1一元多元回归
- 格式:ppt
- 大小:1.32 MB
- 文档页数:64
Excel求解一元线性回归方程步骤(图解详细)1.开始-程序-Microsoft Excel,启动Excel程序。
2.Excel程序启动后,屏幕显示一个空白工作簿。
3.选定单元格,在单元格内输入计算数据。
4.选中输入数据,点击“图表向导”按钮。
5.弹出图表向导对话窗,点击XY散点图,选择平滑线散点图,点击下一步。
6.选择系列产生在:列,点击下一步。
7.在图表标题中输入“硝基苯标准曲线”,数值(X)轴输入“硝基苯浓度”,数值(Y)轴输入“HPLC峰面积”。
此外还可以点击“坐标轴”,“网格线”,“图例”,“数据标志”下拉菜单,对其中选项进行选择。
8.点击完成后,即可得到硝基苯的标准曲线图。
9.将鼠标移至图表工作曲线上,单击鼠标右键,选择“添加趋势线”。
10.在“类型”选项中选择“线性”,“选项”中选择“显示公式”,“显示R平方值”,单击确定。
11.单击确定后即可得到附有回归方程的一元线性回归曲线。
12.至此,利用“图表向导”制作回归方程的操作步骤完毕。
利用Excel中“图表向导”制作标准曲线,使用者仅需按照向导说明填入相关信息即可完成图表的制作。
方法简单,适合对Excel了解不多的人员,如果你对Excel函数有一定的了解,那么你可以利Excel函数编制程序完成回归方程的计算。
4.4.2.2通过编制Excel程序计算一元线性回归方程1.打开一个新工作簿,以“一元线性回归方程”为文件名存盘。
2.单击插入,选择名称-定义。
3.在弹出的“定义名称”对话窗中“名称”栏输入“a”,“引用位置”栏输入“=$E$4”,然后按“添加”按钮;再在“名称”栏输入“b”,“引用位置”栏输入“=$E$3”,按“添加”按钮,依次输入下列内容,最后单击确定。
“名称”栏输入内容“引用位置”栏输入内容a =$E$4b =$E$3f =$G$4n =$G$3rf =$G$6rxy =$E$5x =$A$3:$A$888y =$B$3:$B$888aa=$G$2yi1 =$E$12yi2 =$E$134.完成命名后,在相关单元格内输入下列程序内容。
计量经济学复习资料——概论⼀元和多元线性回归习题概论、⼀元线性回归、多元线性回归习题⼀、单项选择题1. 总体回归线是指( ) A )样本观测值拟合的最好的曲线 B )使残差平⽅和最⼩的曲线C )解释变量X 取给定值时,被解释变量Y 的样本均值的轨迹D )解释变量X 取给定值时,被解释变量Y 的条件均值或期望值的轨迹2. 指出下列哪⼀变量关系是确定函数关系⽽不是相关关系? () A. 商品销售额与销售价格 B. 学习成绩总分与各门课程成绩分数 C. 物价⽔平与商品需求量 D. ⼩麦亩产量与施肥量3. 经济计量分析⼯作的基本⼯作步骤是-() A .设定理论模型→收集样本资料→估计模型参数→检验模型B .设定模型→估计参数→检验模型→应⽤模型C .理论分析→数据收集→计算模拟→修正模型D .确定模型导向→确定变量及⽅程式→应⽤模型4. 若⼀元线性回归模型Y=β1+β2X +u 满⾜经典假定,那么参数β1、β2的普通最⼩⼆乘估计量β^1、β^2是所有线性估计量中( )A )⽆偏且⽅差最⼤的B )⽆偏且⽅差最⼩的C )有偏且⽅差最⼤的D )有偏且⽅差最⼩的5. 在⼀元线性回归模型Y=β1+β2X +u 中,若回归系数β2通过了t 检验,则表⽰( ) A )β^2≠0 B )β2≠0 C )β2=0 D )β^=06. 在多元线性回归模型Y=β1+β2X 2+β3X 3 +β4X 4+u 中,对回归系数βj (j=2,3,4)进⾏显著性检验时,t 统计量为( )A )()jjSe ββ?? B )()j j Se ββ C )()j j Var ββ D )()j j Var ββ??7. 在⼆元线性回归模型中,回归系数的显著性t 检验的⾃由度为( )。
A. n B. n-1 C. n-2 D. n-38. 普通最⼩⼆乘法要求模型误差项u i 满⾜某些基本假定,下列结论中错误的是( )。
A. E(u i )=0 B. E(2i u )=2i σC. E(u i u j )=0D. u i ~N(0.σ2)9. 对模型Yi=β0+β1X1i+β2X2i+µi 进⾏总体显著性F 检验,检验的零假设是( ) A. β1=β2=0 B. β1=0 C. β2=0 D. β0=0或β1=010. 在多元线性回归中,判定系数R 2随着解释变量数⽬的增加⽽() A.减少 B .增加 C .不变 D .变化不定11. 已知三元线性回归模型估计的残差平⽅和为8002=∑te,估计⽤样本容量为24=n ,则随机误差项t u 的⽅差估计量2S 为( )。
第二章经典单方程计量经济学模型:一元线性回归模型一、内容提要本章介绍了回归分析的基本思想与基本方法。
首先,本章从总体回归模型与总体回归函数、样本回归模型与样本回归函数这两组概念开始,建立了回归分析的基本思想。
总体回归函数是对总体变量间关系的定量表述,由总体回归模型在若干基本假设下得到,但它只是建立在理论之上,在现实中只能先从总体中抽取一个样本,获得样本回归函数,并用它对总体回归函数做出统计推断。
本章的一个重点是如何获取线性的样本回归函数,主要涉及到普通最小二乘法(OLS)的学习与掌握。
同时,也介绍了极大似然估计法(ML)以及矩估计法(MM)。
本章的另一个重点是对样本回归函数能否代表总体回归函数进行统计推断,即进行所谓的统计检验。
统计检验包括两个方面,一是先检验样本回归函数与样本点的“拟合优度”,第二是检验样本回归函数与总体回归函数的“接近”程度。
后者又包括两个层次:第一,检验解释变量对被解释变量是否存在着显著的线性影响关系,通过变量的t检验完成;第二,检验回归函数与总体回归函数的“接近”程度,通过参数估计值的“区间检验”完成。
本章还有三方面的内容不容忽视。
其一,若干基本假设。
样本回归函数参数的估计以及对参数估计量的统计性质的分析以及所进行的统计推断都是建立在这些基本假设之上的。
其二,参数估计量统计性质的分析,包括小样本性质与大样本性质,尤其是无偏性、有效性与一致性构成了对样本估计量优劣的最主要的衡量准则。
Goss-markov定理表明OLS估计量是最佳线性无偏估计量。
其三,运用样本回归函数进行预测,包括被解释变量条件均值与个值的预测,以及预测置信区间的计算及其变化特征。
二、典型例题分析例1、令kids表示一名妇女生育孩子的数目,educ表示该妇女接受过教育的年数。
生育率对教育年数的简单回归模型为β+μβkids=educ+1(1)随机扰动项μ包含什么样的因素?它们可能与教育水平相关吗?(2)上述简单回归分析能够揭示教育对生育率在其他条件不变下的影响吗?请解释。
一、什么是回归分析回归分析(Regression Analysis)是研究变量之间作用关系的一种统计分析方法,其基本组成是一个(或一组)自变量与一个(或一组)因变量。
回归分析研究的目的是通过收集到的样本数据用一定的统计方法探讨自变量对因变量的影响关系,即原因对结果的影响程度。
回归分析是指对具有高度相关关系的现象,根据其相关的形态,建立一个适当的数学模型(函数式),来近似地反映变量之间关系的统计分析方法.利用这种方法建立的数学模型称为回归方程,它实际上是相关现象之间不确定、不规则的数量关系的一般化。
二、回归分析的种类1。
按涉及自变量的多少,可分为一元回归分析和多元回归分析一元回归分析是对一个因变量和一个自变量建立回归方程。
多元回归分析是对一个因变量和两个或两个以上的自变量建立回归方程。
2。
按回归方程的表现形式不同,可分为线性回归分析和非线性回归分析若变量之间是线性相关关系,可通过建立直线方程来反映,这种分析叫线性回归分析。
若变量之间是非线性相关关系,可通过建立非线性回归方程来反映,这种分析叫非线性回归分析.三、回归分析的主要内容1.建立相关关系的数学表达式。
依据现象之间的相关形态,建立适当的数学模型,通过数学模型来反映现象之间的相关关系,从数量上近似地反映变量之间变动的一般规律。
2.依据回归方程进行回归预测.由于回归方程反映了变量之间的一般性关系,因此当自变量发生变化时,可依据回归方程估计出因变量可能发生相应变化的数值。
因变量的回归估计值,虽然不是一个必然的对应值(他可能和系统真值存在比较大的差距),但至少可以从一般性角度或平均意义角度反映因变量可能发生的数量变化.3.计算估计标准误差。
通过估计标准误差这一指标,可以分析回归估计值与实际值之间的差异程度以及估计值的准确性和代表性,还可利用估计标准误差对因变量估计值进行在一定把握程度条件下的区间估计.四、一元线性回归分析1.一元线性回归分析的特点1)两个变量不是对等关系,必须明确自变量和因变量。
从统计学看线性回归(1)——⼀元线性回归⽬录1. ⼀元线性回归模型的数学形式2. 回归参数β0 , β1的估计3. 最⼩⼆乘估计的性质 线性性 ⽆偏性 最⼩⽅差性⼀、⼀元线性回归模型的数学形式 ⼀元线性回归是描述两个变量之间相关关系的最简单的回归模型。
⾃变量与因变量间的线性关系的数学结构通常⽤式(1)的形式:y = β0 + β1x + ε (1)其中两个变量y与x之间的关系⽤两部分描述。
⼀部分是由于x的变化引起y线性变化的部分,即β0+ β1x,另⼀部分是由其他⼀切随机因素引起的,记为ε。
该式确切的表达了变量x与y之间密切关系,但密切的程度⼜没有到x唯⼀确定y的这种特殊关系。
式(1)称为变量y对x的⼀元线性回归理论模型。
⼀般称y为被解释变量(因变量),x为解释变量(⾃变量),β0和β1是未知参数,成β0为回归常数,β1为回归系数。
ε表⽰其他随机因素的影响。
⼀般假定ε是不可观测的随机误差,它是⼀个随机变量,通常假定ε满⾜:(2)对式(1)两边求期望,得E(y) = β0 + β1x, (3)称式(3)为回归⽅程。
E(ε) = 0 可以理解为ε对 y 的总体影响期望为 0,也就是说在给定 x 下,由x确定的线性部分β0 + β1x 已经确定,现在只有ε对 y 产⽣影响,在 x = x0,ε = 0即除x以外其他⼀切因素对 y 的影响为0时,设 y = y0,经过多次采样,y 的值在 y0 上下波动(因为采样中ε不恒等于0),若 E(ε) = 0 则说明综合多次采样的结果,ε对 y 的综合影响为0,则可以很好的分析 x 对 y 的影响(因为其他⼀切因素的综合影响为0,但要保证样本量不能太少);若 E(ε) = c ≠ 0,即ε对 y 的综合影响是⼀个不为0的常数,则E(y) = β0 + β1x + E(ε),那么 E(ε) 这个常数可以直接被β0 捕获,从⽽变为公式(3);若 E(ε) = 变量,则说明ε在不同的 x 下对 y 的影响不同,那么说明存在其他变量也对 y 有显著作⽤。