Wavelength Dominant Wavelength Spectrum Half width Forward Voltage Reverse Current Symbol IV 2θ1/2 λp λd Δλ VF IR Min. 1740 --525 -2.8 -Typ. -X:110 Y:40 522 530 35 --Max. 3450 --535 -3.6 50 Unit mcd deg nm V μA ConditionIF=20mAVR=5VRank Combination (IF=20mA)Rank Luminous Intensity K2 1740~2070 L1 2070~2480 L2 2480~2880 M1 2880~3450Unit:mcd*Measurement Uncertainty of Luminous Intensity: ±10%Rank Dominant Wavelength12Unit:nm525~530 530~535 *Measurement Uncertainty of Dominant Wavelength ±1.0nmEverlight Electronics Co., Ltd. Device Number : DT1-548-047http\\: Prepared date:03-24 -2008Rev 1Page: 3 of 10Prepared by: Grace Shen元器件交易网Technical Data Sheet5484BN/GADC-AKMA/XR/MSTypical Electro-Optical Characteristics CurvesEverlight Electronics Co., Ltd. Device Number : DT1-548-047http\\: Prepared date:03-24 -2008Rev 1Page: 4 of 10Prepared by: Grace Shen元器件交易网Technical Data Sheet5484BN/GADC-AKMA/XR/MSTaping DimensionsEverlight Electronics Co., Ltd. Device Number : DT1-548-047http\\: Prepared date:03-24 -2008Rev 1Page: 5 of 10Prepared by: Grace Shen元器件交易网Technical Data Sheet5484BN/GADC-AKMA/XR/MSTaping Sizes Specifications Symbol Items Tape Feed Hole Diameter Component Lead Pitch Front-to-Read Deflection Feed Hole to Button of Component Feed Hole to Overall Component Height Lead Length after Component Removal Feed Hole Pitch Lead Location Center of Component Location Overall Taped Package Thickness Feed Hole Location Adhesive Tape Width Adhesive Tape Position Tape Width Symbol mm D F △H H1 H2 L P P1 P2 T W0 W1 W2 W3 4.00 2.54 2.0 18.5 25.5 11.00 12.70 5.10 6.35 1.42 9.00 13.00 4.00 18.00 Avg. Inch 0.157 0.100 0.078 0.729 1.003 0.433 0.500 0.200 0.250 0.056 0.354 0.512 0.157 0.709 Tolerance (mm) ±0.2 ±0.3 Max ±1.0 ±1.0 Max ±0.3 ±0.7 ±1.2 Max ±0.5 ±0.5 Max ±0.75Everlight Electronics Co., Ltd. Device Number : DT1-548-047http\\: Prepared date:03-24 -2008Rev 1Page: 6 of 10Prepared by: Grace Shen元器件交易网Technical Data Sheet5484BN/GADC-AKMA/XR/MSPacking Specification■Inner Carton EVERLIGHT CPN: P/N:XXXXXXXXXXRoHSXXX/XXXX-XXXX QTY:XXXXCAT:XX HUE:XX REF:XXLOT NO: MADE IN TAIWAN■ ■Label Form Specification CPN: Customer’s Production Number P/N : Production Number QTY: Packing Quantity CAT: Rank of Luminous Intensity HUE: Rank of Dominant Wavelength REF: Reference LOT No: Lot Number MADE IN TAIWAN: Production Place■Outside Carton■Packing Quantity 1. 2000 PCS/1 Inner Carton 2. 10Inner Cartons/1 Outside CartonEverlight Electronics Co., Ltd. Device Number : DT1-548-047http\\: Prepared date:03-24 -2008Rev 1Page: 7 of 10Prepared by: Grace Shen元器件交易网Technical Data Sheet5484BN/GADC-AKMA/XR/MSNotes1. Lead Forming During lead formation, the leads should be bent at a point at least 3mm from the base of the epoxy bulb. Lead forming should be done before soldering. Avoid stressing the LED package during leads forming. The stress to the base may damage the LED’s characteristics or it may break the LEDs. Cut the LED leadframes at room temperature. Cutting the leadframes at high temperatures may cause failure of the LEDs. When mounting the LEDs onto a PCB, the PCB holes must be aligned exactly with the lead position of the LED. If the LEDs are mounted with stress at the leads, it causes deterioration of the epoxy resin and this will degrade the LEDs. 2. Storage The LEDs should be stored at 30°C or less and 70%RH or less after being shipped from Everlight and the storage life limits are 3 months. If the LEDs are stored for 3 months or more, they can be stored for a year in a sealed container with a nitrogen atmosphere and moisture absorbent material. Please avoid rapid transitions in ambient temperature, especially, in high humidity environments where condensation can occur. 3. Soldering Careful attention should be paid during soldering. When soldering, leave more then 3mm from solder joint to epoxy bulb, and soldering beyond the base of the tie bar is recommended. Recommended soldering conditions: Hand Soldering Temp. at tip of iron Soldering time Distance 300℃ Max. (30W Max.) 3 sec Max. 3mm Min.(From solder joint to epoxy bulb) Preheat temp. Bath temp. & time Distance DIP Soldering 100℃ Max. (60 sec Max.) 260 Max., 5 sec Max 3mm Min. (From solder joint to epoxy bulb)Everlight Electronics Co., Ltd. Device Number : DT1-548-047http\\: Prepared date:03-24 -2008Rev 1Page: 8 of 10Prepared by: Grace Shen元器件交易网Technical Data Sheet5484BN/GADC-AKMA/XR/MSRecommended soldering profilelaminar waveFluxingPreheadAvoiding applying any stress to the lead frame while the LEDs are at high temperature particularly when soldering. Dip and hand soldering should not be done more than one time After soldering the LEDs, the epoxy bulb should be protected from mechanical shock or vibration until the LEDs return to room temperature. A rapid-rate process is not recommended for cooling the LEDs down from the peak temperature. Although the recommended soldering conditions are specified in the above table, dip or handsoldering at the lowest possible temperature is desirable for the LEDs. Wave soldering parameter must be set and maintain according to recommended temperature and dwell time in the solder wave. 4. Cleaning When necessary, cleaning should occur only with isopropyl alcohol at room temperature for a duration of no more than one minute. Dry at room temperature before use. Do not clean the LEDs by the ultrasonic. When it is absolutely necessary, the influence of ultrasonic cleaning on the LEDs depends on factors such as ultrasonic power and the assembled condition. Ultrasonic cleaning shall be pre-qualified to ensure this will not cause damage to the LED.Everlight Electronics Co., Ltd. Device Number : DT1-548-047http\\: Prepared date:03-24 -2008Rev 1Page: 9 of 10Prepared by: Grace Shen元器件交易网Technical Data Sheet5484BN/GADC-AKMA/XR/MS5. Heat Management Heat management of LEDs must be taken into consideration during the design stage of LED application. The current should be de-rated appropriately by referring to the de-rating curve found in each product specification. The temperature surrounding the LED in the application should be controlled. Please refer to the data sheet de-rating curve. 6. ESD (Electrostatic Discharge) Electrostatic discharge (ESD) or surge current (EOS) can damage LEDs. An ESD wrist strap, ESD shoe strap or antistatic gloves must be worn whenever handling LEDs. All devices, equipment and machinery must be properly grounded. Use ion blower to neutralize the static charge which might have built up on surface of the LEDs plastic lens as a result of friction between LEDs during storage and handing. 7. Other Above specification may be changed without notice. EVERLIGHT will reserve authority on material change for above specification. When using this product, please observe the absolute maximum ratings and the instructions for using outlined in these specification sheets. EVERLIGHT assumes no responsibility for any damage resulting from use of the product which does not comply with the absolute maximum ratings and the instructions included in these specification sheets. These specification sheets include materials protected under copyright of EVERLIGHT corporation. Please don’t reproduce or cause anyone to reproduce them without EVERLIGHT’s consent.EVERLIGHT ELECTRONICS CO., LTD. Office: No 25, Lane 76, Sec 3, Chung Yang Rd, Tucheng, Taipei 236, Taiwan, R.O.CTel: 886-2-2267-2000, 2267-9936 Fax: 886-2267-6244, 2267-6189, 2267-6306 http:\\Everlight Electronics Co., Ltd. Device Number : DT1-548-047http\\: Prepared date:03-24 -2008Rev 1Page: 10 of 10Prepared by: Grace Shen。